EP2513582B1 - Installation de préchauffage d'une bande d'acier en défilement continu - Google Patents

Installation de préchauffage d'une bande d'acier en défilement continu Download PDF

Info

Publication number
EP2513582B1
EP2513582B1 EP10715131.8A EP10715131A EP2513582B1 EP 2513582 B1 EP2513582 B1 EP 2513582B1 EP 10715131 A EP10715131 A EP 10715131A EP 2513582 B1 EP2513582 B1 EP 2513582B1
Authority
EP
European Patent Office
Prior art keywords
preheating
tubes
strip
equipment according
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10715131.8A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP2513582A1 (fr
Inventor
Pierre-Jérôme BORREL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clecim SAS
Original Assignee
Primetals Technologies France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Primetals Technologies France SAS filed Critical Primetals Technologies France SAS
Priority to EP10715131.8A priority Critical patent/EP2513582B1/fr
Publication of EP2513582A1 publication Critical patent/EP2513582A1/fr
Application granted granted Critical
Publication of EP2513582B1 publication Critical patent/EP2513582B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/28Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity for treating continuous lengths of work
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/561Continuous furnaces for strip or wire with a controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/562Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0033Heating elements or systems using burners
    • F27D99/0035Heating indirectly through a radiant surface

Definitions

  • the invention relates to a preheating installation for a continuously moving steel strip, in particular before it is introduced into a continuous annealing or dip galvanizing furnace, according to the preamble of claim 1. It is known that, in the continuous annealing or galvanizing of steel strip systems in continuous running, the packaged strip in the form of coil is first unrolled then annealed and possibly galvanized before being rewound. It therefore passes rapidly, at a speed of up to several meters per second, from the ambient temperature to a maximum temperature required by the desired metallurgical objective and which can exceed 850 ° C.
  • This energy can be recovered in various ways, for example to heat the combustion gases of direct flame burners or radiant tubes of "recuperator” or “regenerative” types.
  • the flue gases are captured in the furnace or at the outlet of the radiant tubes and then blown by diffusers at the surface of the strip. Given the high temperature of the gases, which can reach more than 1000 ° C, they are first diluted in fresh air in order to reduce their temperature up to values compatible with the operating and resistance capacities of the exhausters. ensuring their capture and distribution to the blowing devices on the tape. Typically, the gases are cooled to about 300 to 450 ° C before being used for preheating, which significantly affects the performance of the operation.
  • the flue gases pass through an exchanger where they are cooled by yielding part of their heat to a preheating gas blown on the surface of the strip, then are evacuated by evacuation enhancers.
  • This preheating gas may be air or, as in the case of JP60-135530A , the gas constituting the controlled atmosphere of a radiant tube furnace.
  • the efficiency of the operation is largely penalized by the efficiency of an additional exchanger burnt gases / preheating gas.
  • the invention must therefore make it possible to solve these problems, in particular by making it possible to carry out the preheating of the strip in an enclosure having a controlled atmosphere, to recover in exhausts finally preheating gases which are very much cooled and which do not require any dilution. .
  • the invention must make it possible to avoid the need for an external exchanger between a hot gas and the actual preheating gas and allows the return of highly cooled gases, the evacuation of which is thus considerably facilitated.
  • the invention thus proposes an associated preheating installation according to the main claim 1.
  • a set of sub-claims completes the various aspects and advantages.
  • the invention relates to an installation capable of preheating a continuously moving steel strip before entering a continuous annealing or galvanizing furnace in which external recovery flue gases in direct flame burners or radiant tubes used for heating or maintaining the temperature of said strip in the oven are taken and then conducted in at least one preheating member of the strip itself included in a preheating chamber under controlled atmosphere, then these gases then cooled are extracted from the preheating chamber and directed to an evacuation device, for example an exhaust and a chimney.
  • an evacuation device for example an exhaust and a chimney.
  • the steel strip preheating installation in continuous movement in a preheating chamber comprises (in said enclosure) a preheating circuit consisting of at least one preheating tube whose inner surface is in contact with burnt gas. external recovery.
  • a preheating circuit consisting of at least one preheating tube whose inner surface is in contact with burnt gas.
  • external recovery may be close to JP360135530A which presents real tubes of an additional exchanger to the preheating module, as well as JP361048533A which includes caissons comparable to tubes where burnt gases are injected.
  • the preheating installation differs from each of these documents in that a part of the external surface of said preheating tube is arranged at such a distance and in direct view of a surface of the strip ensuring firstly a first mode of preheating by thermal radiation on the strip and the walls of the enclosure, and secondly providing a second mode of preheating, by convection, a gas constituting a controlled atmosphere in the enclosure of preheating, said gas being at least present between the outer surface of the tube and the surface of the strip.
  • the distance separating the external surface of the tube and the surface of the strip is adjustable according to the intensity of the effects of the two modes to be ensured, which therefore makes it possible to weight them together and separately and thus to better control the efficiency of the preheating desired.
