EP2500402A1 - Antioxidationszusatzstoffzusammensetzung, Lösung daraus und Verfahren zur Verbesserung der Lagerstabilität von Biodieselkraftstoff (Varianten) - Google Patents

Antioxidationszusatzstoffzusammensetzung, Lösung daraus und Verfahren zur Verbesserung der Lagerstabilität von Biodieselkraftstoff (Varianten) Download PDF

Info

Publication number
EP2500402A1
EP2500402A1 EP11176692A EP11176692A EP2500402A1 EP 2500402 A1 EP2500402 A1 EP 2500402A1 EP 11176692 A EP11176692 A EP 11176692A EP 11176692 A EP11176692 A EP 11176692A EP 2500402 A1 EP2500402 A1 EP 2500402A1
Authority
EP
European Patent Office
Prior art keywords
tert
biodiesel fuel
butyl
antioxidant additive
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11176692A
Other languages
English (en)
French (fr)
Inventor
Roza Minizievna Salavatova
Nikolai Arkadievich Niyazov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otkrytoe Aktsionernoe Obschestvo "Sterlitamaxky Neftekhimichesky Zadov"
Original Assignee
Otkrytoe Aktsionernoe Obschestvo "Sterlitamaxky Neftekhimichesky Zadov"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otkrytoe Aktsionernoe Obschestvo "Sterlitamaxky Neftekhimichesky Zadov" filed Critical Otkrytoe Aktsionernoe Obschestvo "Sterlitamaxky Neftekhimichesky Zadov"
Publication of EP2500402A1 publication Critical patent/EP2500402A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/182Organic compounds containing oxygen containing hydroxy groups; Salts thereof
    • C10L1/183Organic compounds containing oxygen containing hydroxy groups; Salts thereof at least one hydroxy group bound to an aromatic carbon atom
    • C10L1/1832Organic compounds containing oxygen containing hydroxy groups; Salts thereof at least one hydroxy group bound to an aromatic carbon atom mono-hydroxy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/185Ethers; Acetals; Ketals; Aldehydes; Ketones
    • C10L1/1857Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/223Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond having at least one amino group bound to an aromatic carbon atom
    • C10L1/2235Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond having at least one amino group bound to an aromatic carbon atom hydroxy containing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0461Fractions defined by their origin
    • C10L2200/0469Renewables or materials of biological origin
    • C10L2200/0476Biodiesel, i.e. defined lower alkyl esters of fatty acids first generation biodiesel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2230/00Function and purpose of a components of a fuel or the composition as a whole
    • C10L2230/08Inhibitors
    • C10L2230/081Anti-oxidants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2230/00Function and purpose of a components of a fuel or the composition as a whole
    • C10L2230/14Function and purpose of a components of a fuel or the composition as a whole for improving storage or transport of the fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2300/00Mixture of two or more additives covered by the same group of C10L1/00 - C10L1/308
    • C10L2300/40Mixture of four or more components

