EP2490228B1 - Silver paste composition and solar cell using same - Google Patents

Silver paste composition and solar cell using same Download PDF

Info

Publication number
EP2490228B1
EP2490228B1 EP10823604.3A EP10823604A EP2490228B1 EP 2490228 B1 EP2490228 B1 EP 2490228B1 EP 10823604 A EP10823604 A EP 10823604A EP 2490228 B1 EP2490228 B1 EP 2490228B1
Authority
EP
European Patent Office
Prior art keywords
paste composition
silver paste
solar cell
plasticizer
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10823604.3A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP2490228A2 (en
EP2490228A4 (en
Inventor
Min-Seo Kim
Soo-Yeon Heo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Chem Ltd
Original Assignee
LG Chem Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Chem Ltd filed Critical LG Chem Ltd
Publication of EP2490228A2 publication Critical patent/EP2490228A2/en
Publication of EP2490228A4 publication Critical patent/EP2490228A4/en
Application granted granted Critical
Publication of EP2490228B1 publication Critical patent/EP2490228B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a silver paste composition and a solar cell using the same, and more particularly, to a silver paste composition for forming a front electrode of a solar cell which may improve uniformity, stability, and adhesive strength of printed patterns when the silver paste composition is applied through screen printing, and the like, and a silicon solar cell using the same.
  • the solar cell is classified into a solar heat cell that produces vapor required to run a turbine using solar heat, and a solar light cell that converts photons into electrical energy using properties of a semiconductor.
  • the solar light cell (hereinafter referred to as a solar cell) is represented as a solar cell.
  • the solar cell largely includes a silicon solar cell, a compound semiconductor solar cell, and a tandem solar cell according to raw material. Among them, the silicon solar cell leads the solar cell market.
  • FIG. 1 is a cross-sectional view illustrating a basic structure of a silicon solar cell.
  • the silicon solar cell includes a substrate 101 of a p-type silicon semiconductor, and an emitter layer 102 of an n-type silicon semiconductor.
  • a p-n junction is formed at an interface between the substrate 101 and the emitter layer 102 in a similar way to a diode.
  • electrons and electron holes create in a silicon semiconductor doped with an impurity by the photovoltaic effect. Specifically, electrons create in the emitter layer 102 of an n-type silicon semiconductor as majority carriers, and electron holes create in the substrate 101 of a p-type silicon semiconductor as majority carriers. The electrons and electron holes created by the photovoltaic effect are drawn toward the n-type silicon semiconductor and the p-type silicon semiconductor, and move to a front electrode 103 on the emitter layer 102 and a rear electrode 104 below the substrate 101, respectively. When the front electrode 103 and the rear electrode 104 are connected to each other, electrical current flows.
  • a silver paste composition is used to form the front electrode 103, and an aluminum paste composition is used to form the rear electrode 104.
  • the front electrode 103 needs a small pattern width and a large pattern height for a maximum amount of incident light and good electrical connection, and accordingly, a silver paste composition of high viscosity is prepared.
  • the high viscosity composition does not ensure uniformity of printed patterns, and leaves much residues, which result in shadowing of a front surface of a solar cell.
  • a silver paste composition including the features of claim 1 is used.
  • the silver paste composition including the plasticizer according to the present invention has improved processability and flexibility, and thus, enables improvement in rolling properties, leveling properties and wettability of the paste composition when the silver paste composition is used in forming printed patterns, so that adhesion between a substrate and the printed patterns is improved.
  • the plasticizer of the present invention includes benzoic acid ester.
  • the content of the platicizer according to the present invention is 0.01 to 15 parts by weight per 100 parts by weight of the silver paste composition.
  • the silver paste composition of the present invention may be applied on an anti-reflection film.
  • a silver paste composition for forming a front electrode has improved rolling and leveling properties, and accordingly, the silver paste composition enables uniform generation of fine patterns and reduced occurrence of residues.
  • the silver paste composition for forming a front electrode reduces a difference in thermal expansion between a substrate and printed patterns, and particularly, reduces curling of the edges, and accordingly, the silver paste composition improves stability and uniformity of printed patterns.
  • a silver paste composition of the present invention includes silver powder, glass frit powder, an organic binder, and a plasticizer, wherein the plasticizer is benzoic acid.
  • the content of the platicizer is 0.01 to 15 parts by weight per 100 parts by weight of the silver paste composition, preferably 0.1 to 10 parts by weight, more preferably 1 to 5 parts by weight.
