EP2507407A2 - Verfahren und stoffgemische zur herstellung von metallischen bzw. metalloxidischen schichten - Google Patents

Verfahren und stoffgemische zur herstellung von metallischen bzw. metalloxidischen schichten

Info

Publication number
EP2507407A2
EP2507407A2 EP10795639A EP10795639A EP2507407A2 EP 2507407 A2 EP2507407 A2 EP 2507407A2 EP 10795639 A EP10795639 A EP 10795639A EP 10795639 A EP10795639 A EP 10795639A EP 2507407 A2 EP2507407 A2 EP 2507407A2
Authority
EP
European Patent Office
Prior art keywords
metal
tin
metals
cobalt
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10795639A
Other languages
English (en)
French (fr)
Inventor
Wolfgang Ensinger
Mario BÖHME
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technische Universitaet Darmstadt
Original Assignee
Technische Universitaet Darmstadt
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universitaet Darmstadt filed Critical Technische Universitaet Darmstadt
Publication of EP2507407A2 publication Critical patent/EP2507407A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/285Sensitising or activating with tin based compound or composition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/1648Porous product
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1657Electroless forming, i.e. substrate removed or destroyed at the end of the process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2046Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
    • C23C18/2073Multistep pretreatment
    • C23C18/208Multistep pretreatment with use of metal first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/30Activating or accelerating or sensitising with palladium or other noble metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/049Manufacturing of an active layer by chemical means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a process and mixtures for the production of metallic and metal oxide layers.
  • the layers are executable as a layer of a particular metal or metal oxide.
  • the layers are preferably deposited without current.
  • the layers are characterized by an adjustable layer height of 1 to 500 nm per layer.
  • the layers are planar or cylindrical.
  • a metal layer is deposited on an aluminum substrate (PVD, CVD, MOCVD) and the substrate is removed.
  • the disadvantage here is that acids or bases are used to remove the substrate, which can also attack the metal layer. There is the risk of removing the metal layer again at thin layer heights.
  • the metal layer is produced by means of vapor deposition and the necessary high expenditure (vaporizable educts, vacuum, high temperature (> 200 ° C.)).
  • the deposited metal must be converted in an additional step consuming in a metal oxide.
  • the substrate used is polymer fibers with subsequent metal coating (CVD, MOCVD, PVD) and leaching out of the polymer fibers.
  • metals are electrochemically deposited on an aluminum substrate.
  • an electrically conductive substrate is necessary to carry out depositions.
  • the deposited metal must be oxidized.
  • the usual wet-chemical method of preparation of metal oxides is based on a metal coating and then performs the oxidation.
  • the disadvantage here is that in this case two processes are necessary in succession. A one-step production of metal oxide layers would be desirable.
  • the application of aluminum templates is associated with a great difficulty in the deposition of metal oxides, since metal oxides are dissolved by alkalis.
  • Object of the present invention is to eliminate or circumvent the disadvantages of the prior art. [Solution of the task]
  • the coating is built up by the following steps: 1. Primer of the substrate,
  • the substrate is then removed.
  • a fluid gas, e.g., air or liquid, e.g., water, oil, alkanes (pentane, hexane), alcohols (methanol)
  • a removal of the substrate is usually performed.
  • a component e.g. Printed circuit board, sensor, microchip a removal of the substrate usually not performed.
  • the electronic properties of the layer are changeable.
  • step 4 is repeated. This allows several layers to be produced with different metals, metal alloys or metal oxides.
  • a layer consists of a contiguous area, interrupted area, or individual particles (e.g., doping).
  • an electrochemical deposition can be carried out as an alternative to the electroless deposition.
  • Non-metals include plastics, polymers (e.g., polycarbonate, polymethyl methacrylate), cellulose, natural or synthetic organic or inorganic fibers, glass (e.g., photosensitive structurable glass, e.g., Foturan (Schott), Fotoform (Corning)), e.g. can be used as a foil, plate or disc.
  • the films are preferably structured.
  • the pore arrangement per se has a regular, mirror-symmetrical pattern or an irregular, random pattern.
  • a primer solution is used for the primer of the substrate.
  • This solution consists of a metal salt with additive, which is applied directly to the substrate.
  • a tin chloride solution with addition is preferably used but not restrictive.
  • the additive includes the use of hydrochloric acid, nitric acid or sulfuric acid.
  • the advantage of using an acidic (pH: 2 to 5) primer solution is the prevention of the breakdown of the metal, for example, tin or tin hydroxide on the surface of the substrate.
  • a sensitizing solution is used for the sensitization of the substrate.
  • This solution consists of a metal salt with additive, which is applied to the primed substrate.
  • a nearly neutral silver nitrate solution with additive is preferably used.
  • the additive includes the use of sulphates or nitrates of the metals iron, cobalt, nickel, ruthenium, rhodium, osmium, iridium or platinum, preferably cobalt sulphate.
  • a neutral (pH: 6.3 to 7.8) sensitization solution prior to catalytic activation is that the surface tin clusters would dissolve by the presence of acids and thus the tin clusters would not be available for silver exchange.
  • a neutral solution leaves the tin clusters in the applied form so that they can be exchanged in the course of sensitization for silver clusters of the same size.
  • the minimal use of cobalt sulfate in the sensitizing solution promotes the exchange reaction of tin and silver in such a way that silver clusters can be generated in minimal geometry at low temperature.
  • the advantage of sensitization is that it produces clusters of minimal dimensions, and in the course of the catalytic activation, clusters are generated from the catalyst solution that have similar dimensions to the previously generated clusters.
  • a catalyst solution is used for the catalytic activation of the substrate. This solution consists of a metal salt with additive, which is applied to the sensitized substrate. For this purpose, an almost neutral palladium solution with addition is preferably used.
  • a use of salts of palladium, platinum, rhodium, bismuth, ruthenium, nickel, tin, gold, individually or in combinations is included as catalyst solution.
  • the addition includes the use of sulphates or nitrates of the metals nickel, cobalt, tin, gold.
  • the advantage of using a neutral (pH: 6.3 to 7.8) catalyst solution without silver lies in the more uniform structure of the subsequent layer. In a parallel presence of palladium and silver, a particle growth occurs in such a way that no closed surfaces, or too large individual particles arise.
