EP2475752B1 - Composition de graisse - Google Patents

Composition de graisse Download PDF

Info

Publication number
EP2475752B1
EP2475752B1 EP10763021.2A EP10763021A EP2475752B1 EP 2475752 B1 EP2475752 B1 EP 2475752B1 EP 10763021 A EP10763021 A EP 10763021A EP 2475752 B1 EP2475752 B1 EP 2475752B1
Authority
EP
European Patent Office
Prior art keywords
composition according
grease composition
weight
wear
grease
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10763021.2A
Other languages
German (de)
English (en)
Other versions
EP2475752A1 (fr
Inventor
Franck Bardin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TotalEnergies Marketing Services SA
Original Assignee
Total Marketing Services SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Total Marketing Services SA filed Critical Total Marketing Services SA
Priority to PL10763021T priority Critical patent/PL2475752T3/pl
Publication of EP2475752A1 publication Critical patent/EP2475752A1/fr
Application granted granted Critical
Publication of EP2475752B1 publication Critical patent/EP2475752B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/06Mixtures of thickeners and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/22Compounds containing sulfur, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/041Carbon; Graphite; Carbon black
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/065Sulfides; Selenides; Tellurides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/065Sulfides; Selenides; Tellurides
    • C10M2201/066Molybdenum sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/106Naphthenic fractions
    • C10M2203/1065Naphthenic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • C10M2205/0285Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • C10M2207/126Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids monocarboxylic
    • C10M2207/1265Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids monocarboxylic used as thickening agent
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • C10M2207/128Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids containing hydroxy groups; Ethers thereof
    • C10M2207/1285Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids containing hydroxy groups; Ethers thereof used as thickening agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/12Groups 6 or 16
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/14Group 7
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/16Groups 8, 9, or 10
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • C10N2040/046Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/10Semi-solids; greasy