  • the annexed gas under controlled atmosphere has pre-established oxidoreductive properties depending on the band as well as any other material coming into direct contact with it.
  • the band is advantageously not chemically altered.
  • the auxiliary gas may be static or circulated out of the tube in the direct vicinity of the strip, that is to say less between the portion of the outer surface of the tube and the strip surface.
  • Preheating tube means any body having an inner wall and an outer wall and having an orifice at two of its ends, a flue gas inlet and an outlet port.
  • the outer surface of a tube installed in a preheating chamber is partly in direct view of the surface of the strip and partly also in direct view of the walls of the enclosure which, in turn are able to radiate on the surface of the band and to heat the gas of the enclosure by convection.
  • a plurality of preheating tubes can thus be arranged side by side, for example perpendicular to the direction of movement of the strip, in layers substantially parallel thereto and in direct view of at least one of its faces. These layers are therefore in direct radiation situation on the surface of the strip to ensure its heating efficiently and homogeneously.
  • these plies therefore have the advantage of being placed as close as possible to the strip while guaranteeing the absence of contact with it during its travel, given its deformations and its movements.
  • Elements or screens mentioned above may be contiguous to said plies guaranteeing at least a free distance from contact with the strip.
  • the heating system may be designed so that the strip has a vertical scroll in at least one pass between rollers located at the bottom and top of the enclosure, and that at least one layer of (horizontal) preheating tubes is in direct view of a face of each up or down band pass.
  • At least two layers of preheating tubes each being in direct view of one of the two faces of the strip, concomitantly provide heating of the two faces of each band pass ascending or descending.
  • the preheating tube plies consist of a plurality of tubes connected together by collectors solidarisable at the ends close to the tubes.
  • the preheating installation comprises in particular at least one fixing member adapted to maintain at least one tube or at least one sheet of preheating tubes and advantageously allowing the heating properties to be adjusted according to characteristics of the strips, their formats (width, thicknesses), a scrolling speed, etc. and facilitates maintenance of each tube.
  • said preheating installation comprises separating means coupled to said fixing member and means for isolating each sheet of tubes, thus removable, advantageously respectively enabling individual disassembly of each sheet of tubes mounted on said fixing member, and that to isolate (especially smoke side) individually each sheet of tubes other plies of tubes.
  • the plies can be supported in the enclosure by said fasteners, which can advantageously be compatible with those of radiant tubes with which the plies are thus interchangeable.
  • This arrangement makes it possible to use assembly and disassembly tools identical to those used for a furnace with radiant tubes. It also makes it possible to mount a radiant tube temporarily in case of disassembly of a sheet for repair.
  • the fastener of the present invention simply allows a withdrawal of the sheet to which said pierced tube would belong, or an insulation of said tablecloth relative to other plies by means of said insulation means, waiting for example a next maintenance stop of the preheating installation.
  • the means for separating and isolating advantageously allow a simple and effective adaptation of the preheating system to an increase in power of the furnace, for example by replacing a sheet with four recovery tubes by a radiant tube gas that would save more energy, but would increase production.
  • the fixing member and the said separation and isolation means make it possible, in particular, to adapt a geometry of the plies of tubes to heating conditions of the strips.
  • these preheating tube plies can be arranged so that at operating temperature (due to expansion due to thermal effects) they are suitably as close as possible to one another, in particular in that at least two preheating tubes are arranged such that a gap between them is between zero and 1/40 of the distance of said tubes with the strip.
  • the preheating tubes are arranged such that at operating temperature (due to expansion due to thermal effects) a gap is undoubtedly formed between two successive tubes, the ratio between the tube / band distance and the width of the gap being between 4 and 40 to ensure preheating effectively adapted to a steel strip.
  • the blower device is particularly capable of producing at least one jet of said heated gases between adjacent preheating ramps.
  • the pitch of the successive tubes is in particular equal to the distance separating the longitudinal central axis of two tubes. successive. Indeed, if the tubes are too close (ratio ⁇ 1) successive jets disturb each other, and if they are too far (ratio> 5) the volume between adjacent tubes of preheating tubes will be the seat few heat exchanges.
  • the preheating tubes constituting the preheating member may be equipped with at least one internal recuperative fin in contact with the flue gases. These recover heat by contact with the flue gases and by radiation from the inner walls of the tube.
  • the preheating tubes are, according to the invention, equipped with at least one external radiating fin in contact with the gases of the enclosure and able to radiate on the strip.
  • the flue gas recovery manifolds can advantageously be located inside the oven enclosure, without venting, before being directed to the preheating chamber.
  • the feed collectors preheating organs may also remain within said enclosure, which avoids energy losses and costly insulation.
  • the preheating chamber may advantageously be in direct communication with the enclosure of the furnace and share the same controlled atmosphere.