  • the silver paste composition When the content of the platicizer is less than 0.01 parts by weight, the silver paste composition hardly has leveling properties and shows low wettability with a substrate. When the content of the platicizer exceeds 15 parts by weight, a silver paste has a reduction in rolling properties due to a large pattern width and a reduced content of a main binder when being printed, resulting in poor printability.
  • silver particles may include, but are not limited to, any silver particles used conventionally in the art.
  • silver particles may include, but are not limited to, any silver particles having an average particle size between 0.5 to 7 ⁇ m.
  • the glass frit powder usable in the silver paste composition of the present invention may include, but are not limited to, any glass frit powder used conventionally in the art.
  • the glass frit powder may include, but are not limited to, lead oxide and/or bismuth oxide.
  • the glass frit powder may include, but are not limited to, SiO 2 -PbO based powder, SiO 2 -PbO-B 2 O 3 based powder, Bi 2 O 3 -B 2 O 3 -SiO 2 based powder, PbO-Bi 2 O 3 -B 2 O 3 -SiO 2 based powder, or mixtures thereof.
  • the organic binder may be used to prepare the silver powder, the glass frit powder and the plasticizer in a paste phase.
  • the organic binder used in the present invention may include, but are not limited to, any organic binder used to prepare a silver paste composition in the art.
  • the organic binder may include, but are not limited to, cellulose, butyl carbitol, terpineol, or mixtures thereof.
  • the glass frit powder and the organic binder may be selected depending on a specific usage of the silver paste composition.
  • the content of the glass frit powder is 1 to 20 parts by weight per 100 parts of weight of the silver paste composition.
  • the content of the organic binder is 5 to 30 parts by weight per 100 parts of weight of the silver paste composition.
  • the silver paste composition of the present invention is prepared by mixing the above components by various methods known in the art so that the components are uniformly dispersed.
  • the silver paste composition of the present invention may further include an additional agent without departing from the spirit and scope of the invention.
  • the silver paste composition may further include a wetting agent, a thixotropic agent, and the like, according to necessity.
  • the silver paste composition is prepared by mixing the silver powder, the glass frit powder, and the binder (first mixing), and then adding plasticizer to the mixture, and mixing the plasticizer with the mixture (second mixing).
  • first mixing mixing the silver powder, the glass frit powder, and the binder
  • second mixing mixing the plasticizer with the mixture
  • the components may be uniformly mixed using a 3-roll mill, and the like.
  • the simultaneous mixing of all components may allow the intended effects of the present invention, however when the plasticizer is mixed with other components at the same time, the plasticizer may be absorbed into the silver powder and the glass frit powder, and may not be uniformly dispersed in the paste. Accordingly, after the silver powder and the glass frit powder is sufficiently wetted with the binder in first mixing, the plasticizer is added (second mixing) and uniformly dispersed in the paste, so that effects of the plasticizer are maximized.
  • FIG. 2 is a schematic cross-sectional view illustrating a silicon solar cell according to an embodiment of the present invention.
  • the silicon solar cell according to an embodiment of the present invention a silicon semiconductor substrate 201, an emitter layer 202 on the substrate 201, an anti-reflection film 203 on the emitter layer 202, a front electrode 204 connected to the upper surface of the emitter layer 202 through the anti-reflection film 203, and a rear electrode 205 connected to the rear surface of the substrate 201.
  • the substrate 201 may be doped with p-type impurities of group 3 elements in the periodic table, such as B, Ga, In, and the like, and the emitter layer 202 may be doped with n-type impurities of group 5 elements in the periodic table, such as P, As, Sb, and the like.
  • a p-n junction may be formed at an interface between the substrate 201 and the emitter layer 202. In this instance, a p-n junction may be formed between the substrate 201 doped with n-type impurities and the emitter layer 202 doped with p-type impurities.
  • the anti-reflection film 203 may passivate a defect (for example, a dangling bond) existing on the surface of or in the bulk of the emitter layer 202, and may reduce reflectivity of solar rays incident on the front surface of the substrate 201.
  • a defect for example, a dangling bond
  • a site where minority carriers are recombinated may be removed, thereby increasing the open-circuit voltage of the solar cell.
  • a reduction in reflectivity of solar rays may increase an amount of light reaching the p-n junction, thereby increasing the short circuit current of the solar cell. Accordingly, increase in open-circuit voltage and short circuit current of the solar cell by the anti-reflection film 203 may contribute to improvement in conversion efficiency of the solar cell.
  • the anti-reflection film 203 may have a single film structure of any one selected from the group consisting of a silicon nitride film, a silicon nitride film containing hydrogen, a silicon oxide film, a silicon oxynitride film, MgF 2 , ZnS, MgF 2 , TiO 2 and CeO 2 or a multiple film structure of at least two material films, however the present invention is not limited in this regard.