Definitions

  • the present invention relates to low friction coefficient grease compositions, particularly for use in constant velocity joints which are used in transmission lines of motor vehicles.
  • a transmission joint or mechanical coupling is a mechanical system consisting of several moving parts relative to each other, or deformable, which allows the mutual drive of two rotating parts whose axes of rotation occupy variable relative positions during operation. In other words, it is a link that transmits the rotation of an axis to another axis moving relative to the first.
  • a transmission joint is called homokinetic if, at any moment, the rotation speeds of the two shafts are equal.
  • the greases used in constant velocity joints must not only have an anti-wear effect, but also have a low coefficient of friction to reduce or prevent noise, vibration and jolts.
  • known constant velocity joint greases frequently contain anti-wear additives, which are for example phosphorus or phosphorus compounds, and friction modifiers, for example organic compounds containing molybdenum, which may have effects on one or the other of these properties, or both.
  • anti-wear additives which are for example phosphorus or phosphorus compounds
  • friction modifiers for example organic compounds containing molybdenum, which may have effects on one or the other of these properties, or both.
  • Requirement EP 0435 745 describes, for example, a homokinetic joint grease comprising a mineral oil, a polyurea thickener, 0.5 to 5% by weight of molybdenum dithiophosphate (MoDTP) and 0.5 to 5% by weight of Molybdenum dithiocarbamate (MoDTC) as a friction modifier (MF), and 0.5 to 10% by weight of ZnDTP as EP agent, and 0.5 to 60% of a copolymer of ethylene and alpha olefin connected.
  • MoDTP molybdenum dithiophosphate
  • MoDTC Molybdenum dithiocarbamate
  • the patent EP 0708 172 also discloses a low friction grease for homokinetic joints comprising a base oil, a single or complex lithium soap thickener, one or more organic components containing molybdenum, of the MoDTC or MoDTP type, at least one zinc dithiophosphate, a extreme phospho-sulfur pressure agent free of metal, a calcium salt of oxidized wax, petroleum sulfonate or aromatic alkylsulfonates.
  • the patent FR 1 421 105 thus describes the use, for lowering the coefficient of friction of greases, of lubricant solids with a laminated crystalline structure in combination with metal salts of oxygenated phosphorus acids.
  • Requirement WO 2007/085643 discloses low friction coefficient grease compositions for homokinetic joints comprising a base oil, one or more thiourea thickeners, 0.1 to 5% by weight of particulate tungsten disulfide having an average size of less than 10 ⁇ m (tanmikB marketed by Nippon Lubricant Ltd), and 0.1 to 5% by weight of one or more zinc dithiophosphates and / or molybdenum dithiocarbamate.
  • US-P-5516439 discloses a grease composition
  • a grease composition comprising (a) a base oil, (b) a lithium-based thickener, (c) a molybdenum compound that is a molybdenum dithiophosphate or a molybdenum dithiocarbamate, (d) a zinc dithiophosphate (e) a metal salt.
  • Solid lubricants such as molybdenum disulfide (MoS 2) or tungsten (WS 2) in the form of a sheet or in the form of fullerene to lower the coefficient of friction of greases.
  • MoS 2 molybdenum disulfide
  • WS 2 tungsten
  • the Applicant has demonstrated a synergistic effect between solid friction modifiers of transition metal chalocogenides in the form of inorganic fullerenes, with anti-wear and extreme pressure compounds of organophospho-sulfur type, in thickened greases, especially in lithium soaps.
  • one or more inorganic fullerene structure transition metal chalcogenides used in the grease compositions according to the invention are grafted onto the surface by inorganic phosphate groups.
  • the chalcogen of at least one solid lubricant (c) is selected from S, Se, Te.
  • the transition metals of at least one solid lubricant (c) are chosen from Mo, W, Zr, Hf, Pt, Re, Ti, Ta, Nb, preferably Mo and W.
  • At least one solid lubricant (c) is a transition metal dichalcogenide, preferably Molybdenum disulfide MoS2 or WS2 tungsten bisulfide with an inorganic fullerene structure.
  • the solid lubricants (c) consist of particles with a diameter of between 80 and 220 nm, preferably between 100 and 200 nanometers.
  • the grease composition according to the invention advantageously contains at least one anti-wear and / or extreme pressure additive (d) which is chosen from dithiophosphates, preferentially zinc or molybdenum dithiophosphates.
  • the grease compositions according to the invention contain at least one anti-wear and / or extreme pressure additive (d) chosen from Zinc dithiophosphates of formula: (R10) (R2O) PS2 ZnS2P (R3O) (R4O), where R1, R2, R3, R4 are, independently of each other, linear or branched alkyl groups comprising from 1 to 24, preferably from 3 to 20 carbon atoms, or optionally substituted aryl groups containing from 6 to 30, preferably from 8 to 18 carbon atoms.
  • d Zinc dithiophosphates of formula: (R10) (R2O) PS2 ZnS2P (R3O) (R4O)
  • R1, R2, R3, R4 are, independently of each other, linear or branched alkyl groups comprising from 1 to 24, preferably from 3 to 20 carbon atoms, or optionally substituted aryl groups containing from 6 to 30, preferably from 8 to 18 carbon atoms.
  • the grease compositions according to one of the claims of the invention contain at least one antiwear and / or extreme pressure additive (d) is chosen from Molybdenum dithiophosphates of formula: (R5O) (R6O) SPS (MoS2) 2 SPS (R7O) (R8O), where R5, R6, R7, R8 are, independently of one another, linear or branched alkyl groups comprising from 1 to 24, preferably from 3 to 20 carbon atoms or optionally substituted aryl groups containing from 6 to 30, preferably from 8 to 18 carbon atoms, optionally in combination with the abovementioned anti-wear and / or extreme pressure additive, in particular the above-mentioned Zinc dithiophosphates.
  • said metal soaps are simple fatty metal soaps comprising from 14 to 28 carbon atoms, saturated or unsaturated, hydroxylated or otherwise, and / or complex metal soaps of one or more fatty acids comprising from 14 to 28 saturated or unsaturated carbon atoms, whether or not hydroxylated, in combination with one or more short-chain hydrocarbon carboxylic acids having from 6 to 12 carbon atoms.
  • the metal fatty acid soaps are chosen from aluminum titanium soaps, or alkali and alkaline earth metals, preferably lithium, calcium, sodium, barium.
  • the grease compositions according to the invention contain at least one base oil (a) is an oil of synthetic origin, preferably chosen from polyalphaolefins.
  • the base oil or the base oil mixture (a) of the grease compositions according to the invention has a kinematic viscosity at 40 ° C. according to ASTM D 445 of between 70 and 140 cSt, preferably between 90 and 100 cSt.
  • grease compositions according to the invention whose consistency according to ASTM D217 is between 265 and 385 tenths of a millimeter, preferably between 265 and 295, or between 310 and 340, or between 335 and 385 tenths of a millimeter. preferably between 310 and 340 tenths of millimeters.
  • the present invention also relates to the use of the aforementioned grease compositions in the constant velocity joints of motor vehicle transmissions.
  • the present invention also relates to a homokinetic joint containing a grease composition as described above.
  • the other base oil (s) used in the compositions according to the present invention may be oils of mineral or synthetic origin of groups I to VI according to the classes defined in the API classification (American Petroleum Institute).
  • the mineral base oils according to the invention include all types of bases obtained by atmospheric and vacuum distillation of crude oil, followed by refining operations such as solvent extraction, desalphating, solvent dewaxing, hydrotreatment, hydrocracking and hydroisomerization, hydrofinishing.
  • the base oils of the grease compositions according to the present invention may also be synthetic oils, such as certain esters, silicones, glycols, polybutene, polyalphaolefins (PAO).
  • synthetic oils such as certain esters, silicones, glycols, polybutene, polyalphaolefins (PAO).
  • the base oils may also be oils of natural origin, for example esters of alcohol and carboxylic acids, obtainable from natural resources such as sunflower oil, rapeseed oil, palm oil. ...
  • synthetic oils of the polyoaplphadefin (PAO) type are present.
  • the polyalphaolefins are for example obtained from monomers having from 4 to 32 carbon atoms (for example octene, decene). Their weight average molecular weight is typically between 250 and 3000.
  • the base oil mixture is set so that its viscosity at 40 ° C. according to ASTM D 445 is between 40 and 140 cSt, preferably between 90 and 100 cSt.
  • a wide range of light polyalphaolefins can be used, such as for example PAO 6 (31 cSt at 40 ° C), PAO 8 (48 cSt at 40 ° C), or heavy, such as PAO 40 ( 400 cSt at 40 ° C), or PAO 100 (1000 cSt at 40 ° C).
  • Metallic fatty acid soaps can be prepared separately, or in situ during the manufacture of the fat (in the latter case, the fatty acid (s) are dissolved in the base oil, and then the metal hydroxide is added. appropriate).
  • These thickeners are commonly used products in the field of fats, readily available and inexpensive. They present the best technical compromise, combining both good mechanical properties, good thermal resistance, and good water resistance.
  • Long-chain fatty acids typically comprising from 10 to 28 carbon atoms, saturated or unsaturated, optionally hydroxylated, are preferably used.
  • Long-chain fatty acids are, for example, capric, lauric, myristic, palmitic, stearic, arachidic, behenic, oleic, linoleic and erucic acids, and their hydroxylated derivatives.
  • Hydroxystearic acid 12 is the best known derivative of this class, and preferred.
  • These long-chain fatty acids generally come from vegetable oils, for example palm oil, castor oil, rapeseed oil, sunflower oil, ... or animal fats (tallow, whale oil, etc.).
  • So-called simple soaps can be formed using one or more long-chain fatty acids.
  • So-called complex soaps can also be formed by using one or more long-chain fatty acids in combination with one or more short-chain hydrocarbon carboxylic acids having at most 8 carbon atoms.