  • a layer-building solution is used for the construction of the layer. This solution consists of a metal salt with additive, which is applied to the catalytically activated substrate.
  • a nearly neutral metal salt solution with additive is preferably used.
  • the addition includes the use of borates, for example dimethylborane or boric acid.
  • Layer build-up solution lies in the direct structure of a metal, alloy or metal oxide layer without further processes having to be subsequently carried out.
  • metal or metal oxide structures are produced favorably within 20 minutes, with a layer thickness of 1 to 100 nanometers. Further layers are built by repeating step 4 with another metal or metal oxide.
  • the layers are deposited on the substrate in a planar manner with an approximately uniform layer thickness (maximum +/- 5 nm).
  • deposition is preferably carried out within the pores.
  • nanotubes can be produced.
  • the solvent used is preferably a solvent with low surface energy, for example dichloromethane, so that the film is dissolved. However, a collapse of the nanotubes is detected.
  • the additive hereby comprises liquefied gases, preferably liquid carbon dioxide or halogenated hydrocarbons, e.g. Freon.
  • the liquid carbon dioxide may be in a supercritical state, depending on the temperature and pressure. It is also possible to dispense with the solvent and use only the solvent additive as a solvent.
  • the nanotubes then do not collapse and provide standing nanotubes (see FIG. 15).
  • electrical components e.g. Capacitors can be produced.
  • the nanotubes are coated with electrically conductive material e.g. Metal, metal alloys or electrically conductive plastic (e.g., polypyrrole). Filling takes place by means of electrochemical, galvanic or currentless deposition, physical vapor deposition (PVD), chemical vapor deposition (CVD), metal organic chemical vapor deposition (MOCVD) or atomic layer deposition (English). ALD).
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • MOCVD metal organic chemical vapor deposition
  • atomic layer deposition English.
  • ALD atomic layer deposition
  • metals and metal alloys individual elements or combinations of elements, e.g. Includes gold, copper, iron, silver, palladium, platinum, aluminum, zinc.
  • the filled nanotubes thus act as isolated metal wires, which are connected to form a single plate.
  • the two plates are now arranged in such a way that the metal wires face each other to the other plate.
  • An electrical capacitor is built up.
  • the insulation acts as a dielectric.
  • the space between the insulated metal wires can be filled with another dielectric.
  • the further dielectric is preferably liquid and includes, for example, plastic or polymer but also polyethylene, PTFE, ceramics (eg steatite, aluminum oxide), mica, air or a tantalum electrolyte.
  • FIG. 16 shows a corresponding layer.
  • the capacitor is shown schematically, wherein the 301 is an electrically conductive metal and the 302 represents the insulation.
  • the individual nanotubes 401 are placed on an interdigital structure or contacted 402 on both sides (see FIG. 18). This makes conductivity measurements possible. When passing a gas, the conductivity changes. It can thus be measured gas components.
  • Gas constituents include general gases, such as oxygen, nitrogen, vaporized liquids, e.g. Benzene or vaporized solids, e.g. Trinitrotoluene (TNT), pentaerythrityl tetranitrate (PETN), cyclotrimethylenetrinitramine (hexogen) or cyclotetramethylenetetranitramine (octogen).
  • TNT Trinitrotoluene
  • PETN pentaerythrityl tetranitrate
  • PETN pentaerythrityl tetranitrate
  • otrimethylenetrinitramine hexogen
  • octogen cyclotetramethylenetetranitramine
  • gas mixtures are detectable.
  • the selectivity for a gas component is adjustable by doping.
  • FIG. 13 shows a plastic substrate 101 to which a layer of metal oxide TiO 2 102 is de-energized, a metallic contact made of copper 103 electrochemically and a doping of gallium 104 were deposited electrolessly.
  • FIG. 14 shows a substrate 201 made of glass with pores, onto which a layer of metal oxide TiO 2 202 without current, a metallic contact of copper 203 electrochemically and a doping of gallium 204 were deposited without current. The removal of the glass on the sides leaves a tube of Ti0 2 , copper and gallium.
  • porous polycarbonate sheets are used as substrates. These are, for example, from the company. SPI with pore sizes from 10 nm with a thickness of 10 to 30 ⁇ available as a filter media cost.
  • the substrate is primed by means of a solution consisting of 32 g / l SnCl 2 and 27 ml / l HCl.
  • the plastic film is exposed to the solution for a period of 5 minutes at 25 ° C here.
  • the sensitization of the substrate takes place.
  • the sensitization of the substrate is carried out using a solution consisting of 0.8 g / l CoS0 4 , 2.5 g / l AgN0 3 at a pH of 6.3 to 7.8.
  • the film is exposed to the solution for a period of 8 minutes at 20 ° C. After a rinsing with deionized water, the catalytic activation of the substrate takes place.
  • the substrate is in a solution consisting of 4 g / l PdCl 2 , 0.7 g / l Ni (NO 3 ) 2 , 3 ml / 1 HCl and 0.1 g / l Ag 2 S0 4 , over a period of time immersed for 6.5 minutes at 28 ° C, followed by an extensive deionized rinse Water. Subsequently, a layer of Sm 2 0 3 - built tubes.
  • the catalytically active plastic film in a solution of 54 g / l Sm 2 (N0 3 ) 3 and 1, 8 g / l BH 4 N (CH 3 ) 2 is given.
  • the pH is in the range of 6.2 to 7.2.
  • the plastic film remains in the solution for a few minutes for layer growth.
  • the formulation described above results in a layer growth of about 2 nm / minute, so that after 10 minutes tubes were manufactured with a wall thickness of 20 nm.
  • the nanotubes deposited in this way can be exposed from the plastic film by means of small amounts of trichloroethane, dichloromethane or liquid carbon dioxide.
  • the exposed tubes are immersed in an aqueous solution of a desired doping element, such as a silica gel. a solution of gallium sulfate, dipped and then heat treated at a temperature of 130 ° C for 4h.
  • a desired doping element such as a silica gel.
  • Fig. 2 nanotubes in the pores of the plastic film and layer on the Folienober- 20 side
  • Fig. 3 Remove the top layer by means of Tesa film
  • Fig. 9 SEM detail image of a zinc oxide nanotube with a wall thickness of approx. 10nm with a diameter of approx. 80 nm.
  • the structure recognizable on the surface comes from an Au sputtering process in order to examine the tubes by means of SEM
  • Fig. 10 to 12 SEM detail shots of countless ZnO structure bundles, which due to their extreme length collapse into bundles and thus support themselves.
  • this surface structure a variety of components such as solar cells, sensors, microreactors, voltage generator, etc. can be produced easily.
  • substrate glass, plastic
  • deposited layers metal oxide, metal contacting, doping
  • Fig. 14 Substrate (glass, plastic) with deposited layers (metal oxide, metal contacting, doping)
  • Fig. 16 filled nanotubes, which are arranged opposite