  • the anti-reflection film 203 may be formed by vacuum deposition, chemical vapor deposition, spin coating, screen printing, or spray coating, however a method for forming the anti-reflection film 203 according to the present invention is not limited in this regard.
  • the front electrode 204 and the rear electrode 205 may be electrodes made from silver and aluminum, respectively.
  • the front electrode 204 may be made from the silver paste composition of the present invention.
  • a silver electrode may have good electrical conductivity
  • an aluminum electrode may have good electrical conductivity and high affinity for the silicon semiconductor substrate 201 to enable good connection therebetween.
  • the front electrode 204 and the rear electrode 205 may be formed by well-known various techniques, however screen printing is preferred. That is, the front electrode 205 is formed by screen-printing the silver paste composition of the present invention at a location where a front electrode is to be formed, followed by thermal treatment. During the thermal treatment, the front electrode 204 may penetrate the anti-reflection film 203 due to a punch-through phenomenon, and may be connected to the emitter layer 202.
  • the rear electrode 205 is formed by printing an aluminum paste composition for forming a rear electrode, containing aluminum, quartz silica, a binder, and the like, on the rear surface of the substrate 201, followed by thermal treatment.
  • aluminum that is, one of the components in the rear electrode composition may diffuse through the rear surface of the substrate 201, so that a back surface field (not shown) layer may be formed at an interface between the rear electrode 205 and the substrate 201.
  • the back surface field layer may prevent carriers from moving to the rear surface of the substrate 201 and recombinating. Prevention of carrier recombinatinon may result in increased open-circuit voltage and increased fill factor, thereby improving conversion efficiency of the solar cell.
  • Each silver paste composition was prepared by mixing silver powder, glass frit powder, an organic binder (ethyl cellulose) and an additive (a plasticizer, a wetting agent and a thixotropic agent) according to composition (unit: weight%) shown in the following Table 1, followed by uniform dispersion using a 3-roll mill.
  • an organic binder ethyl cellulose
  • an additive a plasticizer, a wetting agent and a thixotropic agent
  • a plasticizer of examples 1 to 4 was dipropyleneglycol dibenzoate (DPD)
  • a plasticizer of comparative example 1 was dioctyl phthalate (DOP)
  • a plasticizer of comparative example 2 was dioctyl adipic acid (DOA)
  • a plasticizer of comparative example 3 was tricresyl phosphate (TCP).
  • Example 1 Silver Glass frit Content of additive Binder Plasticizer Wetting agent Thixotropic agent Ethylcellulose
  • Example 1 80 4 1(DPD) 0 0 15
  • Example 2 80 4 2(DPD) 0 0 14
  • Example 3 80 4 3(DPD) 0 0 13
  • Example 4 80 4 4(DPD) 0 0 12
  • Comparative example 1 80 4 2(DOP) 0.5 0.5 13
  • Comparative example 2 80 4 2(DOA) 0.5 0.5 13
  • Comparative example 3 80 4 2(TCP) 0.5 0.5 13 Comparative example 4 80 4 0 0.5 0.5 15
  • Test example 1 measurement of viscosity
  • V t of 10% or less is represented as O
  • V t greater than 10% and not greater than 30% is represented as ⁇
  • V t greater than 30% is represented as X.
  • Table 2 Evaluation of viscosity variation Number of milling Over time Example 1 O O Example 2 O O Example 3 O O Example 4 O O Comparative Example 1 ⁇ ⁇ Comparative Example 2 ⁇ ⁇ Comparative Example 3 ⁇ ⁇ Comparative example 4 X X
  • the test results show that the comparative example 4 has a large viscosity variation with a change of number of milling, while the examples have almost uniform viscosity regardless of number of milling.
  • test results teach that viscosity of the comparative example 4 significantly increases (at least 1.5 times) over time, while viscosity of the examples maintains within an increment of 10% or less.
  • compositions of examples have smaller viscosity variation than the comparative example 4 without a plasticizer, and consequently, the silver paste composition of the present invention has higher stability. Also, it is found that addition of a plasticizer alone improves stability when a paste is preserved, without using any additive.
  • Test example 2 measurement of pattern width
  • compositions prepared according to examples 1 to 4 and comparative examples 1 to 4 were printed in patterns having a pattern width of 120 ⁇ m by screen printing, and were dried at 200°C. The pattern width of the resulting printed patterns was measured.
  • a ratio of a minimum pattern width to a maximum pattern width was computed each pattern using the measured values.
  • a ratio of 0.95 or more is represented as O
  • a ratio between 0.93 and 0.95, but not 0.95, is represented as ⁇
  • a ratio less than 0.93 is represented as X.
  • the printed pattern formed from the composition of the example 2 has smaller pattern width, uniform pattern and reduced occurrence of residue, compared with the comparative example 4.
  • a pattern height of the printed pattern formed from the composition of the example 2 with a plasticizer only is about the same as that the comparative example 4 with a thixotropic agent (TA).

