EP2462596A1 - Stromkompensierte drossel und verfahren zur herstellung einer stromkompensierten drossel - Google Patents

Stromkompensierte drossel und verfahren zur herstellung einer stromkompensierten drossel

Info

Publication number
EP2462596A1
EP2462596A1 EP10739571A EP10739571A EP2462596A1 EP 2462596 A1 EP2462596 A1 EP 2462596A1 EP 10739571 A EP10739571 A EP 10739571A EP 10739571 A EP10739571 A EP 10739571A EP 2462596 A1 EP2462596 A1 EP 2462596A1
Authority
EP
European Patent Office
Prior art keywords
ferrite core
current
wire
compensated
compensated choke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP10739571A
Other languages
English (en)
French (fr)
Other versions
EP2462596B1 (de
Inventor
Bernhard Röllgen
Karl Stoll
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Electronics AG
Original Assignee
Epcos AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epcos AG filed Critical Epcos AG
Publication of EP2462596A1 publication Critical patent/EP2462596A1/de
Application granted granted Critical
Publication of EP2462596B1 publication Critical patent/EP2462596B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/06Coil winding
    • H01F41/08Winding conductors onto closed formers or cores, e.g. threading conductors through toroidal cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/06Fixed inductances of the signal type  with magnetic core with core substantially closed in itself, e.g. toroid
    • H01F17/062Toroidal core with turns of coil around it
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2847Sheets; Strips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2895Windings disposed upon ring cores