  • the saponification agent used to make the soap may be a metal compound of Lithium, Sodium, Calcium, Barium, Titanium, Aluminum, preferably Lithium and Calcium, and preferably a hydroxide, oxide or carbonate of these metals.
  • One or more metal compounds may be used in the greases according to the invention. So we can associate soaps lithium, combined with calcium soaps to a lesser extent. This has the advantage of improving the water resistance of greases.
  • the metal soaps are used at levels of the order of 5 to 20% by weight, preferably 8 to 15% by weight, typically 12% by weight in the greases according to the invention.
  • the amount of metallic soap (s) is generally adjusted to obtain grade 0, grade 1 or grade 2 fats according to the NLGI classification.
  • the greases according to the invention mainly contain metal soaps of fatty acids as thickeners. By this is meant that the metal soap of fatty acids, simple or complex, together represent the highest percentage by weight in the greases according to the invention, compared to the percentage by weight of the other thickening materials.
  • the quantity of the metal soap or fatty acids, simple or complex constitutes at least 50%, more preferably at least 80% by weight relative to the total weight of thickening materials, in the grease compositions according to the invention. invention.
  • the greases according to the invention may contain, as the major thickener, metal soap of simple or complex fatty acids, and smaller amounts of other thickeners, such as polyureas, or inorganic thickeners, such as bentonite or alumino silicates.
  • the greases according to the invention are free of polyurea thickeners.
  • the improvement of the friction properties observed during the introduction of inorganic fullerene friction modifiers in polyurea-thickened fats is less.
  • the greases according to the invention exclusively contain simple or complex fatty acid metal soaps as thickeners.
  • the solid lubricants used in the greases according to the invention are transition metal chalcogenides having an inorganic fullerene structure.
  • fullerene denotes a closed convex polyhedron nanostructure composed of carbon atoms.
  • Fullerenes are similar to graphite, composed of linked hexagonal ring sheets, but they contain pentagonal, and sometimes heptagonal rings, which prevent the structure from being flat.
  • inorganic fullerenes are generally attributable to their quasi-spherical structure and onions, which allows them, instead of adhering to contacts during friction, such as sheet structures, to exfoliate little by little or to mechanically deform, hence their recommendation as solid lubricants.
  • This spherical onion structure exists in all transition metal chalcogenides with an inorganic fullerene structure (see for example Tenne, R. Nature Nanotech. 2006, 1, 103 cited above).
  • the inorganic fullerenes with onion structure are thus preferred in the field of lubrication and in greases according to the invention. These are typically spheres of the order of 80 to 220 nm, and containing a few tens of concentric layers, typically 25 to 100 or 150 layers, or beyond.
  • the solid lubricants used in the greases according to the invention are chalcogenides of transition metals.
  • the transition metals may be, for example, tungsten, molybdenum, zirconium, hafnium, platinum, rhenium, titanium, tantalum, niobium, preferably molybdenum or tungsten, and the chalcogen may be, for example, sulfur, selenium or tellurium. , preferably sulfur or tellurium.
  • the transition metal chalcogenides may be for example MoS2, MoSe2, MoTe2, WS2, WSe2, ZrS2, ZrSe2, HfS2, HfSe2, PtS2, ReS2, ReSe2, TiS3, ZrS3, ZrSe3, HfS3, HfSe3, TiS2, TaS2, TaSe2.
  • these are dichalcogenides, preferentially WS2, WSe2, MoS2, MoSe2.
  • chalcogenides may also contain several transition metals, such as, for example, the compounds described in the application WO 2009/034572 .
  • They can also be surface-grafted with polymers, for example polystyrene, polymethylmethacrylate, etc. to improve their dispersion, or phosphate groups, so as to reinforce their anti-wear action.
  • polymers for example polystyrene, polymethylmethacrylate, etc. to improve their dispersion, or phosphate groups, so as to reinforce their anti-wear action.
  • these compounds are often in the form of pastes containing about 75% by weight of fullerene metal chalcogenides and about 25% by weight of lubricating oil.
  • the weight percentages given in this application refer, unless otherwise stated, to metal chalcogenides alone.
  • the grease compositions according to the invention preferably comprise from 0.2 to 2% by weight of fullerene transition metal chalcogenides.
  • Organo phospho sulfur and / or organophosphorus compounds Organo phospho sulfur and / or organophosphorus compounds
  • organophospho sulfur-containing anti-wear compounds will be preferred in the greases according to the invention, since the presence of sulfur promotes the extreme pressure properties of the greases.
  • the lubricant compositions according to the present invention may contain Zinc dithiophosphates of formula: (R10) (R2O) PS2 ZnS2P (R3O) (R4O), where R1, R2, R3, R4 are, independently of each other, linear or branched alkyl groups comprising from 1 to 24, preferably from 3 to 20 carbon atoms, or optionally substituted aryl groups containing from 6 to 30, preferably from 8 to 18 carbon atoms.
  • R5O R6O
  • MoS2 MoS2
  • R7O R8O
  • R5, R6, R7, R8 are, independently of each other, linear or branched alkyl groups comprising from 1 to 24, preferably from 3 to 20 carbon atoms, or optionally substituted aryl groups containing from 6 to 30, preferably from 8 to 18 carbon atoms.
  • These different compounds can be used alone or as a mixture in the grease compositions according to the invention.
  • Their weight% is between 0.5 and 5% by weight, preferably between 0.7 and 2% by weight, or between 0.8 and 1.5% by weight relative to the total weight of the composition.
  • the greases according to the invention may also contain any type of additive suitable for their use, for example antioxidants, such as amines or phenolics, antirust which may be oxygenated compounds such as esters, copper passivates.
  • antioxidants such as amines or phenolics
  • antirust which may be oxygenated compounds such as esters, copper passivates.
  • the greases according to the invention may also contain polymers, for example polyisobutene (PIB), at contents generally of between 5 and 10%, which imparts improved cohesiveness to fats, which is more resistant to centrifugation. These polymers also result in better adhesiveness of the grease to the surfaces, and increase the viscosity of the base oil fraction, thus the thickness of the oil film between the friction parts.
  • PIB polyisobutene
  • the greases according to the invention are preferably manufactured by forming the metal soap in situ.
  • One or more fatty acids are dissolved in a fraction of the base oil or base oil mixture at room temperature. This fraction is generally of the order of 50% of the total amount of oil contained in the final fat.
  • the fatty acids can be long acids, comprising from 14 to 28 carbon atoms, to form a simple soap, optionally combined with short fatty acids, comprising from 6 to 12 carbon atoms, to form complex soaps.
  • metal compounds preferably metal hydroxide type.
  • the preferred metal of the compositions according to the invention is lithium, possibly combined, to a lesser extent, with calcium.
  • the saponification reaction of the fatty acids is allowed to proceed with the metal compound (s) at a temperature of about 100 to 110 ° C.
  • the water formed is then evaporated by cooking the mixture at a temperature of about 200 ° C.
  • the grease is then cooled by the remaining fraction of base oil.
  • the additives are then incorporated at about 80 ° C.
  • the mixture is then kneaded for a time sufficient to obtain a homogeneous fat composition.
  • the consistency of a grease measures its hardness or fluidity at rest. It is quantified by the depth of penetration of a cone of given dimensions and mass. The fat is previously subjected to mixing. The conditions for measuring the consistency of a grease are defined by ASTM D 217.
  • NLGI Rank Consistency according to ASTM D 217 (tenth of a millimeter) 000 445 - 475 00 400 - 430 0 335 - 385 1 310 - 340 2 265 - 295 3 220 - 250 4 175 - 205 5 130 - 160 6 85 - 115
  • the greases according to the invention are preferably fluid or semi-fluid greases with a consistency greater than 265 tenths of a millimeter, preferably between 265 and 385 tenths of a millimeter according to ASTM D217.
  • they are NLGI grade 0, 1 or 2, that is to say that their consistency is respectively between 335 and 385, or 310 and 340, or 265 and 295 tenths of a millimeter according to ASTM D217.
  • Grease compositions containing various friction modifiers and / or organo phospho sulfur compounds are prepared from a grease foot comprising mineral and synthetic base oils thickened with complex lithium soap.
  • the composition of the mixture leading to this foot of fat is shown in Table 1 below.
  • the term "grease foot” commonly refers to a person skilled in the art as a grease composition containing only base oils and thickeners, and no additive.
  • Table 1 fat foot composition Compound % mass Mineral oils (150 NS + naphthenic) 78.34 Synthetic oils (PAO 6) 8.89 12 hydroxystearic acid 8.99 Azelaic acid 1.80 Lime lime 0.24 lithia 1.73
  • the base oil mixture is set so that its viscosity at 40 ° C. according to ASTM D 445 is between 40 and 140 cSt, preferably between 90 and 100 cSt.
  • Example 1 The greases prepared in Example 1 were evaluated by measuring their coefficient of friction on Cameron Plint cylinder / plane tribometer friction.
  • Table 3 The coefficient of friction values are the average over the last 40 seconds of each level.
  • Table 3 Cameron Plint tribometer friction coefficient Coefficient of friction (AT) (B) (VS) (D) 100 N to 5 mm / s 0.091 0.062 0,075 0.091 100 N to 15 mm / s 0.089 0,051 0,076 0.090 150 N at 5 mm / s 0,100 0.067 0.086 0,100 150 N to 15 mm / s 0.097 0,061 0,085 0.098 200 N at 5 mm / s 0,100 0,070 0.096 0,100 200 N at 15 mm / s 0,100 0.067 0.094 0,100
  • the anti-wear properties of the greases prepared in Example 1 were evaluated using the 4-ball wear test, according to ASTM D2266.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Lubricants (AREA)