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Chemically Coating (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur stromlosen Abscheidung von Metallen oder Metalloxiden, wobei eine Partikelbildung vermieden wird und glatte Schichten entstehen. Dabei werden Schichthöhen von 1 nm bis 500 nm bei Temperaturen zwischen 0 bis 100 °C erreicht. Es ist ein Aufbau von mehreren Schichten möglich. Die Formgebung der Schichten ist mittels Templat oder drucken z.B. Tintenstrahltechnik, Siebdruck möglich.

Description

Patentanmeldung
TITEL
Verfahren und Stoffgemische zur Herstellung von metallischen bzw. metall- oxidischen Schichten
[Beschreibung und Einleitung des allgemeinen Gebietes der Erfindung]
Die vorliegende Erfindung betrifft ein Verfahren und Stoffgemische zur Herstellung von metallischen und metalloxidischen Schichten. Die Schichten sind als eine Schicht eines bestimmten Metalls oder Metalloxids ausführbar. Die Schichten werden bevorzugt stromlos abgeschieden. Die Schichten zeichnen sich durch eine einstellbare Schichthöhe von 1 bis 500 nm pro Schicht aus. Die Schichten werden planar oder zylindrisch ausgeführt.
[Stand der Technik]
In der WO2008094089 wird auf ein Aluminium-Substrat eine Metall-Schicht aufgedampft (PVD, CVD, MOCVD) und das Substrat entfernt.
Nachteilig ist hierbei, dass zur Entfernung des Substrates Säuren oder Basen eingesetzt werden, die die Metallschicht ebenfalls angreifen können. Damit besteht das Risiko bei dünnen Schichthöhen die Metallschicht wieder zu entfernen.
Weiterhin besteht als Nachteil, dass die Metallschicht mittels Bedampfung und dem dafür nötigen hohen Aufwand (verdampfbare Edukte, Vakuum, hohe Temperatur (>200 °C)) hergestellt wird. Das abgeschiedene Metall muss in einem zusätzlichen Schritt aufwändig in ein Metalloxid überführt werden. In der DE10023456 verwendet man als Substrat Polymerfasern mit anschließender Metallbeschichtung (CVD, MOCVD, PVD) und herauslösen der Polymerfasern.
Die Entfernung des Substrates mittels organischen Lösungsmittel sichert die Schichthöhe der Metallschicht. Aber auch hier werden Metallschichten nur über Bedampfungsverfahren abgeschieden mit dem dafür nötigen hohen Aufwand. In der DE102007035693 werden auf ein Aluminiumsubstrat elektrochemisch Metalle abgeschieden. Wie bereits oben ausgeführt tritt hier ebenfalls der Nachteil der Entfernung des Aluminiumsubstrates durch Säuren und Basen verbunden mit einem Angriff auf die Metallschicht auf. Weiterhin ist bedingt durch die elektrochemische Abscheidung ein elektrisch leitfähiges Substrat notwendig, um Ab- scheidungen durchzuführen. Das abgeschiedene Metall muss oxidiert werden. Bei der üblichen naßchemischen Herstellungsweise von Metalloxiden geht man von einer Metallbeschichtung aus und führt anschließend die Oxidation durch. Nachteilig dabei ist, dass in hier zwei Prozesse nacheinander notwendig sind. Eine einstufige Herstellung von Metalloxidschichten wäre wünschenswert. Die Anwendung von Aluminiumtemplaten ist bei einer Abscheidung von Metalloxiden mit großen Schwierigkeiten verbunden, da Metalloxide von Laugen aufgelöst werden.
[Aufgabe]
Aufgabe der vorliegenden Erfindung ist es die Nachteile des Standes der Technik zu beseitigen bzw. zu umgehen. [Lösung der Aufgabe]
Diese Aufgabe wird erfindungsgemäß gelöst durch mehrere Beschichtungsschritte eines Substrates. Die Beschichtung wird durch die folgenden Schritte aufgebaut: 1 . Grundierung des Substrates,
2. Sensibilisierung des Substrates,
3. Katalytische Aktivierung des Substrates,
4. Abscheidung der Schicht auf dem Substrat
Je nach Aufgabenstellung wird anschließend das Substrat entfernt. Bei der Herstellung von Sensoren oder Wärmeleitelementen die mit einem Fluid (Gas z.B. Luft oder Flüssigkeit z.B. Wasser, Öl, Alkane (Pentan, Hexan), Alkohole (Methanol)) oder Vakuum in Kontakt stehen, wird eine Entfernung des Substrates in der Regel durchgeführt. Im Gegensatz dazu wird bei der Herstellung von Kontaktierungen zwischen zwei Seiten eines Bauteils z.B. Leiterplatte, Sensor, Mikrochip eine Entfernung des Substrates in der Regel nicht durchgeführt.
Unabhängig davon ob eine Entfernung des Substrates erfolgt oder nicht, sind die elektronischen Eigenschaften der Schicht veränderbar.