Definitions

  • the task is to specify a current-compensated choke, which has a high current carrying capacity.
  • a current-compensated choke according to claim 1 Furthermore, a method for producing a current-compensated choke according to claim 9 is given.
  • Advantageous embodiments of the current-compensated throttle and the method for producing a current-compensated throttle are the subject of
  • a current-compensated choke which has a one-piece, annularly closed ferrite core.
  • the ferrite core has at least two wire coils, each comprising a flat wire wound upright.
  • the wire coils are bobbin-free and spaced from each other on the ferrite core.
  • a one-piece ring-shaped closed ferrite core is understood as meaning a "single-layer" ferrite core with a homogeneous construction and without an air gap.
  • Ferrite core has in comparison to a current-compensated choke with a multi-part ferrite core with air gap approximately the same number of turns of the winding to a comparatively higher inductance.
  • a current-compensated reactor having a ferrite core made of a single piece Compared to a current-compensated reactor having a ferrite core made of a single piece, a current-compensated reactor having a ferrite core of bonded ferrite core halves has only about 20 to 50% of the inductance.
  • the wire coils of the current-compensated choke each have a flat wire, which is formed edgewise to a winding. Compared with a round wire whose diameter corresponds to the width of the flat wire, the flat wire has a higher cross section than the round wire.
  • Cross-section of flat wire and round wire can be applied with the flat wire per winding layer more turns than with a round wire.
  • windings made of flat wire with a comparable number of turns have a lower one due to the high degree of filling
  • the individual turns of the wire winding are in this case constructed such that the long sides of the
  • the skin effect is also significantly more pronounced in flat-wire coils than, for example, in wire-wounds Stranded wires, which also leads to high-frequency losses in the desired manner for the throttle.
  • the wire coils are arranged on the ferrite core so that they have the largest possible
  • they are arranged on mutually parallel portions of the ferrite core.
  • the ferrite core has a rectangular shape.
  • the wire coils are in one
  • Embodiment arranged on the shorter legs of the ferrite core. If the windings are each arranged on the shorter legs, this results in a spatially greater distance between the wire windings than when arranged on the longer legs of the rectangular ferrite core.
  • the ferrite core has a toroidal shape.
  • the ferrite core is preferred as
  • the wire coils are preferably arranged in the sections of the torus which have the greatest possible distance from each other.
  • the current-compensated choke with a rectangular or toroidal ferrite core thus a spatially large distance of the two wire coils can be achieved. This causes, despite a one-piece ferrite core about 2% of the main inductance occur as a leakage inductance.
  • the stray inductance works effectively as an additional one Reactor and attenuates differential mode noise. Rectangular shaped ferrite cores are particularly effective.
  • the wire coils each have only one layer. It is also possible, however, several layers
  • An ideal current-compensated choke preferably has a high resonant frequency of the wire coils. To increase the resonance frequency, it is advantageous if the parasitic capacitances are reduced. Due to the single-layer structure of the wire coils of the previously described current-compensated choke, the wire coils have the virtually smallest possible parasitic capacitance, because it is a
  • Flat wire winding preferably has a bobbin-free construction of the wire wound on. Each turn of the wire coil corresponds to a chamber.
  • the wire coils are thus not limited to a predetermined number of physical chambers by a bobbin.
  • the wire coils are such
  • Connection - have a mutually opposite winding sense.
  • the wire coils preferably have the same number of turns.
  • the ferrite core has an electrically insulating coating.
  • the coating fulfills the fire protection class UL94V-0.
  • the current-compensated choke is arranged with a preferably uncoated ferrite core in a plastic housing.
  • the winding is then arranged on this housing.
  • the housing preferably causes the same electrical insulation as an insulating
  • the housing has devices for fixing the wire ends of the current-compensated throttle.
  • a circuit arrangement with a previously described current-compensated choke is specified, wherein the current-compensated choke is connected in series to a bridge rectifier. judge is switched.
  • the current-compensated choke is in the network of an application circuit eg behind the
  • the current-compensated choke is connected such that the magnetic flux generated in the first coil is oppositely directed to the magnetic flux generated in the second coil and thus both fluxes compensate each other.
  • a method of manufacturing a current-compensated choke is provided wherein a flat wire is spirally formed into a wire coil.
  • annularly closed ferrite core applied such that the individual turns of the wire winding are turned on successively, by relative rotation between the wire coil and ferrite core on the ferrite core.
  • Bewicklungsvorgangs may preferably be chamfered all edges of the ferrite core, that is, the edges are chamfered or rounded.
  • the wire coil is preferably applied in one layer to the ferrite core. It is also possible to apply two wraps one above the other and connect them electrically in parallel. at suitable diameter, the two windings can also be turned on one another with the method.
  • Winding direction is applied to the ferrite core.
  • the second wire coil is preferably on the
  • Ferrite core applied so that the spatial distance between the two wire coils is as large as possible.
  • Screw The method described above is particularly suitable for edgewise wound flat wire wraps.
  • Wire wraps are sufficient, for example, a few drops of an example, UV-curing adhesive.
  • support plates are advantageous, they can also be combined with the above-described current-compensated inductor.
  • Low-resistance wire coils of flat wire, which are arranged on a one-piece ferrite core is the
  • the rated current depends on the thermally possible and of the maximum current due to the saturation of the ferrite core.
  • a current-compensated choke described above has one
  • the choke a rectangular ferrite core with two wire coils with an inductance of 1 mH
  • the current-compensated reactor can be controlled, for example, up to approximately 5 A (peak current).
  • the stray inductance of the current-compensated choke is approximately 37% higher than that of a choke on toroidal base.
  • Figure 1 shows a first embodiment of the current-compensated
  • FIG. 2 shows the profile of the saturation of a ferrite core of a current-compensated choke as a function of the nominal current
  • FIG. 3 shows the flux density distribution of an embodiment
  • a current-compensated choke 4 shows a circuit diagram of an application circuit with a current-compensated choke
  • FIG. 5 the winding of a closed ferrite core with a preformed wire coil
  • FIG. 6 shows another embodiment of the current-compensated
  • FIG. 1 shows a first embodiment of the invention
  • the ferrite core 2 has two wire coils 4, 5 disposed on opposite sides of the ferrite core 2.
  • the ferrite core has the shape of a ring torus.
  • Figure 2 shows the curve 10 of the relative inductance L / L Q as a function of the current I.
  • the current I is plotted in amperes.
  • the relative inductance is in percent
  • a current-compensated choke according to the invention has a relative inductance of approximately 90% at a current intensity of approximately 5.5 A. At 9A, the current compensated choke still has a relative inductance of 60%.
  • FIG. 3 shows the flux density distribution in the ferrite core of a current-compensated choke when supplied with nominal current. in the Area of the wire coils 54 and 55 occurs a maximum of
  • FIG. 4 schematically shows a current-compensated choke in a circuit diagram of an application circuit.
  • Bridge rectifier 11 is connected. The construction of the
  • Circuit corresponds approximately to a line filter circuit.
  • Bridge rectifier 11 occurs a current flow through the two windings of the current-compensated inductor 1 only in one direction. This will make the ferrite core the
  • FIG. 5 shows the winding of a closed, rectangular ferrite core 62 with a wire winding 65.
  • a first one is already present on the ferrite core 62
  • the second wire coil 65 is approximately halfway on the ferrite core 62 in the figure
  • the preformed wire coil 65 is applied in the stretched state by rotation on the ferrite core 62.
  • the individual turns of the wire coil 65 are here by a relative rotation between
  • the wire winding 65 and the ferrite core 62 are "screwed" onto the ferrite core 62.
  • the ferrite core 62 has a closed shape.
  • FIG. 6 shows a further embodiment of the

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

Es wird eine stromkompensierte Drossel angegeben, die einen einstückigen, ringförmig geschlossenen Ferritkern (2) aufweist. Der Ferritkern (2) weist wenigstens zwei Drahtwickel (4, 5) auf, die jeweils einen hochkant gewickelten Flachdraht umfassen und z.B. spulenkörperfrei und voneinander beabstandet auf dem Ferritkern (2) angeordnet sind.

