EP2467652B1 - Procédé permettant de faire fonctionner un dispositif de production de froid pour le refroidissement d'un supraconducteur et dispositif de production de froid approprié - Google Patents

Procédé permettant de faire fonctionner un dispositif de production de froid pour le refroidissement d'un supraconducteur et dispositif de production de froid approprié Download PDF

Info

Publication number
EP2467652B1
EP2467652B1 EP10745591.7A EP10745591A EP2467652B1 EP 2467652 B1 EP2467652 B1 EP 2467652B1 EP 10745591 A EP10745591 A EP 10745591A EP 2467652 B1 EP2467652 B1 EP 2467652B1
Authority
EP
European Patent Office
Prior art keywords
stroke
frequency
piston
regulating
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10745591.7A
Other languages
German (de)
English (en)
Other versions
EP2467652A2 (fr
Inventor
Falko Fox
Alexander Peetz
Heinz Schmidt
Peter Van Hasselt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2467652A2 publication Critical patent/EP2467652A2/fr
Application granted granted Critical
Publication of EP2467652B1 publication Critical patent/EP2467652B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/02Compression machines, plants or systems with non-reversible cycle with compressor of reciprocating-piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/001Gas cycle refrigeration machines with a linear configuration or a linear motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/073Linear compressors

Definitions

  • the invention relates to a method for operating a refrigeration device for cooling a superconductor according to the preamble of claim 1.
  • a refrigeration device is eg from the US 5 535 593 A known.
  • the invention further relates to a suitable for carrying out the method of refrigeration device according to claim 8.
  • the superconductor In electrical apparatus or machines with superconductors, e.g. Motors, generators or superconducting current limiters, the superconductor must be cooled and this is usually in a cryostat containing a cryogenic refrigerant such. liquid neon or liquid nitrogen.
  • a refrigeration device serves for the recondensation of vaporized refrigerant present in the cryostat.
  • the refrigeration device often referred to as a refrigerator, usually comprises a closed circuit in which a working means, e.g. Helium gas is compressed in a compressor and relaxed again in a refrigeration unit and thereby gives off cooling capacity to the refrigerant in the cryostat.
  • the refrigeration device can, for example, operate on the principle of Gifford-McMahon, according to the pulse tube principle or according to the Stirling principle.
  • the solution of the object directed to the method is achieved by a method according to claim 1.
  • Advantageous embodiments of the method are each subject of the dependent claims 2 to 7.
  • the solution of the object directed to the refrigeration device is achieved by a refrigeration device according to claim 8.
  • Advantageous embodiments the refrigeration device are each subject of the subclaims 9 to 12.
  • the stroke of the at least one movable piston is regulated to a, preferably predetermined, desired value.
  • the stroke of a piston is here understood to mean the distance traveled by the piston from a first dead center (reversal point) of its reciprocating movement to a second dead center (reversal point).
  • a fixed operating point of the refrigerating device can be independent of the temperature, the filling pressure of the working fluid and other influences such as e.g. be set an inclination of the compressor.
  • an accurate conclusion on the generated cooling capacity is possible. It is thus possible to set an operating point in which a defined efficiency, in particular a predetermined, cooling capacity is generated with good efficiency.
  • Such a refrigeration device operated is thus particularly suitable for use in mobile devices, such. Ships, suitable.
  • the refrigeration device comprises in each case an electric motor and a frequency converter for supplying the motor with electric current with a predeterminable voltage and frequency.
  • the refrigerating device comprises two movable pistons, which are each driven by a frequency converter of an electric motor with frequency synchronous voltage, the motors are designed as two-phase AC motors and the frequency converter as a three-phase inverter with a voltage intermediate circuit, the inverter on the input side connected to a three-phase network and the output side are connected via two phases to the respective motor, and wherein an additional capacitor is connected in parallel to the voltage intermediate circuits.
  • the setpoint for the stroke is derived from a setpoint for the cooling capacity and the control of the stroke to a predetermined setpoint, the cooling capacity is controlled to this target value and / or regulated.
  • a mean value from the stroke of the two pistons can also be used as a controlled variable for the control of the piston stroke.
  • the control of the piston stroke can be done very accurately that is used as a control variable for the control of the piston stroke, the voltage applied to the respective motor.
  • a resonance frequency of the reciprocating motion is determined in the control of the piston stroke and set the frequency of the reciprocating motion of the at least one movable piston to this resonance frequency.
  • the resonance frequency can be determined particularly easily by means of a phase shift between a motor current and a motor voltage. Alternatively, the resonance frequency can also be determined via the control value for the control of the piston stroke.
  • the refrigerating device comprises a regulating device, which is set up in such a way that it regulates the stroke of the at least one movable piston to a desired, preferably predefinable, desired value.
  • data are stored in the control device, which describe a relationship between the cooling capacity and the piston stroke.