Zum Aufbau von mehreren Schichten wird der Schritt 4 wiederholt. Damit können mehrere Schichten mit unterschiedlichen Metallen, Metalllegierungen oder Metalloxiden hergestellt werden. Eine Schicht besteht aus einer zusammenhängenden Fläche, unterbrochenen Fläche oder aus einzelnen Partikeln (z.B. Dotierung). Zum Aufbau mehrerer Schichten ist alternativ zur stromlosen Abscheidung eine elektrochemische Abscheidung durchführbar.
Zur verbesserten Verbindung mehrerer Schichten untereinander schließt sich eine weitere thermische Behandlung der Schichten an. Damit sind Dotierungen und Kontaktierungen der abgeschiedenen Schichten herstellbar.
Als Substrat werden Metalle oder Nichtmetalle eingesetzt. Als Nichtmetalle sind Kunststoffe, Polymere (z.B. Polycarbonat, Polymethylmethacrylat), Cellulose, na- türliche oder synthetische organische oder anorganische Fasern, Glas (z.B. photosensitives strukturierbares Glas z.B. Foturan (Fa. Schott), Fotoform (Fa. Corning)) z.B. als Folie, Platte oder Scheibe einsetzbar. Die Folien werden bevorzugt strukturiert. So ist eine Einbringung von Poren mit einem Durchmesser von 1 bis 500 nm bevorzugt 10 bis 100 nm durchführbar. Die Porenanordnung an sich weist ein regelmäßiges, spiegelsymmetrisches Muster oder ein unregelmäßiges, zufälligen Muster auf.
Für die Grundierung des Substrates wird eine Grundierungslösung eingesetzt. Diese Lösung besteht aus einem Metallsalz mit Zusatz, welches direkt auf das Substrat aufgetragen wird. Dazu wird bevorzugt aber nicht einschränkend eine Zinnchlorid-Lösung mit Zusatz verwendet. Der Zusatz umfasst den Einsatz von Salzsäure, Salpetersäure oder Schwefelsäure. Der Vorteil des Einsatzes einer sauren (pH-Wert: 2 bis 5) Grundierungslösung liegt in der Verhinderung des Ausfalls des Metalls z.B. Zinn oder Zinnhydroxid auf der Oberfläche des Substrates. Für die Sensibilisierung des Substrates wird eine Sensibilisierungslösung eingesetzt. Diese Lösung besteht aus einem Metallsalz mit Zusatz, welche auf das grundierte Substrat aufgetragen wird. Dazu wird bevorzugt eine nahezu neutrale Silbernitrat-Lösung mit Zusatz verwendet. Der Zusatz umfasst den Einsatz von Sulfaten oder Nitraten der Metalle Eisen, Kobalt, Nickel, Ruthenium, Rhodium, Osmium, Iridium oder Platin, bevorzugt Kobaltsulfat. Der Vorteil des Einsatzes ei- ner neutralen (pH-Wert: 6,3 bis 7,8) Sensibilisierungslösung vor der katalytischen Aktivierung besteht darin, dass die auf der Oberfläche befindlichen Zinncluster durch vorhandene Säuren sich auflösen würden und die Zinncluster somit nicht zum Silberaustausch zur Verfügung stünden. Eine neutrale Lösung belässt die Zinncluster in der aufgebrachten Form, so dass diese im Verlauf der Sensibilisierung gegen Silbercluster der gleichen Größe ausgetauscht werden können.
Der minimale Einsatz von Kobaltsulfat in der Sensibilisierungslösung unterstützt die Austauschreaktion von Zinn und Silber in der Art und Weise, dass Silbercluster in minimaler Geometrie bei niedriger Temperatur erzeugt werden können. Der Vorteil der Sensibilisierung besteht darin, dass hierbei Cluster mit minimalen Abmessungen erzeugt werden, an deren Stelle im Zuge der katalytischen Aktivierung Cluster aus der Katalysatorlösung erzeugt werden, die ähnlich minimale Abmessungen wie die zuvor erzeugten Cluster aufweisen. Für die katalytische Aktivierung des Substrates wird eine Katalysatorlösung eingesetzt. Diese Lösung besteht aus einem Metallsalz mit Zusatz, welche auf das sensibilisierte Substrat aufgetragen wird. Dazu wird bevorzugt eine nahezu neutrale Palladiumlösung mit Zusatz verwendet. Ein Einsatz von Salzen von Palladium, Platin, Rhodium, Wismut, Ruthenium, Nickel, Zinn, Gold einzeln oder in Kombina- tionen ist als Katalysatorlösung umfasst. Der Zusatz umfasst den Einsatz von Sulfaten oder Nitraten der Metalle Nickel, Kobalt, Zinn, Gold. Der Vorteil des Einsatzes einer neutralen (pH-Wert: 6,3 bis 7,8) Katalysatorlösung ohne Silber liegt in dem gleichmäßigeren Aufbau der anschließenden Schicht. Bei einem parallelen Vorliegen von Palladium und Silber erfolgt ein Partikelwachstum in der Weise, dass keine geschlossenen Flächen, oder zu große einzelne Partikel entstehen. Für den Aufbau der Schicht wird eine Schichtaufbaulösung eingesetzt. Diese Lösung besteht aus einem Metallsalz mit Zusatz, welche auf das katalytisch aktivierte Substrat aufgetragen wird. Dazu wird bevorzugt eine nahezu neutrale Metall- Salzlösung mit Zusatz verwendet. Ein Einsatz von beispielweise jedoch nicht einschränkend Halogenid (Chlorid, Bromid, lodid), Nitrat, Sulfat oder Acetat - Salzen von den Metallen Titan, Samarium, Zink, Zinn, Indium, Kupfer, Nickel, Silber, Blei, Lanthan, Zirkonium, Vanadium, Yttrium, Eisen, Kobalt, Aluminium, Silizium, Kobalt, Eisen, Cer, Praseodym, Neodym, Promethium, Europium, Gadolinium, Ter- bium, Dysprosium, Holmium, Erbium, Thulium, Ytterbium, Lutetium einzeln, in Legierungen (z.B. Indium-Zinn) oder in Kombinationen ist als Schichtaufbaulösung umfasst. Der Zusatz umfasst den Einsatz von Boraten z.B. Dimethylboran oder Borsäure. Der Vorteil des Einsatzes einer neutralen (pH-Wert: 6,3 bis 7,8)