Description

Beschreibung
Stromkompensierte Drossel und Verfahren zur Herstellung einer stromkompensierten Drossel
Aus der Druckschrift DE 102004008961 B4 ist eine
stromkompensierte Drossel bekannt.
Aufgabe ist es, eine stromkompensierte Drossel anzugeben, die eine hohe Stromtragfähigkeit aufweist.
Die Aufgabe wird durch eine stromkompensierte Drossel nach Patentanspruch 1 gelöst. Des Weiteren wird ein Verfahren zur Herstellung einer stromkompensierten Drossel nach Anspruch 9 angegeben. Vorteilhafte Ausgestaltungen der stromkompensierten Drossel und des Verfahrens zur Herstellung einer stromkompensierten Drossel sind Gegenstand von
Unteransprüchen . Es wird eine stromkompensierte Drossel angegeben, die einen einstückigen, ringförmig geschlossenen Ferritkern aufweist. Der Ferritkern weist wenigstens zwei Drahtwickel auf, die jeweils einen hochkant gewickelten Flachdraht umfassen. Die Drahtwickel sind spulenkörperfrei und voneinander beabstandet auf dem Ferritkern angeordnet.
Unter einem einstückigen ringförmig geschlossenen Ferritkern wird ein „einlagiger" Ferritkern mit homogenem Aufbau und ohne Luftspalt verstanden. Ringförmig geschlossen bedeutet dabei eine beliebige Fläche einschließend.
Eine stromkompensierte Drossel mit einem einstückigen
Ferritkern weist im Vergleich zu einer stromkompensierten Drossel mit einem mehrteiligen Ferritkern mit Luftspalt bei etwa gleicher Windungszahl der Wickel eine vergleichsweise höhere Induktivität auf.
Im Vergleich zu einer stromkompensierten Drossel mit einem Ferritkern, der aus einem einzigen Stück besteht, weist eine stromkompensierte Drossel mit einem Ferritkern aus verklebten Ferritkernhälften nur zirka 20 bis 50 % der Induktivität auf.
Die Drahtwickel der stromkompensierten Drossel weisen jeweils einen Flachdraht auf, der hochkant zu einem Wickel geformt ist. Verglichen mit einem Runddraht, dessen Durchmesser der Breite des Flachdrahts entspricht, hat der Flachdraht einen höheren Querschnitt als der Runddraht. Bei gleichem
Querschnitt von Flachdraht und Runddraht lassen sich mit dem Flachdraht pro Wicklungslage mehr Windungen aufbringen als mit einem Runddraht. Im Vergleich zu Wickeln aus Runddraht weisen Wickel aus Flachdraht mit vergleichbarer Windungszahl aufgrund des hohen Füllgrades einen geringeren
Gleichspannungs-Widerstand auf, wodurch die stromkompensierte Drossel sich bei gleicher Strombelastung weniger stark erwärmt. Die einzelnen Windungen des Drahtwickels sind hierbei derart aufgebaut, dass die langen Seiten des
Flachdrahts zueinander weisen. Durch einen derartigen Aufbau des hochkant gewickelten Drahtwickels weist dieser mit nur wenigen Windungen eine große wirksame Fläche auf.
Durch die große wirksame Fläche der Flachdrahtwickel bauen sich in den Drahtwickeln bei hohen Frequenzen Wirbelströme auf. Die Wirbelströme bewirken eine gewünschte Erhöhung des Serienwiderstands der Drahtwickel (Proximityeffekt) bei hohen Frequenzen .
Auch der Skineffekt ist bei Flachdrahtwickeln signifikant stärker ausgeprägt als beispielsweise bei Drahtwickeln aus Litzendrähten, was ebenfalls in für die Drossel erwünschter Weise zu Hochfrequenzverlusten führt.
In einer Ausführungsform sind die Drahtwickel derart auf dem Ferritkern angeordnet, dass sie einen größtmöglichen
räumlichen Abstand zueinander aufweisen.
Vorzugsweise sind sie auf zueinander parallelen Abschnitten des Ferritkerns angeordnet.
In einer Ausführungsform weist der Ferritkern daher eine rechteckige Form auf. Die Drahtwickel sind in einer
Ausführungsform an den kürzeren Schenkeln des Ferritkerns angeordnet. Werden die Wicklungen jeweils auf den kürzeren Schenkeln angeordnet, so wird dadurch ein räumlich größerer Abstand zwischen den Drahtwickeln erreicht als bei Anordnung an den längeren Schenkeln des rechteckigen Ferritkerns.
In einer weiteren Ausführungsform weist der Ferritkern eine toroidale Form auf. Der Ferritkern ist bevorzugt als
Ringtorus ausgebildet, wobei die Öffnung des Torus eine
Grundfläche aufweist, die entweder einem Kreis oder einer Ellipse entspricht. Bei einem Ringtorus mit einer ellipsoiden Grundfläche der Öffnung sind die Drahtwickel vorzugsweise in den Abschnitten des Torus angeordnet, die einen räumlich größtmöglichen Abstand zueinander aufweisen.
Bei einer Ausführungsform der stromkompensierten Drossel mit einem rechteckigen oder toroidalen Ferritkern kann somit ein räumlich großer Abstand der zwei Drahtwickel erreicht werden. Dieser bewirkt, dass trotz eines einteiligen Ferritkerns etwa 2 % der Hauptinduktivität als Streuinduktivität auftreten. Die Streuinduktivität wirkt effektiv wie eine zusätzliche Drosselspule und dämpft Gegentaktstörungen . Rechteckig geformte Ferritkerne sind hierbei besonders wirkungsvoll.
In einer Ausführungsform weisen die Drahtwickel jeweils nur eine Lage auf. Möglich ist jedoch auch, mehrere Lagen
übereinander vorzusehen und diese bevorzugt elektrisch parallel zu verschalten.
Eine ideale stromkompensierte Drossel weist vorzugsweise eine hohe Resonanzfrequenz der Drahtwickel auf. Zur Erhöhung der Resonanzfrequenz ist es von Vorteil, wenn die parasitären Kapazitäten verringert werden. Durch den einlagigen Aufbau der Drahtwickel der zuvor beschriebenen stromkompensierten Drossel weisen die Drahtwickel die praktisch kleinstmögliche parasitäre Kapazität auf, denn es handelt sich um eine