  • the recovery of flue gas is conventionally output radiant tubes outside the enclosure of the furnace.
  • the figure 2 describes the principle of preheating a strip (B) by a preheating tube (31) of a preheating member (3).
  • the flue gases from a continuous annealing furnace or galvanizing circulate inside each of the preheating tubes which have an inner wall (311) in contact with the hot gas and an outer wall (312) located in the immediate vicinity Of the band.
  • the tube has, for example, a circular section and has two internal recuperative fins (313) and two external radiating fins (314).
  • the flue gases transfer some of their heat to the preheating tubes (31) by contact with their inner wall (311) and with their internal recuperative fins (313). Most of this heat is transferred by conduction to the outer wall (312) and external radiating fins (314) which provide both radiation heating of the band (B) and walls of the enclosure, and convection heating the neutral gas of said enclosure. Part of this heat is exchanged by radiation between the inner wall (311) and the internal recuperative fins (313).
  • the figure 3 describes an example of arrangement of two preheating members (3a, 3b).
  • Each heating member comprises two plies consisting of a plurality of tubes (31), here by way of example finned tubes, each of the plies being disposed closer to each of the two faces of the strip which runs on rollers (41) in at least two vertical passes.
  • Each preheating member thus ensures the heating of a rising pass (for 3a) or descending (for 3b) of the strip (B) running in the preheating chamber (4).
  • the moving strip is subjected respectively to the radiation of the two preheating members (3a - 3b).
  • a volume of neutral gas is subjected to heating by the adjacent faces of the first and second preheating member.
  • the preheating tubes are arranged such that a gap of size between 1/4 and 1/40 of their distance from the strip is formed between their respective outer radiating fins and an exhauster (42) ensures a forced circulation of the neutral gas between an extraction duct (43) and a blowing duct (44) supplying the space between the plies (3a2 - 3b1) of the two adjacent preheating members (3a - 3b).
  • the gas is convectively heated between these two layers and is blown onto the surface of the strip by the interstices between the radiating fins (314).
  • the blowing duct (44) can be divided into as many branches as is necessary to ensure the blowing of the neutral gas in as many spaces between the set of adjacent preheating elements that comprises the preheating chamber.
  • one or more layers can be added between the layers represented on the figure 3 .
  • the figure 4 discloses another example of arrangement of two preheating members (3a, 3b).
  • Each heating member comprises two plies consisting of a plurality of tubes (31), each of the plies being disposed closer to each of the two faces of the strip which runs on rollers (41) in at least two vertical passes.
  • Each preheating member thus ensures the heating of a rising pass (for 3a) or descending (for 3b) of the strip (B) running in the preheating chamber (4).
  • the moving strip is subjected respectively to the radiation of the two preheating members (3a - 3b).
  • a volume of neutral gas is subjected to heating by the adjacent faces of the first and second preheating member.
  • the preheating tubes are arranged in such a way that no noticeable gaps remain between them.
  • An exhauster (42) ensures a forced circulation of the neutral gas between an extraction duct (43) and two blower ducts (44a-44b) supplying blowing nozzles (441) blowing the heated neutral gas onto the surface of the strip at an almost tangent incidence and a direction opposite to the direction of its scrolling.
  • the extraction duct (43) captures the heated neutral gas between the plies (3a2) and (3b1).
  • the blowing duct (44) can be divided into as many branches as is necessary to ensure the blowing of the neutral gas in as many upstream or downstream band passes that includes the preheating chamber.
  • one or more layers can be added between the layers represented on the figure 4 .
  • the figure 5 describes two examples of construction of preheating tubes (31).
  • the length of the internal recuperative fins (313) has been increased to improve the exchange with the flue gases circulating inside the tube.
  • the addition of a tube (315) concentric to the tube (31) also improves the exchange with the flue gases and, at the same rate, increases their circulation speed.
  • the figure 6 describes a possibility of modular constitution of the preheating tube plies to facilitate their replacement.
  • Number of constituent tubes of a web element may vary according to the needs and the example of the figure in which four tubes are shown is not limiting.
  • Each element of plies consists of a plurality of tubes (31), each being equipped with two fins (314).
  • the flue gas flows between an inlet and an outlet inside the tubes (31) connected together by collectors (316).
  • the sheet is supported by a fixing plate (318) removably attached to the wall (45a) of the enclosure (4) and by at least one pin (317) bearing in the other wall (45b).
  • Members (319) for securing the various elements make it possible to give the sheet the rigidity necessary for its use and its handling. Such an arrangement is achievable with tubes without fins or with fins as shown in the figure.
  • This arrangement allows a total interchangeability of the plies of heating tubes with conventional radiant tubes equipped with burners.
  • the process according to the invention can be economically substituted for preheating by radiant tubes on an existing installation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Coating With Molten Metal (AREA)
  • Tunnel Furnaces (AREA)
EP10715131.8A 2009-12-15 2010-03-25 Installation de préchauffage d'une bande d'acier en défilement continu Not-in-force EP2513582B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10715131.8A EP2513582B1 (fr) 2009-12-15 2010-03-25 Installation de préchauffage d'une bande d'acier en défilement continu