  • the refrigeration device comprises a higher-level control and / or regulating device for controlling and / or regulating the refrigeration capacity to a predetermined desired value by controlling the piston stroke.
  • the regulating device may comprise a measuring device, preferably a magnetic field sensor or an optical sensor.
  • control device is set up such that it determines a resonance frequency of the reciprocating motion during the control of the piston stroke and adjusts the frequency of the reciprocating motion to this resonance frequency.
  • FIG. 1 Shown and known from the prior art ship propulsion system 1 comprises a high-temperature superconducting motor (HTS motor) 2, which is arranged in a nacelle 3 outside the actual hull and is also referred to as a pod drive.
  • the HTS engine 2 can also be located inside the ship.
  • the HTS motor 2 has a rotor 4 with a rotating high-temperature superconductor field winding 5, which is arranged in a cryostat 6 in which neon with a temperature of 25 K is as a refrigerant for the superconductor.
  • the rotor 4 is surrounded by a stator (stator) 7. In between there is an air gap.
  • the power supply of the HTS motor via electrical lines 8.
  • the HTS motor 2 is connected via a propeller shaft 9 with a propeller 10.
  • the cryostat 6 is connected via a cryogenic heat pipe 12 to a refrigeration unit 22 of a refrigeration device 20.
  • the refrigeration device 20 comprises a closed thermodynamic circuit 21 for a working medium into which, in addition to the refrigeration unit 22, an oil-free linear compressor 30 and a heat exchanger 24 are connected.
  • the working fluid is compressed in the compressor 30, cooled in the heat exchanger 24 and relaxed in the refrigeration unit 22 and thereby gives off cooling capacity to the refrigerant of the superconductor.
  • Refrigerant evaporated in the cryostat 6 is supplied to the refrigeration unit 22 via the cryogenic heat pipe 12 and recondensed on a cooled surface of the refrigeration unit 22.
  • the refrigeration unit 22 is a so-called cold head.
  • helium gas is used as the working medium.
  • the refrigeration device can also work, for example, according to the pulse tube principle or according to the Stirling principle.
  • the linear compressor 30 has two pistons 31, which are movable in a housing 34 in the direction indicated by the arrows 32 linearly against each other at a frequency f and with a stroke H to the respective other piston 31.
  • one of the two pistons 31 may also be held stationary and only the other piston 31 may be linearly movable with a frequency f and with a stroke H on it.
  • the drive of the two pistons 31 is effected by a respective linear motor 33.
  • helium gas having a low pressure is sucked in via a feed designated by 35.
  • the sucked helium gas is compressed by the pistons 31 and ejected again via 36 discharges designated.
  • the stroke of the two pistons 31 is regulated to a predefinable desired value.
  • the setpoint for the stroke is derived from a setpoint for the cooling capacity, which has to be delivered by the refrigeration unit 22 to the refrigerant, here neon, for the superconductor 5.
  • the diagram of FIG. 3 the relationship between the cooling capacity K and the stroke H at a constant frequency f of the reciprocating motion of the piston 31.
  • the cooling capacity K increases with increasing stroke H of the piston 31.
  • a measuring device 37 for determining the stroke of the respective piston 31 is arranged in the interior of the linear compressor 30 on each of the two pistons 31.
  • the measuring device 37 is preferably a magnetic field sensor (eg a Hall sensor) or an optical sensor (eg a laser diode).
  • a control device 40 is configured such that it controls the stroke of the piston 31 to a predetermined target value.
  • the control device 40 receives either manually from an operator or from a higher-level control and / or regulating device 50 for controlling and / or regulating the cooling capacity a setpoint value K for the cooling capacity.
  • target values for the stroke of the pistons 31 and the frequency of the reciprocating motion of the pistons 31 are derived in the control device 40.
  • data 41 are stored in the control device 40, which describe a relationship between the cooling capacity, the piston stroke and the resonance frequency. These relationships may have previously been determined experimentally.
  • a frequency converter 43 is used to supply the linear motors 33 with a predetermined voltage U of the frequency f U.
  • a control and / or regulating unit 44 serves to control and / or regulate the frequency converter 43.
  • an average value of the stroke of the two pistons 31 is used as a control variable for the control of the piston stroke.
  • the control device 40 detects actual values for the piston positions from the measuring devices 37 via signal lines 42 and determines therefrom an average value of the stroke of the two pistons 31.
  • the output signals of the measuring device 37 e.g. a voltage is applied over at least one period of the stroke, i. a complete float, measured.
  • the stroke of the two pistons is determined from a difference between the two dead centers of the pistons, in which they reverse their direction of movement, in a period of a reciprocating motion.
  • Exemplary shows this FIG. 5 various Measurements indicating the course of the stroke H over the time t for the two pistons 31 in a period of reciprocation. From these measuring points, the minimum and the maximum of the piston stroke of each piston 31 and thus its stroke per period are calculated.
  • the average value of the stroke of the two pistons per period gives an actual value H Im , which is fed to a controller 45 of the control device 40.
  • FIG. 6 The controller 45 determines from the difference between the actual value H Im for the piston stroke and a setpoint H S for the piston stroke a control value, here a target value U s for the motor voltage U , which is supplied from the control device 20 together with a setpoint fs for the frequency of the motor voltage to the control and / or regulating unit 44 of the frequency converter 43.