Reihenschaltung von parasitären Kapazitäten, die hier von je einer Windung mit der benachbarten Windung gebildet werden.
Zur Verringerung der parasitären Kapazität eines
herkömmlichen mehrlagigen Drahtwickels ist es von Vorteil, wenn der Drahtwickel in einzelne Kammern unterteilt ist. Bei herkömmlichen stromkompensierten Drosseln wird die
Unterteilung in Kammern durch entsprechende Trennwände zwischen den Wicklungen am Spulenkörper erreicht. Dies reduziert jedoch den für die Wicklungen selbst zur Verfügung stehenden Raum. Dieses Problem verstärkt sich mit zunehmender Anzahl an Kammern.
Die zuvor beschriebene stromkompensierte Drossel mit
Flachdrahtwickeln weist vorzugsweise einen spulenkörperfreien Aufbau der Drahtwickel auf. Jede Windung des Drahtwickels entspricht hierbei einer Kammer. Die Drahtwickel sind somit nicht auf eine durch einen Spulenkörper vorgegebene Anzahl von physikalischen Kammern beschränkt. Durch den Aufbau der stromkompensierten Drossel mit einem einstückigen Ferritkern und der Verwendung von einlagigen Flachdrahtwickeln wird eine Reduzierung des DC-Widerstands und der parasitären Kapazität der Drossel erreicht. Die gewünschten Hochfrequenzverluste können durch diesen Aufbau der Drossel hingegen maximiert werden.
In einer Ausführungsform sind die Drahtwickel derart
angeordnet, dass sie - bei symmetrischer elektrischer
Anbindung - einen zueinander gegenläufigen Wickelsinn aufweisen. Die Drahtwickel weisen vorzugsweise die gleiche Anzahl von Windungen auf.
In einer Ausführungsform weist der Ferritkern eine elektrisch isolierende Beschichtung auf.
Die Beschichtung umfasst beispielsweise Epoxid oder Parylen. Bei einer Dicke der Beschichtung von kleiner gleich 0,4 mm weist eine solche Beschichtung eine Durchbruchspannung von mehr als 2000 VR^S (RMS= root mean Square, d.h. Effektivwert) auf. Die Beschichtung erfüllt die Brandschutzklasse UL94V-0.
In einer Ausführungsform ist die stromkompensierte Drossel mit einem vorzugsweise unbeschichteten Ferritkern in einem Kunststoff-Gehäuse angeordnet. Die Wicklung ist dann auf diesem Gehäuse angeordnet. Das Gehäuse bewirkt vorzugsweise die gleiche elektrische Isolation wie eine isolierende
Beschichtung des Ferritkerns. Das Gehäuse weist in einer Ausführungsform Vorrichtungen zur Fixierung der Drahtenden der stromkompensierten Drossel auf.
Des Weiteren wird eine Schaltungsanordnung mit einer zuvor beschrieben stromkompensierten Drossel angegeben, wobei die stromkompensierte Drossel in Reihe zu einem Brückengleich- richter geschaltet ist. Die stromkompensierte Drossel ist im Netzkreis einer Applikationsschaltung z.B. hinter dem
Brückengleichrichter auf der gleichgerichteten Seite
eingebaut. Sie kann aber auch vor dem Brückengleichrichter eingebaut sein.
Vorzugsweise wird die stromkompensierte Drossel derart beschaltet, dass der magnetische Fluss, der in dem ersten Wickel erzeugt wird, dem magnetischen Fluss, der in dem zweiten Wickel erzeugt wird, entgegengesetzt gerichtet ist und sich beide Flüsse somit kompensieren.
Durch den Einbau hinter einem Brückengleichrichter tritt der Stromfluss durch die beiden Drahtwickel der stromkompen- sierten Drossel nur in einer Richtung auf. Dadurch treten in dem Ferritkern im Bereich der Drahtwickel in die gleiche Richtung Magnetfelder auf.
Des Weiteren wird ein Verfahren zur Herstellung einer stromkompensierten Drossel angegeben, wobei ein Flachdraht spiralförmig zu einem Drahtwickel geformt wird. Der
vorgeformte, spiralförmige Drahtwickel wird auf einen
bereitgestellten ringförmig geschlossenen Ferritkern derart aufgebracht, dass die einzelnen Windungen des Drahtwickels nacheinander, durch relative Drehung zwischen Drahtwickel und Ferritkern, auf den Ferritkern aufgedreht werden.
Zum Erleichtern des Bewicklungsvorgangs können vorzugsweise sämtliche Kanten des Ferritkerns angefast sein, das heißt die Kanten sind abgeschrägt oder abgerundet.
Der Drahtwickel wird vorzugsweise einlagig auf den Ferritkern aufgebracht. Möglich ist auch, zwei Wickel übereinander aufzubringen und elektrisch parallel zu verschalten. Bei geeignetem Durchmesser können die beiden Wicklungen mit dem Verfahren auch übereinander aufgedreht werden.
In einer weiteren Ausführungsform wird ein zweiter
vorgeformter Drahtwickel nach dem zuvor beschriebenen
Verfahren auf den Ferritkern aufgebracht, wobei der zweite Drahtwickel vorzugsweise mit entgegen gesetzter
Wicklungsrichtung auf den Ferritkern aufgebracht wird. Der zweite Drahtwickel wird vorzugsweise derart auf dem
Ferritkern aufgebracht, dass der räumliche Abstand zwischen den beiden Drahtwickeln möglichst groß ist.
Durch das zuvor beschriebene Verfahren lassen sich
vorzugsweise Flachdrahtwickel, die in leicht gestrecktem Zustand vorliegen, durch Drehung auf den einstückigen, rechteckigen oder toroidförmigen Ferritkern quasi
aufschrauben. Das zuvor beschriebene Verfahren eignet sich besonders für hochkant gewickelte Flachdrahtwickel.