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP09290941 2009-12-15
PCT/EP2010/053908 WO2011072883A1 (fr) 2009-12-15 2010-03-25 Installation et procédé de préchauffage d'une bande d'acier en défilement continu
EP10715131.8A EP2513582B1 (fr) 2009-12-15 2010-03-25 Installation de préchauffage d'une bande d'acier en défilement continu

Publications (2)

Publication Number Publication Date
EP2513582A1 EP2513582A1 (fr) 2012-10-24
EP2513582B1 true EP2513582B1 (fr) 2018-05-02

Family

ID=42537603

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10715131.8A Not-in-force EP2513582B1 (fr) 2009-12-15 2010-03-25 Installation de préchauffage d'une bande d'acier en défilement continu

Country Status (6)

Country Link
US (1) US9631867B2 (zh)
EP (1) EP2513582B1 (zh)
CN (1) CN102686965B (zh)
BR (1) BR112012014451B1 (zh)
TR (1) TR201807600T4 (zh)
WO (1) WO2011072883A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103199215B (zh) * 2012-01-05 2016-12-21 三星Sdi株式会社 热处理设备
US20130174442A1 (en) * 2012-01-05 2013-07-11 Samsung Sdi Co., Ltd. Heat treatment apparatus
FR3018344B1 (fr) * 2014-03-04 2016-04-29 Cockerill Maintenance & Ingenierie Sa Four industriel pour chauffer des produits tels des produits siderurgiques
US10486332B2 (en) 2015-06-29 2019-11-26 Corning Incorporated Manufacturing system, process, article, and furnace
CN113370365B (zh) 2015-06-29 2022-07-12 康宁股份有限公司 生产线、方法、以及烧结制品
FR3046423B1 (fr) * 2015-12-30 2018-04-13 Fives Stein Dispositif et procede pour realiser une oxydation controlee de bandes metalliques dans un four de traitement en continu
CN108151557A (zh) * 2016-12-02 2018-06-12 宝山钢铁股份有限公司 一种适用于喷气加热技术的换热器
CN108148999B (zh) * 2016-12-02 2020-03-27 宝山钢铁股份有限公司 一种适用于连退和热镀锌的预热系统及其预热方法
CN106884131B (zh) * 2017-01-13 2018-12-18 浙江华达新型材料股份有限公司 一种钢板二次镀锌的工艺及连续热镀锌钢带退火炉
AT520134B1 (de) * 2017-07-13 2020-03-15 Andritz Tech & Asset Man Gmbh Verfahren zur reduktion von stickoxiden in bandbehandlungsöfen
CN112251698B (zh) * 2020-11-06 2022-11-18 河北海洪新材料有限公司 一种热镀锌带钢生产余热利用装置
EP4305367A1 (en) 2021-03-09 2024-01-17 QuantumScape Battery, Inc. Rapid ceramic processing techniques and equipment
CN116751958B (zh) * 2023-08-24 2023-11-07 河南大成包装材料有限公司 一种加热均匀的线材退火炉