Definitions

  • This invention relates to the petrochemical industry, in particular, to a method for improving the storage stability of biodiesel fuel via using an antioxidant additive.
  • Biodiesel fuels are produced via transesterification of vegetable oils (triglycerides of higher fatty acids), such as rapeseed oil, soybean oil, palm oil, sunflower oil, and others, and animal fats, with methanol, more rarely with ethanol or isopropanol, in the presence of potassium or sodium hydroxide to serve as a catalyst.
  • Biodiesels represent mixtures of methyl fatty acid esters; they are environmentally promising fuels on the international market.
  • Biodiesel is used as a fuel for diesel and automobile engines, combined heat and power blocks, ships and boats, as well as for stationary diesel engines of trackless land vehicles with motor drive.
  • Biodiesel is a nontoxic, naturally degradable type of fuel; it is virtually free of sulfur and carcinogenic benzene and is derived from renewable resources which are not conductive to the accumulation of gases that cause the greenhouse effect (CO, CO 2 , SO 2 , fine particulates, and volatile organic compounds) as opposed to oil-derived fuel.
  • the advantages of biodiesel include good lubricating characteristics (which prolong the life of the engine), higher cetane numbers, and facilitation of cleaning injectors, fuel pumps, and fuel supply channels.
  • Oil-derived diesel fuels are used with a wide spectrum of additives that improve the oxidation stability and other properties thereof.
  • Biodiesel additives are yet far fewer, but they considerably extend the capabilities of this type of biofuel.
  • a stabilizer additive is especially important for biodiesels derived from vegetable oils with high unsaturated fatty acid contents.
  • a method for improving the stability of biodiesel fuel comprising addition to the biodiesel of the main antioxidant in an amount of from 10 to 20 000 ppm (parts per million) and further the addition of a secondary antioxidant.
  • the main antioxidant represents bisphenol and is dissolved in an organic solvent before being added to the biodiesel (see US 2006/0219979 A1 C09K15/04, publ. October 5, 2006).
  • a drawback of this method consists of the complexity of biodiesel stabilization, wherein the additives used create an insufficiently long-lasting stabilizing effect when added to the biodiesel.
  • the antioxidant additives used in this method create an insufficiently long-lasting stabilizing effect when added to the biodiesel.
  • Phenylenediamines such as Irgunox L57 and Irgunox L74
  • sterically hindered phenols Hitec 4702, BHT (4-methyl-2,6-di- tert -butyltoluene), Ionol CP, Lowinox, and propyl gallate
  • a method for improving the storage stability of diesel biofuel comprising addition of a liquid initial solution containing 2,6-di- tert -butylhydroxytoluene (BHT) in an amount of 15 to 60 mass % of based on the initial solution dissolved in diesel biofuel, to the diesel biofuel to be stabilized to reach a 2,6-di- tert -butylhydroxytoluene concentration of 0.005 to 2 mass % based on the entire diesel biofuel solution (see patent RU 2340655 C10L1/183, publ. December 10, 2008).
  • BHT 2,6-di- tert -butylhydroxytoluene
  • the antioxidant additive used in this method creates an insufficiently long-lasting stabilizing effect when added to the biodiesel fuel in relatively high dosages.
  • the object of the present invention is to considerably increase the storage stability of diesel biofuel.
  • alkylphenol-based antioxidant additive composition wherein the composition is comprised of, in mass %:
  • One more object of the invention is to provide a solution of an alkylphenol-based antioxidant additive composition to be added to biodiesel fuel, comprising the aforementioned alkylphenol-based antioxidant additive composition in a concentration of 6 to 48 mass % in the biodiesel fuel.
  • each component is a known antioxidant
  • each component is a known antioxidant
  • the antioxidant effect is retained for 10.3 h and 8.3 h, respectively (see WO 2008/065015 5 A1 C10L1/02, C10L1/14, C10L10/00, publ. June 5, 2008)
  • the claimed alkylphenol composition is added to biodiesel fuel in a lower dosage (less than 1900 ppm)
  • the antioxidant effect is retained for more than 10.0 h.
  • antioxidant (Ionol 220; 4,4-methylene-bis ⁇ 2,6-di- tert -butylphenol ⁇ , when added to biodiesel fuel in a dosage of 500 ppm, causes an antioxidant effect lasting 8.0 h (see US 2006/0219979 A1 C09K15/04, publ. October 5, 2006), against a period of longer than 8.0 h for the claimed alkylphenol composition added in the same dosage.
  • a method for improving the storage stability of biodiesel fuel comprising addition of an alkylphenol-based antioxidant additive via providing an initial solution containing from 6 to 48 mass % of the alkylphenol-based composition, wherein the composition is comprised of, in mass %:
  • the result of this method consists of using the aforementioned antioxidant additive which creates a long-lasting stabilizing effect with a reduced amount of the antioxidant additive added to biodiesel fuel.
  • the used antioxidant additive inhibits precipitation during the shelf life of biodiesel fuel for a longer period of time.
  • Biodisel fuel is produced by a known process, namely, transesterification of vegetable oils (triglycerides of higher fatty acids), for example, rapeseed oil, soybean oil, palm oil, or age-old dietary oil and fat, or animal fat, with methanol in the presence of an alkali (potassium or sodium hydroxide) intended to serve as a catalyst.