  • the control and / or regulating unit 44 then controls and / or regulates the output voltage of the two frequency inverters 43 to the required setpoint values Us and fs, the two linear motors 33 being supplied with a frequency-synchronized voltage.
  • the controller 45 is, for example, an I-controller.
  • the exact structure of the controller 45 is preferably carried out after an evaluation of the step responses of the controlled system and the leadership behavior of the overall system.
  • the frequency of the reciprocating motion can be fixed in the regulation of the piston stroke.
  • the resonance frequency of various operating parameters such as the temperature and the filling pressure
  • FIG. 7 For this purpose, a possible relationship between the stroke H and the cooling capacity K over the frequency f.
  • the resonance frequency of the reciprocating motion is determined by the control device 20 in the control of the piston stroke and the frequency of the reciprocating motion is set to this resonance frequency.
  • the refrigeration device 20 can be operated at an operating point with optimum efficiency.
  • the resonance frequency can be determined and controlled on the basis of a relationship between the resonance frequency and the operating parameters (eg the temperature) stored in the control device 40. Preferably, however, the resonance frequency is automatically controlled to an optimum value.
  • the frequency f U of the motor voltage in the direction of larger and smaller frequencies is automatically varied by the control device 40 by changing the set value fs for the frequency of the motor voltage at certain time intervals at a constant predetermined amplitude of the motor voltage U and thereby the phase shift between the motor voltage U and the motor current I determined.
  • the resonance frequency is present when the phase shift is maximal.
  • control device 40 receives measured values for the motor voltage U and the motor current I from the frequency converters 43 or the control and / or regulating unit 44 of the converters and determines the phase shift.
  • the determination of the phase shift can also be made directly in the inverters 43 or in the control and / or regulating unit 44 and transmitted to the control device 40.
  • the resonance frequency can also be determined via the control value for the control of the piston stroke.
  • the resonance frequency is then the frequency at which the control value, here the motor voltage, is the smallest.
  • control device 40 in the control of the piston stroke deviations and irregularities with respect to a zero position of the piston 31, for example due to an inclined position of the compressor 20 taken into account.
  • These can be compensated for example by different setpoint specifications for the two inverters 43 (eg in the form of a DC voltage component in the motor voltage).
  • control device 40 may also include a monitoring that prevents piston stops on the housing walls and excessive motor currents by a setpoint reduction. For this purpose, the extreme values measured by the measuring devices 37 are monitored by the control device 40 for exceeding a predetermined limit value.
  • the two linear motors 33 can also be fed together by a single frequency converter 43. However, in the control of the piston stroke, the two motors can then compensate for deviations and irregularities with respect to a zero position of the pistons, e.g. at an inclination of the compressor, not be driven differently.
  • the motors 33 are designed as two-phase AC motors. Since the power grids in larger systems, such as in ships, usually designed as three-phase three-phase networks 60, the frequency 43 are designed as three-phase inverter with a network-side converter 61, a motor-side converter 62 and a voltage intermediate circuit 63 arranged therebetween to a symmetrical load of the network 60.
  • the cooling power generated by the refrigeration device 20 has now become controllable or controllable by regulating the stroke. This is an enormous savings potential of supplied electrical energy, since the efficiency of a compressor is only about 1%. Commercially available compressors always run under full load, unneeded cooling capacity is compensated or destroyed by counter heating. 1 W of destroyed cooling capacity corresponds to 100 W destroyed power taken from the mains.
  • the control and actuation according to the invention makes it possible to keep the compressor at a fixed operating point without temperature changes or other operational influences (for example slanting of the compressor) leading to shifts in the operating point. Even a striking of the piston and associated safety shutdown of the compressor can be avoided.
  • a fixed set operating point can also be kept under inclination or skew of the compressor. This is an important requirement for the use of the compressor on ships. Since there are already ship-building versions commercially available for the components used for the control and activation, a refrigeration device according to the invention can thus be carried out fully suitable for shipping.
  • the operating point of the compressor can be operated by automatically readjusting the operating frequency always close to the resonance point. This can ensure that the compressor is operated at the resonance point at all times, i. has an optimal efficiency.
  • a plurality of compressors which are operated in a network, can be controlled or regulated in parallel.
  • up to four refrigeration devices are needed, of which two are provided as redundancy, for example.
  • redundancy for example.
  • all four can now be driven at partial load.
  • all four devices can work in a range that is favorable for the efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Claims (12)