Description

  • La présente invention est relative à des compositions de graisse à bas coefficient de friction, notamment utilisables dans les joints homocinétiques qui sont utilisés dans les lignes de transmission des véhicules à moteur.
  • Un joint de transmission ou accouplement mécanique est un système mécanique composé de plusieurs pièces mobiles les unes par rapport aux autres, ou déformables, qui permet l'entraînement mutuel de deux pièces tournantes dont les axes de rotation occupent des positions relatives variables pendant le fonctionnement. En d'autres termes, c'est une liaison qui permet de transmettre la rotation d'un axe à un autre axe mobile par rapport au premier. Un joint de transmission est dit homocinétique si, à tout instant, les vitesses de rotation des deux arbres sont égales.
  • Les mouvements à l'intérieur des joints homocinétiques sont complexes, avec une combinaison de roulement, de glissement et de rotations. Il s'y produit une usure sur les surfaces de contact des composants, mais également des forces de friction significatives entre les surfaces. L'usure peut avoir pour résultats une défaillance des joints et les forces de friction peuvent entraîner du bruit, des vibrations et des a coup dans la ligne de transmission.
  • Ainsi, les graisses utilisées dans les joints homocinétiques doivent non seulement avoir un effet anti usure, mais également avoir un faible coefficient de friction afin de réduire ou empêcher les bruits, les vibrations et les à-coups.
  • Différents additifs connus et aident à réduire l'usure et/ou la friction. Ainsi, les graisses pour joint homocinétiques connues contiennent fréquemment des additifs anti usure, qui sont par exemple des composés phosphorés ou phosphosoufrés, et des modificateurs de friction, par exemple des composés organiques contenant du molybdène, qui peuvent avoir des effets sur l'une ou l'autre de ces propriétés, voire les deux.
  • La demande EP 0435 745 décrit, par exemple, une graisse pour joints homocinétiques comprenant une huile minérale, un épaississant de type polyurée, de 0,5 à 5 % en masse de dithiophosphate de molybdène ( MoDTP) et 0,5 à 5 % en masse de dithiocarbamate de molybdène (MoDTC) à titre de modificateur de friction ( MF), et 0,5 à 10 % en masse de ZnDTP comme agent EP, et 0,5 à 60 % d'un copolymère d'ethylène et d'alpha oléfine branchée.
  • Le brevet EP 0708 172 décrit également une graisse à bas coefficient de frottement pour joints homocinétiques comprenant une huile de base, un épaississant savon de Lithium simple ou complexe, un ou plusieurs composants organiques contenant du molybdène, de type MoDTC ou MoDTP, au moins un dithiophosphate de zinc, un agent extrême pression phospho soufré exempt de métal, un sel de calcium de cire oxydée, de sulfonate de pétrole ou d'alkylsulfonates aromatiques.
  • Le brevet FR 1 421 105 décrit ainsi l'utilisation, pour abaisser le coefficient de friction des graisses, de produits solides lubrifiants à structure cristalline feuilletée en combinaison avec des sels métalliques d'acides oxygénés du phosphore.
  • La demande WO 2007/085643 décrit des compositions de graisse à bas coefficient de friction pour joints homocinétiques comprenant une huile de base, un ou plusieurs épaississants de type thiourée, 0,1 à 5% en poids de disulfure de tungstène sous forme de particules ayant une taille moyenne de moins de 10 µm (tanmikB commercialisé par Nippon Lubricant Ltd), et 0,1 à 5% en poids d'un ou plusieurs dithiophosphates de zinc et/ou dithiocarbamate de molybdène.
  • US-P-5,516,439 décrit une composition de graisse comprenant (a) une huile de base, (b) un épaississant à base de lithium, (c) un composé de molybdène qui est un dithiophosphate de molybdène ou un dithiocarbamate de molybdène, (d) un dithiophosphate de zinc, (e) un sel métallique.
  • Il est également connu d'employer, comme modificateurs de frottement, des lubrifiants solides tels que le bisulfure de molybdène (MoS2) ou de tungstène (WS2) sous forme de feuillet ou sous forme de fullerène pour abaisser le coefficient de frottement des graisses.
  • Certaines publications font état de l'utilisation de dichalcogénures métalliques sous forme de fullerènes inorganiques pour abaisser le coefficient de frottement et améliorer les propriétés anti usure d'huiles lubrifiantes et de graisse.
  • La publication « Fullerene like WS2 Nanoparticles : superior lubricants for Harsh Conditions », par Lev Rapoport , Nieles Fleischer, Reshef Tenne Adv. Mat. 2003, 15, 651-655 compare ainsi les propriétés de friction d'une graisse de référence constituée d' huile de base épaissie au Lithium, puis additivées de WS2 feuillet et enfin de WS2 fullerène.
  • La publication « Modification of contact surfaces by fullerene-like solid lubricant nanoparticules », par L. Rapoport, V. Leshchinski, Yu. Volovik, M. Lvovsky, O. Nepomnyashchy, Y. Feldman, R. Popovitz-Biro, R. Tenne, Surface and Coating Technology 163-164 (2003) 405-412, effectue des comparaisons des mêmes produits au titre de leurs propriétés anti usure.
  • Toutefois, aucune combinaison spécifique de dichalcogenures métalliques sous forme fullerène inorganique avec d'autres composants des graisses n'est divulguée. En particulier, les effets des interactions des chalcogénures métalliques de type fullerènes inorganiques avec les épaississants, et les additifs anti usure, et éventuellement extrême pression, nécessaires à la formulation des graisses commerciales ne sont pas divulgués dans l'art antérieur. Ces effets pourraient se révéler bénéfiques ou antagonistes.
  • Il existe donc toujours un besoin pour des graisses formulées ayant un coefficient de friction encore plus bas que les graisses de l'art antérieur. Il existe également un besoin pour de telles graisses à très bas coefficient de friction, présentant simultanément des propriétés anti usure équivalentes ou améliorées par rapport aux graisses de l'art antérieur.
  • De façon surprenante, la demanderesse a mis en évidence un effet synergique entre des modificateurs de frottement solides de chalocogénures de métaux de transition sous forme de fullerènes inorganiques, avec des composés anti usure et extrême pression de type organophospho soufrés, dans des graisses épaissies notamment aux savons de lithium.
  • La combinaison de ces composés dans des graisses permet d'abaisser le coefficient de frottement desdites graisses bien en dessous en dessous de celui des graisses contenant individuellement l'un ou l'autre de ces composés.
  • Les performances anti usure de ces graisses sont maintenues par rapport aux graisses connues contenant comme modificateurs de frottement des composés organiques au molybdène et comme additifs anti usure des composés organo phosphorés ou organophospho soufrés.
  • Brève description de l'invention :
  • La présente invention est relative à des compositions de graisse comprenant :
    1. (a) une ou plusieurs huiles de base minérales, synthétiques ou naturelles,
    2. (b) un épaississant composé majoritairnent d'au moins un savon métallique d'acide gras,
    3. (c) de 0,2 à 2% en poids par rapport au poids total de la composition moins un lubrifiant solide constitué d'un ou plusieurs chalcogénures de métaux de transition à structure de fullerène inorganique,
    4. (d) de 0,5 à 5% en poids par rapport au poids total de la composition ou plusieurs additifs anti usure et/ou extrême pression organo phospho soufrés choisi(s) parmi les dithiophosphates.
    Préférentiellement, le(s) savon(s) métallique(s) d'acide gras constitue au moins 50 %, préférentiellement au moins 80 % en poids de l'épaississant (b) dans lesdites compositions.
  • Selon un mode de réalisation, un ou plusieurs chalcogenures de métaux de transition à structure de fullerène inorganique utilisés dans les compositions de graisse selon l'invention sont greffés en surface par des groupements phosphates inorganiques.
  • Préférentiellement, dans les compositions de graisse selon l'invention, le chalcogène d'au moins un lubrifiant solide (c) est choisi parmi S, Se, Te.
  • Préférentiellement, dans les compositions de graisse selon l'invention, les métaux de transition d'au moins un lubrifiant solide (c) sont choisis parmi Mo, W, Zr, Hf, Pt, Re, Ti, Ta, Nb, préférentiellement Mo et W.
  • Selon un mode particulièrement préféré, dans les compositions de graisse selon l'invention, au moins un lubrifiant solide (c) est un dichalcogenure de métaux de transition, préférentiellement le bisulfure de Molybdène MoS2 ou le bisulfure de tungstène WS2 à structure fullerène inorganique.
  • Préférentiellement, dans les compositions de graisse selon l'invention, les lubrifiants solides (c) sont constitués de particules de diamètre compris entre 80 et 220 nm, préférentiellement entre 100 et 200 nanomètres.
  • Les composition de graisse selon l'invention contiennent avantageusement au moins un additif anti/usure et/ou extrême pression (d) qui est choisi parmi les dithiophosphates, préférentiellement les dithiophosphates de zinc ou de molybdène.
  • Selon un mode particulièrement préféré, les compositions de graisse selon l'invention contiennent au moins un additif anti/usure et/ou extrême pression (d) choisi parmi les dithiophosphates de Zinc de formule :

            (R1O)(R2O)PS2 ZnS2P(R3O)(R4O),

    où R1, R2, R3, R4 sont, indépendamment les uns des autres, des groupements alkyl linéaires ou ramifiés comprenant de 1 à 24, préférentiellement de 3 à 20 atomes de carbone ou des groupements aryl éventuellement substitués comportant de 6 à 30, préférentiellement de 8 à 18 atomes de carbone.
  • Selon un autre mode de réalisation, les composition de graisse selon l'une revendications l'invention contiennent où au moins un additif anti/usure et/ou extrême pression (d) est choisi parmi les dithiophosphates de Molybdène de formule :