  • Biodiesel fuel may further contain all ordinary additives that are added to, for example, improve the stability of the fuel in the winter season.
  • Biodiesel fuels meet quality standards provided by DIN EN 14214 (this standard describes physical properties of all types of diesel fuels sold in the EC, Iceland, Norway, and Switzerland) and DIN 51606 (the German standard designed to be compatible with the engines of almost all major automakers).
  • the initial solution is provided by adding a melt of the aforementioned alkylphenol composition to biodiesel fuel under stirring at a temperature of from 40 to 150°C to reach a concentration of the composition of from 6 to 48 mass % based on the initial solution.
  • biodiesel fuel as the solvent for preparing the initial solution allows avoiding addition of undesirable additives to the biodiesel fuel.
  • the antioxidant additive composition is a solid material at room temperature.
  • a solution containing from 6 to 48 mass % of the alkylphenol composition dissolved in biodiesel fuel is easy to be added to the biodiesel fuel under stirring at 20°C to reach a concentration of the composition of from 0.002 to 1.6 mass % based on the entire biodiesel fuel solution.
  • Table 1 compiles comparative data on the solubility of the initial solution provided by adding BHT and the alkylphenol composition of the present invention to biodiesel fuel upon temperature depression.
  • the alkylphenol composition of the present invention was as follows, in mass %:
  • the stabilizing effect of the claimed antioxidant additive is generated upon the attainment of the concentration of the alkylphenol composition in the biodiesel fuel of 0.002 mass % based on the entire biodiesel fuel solution. It was discovered that, when the concentration of the claimed alkylphenol composition in biodiesel fuel was less than 0.002 mass % based on the entire biodiesel solution, there was no stabilizing effect.
  • the oxidation stability of the biodiesel fuel as determined by the Rancimat test at 110°C is 6.5 h.
  • the oxidation stability of the biodiesel fuel as determined by the Rancimat test at 110°C is 9.2 h.
  • the oxidation stability of the biodiesel as determined by the Rancimat test at 110°C is 8.3 h.
  • the oxidation stability of biodiesel fuel decreases considerably in case where the alkylphenol proportion in the antioxidant additive added to the biodiesel is below the lower bound or above the upper bound of the composition.
  • the alkylphenol proportion in the antioxidant additive added to the biodiesel is above the upper bound, there is risk of deterioration of the quality characteristics of the biodiesel within the standard of DIN 51606.
  • Examples 5 to 11 provide data for the following alkylphenol compositions, mass %:
  • Table 2 compiles comparative data on the concentrations of antioxidant additives BHT and the alkylphenol composition (according to the invention) added to biodiesel fuels manufactured by transesterification of rapeseed oil (Example 5), sunflower oil (Example 6), soybean oil (Example 7), and dietary fat (Example 8), to attain approximately equal oxidation stabilities.
  • Example 5 No additive - 5.1 BHT 500 (0.05) 7.1 Alkylphenol composition 300 (0.03) 7.0
  • Example 6 No additive - 1.6 BHT 4000 (0.4) 9.0 Alkylphenol composition 3000 (0.3) 9.2
  • Example 7 No additive - 3.6 BHT 2000 (0.2) 8.8 Alkylphenol composition 1550(0.155) 8.8
  • Example 8 No additive - 2.1 BHT 1500(0.15) 7.4 Alkylphenol composition 1150(0.115) 7.5
  • Figure 1 displays comparative data on the concentrations of antioxidant additives BHT and the alkylphenol composition of the present invention added to the easiest-to-oxidize biodiesel fuel produced by transesterification of sunflower oil to achieve equal oxidation stabilities.
  • the alkylphenol composition was added to the biodiesel fuel to achieve the minimal concentration of the alkylphenol composition (20 ppm, or 0.002 mass %) based on the entire biodiesel fuel solution.
  • Table 3 compiles data on the concentrations of antioxidant additives F3HT and the alkylphenol composition of the present invention added to biodiesel fuels produced by transesterification of sunflower oil, soybean oil, and dietary fat to achieve a tailored oxidation stability level of the biodiesel fuel of at least 6 h at 110°C according to DIN EN 14214.
  • antioxidant additives BHT and the alkylphenol composition of the present invention affect the shelf life of the easiest-to-oxidize biodiesel fuel which was manufactured via transesterification of sunflower oil. Oxidation stability was measured in Rancimat storage tests at 110°C in the beginning of the test and on the 7th day, 14th day, 21st day, 27th day, and 35th day of the test.
  • Table 4 Antioxidant additive to biodiesel fuel Antioxidant additive concentration, Oxidation stability in Rancimat storage tests at 110°C, h 0th day. 7th day. 14th day. 2 1st day. 27th day. 35th day.
  • FIG. 1 shows graphic representation of the results.
  • composition claimed for improving the storage stability of biodiesel fuel and the method for improving the stability ofbiodiesel fuel with the use of this composition provide a considerable lengthening of the shelf life time of the biodiesel fuel with a reduced amount of the additive.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Cosmetics (AREA)
  • Fats And Perfumes (AREA)
EP11176692A 2011-03-18 2011-08-05 Antioxidationszusatzstoffzusammensetzung, Lösung daraus und Verfahren zur Verbesserung der Lagerstabilität von Biodieselkraftstoff (Varianten) Withdrawn EP2500402A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011110454 2011-03-18