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2357126A (en) * 1938-05-05 1944-08-29 John S Nachtman Alloying and fusing process
US2459674A (en) * 1939-12-30 1949-01-18 John S Nachtman Continuous tinplate brightening apparatus
US3468372A (en) * 1967-05-22 1969-09-23 Happy Co Heat transfer finned tubing
US4081296A (en) * 1973-09-26 1978-03-28 Valjim Corporation Direct-current electrical heat-treatment of continuous metal sheets in a protective atmosphere
US4274825A (en) * 1978-03-20 1981-06-23 North John W Process and apparatus for producing cellulated vitreous refractory material in prescribed shapes and products therefrom
US4190416A (en) * 1978-03-20 1980-02-26 North John W Process and apparatus for producing cellulated vitreous refractory material in prescribed shapes and products therefrom
US4212635A (en) * 1978-06-07 1980-07-15 North John W Process and apparatus for producing cellulated vitreous refractory material in prescribed shapes and products therefrom
US4242154A (en) * 1979-10-03 1980-12-30 Kaiser Steel Corporation Preheat and cleaning system
US4373702A (en) * 1981-05-14 1983-02-15 Holcroft & Company Jet impingement/radiant heating apparatus
US4364728A (en) * 1981-05-19 1982-12-21 The Electric Furnace Company Continuous strip preheat furnace and method of operation
US4415382A (en) * 1981-10-13 1983-11-15 Inland Steel Company Continuous annealing apparatus and method
US4494929A (en) * 1982-03-19 1985-01-22 Nippon Steel Corporation Continuous heat treatment furnace
US4398700A (en) * 1982-09-29 1983-08-16 Midland-Ross Corporation Annealing furnace with an improved cooling section
JPS60135530A (ja) * 1983-12-22 1985-07-18 Kawasaki Steel Corp 鋼帯の連続焼なまし方法
JPS6148533A (ja) * 1984-08-10 1986-03-10 Mitsubishi Heavy Ind Ltd ストリツプ予熱炉
JPS61157641A (ja) * 1984-12-28 1986-07-17 Chugai Ro Kogyo Kaisha Ltd 金属ストリツプ用連続焼鈍炉
EP0233944B1 (en) * 1985-07-18 1991-03-06 Nippon Kokan Kabushiki Kaisha Continuous strip steel processing line having direct firing furnace
US5114770A (en) * 1989-06-28 1992-05-19 Canon Kabushiki Kaisha Method for continuously forming functional deposited films with a large area by a microwave plasma cvd method
US5479808A (en) * 1989-07-31 1996-01-02 Bricmanage, Inc. High intensity reheating apparatus and method
US5629054A (en) * 1990-11-20 1997-05-13 Canon Kabushiki Kaisha Method for continuously forming a functional deposit film of large area by micro-wave plasma CVD method
US6096389A (en) * 1995-09-14 2000-08-01 Canon Kabushiki Kaisha Method and apparatus for forming a deposited film using a microwave CVD process
US5942132A (en) * 1996-06-11 1999-08-24 Kawasaki Steel Corporation Method of and apparatus for producing steel pipes
JP4123535B2 (ja) * 1996-10-21 2008-07-23 Jfeスチール株式会社 金属帯の連続熱処理炉
JPH1161276A (ja) * 1997-08-11 1999-03-05 Chugai Ro Co Ltd 金属ストリップ用竪型連続焼鈍炉
FR2802552B1 (fr) * 1999-12-17 2002-03-29 Stein Heurtey Procede et dispositif de reduction des plis de bande dans une zone de refroidissement rapide de ligne de traitement thermique
US6238209B1 (en) * 2000-05-17 2001-05-29 Kawasaki Steel Corporation Hearth rolls for heating furnace and soaking furnace of vertical heat treating furnace and vertical heat treating furnace including hearth rolls
JP2002206117A (ja) * 2000-10-26 2002-07-26 Nkk Corp 連続焼鈍処理装置および連続焼鈍処理方法
FR2820148B1 (fr) * 2001-01-31 2003-10-31 Stein Heurtey Perfectionnements apportes aux procedes de chauffage de bandes d'acier dans des fours verticaux
CN2811921Y (zh) * 2005-06-09 2006-08-30 梁诗文 热能回收的散热管结构
FR2900661B1 (fr) * 2006-05-02 2008-09-26 Stein Heurtey Perfectionnement apporte aux sections de chauffage rapide des lignes de traitement thermique en continu.
JP5063934B2 (ja) * 2006-06-01 2012-10-31 新日本製鐵株式会社 加熱と冷却を併用した熱処理設備
FR2916764B1 (fr) * 2007-05-30 2009-08-21 Gaz De France Sa Procede et installation de chauffage d'une bande metallique, notamment en vue d'un recuit
FR2920439B1 (fr) * 2007-09-03 2009-11-13 Siemens Vai Metals Tech Sas Procede et dispositif d'oxydation/reduction controlee de la surface d'une bande d'acier en defilement continu dans un four a tubes radiants en vue de sa galvanisation
EP2523530B1 (en) * 2010-01-06 2016-07-13 Nippon Steel & Sumitomo Metal Corporation Induction heating coil, device for manufacturing of workpiece, and manufacturing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
TR201807600T4 (tr) 2018-06-21
US20120264073A1 (en) 2012-10-18
BR112012014451A8 (pt) 2017-03-21
CN102686965A (zh) 2012-09-19
WO2011072883A1 (fr) 2011-06-23
EP2513582A1 (fr) 2012-10-24
CN102686965B (zh) 2016-02-17
US9631867B2 (en) 2017-04-25
BR112012014451A2 (pt) 2017-03-07
BR112012014451B1 (pt) 2018-04-24