Schichtaufbaulösung liegt in dem direkten Aufbau einer Metall-, Legierungs- oder Metalloxid - Schicht ohne dass weitere Prozesse anschließend durchgeführt werden müssen.
Mit der vorliegenden Erfindung werden metall oder metalloxidische Strukturen innerhalb von 20 Minuten, mit einer Schichtdicke von 1 bis 100 Nanometern günstig hergestellt. Weitere Schichten werden durch die Wiederholung des Schrittes 4 mit einem anderen Metall oder Metalloxid aufgebaut.
Die Schichten werden planar und mit annähernd gleichmäßiger Schichtdicke (maximal +/- 5 nm) auf das Substrat abgeschieden. Beim Einsatz von perforierten Folien oder perforierten Gläsern wird eine Abscheidung bevorzugt innerhalb der Poren durchgeführt. Dadurch sind Nanoröhren herstellbar. Mit einer anschließenden Entfernung des Substrates sind die Nanoröhren verfügbar. Durch Einsatz eines Lösungsmittels werden die Nanorohren freigelegt. Als Lösungsmittel wird bevorzugt ein Lösungsmittel mit geringer Oberflächenenergie z.B. Dichlormethan eingesetzt, damit die Folie aufgelöst wird. Allerdings wird ein kollabieren der Nanorohren festgestellt.
Es ist daher vorteilhafter das Lösungsmittel mit einem weiteren Lösungsmittelzusatz zu versehen. Der Zusatz umfasst hierbei verflüssigte Gase, bevorzugt flüssiges Kohlendioxid oder Halogenkohlenwasserstoffe z.B. Frigen. Das flüssige Kohlendioxid kann, je nach Temperatur und Druck, in einem überkritischem Zustand vorliegen. Es ist auch möglich auf das Lösungsmittel zu verzichten und nur den Lösungsmittelzusatz als Lösungsmittel einzusetzen.
Die Nanorohren kollabieren dann nicht und man erhält stehende Nanorohren (siehe Fig. 15).
Mit den Nanorohren sind elektrische Bauelemente z.B. Kondensatoren herstellbar. Die Nanorohren werden mit elektrisch leitendem Material z.B. Metall, Metalllegie- rungen oder elektrisch leitender Kunststoff (z.B. Polypyrrol) gefüllt. Die Füllung erfolgt mittels elektrochemischer, galvanischer oder stromloser Abscheidung, physikalische Gasphasenabscheidung (PVD), chemische Gasphasenabscheidung (CVD), metallorganischen chemischen Gasphasenabscheidung (engl, metal orga- nic chemical vapor deposition, MOCVD) oder Atomlagenabscheidung (engl, ato- mic layer deposition, ALD).
Von den Metallen und Metalllegierungen werden dabei einzelne Elemente oder Kombinationen von Elementen wie z.B. Gold, Kupfer, Eisen, Silber, Palladium, Platin, Aluminium, Zink umfasst.
Die gefüllten Nanorohren wirken damit als isolierte Metalldrähte, die zu einer Plat- te verbunden sind. Die beiden Platten werden jetzt so zueinander angeordnet, dass die Metalldrähte jeweils zu der anderen Platte zeigen. Es wird ein elektrischer Kondensator aufgebaut. Damit wirken die Isolierungen als Dielektrikum. Der Zwischenraum zwischen den isolierten Metalldrähten kann mit einem weiteren Dielektrikum ausgefüllt werden. Das weitere Dielektrium ist bevorzugt flüssig und umfasst z.B. Kunststoff oder Polymer aber auch Polyethylen, PTFE, Keramik (z.B. Steatit, Aluminiumoxid), Glimmer, Luft oder einen Tantalelektrolyten.
In der Fig. 16 ist eine entsprechende Schicht dargestellt. In der Fig. 17 ist der Kondensator schematisch dargestellt, wobei die 301 ein elektrisch leitfähiges Metall und die 302 die Isolierung darstellt.
Die einzelnen Nanoröhren 401 werden auf eine interdigital Struktur gebracht oder an beiden Seiten kontaktiert 402 (siehe Fig. 18). Dadurch sind Leitfähigkeitsmessungen möglich. Beim Durchleiten eines Gases verändert sich die Leitfähigkeit. Es können somit Gasbestandteile gemessen werden. Gasbestandteile umfassen allg. Gase wie Sauerstoff, Stickstoff, verdampfe Flüssigkeiten wie z.B. Benzol oder verdampfte Feststoffe wie z.B. Trinitrotoluol (TNT), Pentaerythrityltetranitrat (PETN), Cyclotrimethylentrinitramin (Hexogen) oder Cyclotetramethylentetranitra- min (Oktogen). Der verdampfte Feststoff ist auch im Bereich von ppb und ppt nachweisbar.