  1. Procédé pour faire fonctionner un dispositif (20) de production de froid pour refroidir un supraconducteur (5), le dispositif (20) de production de froid comprenant un compresseur (23) linéaire pour comprimer un fluide de travail et un groupe (22) frigorifique pour céder une puissance (K) frigorifique à un fluide de refroidissement cryogène du supraconducteur (5) par détente du fluide de travail, le compresseur (23) linéaire ayant deux pistons (31), dont l'un au moins est mobile linéairement par rapport à l'autre à une certaine fréquence (f) et avec une certaine course (H), de préférence les deux en sens opposé en synchronisme, dans lequel on régule la course (H) du au moins un piston (31) mobile sur une valeur de consigne, qui, de préférence, peut être donnée à l'avance, caractérisé en ce que l'on entraîne chaque piston (31) mobile par respectivement un moteur (33), par l'intermédiaire respectivement d'un convertisseur (43) de fréquence d'alimentation du moteur (33) en courant électrique à une tension et fréquence pouvant être données à l'avance, dans lequel on utilise, comme grandeur de réglage pour la régulation de la course (H) du piston, la tension (U) appliquée au moteur (33) respectif, les moteurs (33) étant constitués sous la forme de moteurs à courant alternatif biphasé et les convertisseurs (43) de fréquence, sous la forme de convertisseurs triphasés à circuits (63) intermédiaires de tension, dans lequel on relie les convertisseurs (43) du côté de l'entrée à un réseau (60) triphasé et du côté de la sortie, par l'intermédiaire de deux phases, au moteur (33) respectif, et on monte un condensateur (65) supplémentaire en parallèle aux circuits (63) intermédiaires de tension.
  2. Procédé suivant la revendication 1,
    caractérisé en ce que l'on déduit la valeur de consigne de la course (H) d'une valeur de consigne de la puissance (K) frigorifique et on commande et/ou on régule la puissance (K) calorifique à cette valeur de consigne en régulant la course (H) à une valeur de consigne pouvant être donnée à l'avance.
  3. Procédé suivant la revendication 2,
    caractérisé en ce que, pour deux pistons (31), allant et venant linéairement en synchronisme en sens inverse l'un de l'autre, on utilise comme grandeur de régulation, pour la régulation de la course du piston, une valeur moyenne de la course des deux pistons.
  4. Procédé suivant l'une des revendications précédentes,
    caractérisé en ce que, lors de la régulation de la course (H) des pistons, on prescrit de manière fixe la fréquence (f) du déplacement en aller et retour.
  5. Procédé suivant l'une des revendications 1 à 3,
    caractérisé en ce que, lors de la régulation de la course (H) des pistons, on détermine une fréquence (fo) de résonance du déplacement en aller et retour et on règle la fréquence (f) du déplacement en aller et retour à cette fréquence (fo) de résonance.
  6. Procédé suivant la revendication 5,
    caractérisé en ce que l'on détermine la fréquence (fo) de résonance par l'intermédiaire d'un déphasage entre un courant (I) du moteur et une tension (U) du moteur ou par l'intermédiaire d'une valeur de réglage pour la régulation de la course des pistons.
  7. Procédé suivant l'une des revendications précédentes,
    caractérisé en ce que, lors de la régulation de la course (H) des pistons, on compense des écarts et des irrégularités en ce qui concerne la position zéro des pistons (31).
