EP0293617B1 - Hochfrequenz-Leistungsübertrager - Google Patents

Hochfrequenz-Leistungsübertrager Download PDF

Info

Publication number
EP0293617B1
EP0293617B1 EP88107116A EP88107116A EP0293617B1 EP 0293617 B1 EP0293617 B1 EP 0293617B1 EP 88107116 A EP88107116 A EP 88107116A EP 88107116 A EP88107116 A EP 88107116A EP 0293617 B1 EP0293617 B1 EP 0293617B1
Authority
EP
European Patent Office
Prior art keywords
frequency power
power transformer
primary
central
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88107116A
Other languages
English (en)
French (fr)
Other versions
EP0293617A1 (de
Inventor
Edwin Dipl.-Ing. Hielscher
Werner Dipl.-Ing. Loges
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vacuumschmelze GmbH and Co KG
Original Assignee
Vacuumschmelze GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vacuumschmelze GmbH and Co KG filed Critical Vacuumschmelze GmbH and Co KG
Publication of EP0293617A1 publication Critical patent/EP0293617A1/de
Application granted granted Critical
Publication of EP0293617B1 publication Critical patent/EP0293617B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2866Combination of wires and sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F19/00Fixed transformers or mutual inductances of the signal type
    • H01F19/04Transformers or mutual inductances suitable for handling frequencies considerably beyond the audio range