Weiterhin sind auch Gasgemische nachweisbar. Die Selektivität für ein Gasbestandteil ist durch Dotierung einstellbar.
In der Fig. 13 ist ein Substrat 101 aus Kunststoff abgebildet, auf das eine Schicht aus Metalloxid Ti02 102 stromlos, eine metallische Kontaktierung aus Kupfer 103 elektrochemisch und eine Dotierung von Gallium 104 stromlos abgeschieden wurden.
In der Fig. 14 ist ein Substrat 201 aus Glas mit Poren abgebildet, auf das eine Schicht aus Metalloxid Ti02 202 stromlos, eine metallische Kontaktierung aus Kupfer 203 elektrochemisch und eine Dotierung von Gallium 204 stromlos abgeschieden wurden. Die Entfernung des Glas an den Seiten hinterlässt eine Röhre aus Ti02, Kupfer und Gallium. [Ausführungsbeispiele]
Zur Erzeugung von Sm203 Nanoröhren werden handelsübliche poröse Polycarbo- natfolien als Substrate verwendet werden. Diese sind z.B. von der Fa. SPI mit Porengrößen ab 10 nm mit einer Dicke von 10 bis 30 μιτι als Filtermedien kostengünstig erhältlich.
Die Grundierung des Substrates erfolgt mittels einer Lösung bestehend aus 32 g/l SnCI2 und 27 ml/1 HCl. Die Kunststofffolie wird hierbei für einen Zeitraum von 5 Minuten bei 25 °C der Lösung ausgesetzt. Nach einem Spülvorgang mit deionisiertem Wasser erfolgt die Sensibilisierung des Substrates. Die Sensibilisierung des Substrates erfolgt unter Verwendung einer Lösung bestehend aus 0,8 g/l CoS04, 2,5 g/l AgN03 bei einem pH-Wert von 6,3— 7,8. Die Folie wird hierbei für einen Zeitraum von 8 Minuten bei 20 °C der Lösung ausgesetzt. Nach einem Spülvorgang mit deionisiertem Wasser erfolgt die katalytische Aktivierung des Substrates. Hierbei wird das Substrat in eine Lösung, bestehend aus 4 g/l PdCI2, 0,7 g/l Ni(N03)2, 3 ml/1 HCl sowie 0,1 g/l Ag2S04, über einen Zeitraum von 6,5 Minuten bei 28 °C getaucht, gefolgt von einem ausgiebigen Spülvorgang mit deionisiertem Wasser. Anschließend wird eine Schicht der Sm203 - Röhren aufgebaut. Hierbei wird die katalytisch aktive Kunststofffolie in eine Lösung aus 54 g/l Sm2(N03)3 und 1 ,8 g/l BH4N(CH3)2 gegeben. Der pH-Wert liegt hierbei im Bereich von 6,2— 7,2. Entsprechend der gewünschten Wandstärke verbleibt die Kunststofffolie einige 5 Minuten zum Schichtwachstum in der Lösung. Bei Anwendung der zuvor beschriebenen Rezeptur ergibt sich ein Schichtwachstum von ca. 2 nm / Minute, sodass nach 10 Minuten Röhren mit einer Wandstärke von 20 nm hergestellt wurden. Die auf diese Weise abgeschiedenen Nanoröhren können je nach Anwendung mittels geringen Mengen an Trichlorethan, Dichlormethan oder flüssiges l o Kohlendioxid aus der Kunststofffolie freigelegt werden.
Die freigelegten Röhren werden in eine wässrige Lösung eines gewünschten Dotierelementes, wie z.B. einer Lösung aus Galliumsulfat, getaucht und anschließend bei einer Temperatur von 130 °C für 4h wärmebehandelt.
Es sind damit mit Gallium dotierte Samariumoxid - Nanoröhrchen hergestellt wor-
15 den.
[Abbildungslegenden und Bezugszeichenliste]
Fig. 1 Poren in Kunststofffolie
Fig. 2 Nanoröhren in den Poren der Kunststofffolie und Schicht an der Folienober- 20 seite
Fig. 3 Entfernen der obersten Schicht mittels Tesa-Film
Fig. 4 Kunststofffolie mit entfernter Oberfläche
Fig. 5 Auflösen der Folie
Fig. 6 Freigelegte Nanoröhren Fig. 7,8 Erzeugte Bulkmengen an Nanorohren zur Verwendung einzelner Röhren in der Sensorik. Die erzeugten Röhren sind aus einem sehr kleinen Teil einer einzigen Folie entnommen worden
Fig. 9 SEM-Detailaufnahme einer Zink-Oxid Nanoröhre mit einer Wandstärke von ca. 10nm bei einem Durchmesser von ca 80 nm. Die auf der Oberfläche erkennbare Struktur stammt von einem Au-sputterprozess, um die Röhren mittels SEM untersuchen zu können
Fig. 10 bis 12 SEM-Detailaufnahmen unzähliger ZnO-Strukturbündel, die sich aufgrund Ihrer extremen Länge zu Bündel zusammenlegen und dadurch selber ab- stützen. Mittels dieser Oberflächenstruktur sind verschiedenste Bauteile, wie Solarzellen, Sensoren, Mikroreaktoren, Spannungserzeuger, etc. ohne großen Aufwand herstellbar.
Fig. 13 Substrat (Glas, Kunststoff) mit abgeschiedenen Schichten (Metalloxid, Me- tallkontaktierung, Dotierung)
Fig. 14 Substrat (Glas, Kunststoff) mit abgeschiedenen Schichten (Metalloxid, Me- tallkontaktierung, Dotierung) Fig. 15 stehende Nanorohren
Fig. 16 gefüllte Nanorohren, die entgegengesetzt angeordnet sind
Fig. 17 Schematische Ansicht des Kondensators mit gefüllten Nanorohren
Fig. 18 Sensor mit Nanorohren