Publications (1)

Publication Number Publication Date
EP2500402A1 true EP2500402A1 (de) 2012-09-19

Family

ID=44651098

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11176692A Withdrawn EP2500402A1 (de) 2011-03-18 2011-08-05 Antioxidationszusatzstoffzusammensetzung, Lösung daraus und Verfahren zur Verbesserung der Lagerstabilität von Biodieselkraftstoff (Varianten)

Country Status (4)

Country Link
US (1) US20120233912A1 (de)
EP (1) EP2500402A1 (de)
AR (1) AR082550A1 (de)
BR (1) BRPI1104326B1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2636722A1 (de) * 2012-03-07 2013-09-11 Otkrytoe Aktsionernoe Obschestvo "Sterlitamaxky Neftekhimichesky Zadov" Antioxidationszusatzstoffzusammensetzung, Lösung daraus und Verfahren zur Verbesserung der Lagerstabilität von Biodieselkraftstoff
JP2014091695A (ja) * 2012-11-02 2014-05-19 Dic Corp ヒンダードフェノールの製造方法
WO2014151313A3 (en) * 2013-03-15 2014-11-27 E. I. Du Pont De Nemours And Company Stabilized fluids for industrial applications

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0189049A1 (de) 1985-01-14 1986-07-30 Henkel Kommanditgesellschaft auf Aktien Stabilisierung von Palmkernfettsäuremethylestern für deren Verarbeitung zu farbneutralen Reaktionsfolgeprodukten
DE10252714A1 (de) * 2002-11-13 2004-05-27 Bayer Ag Verfahren zur Erhöhung der Oxidationsstabilität von Biodiesel sowie die Verwendung von Mono- oder Dialkylhydroxytoluol zur Erhöhung der Oxidationsstabilität von Biodiesel
DE10252715A1 (de) 2002-11-13 2004-05-27 Bayer Ag Verfahren zur Erhöhung der Lagerstabilität von Biodiesel sowie die Verwendung von 2,4-Di-tert.-Butylhydroxytoluol zur Erhöhung der Lagerstabilität von Biodiesel
US20060218855A1 (en) * 2005-04-04 2006-10-05 Degussa Ag Method of increasing the oxidation stability of biodiesel
US20060219979A1 (en) 2005-04-04 2006-10-05 Degussa Ag Method of increasing the oxidation stability of biodiesel
WO2008065015A1 (en) 2006-11-27 2008-06-05 Ciba Holding Inc. Stabilised biodiesel fuel compositions
RU2340655C2 (ru) 2002-11-13 2008-12-10 Лангсесс Дойчланд ГмбХ Применение 2,6-ди-трет-бутилгидрокситолуола для повышения стабильности дизельного биотоплива при хранении
US20090094887A1 (en) * 2007-10-16 2009-04-16 General Electric Company Methods and compositions for improving stability of biodiesel and blended biodiesel fuel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6800228B1 (en) * 1998-09-22 2004-10-05 Albemarle Corporation Sterically hindered phenol antioxidant granules having balanced hardness
CN101688137A (zh) * 2007-03-28 2010-03-31 雅宝公司 脂肪酸甲酯(生物柴油)的抗氧化剂混合物
US8663344B2 (en) * 2007-08-24 2014-03-04 Albemarle Corporation Antioxidant blends suitable for use in biodiesels
US20110023351A1 (en) * 2009-07-31 2011-02-03 Exxonmobil Research And Engineering Company Biodiesel and biodiesel blend fuels