Durch den Aufbau der stromkompensierten Drossel mit einem einlagigen Flachdrahtwickel wird kein zusätzlicher
Spulenkörper benötigt. Zur Fixierung der Anschlüsse der
Drahtwickel reichen beispielsweise wenige Tropfen eines beispielsweise UV-härtenden Klebstoffes aus. Für Anwendungen, bei denen Trägerplatten von Vorteil sind, können diese auch mit der zuvor beschriebenen stromkompensierten Drossel kombiniert werden. Durch den Aufbau der stromkompensierten Drossel mit
niederohmigen Drahtwickeln aus Flachdraht, die auf einem einteiligen Ferritkern angeordnet sind wird die
Eigenerwärmung der stromkompensierten Drossel begrenzt. Der Nennstrom ist abhängig von dem thermisch möglichen und von dem durch die Sättigung des Ferritkerns bedingten maximalen Strom.
In einer beispielhaften Ausführungsform weist eine zuvor beschriebene stromkompensierte Drossel beispielsweise eine
Grundfläche von zirka 27 x 26 mm und eine Höhe von 11 mm auf, wobei die Drossel einen rechteckigen Ferritkern mit zwei Drahtwickeln mit einer Induktivität von jeweils 1 mH
aufweist. In dieser Ausführungsform kann die stromkompen- sierte Drossel beispielsweise bis zirka 5 A (Spitzenstrom) ausgesteuert werden. Die Streuinduktivität der stromkompensierten Drossel ist hierbei im Vergleich zu einer Drossel auf Ringkernbasis um zirka 37 % höher. Die oben beschriebenen Gegenstände und Verfahren werden anhand der folgenden Figuren und Ausführungsbeispiele näher erläutert .
Die nachfolgend beschriebenen Zeichnungen sind nicht als maßstabgetreu aufzufassen.
Es zeigt
Figur 1 eine erste Ausführungsform der stromkompensierten
Drossel mit einem Ferritkern,
Figur 2 den Verlauf der Sättigung eines Ferritkerns einer stromkompensierten Drossel in Abhängigkeit vom Nennstrom,
Figur 3 die Flussdichteverteilung einer Ausführungsform
einer stromkompensierten Drossel, Figur 4 ein Schaltbild einer Applikationsschaltung mit einer stromkompensierten Drossel,
Figur 5 das Bewickeln eines geschlossenen Ferritkerns mit einem vorgeformten Drahtwickel,
Figur 6 eine weitere Ausführungsform der stromkompensierten
Drossel mit einem Ferritkern in toroidaler Form. Figur 1 zeigt eine erste Ausführungsform der
stromkompensierten Drossel 1 mit einem rechteckigen
Ferritkern 2. Der Ferritkern 2 weist zwei Drahtwickel 4, 5 auf, die auf gegenüberliegenden Seiten des Ferritkerns 2 angeordnet sind.
In einer weiteren, später dargestellten Ausführungsform weist der Ferritkern die Form eines Ringtorus auf.
Figur 2 zeigt den Verlauf 10 der relativen Induktivität L/LQ in Abhängigkeit von der Stromstärke I. Auf der X-Achse des Diagramms ist die Stromstärke I in Ampere aufgetragen. Auf der Y-Achse ist die relative Induktivität in Prozent
angegeben. Die relative Induktivität L/LQ gibt die
Induktivität bei vorgegebenem Strom im Vergleich zum
Induktivitätswert LQ ohne Strombelastung an. Die Abnahme wird bei feldstärkeabhängiger Magnetisierung des Kernmaterials im stromkompensierten Betrieb durch den Strom verursacht. Eine erfindungsgemäße stromkompensierte Drossel weist bei einer Stromstärke von zirka 5,5 A eine relative Induktivität von etwa 90 % auf. Bei 9A weist die stromkompensierte Drossel noch eine relative Induktivität von 60 % auf.
Figur 3 zeigt die Flussdichteverteilung im Ferritkern einer stromkompensierten Drossel bei Bestromung mit Nennstrom. Im Bereich der Drahtwickel 54 und 55 tritt ein Maximum der
Magnetisierung auf.
Figur 4 zeigt schematisch eine stromkompensierte Drossel in einem Schaltbild einer Applikationsschaltung. Die
Applikationsschaltung zeigt eine beschriebene
stromkompensierte Drossel 1, die in Reihe zu einem
Brückengleichrichter 11 geschaltet ist. Der Aufbau der
Schaltung entspricht in etwa einer Netzfilter-Schaltung (Line filter) .
Beim Einbau der stromkompensierten Drossel 1 hinter dem
Brückengleichrichter 11 tritt ein Stromfluss durch die beiden Wicklungen der stromkompensierten Drossel 1 nur noch in einer Richtung auf. Dadurch wird der Ferritkern der
stromkompensierten Drossel 1 immer in die gleiche Richtung magnetisiert .
Figur 5 zeigt das Bewickeln eines geschlossenen, rechteckigen Ferritkerns 62 mit einem Drahtwickel 65. Im dargestellten Schritt ist auf dem Ferritkern 62 bereits ein erster
Drahtwickel 64 aufgebracht. Der zweite Drahtwickel 65 ist in der Figur in etwa zur Hälfte auf dem Ferritkern 62
aufgedreht. Hierbei wird der vorgeformte Drahtwickel 65 im gestreckten Zustand durch Drehung auf den Ferritkern 62 aufgebracht. Die einzelnen Windungen des Drahtwickels 65 werden hierbei durch eine relative Drehung zwischen
Drahtwickel 65 und Ferritkern 62 auf dem Ferritkern 62 „aufgeschraubt". Der Ferritkern 62 weist eine geschlossene Form auf.
Figur 6 zeigt eine weitere Ausführungsform der
stromkompensierten Drossel 1 ähnlich zu der in Figur 1 gezeigten Ausführungsform der stromkompensierten Drossel, wobei der Ferritkern 72 der Drossel 1 in Figur 7 eine toroidale Form aufweist.
Bezugszeichenliste
1 stromkompensierte Drossel
2, 52, 62, 72 Ferritkern
4, 54, 64 Drahtwickel
5, 55, 65 Drahtwickel
10 Sättigungsverlauf einer Drossel
11 Brückengleichrichter
12, 13, 14 Kondensator
15 Widerstand
16 Diode
17 Masse