Claims

[Ansprüche]
1 . Elektrischer Kondensator dadurch gekennzeichnet, dass dieser Nanoröhren, die mit einem elektrisch leitfähigen Material gefüllt sind, umfasst. 2. Verfahren zur stromlosen Abscheidung von Metallen und Metalloxiden dadurch gekennzeichnet, dass auf das Substrat
1 . eine Grundierung,
2. eine Sensibilisierung,
3. ein Katalysator und
4. mindestens ein Schichtmaterial aufgetragen werden.
3. Verfahren nach Anspruch 2 dadurch gekennzeichnet, dass die Grundierung eine saure Zinnlösung mit Zusatz, bevorzugt Zinnchlorid und Salzsäure umfasst. 4. Verfahren nach Ansprüchen 2 bis 3 dadurch gekennzeichnet, dass die Sensibilisierung eine nahezu neutrale Silberlösung bevorzugt Silbernitrat mit einem Zusatz von Sulfaten oder Nitraten der Metalle Eisen, Kobalt, Nickel, Ruthenium, Rhodium, Osmium, Iridium oder Platin, bevorzugt Kobaltsulfat umfasst.
5. Verfahren nach Ansprüchen 2 bis 4 dadurch gekennzeichnet, dass der Katalysator eine nahezu neutrale Lösung eines Metallsalzes von Palladium, Platin, Rhodium, Wismut, Ruthenium, Nickel, Zinn, Gold einzeln oder in Kombination, bevorzugt Palladiumchlorid mit Nickelsulfat und Salzsäure umfasst.
6. Verfahren nach Ansprüchen 2 bis 5 dadurch gekennzeichnet, dass das Schichtmaterial eine nahezu neutrale Lösung eines Metallsalzes der Metalle Titan, Samarium, Zink, Zinn, Indium, Kupfer, Nickel, Silber, Blei, Lanthan, Zirkonium, Vanadium, Yttrium, Eisen, Kobalt, Aluminium, Silizium, Kobalt, Eisen, Cer, Praseodym, Neodym, Promethium, Europium, Gadolinium, Terbium, Dysprosium, Holmium, Erbium, Thulium, Ytterbium, Lutetium einzeln, in Legierungen (z.B. Indium-Zinn) oder in Kombinationen umfasst.
7. Verfahren nach Ansprüchen 2 bis 6 dadurch gekennzeichnet, dass das mindes- tens ein Schichtmaterial planar oder zylindrisch abgeschieden wird.
8. Verfahren nach Ansprüchen 2 bis 7 dadurch gekennzeichnet, dass das der Auftrag der Lösungen durch Tauchen oder Drucken z.B. Tintenstrahldrucker, Siebdruck erfolgt.
9. Verfahren nach Ansprüchen 2 bis 8 dadurch gekennzeichnet, dass zur Herstellung von Nanoröhren als Substrat ein perforiertes, in organischen Lösungsmittel auflösbares Polymer z.B. als Folie verwendet wird.
10 .Anwendung des Verfahrens zur stromlosen Abscheidung von Metallen und Metalloxiden zur Herstellung von Mikrochips, Sensoren, Strom-/Spannungs- generatoren, Lasern, Solarzellen, Batterien, einer Wärmeableitung von Mikrochips oder Herstellung einer elektrisch leitenden Verbindung zwischen zwei Mikrochips.
1 1 . Stoffgemisch zur stromlosen Abscheidung von Metallen und Metalloxiden dadurch gekennzeichnet, dass die Grundierung eine saure Zinnlösung mit Zusatz, bevorzugt Zinnchlorid und Salzsäure umfasst.
12. Stoffgemisch nach Anspruch 1 1 dadurch gekennzeichnet, dass die Sensibilisierung eine nahezu neutrale Silberlösung bevorzugt Silbernitrat mit einem Zusatz von Sulfaten oder Nitraten der Metalle Eisen, Kobalt, Nickel, Ruthenium, Rhodium, Osmium, Iridium oder Platin, bevorzugt Kobaltsulfat umfasst.
13. Bauteil aus Metall oder Metalloxiden dadurch gekennzeichnet, dass das Bauteil Nanoröhren aus Metall oder Metalloxid mit einem Außendurchmesser von 1 bis 500 nm bevorzugt 10 bis 100 nm umfasst.
14. Bauteil nach Anspruch 13 dadurch gekennzeichnet, dass das Metalloxid Me- talle wie Titan, Samarium, Zink, Zinn, Indium, Kupfer, Nickel, Silber, Blei, Lanthan, Zirkonium, Vanadium, Yttrium, Eisen, Kobalt, Aluminium, Silizium, Kobalt, Eisen, Cer, Praseodym, Neodym, Promethium, Europium, Gadolinium, Terbium, Dysprosium, Holmium, Erbium, Thulium, Ytterbium, Lutetium einzeln, in Legierungen (z.B. Indium-Zinn) oder in Kombinationen umfasst.
EP10795639A 2009-11-30 2010-11-30 Verfahren und stoffgemische zur herstellung von metallischen bzw. metalloxidischen schichten Withdrawn EP2507407A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009056072A DE102009056072A1 (de) 2009-11-30 2009-11-30 Verfahren und Stoffgemische zur Herstellung von metallischen bzw. metalloxidischen Schichten
PCT/EP2010/068516 WO2011064387A2 (de) 2009-11-30 2010-11-30 Verfahren und stoffgemische zur herstellung von metallischen bzw. metalloxidischen schichten