            (R5O)(R6O)SPS(MoS2)2 SPS(R7O)(R8O),

    où R5, R6, R7, R8 sont, indépendamment les uns des autres, des groupements alkyl linéaires ou ramifiés comprenant de 1 à 24, préférentiellement de 3 à 20 atomes de carbone ou des groupements aryl éventuellement substitués comportant de 6 à 30, préférentiellement de 8 à 18 atomes de carbone, en combinaison éventuelle avec les un additif anti/usure et/ou extrême pression précités, en particulier les dithiophosphates de Zinc précités.
  • Préférentiellement, lesdits savons métalliques sont des savons métalliques simples d'acides gras comprenant de 14 à 28 atomes de carbone, saturés ou non, hydroxylés ou non, et/ou des savons métalliques complexes d'un ou plusieurs acides gras comprenant de 14 à 28 atomes de carbone, saturés ou non, hydroxylés ou non, en combinaison avec un ou plusieurs acides carboxyliques à chaîne hydrocarbonée courte comprenant au de 6 à 12 atomes de carbone.
  • Préférentiellement dans lesdites compositions de graisse selon l'invention, les savons métalliques d'acides gras sont choisis parmi les savons de titane, d'aluminium, ou de métaux alcalins et alcalino terreux, de préférence le lithium, le calcium, le sodium, le baryum.
  • Selon un mode préféré, les composition de graisse selon l'invention contiennent au moins une huile de base (a) est une huile d'origine synthétique, préférentiellement choisie parmi les polyalphaoléfines
  • Préférentiellement, l'huile de base ou le mélange d'huiles de base (a) des compositions de graisse selon l'invention, a une viscosité cinématique à 40 °C selon la norme ASTM D 445 comprise entre 70 et 140 cSt, préférentiellement entre 90 et 100 cSt.
  • On préférera formuler des composition de graisse selon l'invention dont la consistance selon la norme ASTM D217, est comprise entre 265 et 385 dixièmes de millimètres, préférentiellement entre 265 et 295, ou entre 310 et 340, ou entre 335 et 385 dixièmes de millimètres, préférentiellement comprise entre 310 et 340 dixièmes de millimètres.
  • Préférentiellement, les compositions de graisse selon l'invention comprennent :
    • de 70 à 94,8 % en masse d'une ou plusieurs huiles de base (a)
    • de 5 à 20 % en masse d'un ou plusieurs épaississants (b)
    • de 0,1 à 5 % d'un ou plusieurs lubrifiant solide (c)
    • de 0,5 à 5% d'un ou plusieurs additifs anti usure et/ou extrême pression organophosphorés et/ou organo phospho soufrés (d).
  • La présente invention est également relative à l'utilisation des compositions de graisse précitées dans les joints homocinétiques des transmissions de véhicules à moteur.
  • La présente invention est également relative à joint homocinétique contenant une composition de graisse telle que décrite précédemment.
  • DESCRIPTION DETAILLEE: Huile de base lubrifiantes
  • La ou les autres huiles de base utilisées dans les compositions selon la présente invention peuvent être des huiles d'origine minérales ou synthétiques des groupes I à VI selon les classes définies dans la classification API (American Petroleum Institute).
  • Les huiles de base minérales selon l'invention incluent tous types de bases obtenues par distillation atmosphérique et sous vide du pétrole brut, suivies d'opérations de raffinage tels qu'extraction au solvant, désalphatage, déparaffinage au solvant, hydrotraitement, hydrocraquage et hydroisomérisation, hydrofinition.
  • Les huiles de bases des compositions de graisses selon la présente invention peuvent également être des huiles synthétiques, tels certains esters, silicones, glycols, polybutène, polyalphaoléfines (PAO).
  • Les huiles de bases peuvent également être des huiles d'origine naturelle, par exemple des esters d'alcool et d'acides carboxyliques, pouvant être obtenus à partir de ressources naturelles telles qu l'huile de tournesol, de colza, de palme, ....
  • Préférentiellement, dans les compositions selon l'invention, des huiles synthétiques de type polyoaplphaléfines (PAO) sont présentes. Les polyalphaoléfines sont par exemple obtenues à partir de monomères ayant de 4 à 32 atomes de carbone (par exemple octène, decène). Leur masse moléculaire moyenne en poids est typiquement comprise entre 250 et 3000.
  • Le mélange d'huiles de bases est calé de façon à ce que sa viscosité à 40 °C selon la norme ASTM D 445 soit comprise entre 40 et 140 cSt, préférentiellement entre 90 et 100 cSt. A cet effet, on peut utiliser une large gamme de polyalphaoléfines, légères, comme par exemple la PAO 6 (31 cSt à 40°C), la PAO 8 (48 cSt à 40°C), ou lourdes, comme la PAO 40 (400 cSt à 40°C), ou la PAO 100 (1000 cSt à 40°C).
  • Epaississants
  • Les savons métalliques d'acides gras peuvent êtres préparés séparément, ou in situ lors de la fabrication de la graisse (dans ce dernier cas, on dissout le ou les acides gras dans l'huile de base, puis on ajoute l'hydroxyde de métal approprié). Ces épaississants sont des produits couramment employés dans le domaine des graisses, facilement disponibles et bon marché. Ils présentent le meilleur compromis technique, en réunissant à la fois de bonnes propriétés mécaniques, une bonne tenue thermique, et une bonne tenue à l'eau.
  • On utilise préférentiellement des acides gras à chaîne longue comprenant typiquement de 10 à 28 atomes de carbone, saturée ou insaturée, éventuellement hydroxylée.
  • Les acides gras à chaîne longue (comprenant typiquement de 10 à 28 atomes de carbone), sont par exemple les acides capriques, laurique, myristiques, palmitiques, stéarique, arachidique, béhénique, oléiques, linoléique, éruciques, et leurs dérivés hydroxylés. L'acide 12 hydroxystéarique est le dérivé le plus connu de cette catégorie, et préféré.
  • Ces acides gras à chaîne longue proviennent généralement d'huiles végétales, par exemple huile de palme, de ricin, de colza, de tournesol,... ou de graisses animales (suif, huile de baleine...).
  • On peut former des savons dits simples en utilisant un ou plusieurs acides gras à chaîne longue.
  • On peut également former des savons dits complexes en utilisant un ou plusieurs acides gras à chaîne longue en combinaison avec un ou plusieurs acides carboxyliques à chaîne hydrocarbonée courte comprenant au plus 8 atomes de carbone.
  • L'agent de saponification utilisé pour faire le savon peut être un composé métallique de Lithium, Sodium, Calcium, Baryum, Titane, Aluminium, préférentiellement Lithium et Calcium, et de préférence un hydroxyde, oxyde ou un carbonate de ces métaux.
  • On peut employer un ou plusieurs composés métalliques, ayant ou non le même cation métallique, dans les graisses selon l'invention. On peut ainsi associer des savons au lithium, combinés avec des savons au calcium dans une moindre proportion. Ceci présente l'avantage d'améliorer la tenue à l'eau des graisses.
  • Les savons métalliques sont employés à des teneurs de l'ordre de 5 à 20 % en poids, préférentiellement de 8 à 15 % en poids, typiquement 12 % en poids dans les graisses selon l'invention. La quantité de savon(s) métallique(s) est généralement ajustée de manière à obtenir des graisses de grade 0, de grade 1 ou de grade 2 selon la classification NLGI. Les graisses selon l'invention contiennent majoritairement des savons métalliques d'acides gras à titre d'épaississant. On entend par là que les savons métalliques d'acides gras, simples ou complexes, représentent ensemble le plus fort pourcentage en poids dans les graisses selon l'invention, comparé au pourcentage en poids des autres matières épaississantes.
  • Préférentiellement, la quantité du ou des savons métalliques d'acides gras, simples ou complexes, constitue au moins 50 %, encore plus préférentiellement au moins 80 % en poids par rapport au poids total de matières épaississantes, dans les compositions de graisse selon l'invention.
  • Selon un mode de réalisation, les graisses selon l'invention peuvent contenir comme épaississant majoritaire des savons métalliques d'acides gras simples ou complexes, et de moindres quantités d'autres épaississants, tels que les polyurées, ou des épaississants inorganiques, type bentonite ou alumino silicates.
  • Préférentiellement, les graisses selon l'invention sont exemptes d'épaississants de type polyurée. L'amélioration des propriétés de frottement constatée lors de l'introduction de modificateurs de frottement de type fullerène inorganique dans les graisses épaissies aux polyurées est moindre.
  • Encore plus préférentiellement, les graisses selon l'invention contiennent exclusivement des savons métalliques d'acides gras simples ou complexes à titre d'épaississant.
  • Lubrifiant solide
  • Les lubrifiants solides utilisés dans les graisses selon l'invention sont des chalcogénures de métaux de transition à structure fullerène inorganique.
  • Initialement, le terme fullerène désigne une nanostructure de polyèdre convexe fermé, composée d'atomes de carbone. Les fullerènes sont similaires au graphite, composé de feuilles d'anneaux hexagonaux liées, mais ils contiennent des anneaux pentagonaux, et parfois heptagonaux, qui empêchent la structure d'être plate.
  • Dans la présente demande, on distingue les fullerènes, structures fermées, des nanotubes, structures ouvertes formées sur le même principe.
  • Des études sur les structures de type fullerène ont montré que cette structure n'était pas limitée aux matériaux carbonés, mais était susceptible de se produire dans toutes les nanoparticules de matériaux sous forme de feuillets, en particulier les chalcogénures de métaux de transition.
  • Ces structures sont analogues à celle des fullerènes de carbone et sont nommées fullerènes inorganiques ou « Inorganic Fullerene like materials », encore désignés par « IF ».
  • Il existe une abondante littérature décrivant la structure et les procédés de synthèse de ces fullerènes inorganiques, notamment :
    • Tenne, R., Margulis, L., Genut M. Hodes, G. Nature 1992, 360, 444,
    • Feldman, Y.,Wasserman,E.,Srolovitz, D.J. & Tenne, R. Science 1995, 267, 222,
    • Tenne, R. Nature Nanotech. 2006, 1, 103.
  • Le brevet EP 0580 019 décrit également ces structures et leur procédé de synthèse.
  • Ces structures fermées ont le plus souvent une forme rappelant celle d'une sphère, plus ou moins parfaite selon les procédés de synthèse utilisés, constituées de plusieurs couches concentriques (structure en « onions » ou « polyèdre emboité »).
  • Les propriétés tribologiques des fullerènes inorganiques sont généralement attribuables à leur structure quasi sphérique et en oignons, ce qui leur permet, au lieu d'adhérer aux contacts lors de frottements, comme les structures en feuillet, de s'exfolier petit à petit ou de se déformer mécaniquement, d'où leur préconisation comme lubrifiants solides. Cette structure sphérique en oignon existe chez tous les chalcogénures de métaux de transition à structure fullerène inorganique (voir par exemple Tenne, R. Nature Nanotech. 2006, 1, 103 cité supra).
  • Les fullerenes inorganiques à structure oignons sont ainsi préférées dans le domaine de la lubrification et dans les graisses selon l'invention. Ce sont typiquement des sphères de l'ordre de 80 à 220 nm, et contenant quelques dizaines de couches concentriques, typiquement de 25 à 100 ou 150 couches, ou au-delà.
  • Les lubrifiants solides utilisés dans les graisses selon l'invention sont des chalcogenures de métaux de transition.
  • Les métaux de transition peuvent être par exemple le tungstène, le molybdène, zirconium, hafnium, platine, rhénium, titane, tantale, niobium, préférentiellement le molybdène ou le tungstène, et le chalcogène peut être par exemple le soufre, le selenium, le tellure, préférentiellement le soufre ou le tellure.
  • Les chalcogénures de métaux de transition peuvent être par exemple MoS2, MoSe2, MoTe2, WS2, WSe2, ZrS2, ZrSe2, HfS2, HfSe2, PtS2, ReS2, ReSe2, TiS3, ZrS3, ZrSe3, HfS3, HfSe3, TiS2, TaS2, TaSe2, NbS2, NbSe2, NbTe2, étudiés pour leurs propriétés tribologiques.
  • Préférentiellement, ce sont des dichalcogenures, préférentiellement WS2, WSe2, MoS2, MoSe2.
  • Ces chalcogenures peuvent également contenir plusieurs métaux de transition, tels que par exemple les composés décrits dans la demande WO 2009/034572 .
  • Ils peuvent également être greffés en surface par des polymères, par exemple polystyrène, polyméthacrylate de méthyle ... pour améliorer leur dispersion, ou des groupements phosphate, de manière à renforcer leur action antiusure.
  • Commercialement, ces composés se présentent souvent sous forme de pâtes contenant environ 75 % en poids de chalcogenures métalliques de structure fullerène et environ 25 % en poids d'huile lubrifiante. Les pourcentages massiques indiqués dans la présente demande se réfèrent, sauf précision contraire, aux chalcogenures métalliques seuls.
  • Les compositions de graisse selon l'invention comprennent préférentiellement de 0,2 à 2% en poids de chalcogenures de métaux de transition de structure fullerène.
  • Composés organo phospho soufrés et/ou organophosphorés
  • Les composés anti usure organophospho soufrés seront préférés dans les graisses selon l'invention, car la présence de soufre favorise les propriétés extrême pression des graisses.
  • Les compositions lubrifiantes selon la présente invention peuvent contenir les dithiophosphates de Zinc de formule :