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0189049A1 (de) 1985-01-14 1986-07-30 Henkel Kommanditgesellschaft auf Aktien Stabilisierung von Palmkernfettsäuremethylestern für deren Verarbeitung zu farbneutralen Reaktionsfolgeprodukten
DE10252714A1 (de) * 2002-11-13 2004-05-27 Bayer Ag Verfahren zur Erhöhung der Oxidationsstabilität von Biodiesel sowie die Verwendung von Mono- oder Dialkylhydroxytoluol zur Erhöhung der Oxidationsstabilität von Biodiesel
DE10252715A1 (de) 2002-11-13 2004-05-27 Bayer Ag Verfahren zur Erhöhung der Lagerstabilität von Biodiesel sowie die Verwendung von 2,4-Di-tert.-Butylhydroxytoluol zur Erhöhung der Lagerstabilität von Biodiesel
RU2340655C2 (ru) 2002-11-13 2008-12-10 Лангсесс Дойчланд ГмбХ Применение 2,6-ди-трет-бутилгидрокситолуола для повышения стабильности дизельного биотоплива при хранении
US20060218855A1 (en) * 2005-04-04 2006-10-05 Degussa Ag Method of increasing the oxidation stability of biodiesel
US20060219979A1 (en) 2005-04-04 2006-10-05 Degussa Ag Method of increasing the oxidation stability of biodiesel
WO2008065015A1 (en) 2006-11-27 2008-06-05 Ciba Holding Inc. Stabilised biodiesel fuel compositions
US20090094887A1 (en) * 2007-10-16 2009-04-16 General Electric Company Methods and compositions for improving stability of biodiesel and blended biodiesel fuel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SIMKOVSKY, N.M., ECKER, A.: "Effect of Antioxidants on the Oxidation stability of Rapeseed Oil Methyl Esters", ANALYTIK, 1999, pages 317 - 318

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2636722A1 (de) * 2012-03-07 2013-09-11 Otkrytoe Aktsionernoe Obschestvo "Sterlitamaxky Neftekhimichesky Zadov" Antioxidationszusatzstoffzusammensetzung, Lösung daraus und Verfahren zur Verbesserung der Lagerstabilität von Biodieselkraftstoff
JP2014091695A (ja) * 2012-11-02 2014-05-19 Dic Corp ヒンダードフェノールの製造方法
WO2014151313A3 (en) * 2013-03-15 2014-11-27 E. I. Du Pont De Nemours And Company Stabilized fluids for industrial applications
US9273259B2 (en) 2013-03-15 2016-03-01 E I Du Pont De Nemours And Company Stabilized fluids for industrial applications

Also Published As

Publication number Publication date
AR082550A1 (es) 2012-12-19
US20120233912A1 (en) 2012-09-20
BRPI1104326B1 (pt) 2019-10-08
BRPI1104326A2 (pt) 2013-05-21

Similar Documents

Publication Publication Date Title
CA2541591A1 (en) Method of increasing the oxidation stability of biodiesel
US20060219979A1 (en) Method of increasing the oxidation stability of biodiesel
KR20100015881A (ko) 지방산 메틸 에스테르(바이오디젤)에 대한 항산화제 배합물
US20070137098A1 (en) Fatty ester compositions with improved oxidative stability
BRPI0710150A2 (pt) processo para o aumento da estabilidade de oxidação de biodiesel
EP2500402A1 (de) Antioxidationszusatzstoffzusammensetzung, Lösung daraus und Verfahren zur Verbesserung der Lagerstabilität von Biodieselkraftstoff (Varianten)
EP2636722B1 (de) Antioxidationszusatzstoffzusammensetzung, Lösung daraus und Verfahren zur Verbesserung der Lagerstabilität von Biodieselkraftstoff
US8557001B2 (en) Fuel formulations
EP3320058B1 (de) Dieselzusammensetzungen mit verbesserter cetanzahl und schmierfähigkeitsleistungen
JP6699841B2 (ja) 軽油用酸化防止剤および軽油燃料組成物
US8663346B2 (en) Fuel formulations
EP2342311B1 (de) Verfahren zur verbesserung der oxidationsstabilität von biodiesel gemäss dem rancimat-test
WO2023031513A1 (en) Renewable jet fuel with additive
LV13870B (lv) Paņēmiens biodīzeļa stabilitātes palielināšanai pret oksidēšanos uzglabāšanas laikā
JP2011099067A (ja) 安定化されたバイオディーゼル燃料

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20121205

17Q First examination report despatched

Effective date: 20130726

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20131206