Claims

Patentansprüche
1. Stromkompensierte Drossel, aufweisend
einen einstückigen, ringförmig geschlossenen Ferritkern (2), der wenigstens zwei Drahtwickel (4, 5) aus jeweils einem hochkant gewickelten Flachdraht aufweist, die voneinander beabstandet auf dem Ferritkern (2) angeordnet sind.
2. Stromkompensierte Drossel nach Anspruch 1,
wobei der Ferritkern (2) eine rechteckige oder toroidale Form aufweist .
3. Stromkompensierte Drossel nach einem der vorhergehenden Ansprüche,
wobei die Drahtwickel (4, 5) jeweils nur eine Lage aufweisen.
4. Stromkompensierte Drossel nach einem der vorhergehenden Ansprüche,
wobei zwischen den beiden Drahtwickeln (4, 5) ein
größtmöglicher räumlicher Abstand zueinander eingehalten ist.
5. Stromkompensierte Drossel nach einem der vorhergehenden Ansprüche,
wobei die Drahtwickel (4, 5) symmetrisch zueinander
verschaltet sind, aber zueinander einen gegenläufigen
Wickelsinn aufweisen.
6. Stromkompensierte Drossel nach einem der vorhergehenden Ansprüche,
wobei der Ferritkern (2) eine elektrisch isolierende
Beschichtung aufweist.
7. Stromkompensierte Drossel nach einem der vorhergehenden Ansprüche, bei der die Wicklung spulenkörperfrei auf dem Ferritkern aufgebracht ist.
8. Stromkompensierte Drossel nach einem der Ansprüche 1-7, bei der der Ferritkern in einem Gehäuse angeordnet ist und bei der die Wicklung auf dem Gehäuse angeordnet ist.
9. Verfahren zur Herstellung einer stromkompensierten Drossel nach Anspruch 1, bei dem
ein Flachdraht spiralförmig so zu einem Drahtwickel (64,65) geformt wird, dass der im Querschnitt des Flachdrahts größte Durchmesser senkrecht auf der Wickelachse steht,
und bei dem der vorgeformte, spiralförmige Drahtwickel (65) auf einen bereitgestellten geschlossenen Ferritkern (62) derart aufgebracht wird, dass die einzelnen Windungen des Drahtwickels (65) nacheinander durch relative Drehung zwischen Drahtwickel (65) und Ferritkern (62) auf den
Ferritkern aufgebracht werden.
10. Verfahren nach Anspruch 9, bei dem
der Draht einlagig auf den Ferritkern (62) aufgebracht wird.
11. Verfahren nach Anspruch 9, bei dem
der Ferritkern in einem Gehäuse angeordnet ist und bei dem die Wicklung auf dem Gehäuse aufgebracht wird.
12. Verfahren nach einem der Ansprüche 9-11, bei dem ein zweiter vorgeformter Drahtwickel (65) auf den
geschlossenen Ferritkern (62) in gleicher Weise aufgebracht wird.
EP10739571.7A 2009-08-06 2010-07-27 Stromkompensierte drossel und verfahren zur herstellung einer stromkompensierten drossel Active EP2462596B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009036396A DE102009036396A1 (de) 2009-08-06 2009-08-06 Stromkompensierte Drossel und Verfahren zur Herstellung einer stromkompensierten Drossel
PCT/EP2010/060897 WO2011015491A1 (de) 2009-08-06 2010-07-27 Stromkompensierte drossel und verfahren zur herstellung einer stromkompensierten drossel