  8. Dispositif (20) de production de froid pour refroidir un supraconducteur (5), comprenant un compresseur (23) linéaire pour comprimer un fluide de travail et un groupe (22) frigorifique pour céder une puissance (K) frigorifique à un fluide de refroidissement cryogène du supraconducteur (5) par détente du fluide de travail, le compresseur (23) linéaire ayant deux pistons (31), dont l'un au moins est mobile linéairement par rapport à l'autre à une certaine fréquence (f) et avec une certaine course (H), de préférence les deux en sens opposé en synchronisme, comprenant en outre un dispositif (40) de régulation conçu pour réguler la course (H) du au moins un piston (31) mobile à une valeur de consigne, de préférence pouvant être donnée à l'avance,
    caractérisé en ce qu'il comprend, pour entraîner le ou chaque piston (31) mobile respectivement un moteur (33) électrique et un convertisseur (43) de fréquence d'alimentation du moteur (33) en courant électrique à une tension et une fréquence pouvant être données à l'avance, et caractérisé en outre par deux pistons (31) mobiles, qui peuvent être entraînés par l'intermédiaire respectivement d'un convertisseur (43) de fréquence, par respectivement un moteur (33) électrique ayant une tension synchrone en fréquence, les moteurs (33) étant constitués en moteurs alternatifs biphasés et les convertisseurs (43) de fréquence en convertisseurs triphasés ayant un circuit (63) intermédiaire de tension, les convertisseurs (43) pouvant être reliés du côté de l'entrée à un réseau (60) triphasé et étant reliés du côté de la sortie par l'intermédiaire de deux phases au moteur (33) respectif, un condensateur (65) supplémentaire étant monté en parallèle aux circuits (63) intermédiaires de tension.
  9. Dispositif (20) de production de froid suivant la revendication 8,
    caractérisé en ce que, dans le dispositif (40) de régulation, sont mémorisées des données (41), qui décrivent une relation entre la puissance (K) frigorifique et la course (H) du piston.
  10. Dispositif (20) suivant l'une des revendications 8 ou 9,
    caractérisé en ce qu'il comprend un dispositif (50) de commande et/ou de régulation superposé pour commander et/ou réguler la puissance (K) frigorifique à une valeur de consigne pouvant être donnée à l'avance par une régulation de la course (H) du piston.
  11. Dispositif (20) suivant l'une des revendications 8 à 10,
    caractérisé en ce que le dispositif (40) de régulation comprend un dispositif (37) de mesure, notamment un capteur de champ magnétique ou un capteur optique, pour mesurer la course (H) du au moins un piston (31) mobile.
  12. Dispositif (20) suivant l'une des revendications 8 à 11,
    caractérisé en ce que le dispositif (40) de régulation est conçu pour déterminer, lors de la régulation de la course (H) du piston, une fréquence (fo) de résonance du mouvement d'aller et retour et pour régler la fréquence (f) du mouvement d'aller et retour à cette fréquence (fo) de résonance.
EP10745591.7A 2009-08-21 2010-08-17 Procédé permettant de faire fonctionner un dispositif de production de froid pour le refroidissement d'un supraconducteur et dispositif de production de froid approprié Not-in-force EP2467652B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009038308A DE102009038308A1 (de) 2009-08-21 2009-08-21 Verfahren zum Betrieb einer Kälteerzeugungseinrichtung zur Kühlung eines Supraleiters sowie hierfür geeignete Kälteerzeugungseinrichtung
PCT/EP2010/061966 WO2011020828A2 (fr) 2009-08-21 2010-08-17 Procédé permettant de faire fonctionner un dispositif de production de froid pour le refroidissement d'un supraconducteur et dispositif de production de froid approprié