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inorganic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Photovoltaic Devices (AREA)
EP10823604.3A 2009-10-13 2010-10-13 Silver paste composition and solar cell using same Active EP2490228B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20090097296 2009-10-13
KR1020100099638A KR20110040713A (ko) 2009-10-13 2010-10-13 은 페이스트 조성물 및 이를 이용한 태양전지
PCT/KR2010/007001 WO2011046365A2 (ko) 2009-10-13 2010-10-13 은 페이스트 조성물 및 이를 이용한 태양전지

Publications (3)

Publication Number Publication Date
EP2490228A2 EP2490228A2 (en) 2012-08-22
EP2490228A4 EP2490228A4 (en) 2014-10-29
EP2490228B1 true EP2490228B1 (en) 2016-03-23

Family

ID=44047006

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10823604.3A Active EP2490228B1 (en) 2009-10-13 2010-10-13 Silver paste composition and solar cell using same

Country Status (7)

Country Link
US (1) US20120325308A1 (ko)
EP (1) EP2490228B1 (ko)
JP (1) JP5542212B2 (ko)
KR (2) KR20110040713A (ko)
CN (1) CN102763172B (ko)
TW (1) TWI404780B (ko)
WO (1) WO2011046365A2 (ko)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120234384A1 (en) * 2011-03-15 2012-09-20 E.I. Du Pont Nemours And Company Conductive metal paste for a metal-wrap-through silicon solar cell
US20120234383A1 (en) * 2011-03-15 2012-09-20 E.I.Du Pont De Nemours And Company Conductive metal paste for a metal-wrap-through silicon solar cell
US20140318618A1 (en) * 2011-11-21 2014-10-30 Hanwha Chemical Corporation Paste composition for front electrode of solar cell and solar cell using the same
KR20140092744A (ko) * 2012-12-29 2014-07-24 제일모직주식회사 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
WO2014104618A1 (ko) * 2012-12-29 2014-07-03 제일모직 주식회사 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
KR101882525B1 (ko) 2013-04-11 2018-07-26 삼성에스디아이 주식회사 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
JP6372760B2 (ja) * 2013-06-04 2018-08-15 パナソニックIpマネジメント株式会社 太陽電池セル
KR101693070B1 (ko) * 2013-08-28 2017-01-04 제일모직주식회사 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
WO2015030361A1 (ko) * 2013-08-28 2015-03-05 제일모직 주식회사 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
KR101648253B1 (ko) 2013-09-13 2016-08-12 제일모직주식회사 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
KR20150117762A (ko) * 2014-04-10 2015-10-21 제일모직주식회사 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
KR20160126169A (ko) * 2015-04-22 2016-11-02 삼성에스디아이 주식회사 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
KR102266093B1 (ko) * 2019-09-06 2021-06-18 (주)바이오니아 코어-쉘 구조의 은 코팅 구리 나노와이어를 포함하는 전도성 페이스트 조성물 및 이를 포함하는 전도성 필름