Publications (1)

Publication Number Publication Date
EP2507407A2 true EP2507407A2 (de) 2012-10-10

Family

ID=43927142

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10795639A Withdrawn EP2507407A2 (de) 2009-11-30 2010-11-30 Verfahren und stoffgemische zur herstellung von metallischen bzw. metalloxidischen schichten

Country Status (3)

Country Link
EP (1) EP2507407A2 (de)
DE (1) DE102009056072A1 (de)
WO (1) WO2011064387A2 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2985440B1 (fr) 2012-01-11 2016-02-05 Ink Jet Tech Dispositif et procede de recuperation de particules sans dispersion polluante
DE102013104396A1 (de) * 2013-04-30 2014-10-30 Deutsches Zentrum für Luft- und Raumfahrt e.V. Elektrochemische Speichervorrichtung

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2643424C3 (de) * 1976-09-27 1979-06-21 Polygram Gmbh, 2000 Hamburg Verfahren zur stromlosen Vernickelung von nichtleitenden Werkstoffen
US4180602A (en) * 1978-03-31 1979-12-25 Bell Telephone Laboratories, Incorporated Electroless plating of polyvinylidene fluoride
US5648125A (en) * 1995-11-16 1997-07-15 Cane; Frank N. Electroless plating process for the manufacture of printed circuit boards
US6406750B1 (en) * 1999-05-28 2002-06-18 Osaka Municipal Government Process of forming catalyst nuclei on substrate, process of electroless-plating substrate, and modified zinc oxide film
DE10023456A1 (de) 1999-07-29 2001-02-01 Creavis Tech & Innovation Gmbh Meso- und Nanoröhren
EP2113078A4 (de) 2007-01-29 2013-04-17 Nanexa Ab Aktive sensoroberfläche und verfahren zur herstellung davon
US7794840B2 (en) * 2007-03-15 2010-09-14 Yazaki Corporation Capacitors comprising organized assemblies of carbon and non-carbon compounds
DE102007035693A1 (de) 2007-07-30 2009-02-05 Technische Universität Darmstadt Monolithisches, poröses Bauteil aus im wesentlichen parallelen Nanoröhren, Verfahren zu dessen Herstellung und Verwendung desselben
US8389157B2 (en) * 2008-02-22 2013-03-05 Alliance For Sustainable Energy, Llc Oriented nanotube electrodes for lithium ion batteries and supercapacitors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011064387A2 *

Also Published As

Publication number Publication date
WO2011064387A3 (de) 2012-01-05
WO2011064387A2 (de) 2011-06-03
DE102009056072A1 (de) 2011-06-01

Similar Documents

Publication Publication Date Title
Thorne et al. Formation, structure, and stability of titanate nanotubes and their proton conductivity
Sun et al. Mechanism of ZnO nanotube growth by hydrothermal methods on ZnO film-coated Si substrates
Kim et al. Ferroelectricity in highly ordered arrays of ultra-thin-walled Pb (Zr, Ti) O3 nanotubes composed of nanometer-sized perovskite crystallites
DE60308398T2 (de) Edelmetallnanoröhre und herstellungsverfahren dafür
KR101896617B1 (ko) 전기화학적 이산화탄소 환원 촉매 전극 및 그 제조방법
EP2795627B1 (de) Tintenzusammensetzung zur herstellung einer leitfähigen silberstruktur
US4477296A (en) Method for activating metal particles
EP3358050A1 (de) Metall- und keramiknanofasern
DE102010001567A1 (de) Elektrisch leitfähiges Material
EP3347303B1 (de) Verfahren zur herstellung von strukturierten oberflächen
JP2010139497A (ja) 酸化物半導体ナノ繊維を利用した超高感度ガスセンサー及びその製造方法
EP1485526A1 (de) Verfahren zur herstellung von hohlfasern
EP3394329B1 (de) Verfahren zur herstellung von leitfähigen strukturen
KR101684860B1 (ko) 전도성 필터 및 전도성 필터의 제조 방법
KR101782927B1 (ko) 전기전도성 메조구조 코팅의 저온 제조 방법
WO2011064387A2 (de) Verfahren und stoffgemische zur herstellung von metallischen bzw. metalloxidischen schichten
Chu et al. Fabrication and structural characteristics of ordered TiO2− Ru (− RuO2) nanorods in porous anodic alumina films on ITO/glass substrate
DE2855169A1 (de) Detektoreinrichtung mit palladiumoxid-katalysator und verfahren zu deren herstellung
DE10114646A1 (de) Herstellung einer festhaftenden, wasserabweisenden Katalysatorschicht
EP1951641B1 (de) Verfahren zur herstellung eines porösen keramischen dünnfilms
EP2001591A1 (de) Organischer werkstoff mit katalytisch beschichteter oberfläche
JP4997800B2 (ja) 金属酸化物膜の製造方法
KR102445342B1 (ko) 슈퍼커패시터를 제조하기 위한 방법
Okada et al. Room-Temperature Sintering of Tri-n-Octylphosphine-Oxide-Capped Silver Nanoparticle Paste by Dipping into an Organic Solvent Containing a Sintering Agent
EP2080019A1 (de) Verfahren zur herstellung mindestens einer porösen schicht

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120705

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20160811