            (R1O)(R2O)PS2 ZnS2P(R3O)(R4O),

    où R1, R2, R3, R4 sont, indépendamment les uns des autres, des groupements alkyl linéaires ou ramifiés comprenant de 1 à 24, préférentiellement de 3 à 20 atomes de carbone ou des groupements aryl éventuellement substitués comportant de 6 à 30, préférentiellement de 8 à 18 atomes de carbone.
  • Une autre classe de composés préférés sont les dithiophosphates de Molybdène de formule :

            (R5O)(R6O)SPS(MoS2)2 SPS(R7O)(R8O),

    où R5, R6, R7, R8 sont, indépendamment les uns des autres, des groupements alkyl linéaires ou ramifiés comprenant de 1 à 24, préférentiellement de 3 à 20 atomes de carbone ou des groupements aryl éventuellement substitués comportant de 6 à 30, préférentiellement de 8 à 18 atomes de carbone.
  • Ces différents composés peuvent être employés seuls ou en mélange dans les compositions de graisse selon l'invention. Leur % massique est compris entre 0,5 et 5 % en poids, préférentiellement entre 0,7 et 2 % en poids, ou encore entre 0,8 et 1,5 % en poids par rapport au poids total de la composition
  • Autre additifs :
  • Les graisses selon l'invention peuvent également contenir tous type d'additifs adaptés à leur utilisation, par exemple des antioxydants, tels que les aminés ou phénoliques, des antirouille qui peuvent être des composés oxygénés tels que les esters, des passivants cuivre.
  • Ces différents composés sont généralement présents à des teneurs inférieures à 1%, ou encore à 0,5% en masse dans les graisses.
  • Les graisses selon l'invention peuvent également contenir des polymères, par exemple des polyisobutène (PIB), à des teneurs généralement comprises entre 5 et 10%, qui confèrent une cohésivité améliorée aux graisses, qui résistent ainsi mieux à la centrifugation. Ces polymères entraînent également une meilleure adhésivité de la graisse aux surfaces, et augmentent la viscosité de la fraction huile de base, donc l'épaisseur du film d'huile entre les pièces en frottement.
  • Procédé de préparation des graisses :
  • Les graisses selon l'invention sont préférentiellement fabriquées en formant le savon métallique in situ.
  • On dissout ou plusieurs acides gras dans une fraction de l'huile de base ou du mélange d'huile de base à température ambiante. Cette fraction est généralement de l'ordre de 50 % de la quantité totale d'huile contenue dans la graisse finale. Les acides gras peuvent être des acides longs, comprenant de 14 à 28 atomes de carbone, pour former un savon simples, éventuellement combinés à des acides gras courts, comprenant de 6 à 12 atomes de carbone, pour former des savons complexes.
  • On ajoute, à une température d'environ 60 à 80 °C, des composés métalliques, préférentiellement de type hydroxyde métallique.
  • On peut ajouter ainsi un seul type de métal ou combiner plusieurs métaux. Le métal préféré des compositions selon l'invention est le Lithium, éventuellement combiné, dans une moindre proportion, à du Calcium.
  • On laisse se dérouler la réaction de saponification des acides gras par le ou les composés métalliques à une température d'environ 100 à 110 °C.
  • L'eau formée est ensuite évaporée par cuisson du mélange à une température d'environ 200°C. La graisse est ensuite refroidie par la fraction restante d'huile de base.
  • On incorpore ensuite les additifs à environ 80 °C.
  • On malaxe ensuite pendant un temps suffisant pour obtenir une composition de graisse homogène.
  • Grade des graisses :
  • La consistance d'une graisse mesure sa dureté ou sa fluidité au repos. Elle est chiffrée par la profondeur de pénétration d'un cône de dimensions et de masse donnée. La graisse est préalablement soumise à un malaxage. Les conditions de mesure de la consistance d'une graisse sont définies par la norme ASTM D 217.
  • Selon leur consistance, les graisses sont réparties en 9 classes ou 9 grades NLGI (National Lubricating Grease Institute) couramment utilisés dans le domaine des graisses. Ces grades sont indiqués dans le tableau ci-dessous.
    Grade de NLGI Consistance selon ASTM D 217 (dixième de millimètres)
    000 445 - 475
    00 400 - 430
    0 335 - 385
    1 310 - 340
    2 265 - 295
    3 220 - 250
    4 175 - 205
    5 130 - 160
    6 85 - 115
  • Les graisses selon l'invention sont préférentiellement des graisses fluides ou semi fluide, de consistance supérieure à 265 dixièmes de millimètre, préférentiellement comprises entre 265 et 385 dixièmes de millimètre selon ASTM D217. Préférentiellement, elles sont de grade NLGI 0, 1 ou 2, c'est-à-dire que leur consistance est respectivement comprise entre 335 et 385, ou 310 et 340, ou 265 et 295 dixièmes de millimètres selon ASTM D217.
  • Exemples Exemple 1 : préparation des compositions de graisse
  • On prépare des compositions de graisse contenant divers modificateurs de friction et/ou composé organo phospho soufrés, à partir d'un pied de graisse comprenant des huiles de bases minérales et synthétiques, épaissies au savon de Lithium complexe. La composition du mélange conduisant à ce pied de graisse est indiquée dans le tableau 1 ce dessous. Le terme « pied de graisse » désigne couramment, pour l'homme du métier, une composition de graisse ne contenant que des huiles de base et des épaississants, et pas d'additif. Tableau 1 : composition du pied de graisse
    Composé % massique
    Huiles minérales (150 NS + naphténique) 78,34
    Huiles synthétiques (PAO 6) 8,89
    Acide 12 hydroxystéarique 8,99
    Acide azélaique 1,80
    Chaux éteinte 0,24
    Lithine 1,73
  • Le mélange d'huiles de bases est calé de façon à ce que sa viscosité à 40 °C selon la norme ASTM D 445 soit comprise entre 40 et 140 cSt, préférentiellement entre 90 et 100 cSt.
  • Les teneurs en acides gras et Lithine indiquées conduisent, après formation in situ, à des teneurs en savon dans le pied de graisse qui sont de 9,2 % en hydroxystéarate de Lithium et 1,91 % en azélaate de Lithium. Les compositions massiques des graisses sont données dans le tableau 2 :
    (A)1 (B) (C) (D)1 (E)
    Pied de graisse 91,29 91,64 90,96 92,74 89,99
    DTPZn 1,10 1,10 1,10 - 1,10
    DTCMo 0,70 - - - -
    WS2 fullerene* - 0,35 1,03 0,35 2,00
    PIB 6,01 6,01 6,01 6,01 6,01
    Antioxidant Antirouille Passivants Cu 0,90 0,90 0,90 0,90 0,90
    Teneur en élément Mo (calculée, en ppm) 2000 - - - -
    Teneur en élément W (calculée, en ppm) 0 2000 5886 2000 11428
    Teneur en élément S (calculée, en ppm), apportée par les MF (WS2 ou DTCM0) 2000 680 2000 680 3886
    1: hors de l'invention
    *le % massique indiqué est celui d'une pâte composée de 75 % en poids de fullerènes de WS2 nanométriques dispersés dans une huile de base synthétique (PAO 6).
  • Exemple 2 : comparaison des propriétés en friction des graisses préparées.
  • Les graisses préparées dans l'exemple 1 ont été évaluées en mesurant leur coefficient de friction sur tribomètre Cameron Plint cylindre/plan.
  • Les conditions d'essais sur le tribomètre sont les suivantes :
    • Charge : 50 - 100 - 150 - 200 N
    • Température de la graisse: 75 °C (représentatif des températures en service).
    • Pion mobile (cylindre) : acier C de rugosité 25 nm
    • Vitesse de déplacement : 5 et 15 mm/s
    • Paliers : 50 N, 400 secondes à 5 mm/s
      50 N, 200 secondes à 15 mm/s
      100 N, 100 secondes à 5 mm/s et 100 secondes à 15 mm/s
      150 N, 100 secondes à 5 mm/s et 100 secondes à 15 mm/s
      200 N, 100 secondes à 5 mm/s et 100 secondes à 15 mm/s
  • Les résultats de ces essais sont présentés dans le tableau 3 ci-dessous. Les valeurs de coefficient de frottement correspondent à la moyenne sur les 40 dernières secondes de chaque palier. Tableau 3 : coefficient de frottement sur tribomètre Cameron Plint
    Coefficient de frottement (A) (B) (C) (D)
    100 N à 5 mm/s 0,091 0,062 0,075 0,091
    100 N à 15 mm/s 0,089 0,051 0,076 0,090
    150 N à 5 mm/s 0,100 0,067 0,086 0,100
    150 N à 15 mm/s 0,097 0,061 0,085 0,098
    200 N à 5 mm/s 0,100 0,070 0,096 0,100
    200 N à 15 mm/s 0,100 0,067 0,094 0,100
  • L'ajout de WS2 comme modificateur de friction dans une graisse Li Complexe, en remplacement du Mo DTC et en l'absence de DTPZn, permet un abaissement du coefficient de friction (cf. comparaison des graisses A et D à iso teneur en métal).
  • L'effet positif du WS2 fullerène sur le coefficient de frottement est moindre si on le substitue au DTCMo dans une graisse épaissie aux polyurées.
  • L'abaissement du coefficient de frottement constaté, dans une graisse Lithium complexe, avec un modificateur de frottement WS2 de type fullerène est toutefois nettement plus significatif lorsqu'il est utilisé en combinaison avec un additif organo phospho soufré, ici un DTPZn.
  • Exemple 3 : comparaison des propriétés en usure des graisses préparées.
  • Les propriétés anti usure des graisses préparées dans l'exemple 1 ont été évaluées à l'aide du test 4 billes usure, selon la norme ASTM D2266.
  • Dans ce test, on mesure l'usure, en millimètres : plus la valeur est faible, meilleure sont les propriétés anti usure. Tableau 4 : résultats en usure
    (A) N 30730 (DTPZn + DTCMo) (B) N09/11 (DTP Zn + WS2 full) (C) N09/126 (DTP Zn + WS2 full) (D) N09/127 (WS2 full)
    4B usure, 40 kg, 1 heure (ASTM D2266) 0,36 mm 0,40 mm 0,39 mm 0,71 mm
    DTPZn (% massique) 1,10 1,10 1,10 -
    DTCMo (% massique) 0,70 - - -
    WS2fullerene* (% massique*) - 0,35 1,03 0,35
    Teneur en élément W (calculée, en ppm) 0 2000 5886 2000
    Teneur en élément S apportée par les MF, WS2full et DTCMo (calculée, en ppm) 2000 680 2000
    *le % massique indiqué est celui d'une pâte composée de 75 % en poids de fullerènes de WS2 nanométriques dispersés dans une huile de base synthétique (PAO 6)
  • On constate, que les performances de la graisse D, où des fullerènes inorganiques ont été substitués aux additifs anti usure et modificateurs de friction, a des performances en usure très médiocres. En revanche, les graisses B et C présentent des performances très bonnes.