Publications (2)

Publication Number Publication Date
EP2467652A2 EP2467652A2 (fr) 2012-06-27
EP2467652B1 true EP2467652B1 (fr) 2018-02-14

Family

ID=43495464

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10745591.7A Not-in-force EP2467652B1 (fr) 2009-08-21 2010-08-17 Procédé permettant de faire fonctionner un dispositif de production de froid pour le refroidissement d'un supraconducteur et dispositif de production de froid approprié

Country Status (11)

Country Link
US (1) US8707717B2 (fr)
EP (1) EP2467652B1 (fr)
JP (1) JP2013502553A (fr)
KR (1) KR101420946B1 (fr)
CN (1) CN102803868A (fr)
AU (1) AU2010285028B2 (fr)
BR (1) BR112012008134A2 (fr)
CA (1) CA2771430A1 (fr)
DE (1) DE102009038308A1 (fr)
RU (1) RU2012110611A (fr)
WO (1) WO2011020828A2 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI1105436A2 (pt) * 2011-12-26 2014-04-08 Whirlpool Sa Compressor linear baseado em mecanismo oscilatório ressonante
CN104089327B (zh) * 2013-10-30 2015-02-04 威海震宇智能科技股份有限公司 节能超传导输送热能管
US11466678B2 (en) 2013-11-07 2022-10-11 Gas Technology Institute Free piston linear motor compressor and associated systems of operation
US10323628B2 (en) * 2013-11-07 2019-06-18 Gas Technology Institute Free piston linear motor compressor and associated systems of operation
US10729600B2 (en) 2015-06-30 2020-08-04 The Procter & Gamble Company Absorbent structure
USD791678S1 (en) * 2015-08-20 2017-07-11 Abb Schweiz Ag Propulsion unit for ships and boats
EP3370671B1 (fr) 2015-11-04 2023-07-05 The Procter & Gamble Company Structure absorbante
EP3370673B1 (fr) 2015-11-04 2022-03-30 The Procter & Gamble Company Structure absorbante
HUE057989T2 (hu) 2015-11-04 2022-06-28 Procter & Gamble Nedvszívó szerkezetet tartalmazó nedvszívó árucikk
HUE066955T2 (hu) 2015-11-04 2024-09-28 Procter & Gamble Nedvszívó struktúra
WO2019090294A1 (fr) 2017-11-06 2019-05-09 The Procter & Gamble Company Procédé de création de caractéristiques conformes dans un article absorbant
JP7293035B2 (ja) * 2019-08-09 2023-06-19 川崎重工業株式会社 船舶