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11193613A (ja) * 1998-01-06 1999-07-21 Canon Inc 太陽電池モジュール及び太陽電池付き外囲体
JP4212035B2 (ja) * 2003-06-05 2009-01-21 株式会社ノリタケカンパニーリミテド 銀粉末を主体とする導体ペースト及びその製造方法
US7938988B2 (en) * 2004-07-01 2011-05-10 Toyo Aluminium Kabushiki Kaisha Paste composition and solar cell element using the same
JP4843291B2 (ja) * 2005-10-18 2011-12-21 東洋アルミニウム株式会社 アルミニウムペースト組成物およびそれを用いた太陽電池素子
JP2007194122A (ja) * 2006-01-20 2007-08-02 Sumitomo Electric Ind Ltd 導電性ペーストおよびそれを用いた配線基板
JP4791872B2 (ja) * 2006-03-30 2011-10-12 株式会社ノリタケカンパニーリミテド 導電性ペースト
DE102006062269A1 (de) * 2006-12-22 2008-06-26 Eckart Gmbh & Co. Kg Verwendung von sphärischen Metallpartikeln als Lasermarkierungs- oder Laserschweißbarkeitsmittel sowie lasermarkierbarer und/oder laserschweißbarer Kunststoff
US20100096014A1 (en) * 2006-12-25 2010-04-22 Hideyo Iida Conductive paste for solar cell
CN101295739B (zh) * 2007-04-26 2010-09-29 比亚迪股份有限公司 太阳能电池正面电极用导电浆料及其制备方法
KR101280489B1 (ko) * 2007-05-09 2013-07-01 주식회사 동진쎄미켐 태양전지 전극 형성용 페이스트
KR20080114008A (ko) * 2007-06-26 2008-12-31 조선대학교산학협력단 나노실버입자를 이용한 소성 전극용 페이스트 조성물 및이의 제조방법
US20090107546A1 (en) * 2007-10-29 2009-04-30 Palo Alto Research Center Incorporated Co-extruded compositions for high aspect ratio structures
KR100931291B1 (ko) * 2008-01-14 2009-12-11 엘지전자 주식회사 플라즈마 디스플레이 패널 유전체용 조성물, 이를 포함하는플라즈마 디스플레이 패널
JP2009194121A (ja) * 2008-02-14 2009-08-27 Namics Corp 結晶系シリコン太陽電池電極形成用導電性ペースト
JP2009194141A (ja) * 2008-02-14 2009-08-27 Namics Corp 太陽電池電極形成用導電性ペースト
KR101189623B1 (ko) * 2008-02-19 2012-10-10 주식회사 엘지화학 실리콘 태양전지의 전면전극 형성용 금속 페이스트 조성물및 그 제조 방법과 이를 포함하는 실리콘 태양전지
KR101631711B1 (ko) * 2008-03-21 2016-06-17 신에쓰 가가꾸 고교 가부시끼가이샤 확산용 인 페이스트 및 그것을 이용한 태양 전지의 제조 방법
CN102066275A (zh) * 2008-09-04 2011-05-18 日本电气硝子株式会社 电极形成用玻璃组合物和电极形成材料