Claims (13)

  1. Composition de graisse comprenant :
    (a) une ou plusieurs huiles de base minérales, synthétiques ou naturelles,
    (b) un épaississant composé majoritairement d'au moins un savon métallique d'acide gras,
    (c) de 0,2 à 2% en poids par rapport au poids total de la composition d'au moins un lubrifiant solide constitué d'un ou plusieurs chalcogénures de métaux de transition à structure de fullerène inorganique, (d) de 0,5 à 5% en poids par rapport au poids total de la composition d'un ou plusieurs additifs anti usure et/ ou extrême pression organophosphorés et/ou organo phospho soufrés choisi(s) parmi les dithiophosphates.
  2. Composition selon la revendication 1 où le(s) savon(s) métallique(s) d'acide gras constitue au moins 50 %, préférentiellement au moins 80 % en poids de l'épaississant (b) dans ladite composition.
  3. Composition de graisse selon l'une des revendications 1 à 2 où un ou plusieurs chalcogenures de métaux de transition à structure de fullerène inorganique sont greffés en surface par des groupements phosphates inorganiques.
  4. Composition de graisse selon l'une des revendications 1 à 3 où le chalcogène d'au moins un lubrifiant solide (c) est choisi parmi S, Se, Te.
  5. Composition de graisse selon l'une des revendications 1 à 4 où les métaux de transition d'au moins un lubrifiant solide (c) sont choisis parmi Mo, W, Zr, Hf, Pt, Re, Ti, Ta, Nb, préférentiellement Mo et W.
  6. Composition de graisse selon l'une des revendications 1 à 5 où au moins un lubrifiant solide (c) est un dichalcogenure de métaux de transition.
  7. Composition de graisse selon l'une des revendications 1 à 6 où au moins un lubrifiant solide (c) est le bisulfure de Molybdène MoS2 ou le bisulfure de tungstène WS2 à structure fullerène inorganique.
  8. Composition de graisse selon l'une des revendications 1 à 7 où les lubrifiants solides (c) sont constitués de particules de diamètre compris entre 80 et 220 nm, préférentiellement entre 100 et 200 nanomètres.
  9. Composition de graisse selon l'une des revendications 1 à 8 où au moins un additif anti/usure et/ou extrême pression (d) est choisi parmi les dithiophosphates de zinc ou les dithiophosphates de molybdène.
  10. Composition de graisse selon la revendication 9 ou au moins un additif anti/usure et/ou extrême pression (d) est choisi parmi les dithiophosphates de Zinc de formule :

            (R1O)(R2O)PS2 ZnS2P(R3O)(R4O),

    où R1, R2, R3, R4 sont, indépendamment les uns des autres, des groupements alkyl linéaires ou ramifiés comprenant de 1 à 24, préférentiellement de 3 à 20 atomes de carbone ou des groupements aryl éventuellement substitués comportant de 6 à 30, préférentiellement de 8 à 18 atomes de carbone.
  11. Composition de graisse selon l'une des revendications 9 à 10 où au moins un additif anti/usure et/ou extrême pression (d) est choisi parmi les dithiophosphates de Molybdène de formule :

            (R5O)(R6O)SPS(MoS2)2 SPS(R7O)(R8O),

    où R5, R6, R7, R8 sont, indépendamment les uns des autres, des groupements alkyl linéaires ou ramifiés comprenant de 1 à 24, préférentiellement de 3 à 20 atomes de carbone ou des groupements aryl éventuellement substitués comportant de 6 à 30, préférentiellement de 8 à 18 atomes de carbone.
  12. Composition de graisse selon l'une des revendications 1 à 11 comprenant :
    • de 70 à 94,8 % en masse d'une ou plusieurs huiles de base (a)
    • de 5 à 20 % en masse d'un ou plusieurs épaississants (b)
    • de 0,2 à 2 % en masse d'un ou plusieurs lubrifiants solides (c)
    • de 0,5 à 5% en masse d'un ou plusieurs additifs anti usure et/ou extrême pression organophosphorés et/ou organo phospho soufrés (d).
  13. Utilisation d'une composition de graisse selon l'une des revendications 1 à 12 dans les joints homocinétiques des transmissions de véhicules à moteur.
EP10763021.2A 2009-09-10 2010-09-10 Composition de graisse Active EP2475752B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL10763021T PL2475752T3 (pl) 2009-09-10 2010-09-10 Kompozycja smaru