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1178935A (en) * 1967-09-13 1970-01-21 Philips Electronic Associated Low-Frequency Generator
US5130628A (en) * 1990-06-28 1992-07-14 Southwest Electric Company Transformer providing two multiple phase outputs out of phase with each other, and pumping system using the same
DE4213013C2 (de) * 1992-04-21 1995-11-16 Frankenthal Ag Albert Vorrichtung zum Erzeugen eines zu druckenden Musters auf einer Druckform-Hülse
US5245830A (en) 1992-06-03 1993-09-21 Lockheed Missiles & Space Company, Inc. Adaptive error correction control system for optimizing stirling refrigerator operation
JPH06207757A (ja) * 1993-01-11 1994-07-26 Mitsubishi Electric Corp スターリングサイクル冷凍機
US5342176A (en) * 1993-04-05 1994-08-30 Sunpower, Inc. Method and apparatus for measuring piston position in a free piston compressor
US5535593A (en) * 1994-08-22 1996-07-16 Hughes Electronics Apparatus and method for temperature control of a cryocooler by adjusting the compressor piston stroke amplitude
US5980211A (en) * 1996-04-22 1999-11-09 Sanyo Electric Co., Ltd. Circuit arrangement for driving a reciprocating piston in a cylinder of a linear compressor for generating compressed gas with a linear motor
JPH1096563A (ja) * 1996-09-20 1998-04-14 Mitsubishi Electric Corp 冷凍機
JPH11132585A (ja) * 1997-10-29 1999-05-21 Daikin Ind Ltd 振動型圧縮機
JP3269454B2 (ja) * 1998-04-17 2002-03-25 ダイキン工業株式会社 振動型圧縮機
DE19952578B4 (de) 1998-11-04 2005-11-24 Lg Electronics Inc. Vorrichtung und Verfahren zum Steuern eines Linearverdichters
JP3680685B2 (ja) * 2000-03-09 2005-08-10 富士通株式会社 リニア往復駆動型冷却機
KR100378815B1 (ko) * 2000-11-28 2003-04-07 엘지전자 주식회사 리니어 컴프레샤의 스트로크 떨림 검출장치 및 방법
US7018249B2 (en) 2001-11-29 2006-03-28 Siemens Aktiengesellschaft Boat propulsion system
JP2003185281A (ja) * 2001-12-17 2003-07-03 Fuji Electric Co Ltd 極低温用冷凍機の圧縮機の制御方法および圧縮機、およびその圧縮機を制御する電源装置
JP2003185284A (ja) * 2001-12-21 2003-07-03 Sharp Corp スターリング冷凍機
JP3885952B2 (ja) * 2002-09-19 2007-02-28 富士電機システムズ株式会社 極低温冷凍機の制御装置
BR0300010B1 (pt) 2003-01-08 2012-05-02 sistema de controle de um compressor linear, método de controle de um compressor linear, compressor linear e sistema de refrigeração.
DE102004023481A1 (de) 2003-05-16 2004-12-16 Siemens Ag Elektrisches Antriebssystem und elektrische Maschine
KR100654487B1 (ko) * 2003-09-09 2006-12-05 마츠시타 덴끼 산교 가부시키가이샤 컨버터 회로, 모터 구동 장치, 압축기, 공기 조화기,냉장고, 전기 세탁기, 송풍기, 전기 청소기 및 히트펌프급탕기
JP2005094882A (ja) * 2003-09-16 2005-04-07 Toyota Motor Corp パワーモジュール
DE10349552A1 (de) 2003-10-22 2005-06-02 Siemens Ag Kurzschluss-Strom-Schutzsystem für elektrische DC- und AC-Netze von Schiffen und Offshore-Anlagen
JP4810139B2 (ja) * 2005-06-30 2011-11-09 高周波熱錬株式会社 電力供給制御装置、電力供給装置、電力供給方法、および、誘導加熱装置
US20070286751A1 (en) * 2006-06-12 2007-12-13 Tecumseh Products Company Capacity control of a compressor