Also Published As

Publication number Publication date
EP2490228A2 (en) 2012-08-22
CN102763172B (zh) 2015-03-18
JP5542212B2 (ja) 2014-07-09
KR20110040713A (ko) 2011-04-20
TW201130933A (en) 2011-09-16
WO2011046365A2 (ko) 2011-04-21
EP2490228A4 (en) 2014-10-29
WO2011046365A3 (ko) 2011-11-03
US20120325308A1 (en) 2012-12-27
KR20130042524A (ko) 2013-04-26
TWI404780B (zh) 2013-08-11
CN102763172A (zh) 2012-10-31
JP2013507750A (ja) 2013-03-04

Similar Documents

Publication Publication Date Title
EP2490228B1 (en) Silver paste composition and solar cell using same
JP6347577B2 (ja) 低金属含量導電性ペースト組成物
KR101309809B1 (ko) 태양전지용 알루미늄 페이스트 및 이를 이용한 태양전지
EP2696352B1 (en) Silver paste composition for forming an electrode, and method for preparing same
US8884277B2 (en) Thick film conductive composition and use thereof
EP2859557A1 (en) Electroconductive paste with adhesion enhancer
US20120000523A1 (en) Metal paste composition for forming electrode and silver-carbon composite electrode and silicon solar cell using the same
RU2462788C2 (ru) Пастообразный состав и солнечный элемент
KR20110049222A (ko) 실리콘 오일을 포함하는 전극 형성용 페이스트 조성물
EP2750141B1 (en) An electro-conductive paste comprising coarse inorganic oxide particles in the preparation of electrodes in MWT solar cells
EP2474983A1 (en) Electrically conductive paste, electrode for semiconductor device, semiconductor device, and process for production of semiconductor device
KR20170128029A (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
KR101974096B1 (ko) 알루미늄-기반 조성물 및 알루미늄-기반 조성물을 포함한 태양전지
KR101611456B1 (ko) 인계 분산제를 포함하는 전극 형성용 페이스트 조성물
US20130160835A1 (en) Back-side electrode of p-type solar cell and method for forming the same
EP2787510B1 (en) Particles comprising Al, Si and Mg in electro-conductive pastes and solar cell preparation
US9640298B2 (en) Silver paste composition for forming an electrode, and silicon solar cell using same
CN113362983A (zh) 导电浆料、太阳能电池电极及其制作方法、太阳能电池
EP2750139B1 (en) An electro-conductive paste comprising a vanadium containing compound in the preparation of electrodes in MWT solar cells
EP2749546B1 (en) An electro-conductive paste comprising elemental phosphorus in the preparation of electrodes in mwt solar cells
KR20110024655A (ko) 낮은 휨 특성을 나타내는 태양전지 후면전극 형성용 조성물
KR20130067693A (ko) 전극형성용 은 페이스트 조성물, 이를 이용한 실리콘 태양전지
US10804003B2 (en) Conductive paste for forming solar cell electrode
EP2966121A1 (en) Electro-conductive paste with characteristic weight loss for high temperature application
US20130160834A1 (en) Back-side electrode of p-type solar cell, and method for forming the same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120412

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20140929

RIC1 Information provided on ipc code assigned before grant

Ipc: H01B 1/16 20060101ALN20140923BHEP

Ipc: H01L 31/0224 20060101ALN20140923BHEP

Ipc: H01L 31/042 20140101ALI20140923BHEP

Ipc: C08F 2/44 20060101ALI20140923BHEP

Ipc: H01B 1/22 20060101AFI20140923BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H01L 31/042 20140101ALI20150916BHEP

Ipc: C08F 2/44 20060101ALI20150916BHEP

Ipc: H01B 1/16 20060101ALN20150916BHEP

Ipc: H01B 1/22 20060101AFI20150916BHEP

Ipc: H01L 31/0224 20060101ALN20150916BHEP

INTG Intention to grant announced

Effective date: 20150930

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 783842

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010031499

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160624

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160623

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 783842

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160725

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010031499

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160623

26N No opposition filed

Effective date: 20170102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161013

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161102

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161013

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101013

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230920

Year of fee payment: 14