Publications (2)

Publication Number Publication Date
EP2462596A1 true EP2462596A1 (de) 2012-06-13
EP2462596B1 EP2462596B1 (de) 2016-12-14

Family

ID=43242855

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10739571.7A Active EP2462596B1 (de) 2009-08-06 2010-07-27 Stromkompensierte drossel und verfahren zur herstellung einer stromkompensierten drossel

Country Status (6)

Country Link
US (1) US20120146756A1 (de)
EP (1) EP2462596B1 (de)
JP (1) JP2013501369A (de)
CN (1) CN102473505A (de)
DE (1) DE102009036396A1 (de)
WO (1) WO2011015491A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009082706A1 (en) 2007-12-21 2009-07-02 The Trustees Of Columbia University In The City Of New York Active cmos sensor array for electrochemical biomolecular detection
WO2013109889A2 (en) * 2012-01-18 2013-07-25 The Trustees Of Columbia University In The City Of New York Systems and methods for integrated voltage regulators
JP6471310B2 (ja) 2013-11-25 2019-02-20 ティーディーケイ・エレクトロニクス・アクチェンゲゼルシャフトTdk Electronics Ag 誘導性要素並びに誘導性要素用線材を巻回するための装置および方法
DE102014117900A1 (de) 2014-12-04 2016-06-09 Epcos Ag Spulenbauelement und Verfahren zur Herstellung eines Spulenbauelements
DE102015104794A1 (de) * 2015-03-27 2016-09-29 Epcos Ag Induktives Bauelement sowie Verfahren zur Herstellung eines induktiven Bauelements
JP6506658B2 (ja) * 2015-08-18 2019-04-24 アルプスアルパイン株式会社 圧粉コア、当該圧粉コアを備える電子・電気部品、および当該電子・電気部品が実装された電子・電気機器
JP6729223B2 (ja) * 2016-09-13 2020-07-22 Tdk株式会社 コイル部品及びその製造方法
JP6962448B2 (ja) * 2018-03-05 2021-11-05 株式会社村田製作所 コイル部品およびその製造方法
CN111141189A (zh) * 2019-12-24 2020-05-12 天长市中德电子有限公司 一种软磁铁氧体磁芯检验装置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT159069B (de) * 1933-10-23 1940-07-10 Ladislaus Von Kramolin Einrichtung zur Erzielung einer Vormagnetisierung in Kernen geringer Permeabilität, wie z. B. Hochfrequenzmassekernen.
US2844786A (en) * 1951-04-23 1958-07-22 Philips Corp Magnetic system
US2719276A (en) * 1952-02-28 1955-09-27 Patent Man Inc Inductance device
US3032729A (en) * 1957-05-16 1962-05-01 Phillips Petroleum Co Temperature stable transformer
FR2567315B1 (fr) * 1984-07-03 1986-12-26 Legrand Sa Procede pour le bobinage d'un tore et tore bobine obtenu en application de ce procede, en particulier pour appareillage electrique
DE3614492A1 (de) * 1986-04-29 1987-11-05 Electronic Werke Deutschland Elektrischer wandler
JP2769392B2 (ja) * 1991-01-14 1998-06-25 株式会社モステック コイル製品及びその製造方法
JP3311391B2 (ja) * 1991-09-13 2002-08-05 ヴィエルティー コーポレーション 漏洩インダクタンス低減トランス、これを用いた高周波回路及びパワーコンバータ並びにトランスにおける漏洩インダクタンスの低減方法
US5793272A (en) * 1996-08-23 1998-08-11 International Business Machines Corporation Integrated circuit toroidal inductor
JPH10308315A (ja) * 1997-05-02 1998-11-17 Ii P I:Kk インダクタンス要素部品
US5998933A (en) * 1998-04-06 1999-12-07 Shun'ko; Evgeny V. RF plasma inductor with closed ferrite core
ATE410775T1 (de) * 1999-07-23 2008-10-15 Power One Italy Spa Herstellungsverfahren von windungen für induktive bauelemente, und nach diesem verfahren hergestellte bauelemente
JP2001085233A (ja) * 1999-09-10 2001-03-30 Concorde Denshi Kogyo:Kk 半閉磁路インダクタおよびその製造法。
JP2001196233A (ja) * 2000-01-06 2001-07-19 Soshin Electric Co Ltd トロイダルコイルおよびその支持具
US7026905B2 (en) * 2000-05-24 2006-04-11 Magtech As Magnetically controlled inductive device
US6778056B2 (en) * 2000-08-04 2004-08-17 Nec Tokin Corporation Inductance component having a permanent magnet in the vicinity of a magnetic gap
JP2002175918A (ja) * 2000-12-05 2002-06-21 Tokin Corp インダクタ
DE10062400C2 (de) * 2000-12-14 2003-07-24 Daimler Chrysler Ag Flexible Induktive Bauelemente für Leiterfolien
US7113066B2 (en) * 2001-07-04 2006-09-26 Koninklijke Philips Electronics, N.V. Electronic inductive and capacitive component
DE10311071B4 (de) * 2003-03-13 2009-04-16 Vacuumschmelze Gmbh & Co. Kg Magnetanordnung
DE102004008961B4 (de) 2004-02-24 2005-12-29 Epcos Ag Spulenkörper für geschlossenen magnetischen Kern und daraus hergestellte Entstördrossel
JP4797549B2 (ja) * 2005-10-05 2011-10-19 Tdk株式会社 コモンモードチョークコイル及びその製造方法
US8256097B2 (en) * 2007-10-02 2012-09-04 Sht Corporation Limited Method for manufacturing a coil device
US7489226B1 (en) * 2008-05-09 2009-02-10 Raytheon Company Fabrication method and structure for embedded core transformers
US8130067B2 (en) * 2010-05-11 2012-03-06 Texas Instruments Incorporated High frequency semiconductor transformer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011015491A1 *