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0904326A FR2949786B1 (fr) 2009-09-10 2009-09-10 Composition de graisse.
PCT/IB2010/054099 WO2011030315A1 (fr) 2009-09-10 2010-09-10 Composition de graisse

Publications (2)

Publication Number Publication Date
EP2475752A1 EP2475752A1 (fr) 2012-07-18
EP2475752B1 true EP2475752B1 (fr) 2017-06-14

Family

ID=42035555

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10763021.2A Active EP2475752B1 (fr) 2009-09-10 2010-09-10 Composition de graisse

Country Status (13)

Country Link
US (1) US20120165104A1 (fr)
EP (1) EP2475752B1 (fr)
JP (1) JP5668069B2 (fr)
KR (1) KR101774902B1 (fr)
CN (1) CN102482604B (fr)
BR (1) BR112012005498B1 (fr)
CA (1) CA2771772C (fr)
ES (1) ES2640399T3 (fr)
FR (1) FR2949786B1 (fr)
IN (1) IN2012DN01906A (fr)
MX (1) MX2012002923A (fr)
PL (1) PL2475752T3 (fr)
WO (1) WO2011030315A1 (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013123659A1 (fr) * 2012-02-23 2013-08-29 Zhang Leizhen Arbre principal électrique à grande vitesse et dépourvu de nuage d'huile
US20140162915A1 (en) * 2012-12-11 2014-06-12 N1 Technologies Inc Enhanced Lubricant Formulation
CN103160369B (zh) * 2013-03-29 2014-06-04 哈尔滨工业大学 一种自修复复合钛基润滑脂及其制备方法
FR3004723B1 (fr) * 2013-04-19 2016-04-15 Total Raffinage Marketing Composition lubrifiante a base de nanoparticules metalliques
FR3018079B1 (fr) * 2014-02-28 2017-06-23 Total Marketing Services Composition lubrifiante a base de nanoparticules metalliques
JP6544953B2 (ja) * 2014-05-29 2019-07-17 株式会社リコー 画像形成装置及びグリース組成物
RU2619933C1 (ru) * 2016-06-24 2017-05-22 Виталий Богданович Черногиль Ремонтно-восстановительная добавка к жидким и пластичным смазочным материалам
CN107384530B (zh) * 2017-07-26 2020-07-07 深圳市威勒科技股份有限公司 一种引擎用极压抗磨剂及其制备方法
CN107523376A (zh) * 2017-08-24 2017-12-29 中国石油化工股份有限公司 一种含有纳米填料润滑脂组合物及制备方法
JP7379343B2 (ja) 2018-01-23 2023-11-14 エボニック オペレーションズ ゲーエムベーハー 高分子無機ナノ粒子組成物、それらの製造方法、及び潤滑剤としてのそれらの使用
US11180712B2 (en) 2018-01-23 2021-11-23 Evonik Operations Gmbh Polymeric-inorganic nanoparticle compositions, manufacturing process thereof and their use as lubricant additives
CN114302941B (zh) 2019-09-18 2023-04-04 Gkn动力传动国际有限公司 用于等速万向节的包含硫化锌和二硫化钼和/或二硫化钨的润滑脂组合物
US11732209B2 (en) 2019-10-30 2023-08-22 Gkn Driveline International Gmbh Grease composition
CN111394154B (zh) * 2020-04-20 2022-03-04 上海金兆节能科技有限公司 有机钼高温润滑脂及其制备方法
EP4192930A1 (fr) * 2020-08-07 2023-06-14 Nanotech Industrial Solutions, Inc. Composition de graisse comprenant des particules inorganiques de type fullerène
JP2022062423A (ja) * 2020-10-08 2022-04-20 昭和電工株式会社 湿式クラッチ装置及び湿式ブレーキ装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1594479C2 (de) 1964-01-30 1980-12-04 Dow Corning Gmbh, 8000 Muenchen Zusatzstoffe für Schmiermittel zur Verbesserung ihrer Hochdruckeigenschaften
EP0435745B1 (fr) 1989-12-27 1993-11-10 Nissan Motor Company Limited Graisse pour joint homocinétique
DE69325055T2 (de) 1992-07-08 2000-03-09 Yeda Res & Dev Orientierte polykristalline dünne Filme aus Übergangsmetallchalcogeniden
EP0719316B1 (fr) * 1994-07-15 1999-12-22 Kyodo Yushi Co., Ltd. Composition de graisse pour joints homocinetiques
JP3320569B2 (ja) 1994-10-21 2002-09-03 協同油脂株式会社 等速ジョイント用グリース組成物
JP4248688B2 (ja) * 1999-06-29 2009-04-02 協同油脂株式会社 等速ジョイント用グリース組成物
JP4524007B2 (ja) * 1999-06-29 2010-08-11 協同油脂株式会社 等速ジョイント用グリース組成物
JP3778410B2 (ja) * 1999-08-27 2006-05-24 協同油脂株式会社 自動車ステアリング用グリース組成物
JP4520756B2 (ja) * 2004-02-26 2010-08-11 新日本石油株式会社 等速ジョイント用グリース組成物
JP4809603B2 (ja) * 2004-11-25 2011-11-09 本田技研工業株式会社 等速ジョイント
EP1874686B8 (fr) * 2005-04-07 2018-04-25 Yeda Research And Development Co., Ltd. Procede et appareil de production de nanoparticules inorganiques de type fullerene
JP4886304B2 (ja) 2006-01-27 2012-02-29 昭和シェル石油株式会社 グリース組成物
WO2009034572A1 (fr) 2007-09-10 2009-03-19 Yeda Research And Development Company Ltd. Nanostructures de type fullerène, leur utilisation et leur procédé de production
JP2009063154A (ja) * 2007-09-10 2009-03-26 Nsk Ltd 転動装置

Also Published As

Publication number Publication date
FR2949786A1 (fr) 2011-03-11
KR101774902B1 (ko) 2017-09-05
JP2013504649A (ja) 2013-02-07
CN102482604A (zh) 2012-05-30
JP5668069B2 (ja) 2015-02-12
CA2771772A1 (fr) 2011-03-17
KR20120079092A (ko) 2012-07-11
CN102482604B (zh) 2014-12-10
IN2012DN01906A (fr) 2015-07-24
PL2475752T3 (pl) 2017-12-29
BR112012005498A2 (pt) 2020-07-21
CA2771772C (fr) 2018-07-24
WO2011030315A1 (fr) 2011-03-17
EP2475752A1 (fr) 2012-07-18
ES2640399T3 (es) 2017-11-02
MX2012002923A (es) 2012-04-30
BR112012005498B1 (pt) 2021-07-20
FR2949786B1 (fr) 2013-07-05
US20120165104A1 (en) 2012-06-28

Similar Documents

Publication Publication Date Title
EP2475752B1 (fr) Composition de graisse
EP2652099B1 (fr) Composition de graisse
EP2652100B1 (fr) Composition de graisse
EP2401349B1 (fr) Composition de graisse
JP6440685B2 (ja) 金属ナノ粒子をベースとする潤滑剤組成物
EP3110929B1 (fr) Composition lubrifiante à base de nanoparticules métalliques
EP3609989B1 (fr) Composition lubrifiante notamment pour limiter le frottement
FR3065008A1 (fr) Procede de lubrification de pieces mecaniques

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120220

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TOTAL MARKETING SERVICES

17Q First examination report despatched

Effective date: 20140318

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170112

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 900963

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010042982

Country of ref document: DE

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170914

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2640399

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20171102

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 900963

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171014

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010042982

Country of ref document: DE

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20170402467

Country of ref document: GR

Effective date: 20180309

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20180315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170910

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230908

Year of fee payment: 14

Ref country code: RO

Payment date: 20230831

Year of fee payment: 14

Ref country code: NL

Payment date: 20230920

Year of fee payment: 14

Ref country code: GB

Payment date: 20230920

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230906

Year of fee payment: 14

Ref country code: GR

Payment date: 20230921

Year of fee payment: 14

Ref country code: FR

Payment date: 20230928

Year of fee payment: 14

Ref country code: DE

Payment date: 20230920

Year of fee payment: 14

Ref country code: BE

Payment date: 20230920

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231124

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230927

Year of fee payment: 14