Similar Documents

Publication Publication Date Title
EP2513582B1 (fr) Installation de préchauffage d'une bande d'acier en défilement continu
ES2581378T3 (es) Dispositivo de procesamiento y procedimiento para procesar productos de procesamiento apilados
EP0090790B1 (fr) Appareil pour le traitement thermique d'objets par convection
US20070122756A1 (en) Burner nozzle field comprising integrated heat exchangers
EP1203921A1 (fr) Dispositif de chauffage indirect au combustible fossile, de produits au defilé, notamment de bandes
US9551531B2 (en) Device for transferring a metallurgical material
CN111351337A (zh) 热处理设备
EP0395457B1 (fr) Procédé et appareil de chauffage d'un flux de fluide gazeux par échanges thermiques successifs
FR2508618A1 (fr) Procede et dispositif pour etablir un echange intense de chaleur et de matiere entre un gaz et un corps oblong, notamment a des fins de prechauffage ou de sechage de barres metalliques
US9970709B2 (en) Furnace with a convection and radiation heating
FR2761371A1 (fr) Four tubulaire a radiation multi-zones a ecoulement de gaz de combustion uniformise pour la decomposition thermique d'hydrocarbures en presence de vapeur d'eau
FR3001254A1 (fr) Installation et procede pour produire de l'energie mecanique ou electrique a partir d'un fluide a temperature superieure a la temperature ambiante
FR3033027A1 (fr) Alambic equipe d'un tour a feu avec isolation renforcee
EP1029933B1 (fr) Dispositif d'échange de chaleur avec un produit plat
EP1216129B1 (fr) Four a gaz de cuisson en continu notamment de produits en caoutchouc
EP1841577B1 (fr) Four de cuisson a gaz en continu notamment de produits en caoutchouc
FR2526930A1 (fr) Echangeur recuperateur de chaleur a effet convecto-radiatif en materiau ceramique
EP2101132A1 (fr) Four tunnel
EP1093841A1 (fr) Echangeur massique et thermique
EP3049743B1 (en) Furnace comprising a sealed temperature-controlled section
BE484478A (zh)
FR2515320A1 (fr) Perfectionnements aux dispositifs pour recuperer des calories des fumees sortant des chaudieres a gaz
BE700277A (zh)
BE423501A (zh)
FR2570802A1 (fr) Chaudiere pour l'utilisation thermique de produits de combustion a haute teneur en produits pulverulents, notamment pour chauffer avec des dechets

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120509

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS VAI METALS TECHNOLOGIES SAS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PRIMETALS TECHNOLOGIES FRANCE SAS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170824

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20171221

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 995723

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010050349

Country of ref document: DE

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180502

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180802

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180802

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010050349

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602010050349

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190325

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191001

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190325

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 995723

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100325

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 995723

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190325