Also Published As

Publication number Publication date
CA2771430A1 (fr) 2011-02-24
KR20120061904A (ko) 2012-06-13
EP2467652A2 (fr) 2012-06-27
KR101420946B1 (ko) 2014-07-17
BR112012008134A2 (pt) 2019-09-24
JP2013502553A (ja) 2013-01-24
DE102009038308A1 (de) 2011-02-24
US20120159975A1 (en) 2012-06-28
US8707717B2 (en) 2014-04-29
RU2012110611A (ru) 2013-09-27
AU2010285028B2 (en) 2013-09-12
WO2011020828A3 (fr) 2011-04-21
CN102803868A (zh) 2012-11-28
AU2010285028A1 (en) 2012-03-15
WO2011020828A2 (fr) 2011-02-24

Similar Documents

Publication Publication Date Title
EP2467652B1 (fr) Procédé permettant de faire fonctionner un dispositif de production de froid pour le refroidissement d'un supraconducteur et dispositif de production de froid approprié
EP1912031B1 (fr) Système de refroidissement
EP0872942B1 (fr) Système pour la stabilization d'un réseau d'alimentation en puissance
EP2647840A1 (fr) Procédé de fonctionnement d'un aérogénérateur
EP1614621B1 (fr) Système de fournissage d'énergie électrique et méthode d'opération du même
DE102008037449A1 (de) Windenergieanlage
EP1820963A2 (fr) Procédé de commande d'une éolienne
DE4337692C2 (de) Kühlsystem für Elektronisches Gerät
WO2009112478A1 (fr) Dispositif et procédé de préparation de carburant de gaz naturel
WO2013156292A1 (fr) Installation de stockage et de distribution d'énergie thermique et procédé pour faire fonctionner cette installation
WO2010130523A2 (fr) Système d'entraînement électrique
DE102014217006A1 (de) Verfahren zum Anhalten eines Verdichters und Verdichter eines Kältegerätes
EP3444937A1 (fr) Système et procédé de fonctionnement d'une centrale de pompage pourvue d'une machine asynchrone à double alimentation
WO2018189023A1 (fr) Procédé servant à refroidir une éolienne sans transmission
DE102006012679A1 (de) Verfahren zum Betrieb eines Energiesystems sowie Energiesystem
WO2017162439A1 (fr) Procédé de détection de position de rotor d'un moteur bldc d'un compresseur à pistons alternatifs, commande de compresseur pour l'exécution du procédé et appareil frigorifique pourvu de cette dernière
AT6889U1 (de) Verfahren und vorrichtung zur leistungsregelung in einem speicherkraftwerk
EP2317640A1 (fr) Centrales stationnaires
EP3400645B1 (fr) Entraînement de pompe à vide avec commutation étoile-triangle
DE102005019609A1 (de) Verfahren und Einrichtung zur Nutzung von Windenergie
WO2020161000A1 (fr) Installation de détente et installation de récupération d'énergie électrique à partir de chaleur
WO2021078781A1 (fr) Compresseur à piston et son procédé de fonctionnement
DE102018201847A1 (de) Verfahren zum Erwärmen eines Elektromotors, sowie Motorsystem und Ventilator
DE102004048802B4 (de) Vorrichtung und Verfahren zur Betriebssteuerung eines Kolbenverdichters
EP3534000B1 (fr) Système comprenant un compresseur d'agent de refroidissement et procédé de fonctionnement du compresseur d'agent de refroidissement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120316

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20171009

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010014647

Country of ref document: DE

Ref country code: AT

Ref legal event code: REF

Ref document number: 970103

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180315

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180514

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180514

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180515

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010014647

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20181115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180817

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 970103

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180817

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190823

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180817

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190805

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191018

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180614

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010014647

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210302

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200817