Also Published As

Publication number Publication date
US20120146756A1 (en) 2012-06-14
CN102473505A (zh) 2012-05-23
DE102009036396A1 (de) 2011-02-10
EP2462596B1 (de) 2016-12-14
JP2013501369A (ja) 2013-01-10
WO2011015491A1 (de) 2011-02-10

Similar Documents

Publication Publication Date Title
EP2462596B1 (de) Stromkompensierte drossel und verfahren zur herstellung einer stromkompensierten drossel
EP0293617B1 (de) Hochfrequenz-Leistungsübertrager
EP2428967B1 (de) Transformatorwicklung
DE112010005649T5 (de) Isoliertransformator und Leistungsquelle
DE102004025076B4 (de) Spulenanordnung und Verfahren zu deren Herstellung
WO2017008833A1 (de) Magnetkern sowie drossel bzw. transformator mit einem solchen magnetkern
WO2003105328A1 (de) Stromkompensierte drossel und schaltungsanordnung mit der stromkompensierten drossel
WO2016058719A1 (de) Spulenanordnung zur induktiven energieübertragung, induktive energieübertragungsvorrichtung und verfahren zum herstellen einer spulenanordnung zur induktiven energieübertragung
DE102008054939A1 (de) Stromkompensierte Drossel und Verfahren zur Herstellung einer Stromkompensierten Drossel
DE19932475C2 (de) Induktives Bauelement
DE102008016488A1 (de) Spule und Verfahren zur Herstellung einer Spule
EP2863403B1 (de) Transformator
DE102013112325A1 (de) Ringspule und Herstellungsverfahren für eine Ringspule
DE3108161C2 (de) Wicklung für einen Transformator bzw. eine Drossel
DE102013111433A1 (de) Planare symmetrische Spule für integrierte HF-Schaltungen
WO2000025329A1 (de) Vorrichtung zur dämpfung von störspannungen
DE4311126C2 (de) Stromkompensierte Mehrfachdrossel in Kompaktbauweise
DE102004008961B4 (de) Spulenkörper für geschlossenen magnetischen Kern und daraus hergestellte Entstördrossel
EP1195879A2 (de) Induktionsvorrichtung mit Dämpfungseinrichtung
DE102010012517A1 (de) Drossel
WO2009138099A1 (de) Koppelung von transformatorwicklungsmodulen
DE202015105768U1 (de) Induktives Bauelement für Hochstromanwendungen
EP0163907A1 (de) Hochspannungswicklung mit gesteuerter Spannungsverteilung für Transformatoren
DE10042756C2 (de) Spule und Verfahren zu ihrer Herstellung
EP3561824A1 (de) Spulenanordnung für einen resonanzwandler

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111220

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160623

RIN1 Information on inventor provided before grant (corrected)

Inventor name: STOLL, KARL

Inventor name: ROELLGEN, BERNHARD

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

INTC Intention to grant announced (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: STOLL, KARL

Inventor name: ROELLGEN, BERNHARD

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

INTG Intention to grant announced

Effective date: 20161108

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 854258

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010012881

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170315

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170414

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170314

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170414

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010012881

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170727

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170727

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170727

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 854258

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010012881

Country of ref document: DE

Representative=s name: EPPING HERMANN FISCHER PATENTANWALTSGESELLSCHA, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010012881

Country of ref document: DE

Owner name: TDK ELECTRONICS AG, DE

Free format text: FORMER OWNER: EPCOS AG, 81669 MUENCHEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230521

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230725

Year of fee payment: 14