Definitions

  • the invention relates to a high-frequency power transformer for switching power supplies.
  • Switched-mode power supplies are known to be used for the energy supply of electrical devices, such as personal computers, video monitors and the like, in which usually several different consumers have to be supplied with different voltages, in particular direct voltages.
  • electrical devices such as personal computers, video monitors and the like
  • the highest possible frequencies are used to operate these power supplies.
  • So-called clocked power supplies have been found to be particularly advantageous, but increasing the operating frequency usually results in an increase in switching losses in the rectifier components, which can be associated with a reduction in efficiency.
  • the switching power supplies can be operated in series or parallel resonance.
  • a particular problem for the switching power supplies working according to the resonance principle is that a defined leakage inductance must be maintained in the power transformers.
  • the problem of leakage inductance is solved in that one of the middle legs of two symmetrically arranged ferrite pot cores is shortened accordingly.
  • the shortening of the middle leg - due to the resulting air gap - has a very large leakage inductance.
  • This measure is intended to ensure that the output voltages and the resonance frequency of the circuit remain almost constant when the load changes.
  • the primary winding and secondary winding created in conventional winding technology are each arranged on a middle leg of a pot core half.
  • the leakage inductance can only be changed by changing the air gap or by changing the length of the middle leg.
  • the secondary windings consist of stacked circuit boards with insulators in between. To ensure galvanic isolation between the primary and secondary side, a specially designed coil former was provided. To reduce both the leakage inductance and the space requirement, the transmitter is integrated into the circuit board of the switching power supply.
  • a disadvantage of this embodiment is that copper-coated boards are used as carrier material for the primary winding, which only allow a limited height of the conductor tracks.
  • a broadband high-frequency power transformer in sandwich construction is known, which is intended for use in a device for inductive heating.
  • the transformer should have very low leakage losses. With a core made of two ferrite parts, scatter losses that are practically zero can be achieved.
  • a sandwich-type transformer is also known from "Patent Abstracts of Japan", Volume 10, No. 217 (E-423) (2273), JP-A-61 54 607.
  • the invention has for its object to provide a high-frequency power transmitter for switching power supplies working on the resonance principle, with which not only a particularly small but also a precisely defined leakage inductance can be achieved.
  • This object is achieved by a high-frequency power transformer with the features of claim 1. Further details and features of the invention emerge from the following description and the subclaims.
  • Fig. 1 shows the mechanical structure of the high-frequency power transformer according to the invention, which is constructed according to the sandwich principle.
  • the illustrated embodiment illustrates one of the many possibilities for nesting the individual windings with one another, with a particularly small leakage inductance being achieved in this form. Additional insulation of the cable leads, especially of the secondary winding parts, has been omitted because it is easier to present.
  • the middle leg of a soft magnetic core part 2 is designated, which together with a core part 3 with middle leg 4 forms the actual core of the power transformer.
  • the core parts 2 and 3 are of the E-type, the middle legs 1 and 4 being round and the spaces 5 and 6 accommodating the coils in the region of the core parts 2 and 3 being correspondingly cylindrical.
  • the cylindrical shape of the middle leg is particularly advantageous, since the components to be stacked can be annular, which considerably simplifies their manufacture.
  • core parts can also be used in which the central limbs can be square or rectangular in cross-section, with appropriate design of the spaces 5 and 6 surrounding them.
  • a sleeve-shaped coil carrier 7 can be pushed on, which has a flange 8 with which it is supported against the core part 2.
  • the winding parts 9 of the primary windings or the bobbins 10 carrying them and the winding parts 12 of the secondary windings as well as insulation disks 13 in between can be stacked on the coil carrier 7.
  • the coil formers 10 for the winding parts 9 of the primary winding are of circular design, the winding 9 being inserted in a preferably U-shaped cross section.
  • Fig. 1 shows a particularly advantageous embodiment of the secondary winding parts 12, which are designed as flat, single-winded, annular stamped parts with terminal lugs 12a and 12b.
  • the terminal lugs 12a and 12b are normally led out in isolation.
  • a plurality of winding parts 12 of the secondary winding can be connected in series, in which case connecting lugs 12b which belong together are then electrically connected to one another. This connection can be routed to the outside and then provides a center tap of the winding parts connected in series.
  • the bobbin 7 is pushed onto the middle leg 1 of the core part 2. Then the core part is from above 3 placed, the middle leg 4 engages in the interior of the sleeve-shaped coil carrier 7, whereby all parts are secured to each other.
  • the core parts 2 and 3 can be pressed against one another with the aid of resilient clamps, which are not shown.
  • the connecting lugs 12a and 12b and the connections of the winding parts 9 are led out through the lateral recesses in the core parts 2 and 3.
  • a defined leakage inductance can be set with the insulation disks 13 between the primary winding parts 9 and the secondary winding parts 12, specifically by the number of insulation disks and their thickness.
  • the thin lines 13 represent insulating washers or insulating spacing washers.
  • FIG. 2a shows an embodiment according to FIG. 2a, but with additional primary and secondary winding parts.
  • FIG. 3 shows the relationship between the leakage inductance L and the distance a, generated by the spacer insulation washers 13, for different winding combinations detect.
  • the embodiment according to FIG. 2d further shows that an adjustable leakage inductance can also be realized with more than two primary part windings.
  • a division of the primary winding into several partial windings on several bobbins has the advantage that smaller current displacement effects (copper losses) than in the exemplary embodiments according to FIGS. 2a to 2c can be achieved due to the better spatial distribution of the windings.
  • solid copper wires it is also possible to use HF strands with any cross-section and number of strands on the individual bobbins. This applies equally to the primary winding as well as to the secondary windings.
  • solid copper sheets are used on the secondary side, which can be replaced at higher frequencies to minimize the current displacement effects by several thin copper sheets which are insulated from one another.
  • the different output powers of the transformers required in the switching power supply applications require different copper cross sections of the windings. This is easily possible with the winding principle according to the invention.
  • the examples shown are designed with four secondary windings, which can be connected as required according to the respective requirements, such as output voltage and output current.
  • the number of winding parts can be increased or reduced at any time.
  • FIG. 4 shows a sectional drawing of the high-frequency power transformer, which is constructed in accordance with the winding combination according to FIG. 2b.
  • the after the The clearance and creepage distances required by VDE guidelines can be easily complied with if the primary winding diameter and the secondary copper sheet diameter are selected accordingly. Insulation between the primary winding parts 9 and the secondary winding parts 12 can be dispensed with in this particular embodiment, since the coil carriers 10 are pushed over the coil carrier 7.
  • the lead wires for the primary and secondary side are led out by a spatial separation of 180 °.
  • the core shapes with a round middle leg, such as the RM, PM and ETD types, are best suited for this.
  • Fig. 5 shows a sectional drawing of the high-frequency power transformer with a shortened common coil carrier (7, 8).
  • the common coil carrier (7, 8) envelops only a part of the middle leg (1, 4) in the assembled state and a further coil former (11) is plugged directly onto the part of the middle leg (4) that has been left free.
  • This embodiment can be used particularly advantageously if one of the windings - in the example shown the primary winding (9) - requires a high number of turns, or a winding with a larger conductor cross section is required.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Multimedia (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Dc-Dc Converters (AREA)
  • Coils Or Transformers For Communication (AREA)

Description

  • Die Erfindung betrifft einen Hochfrequenz-Leistungsübertrager für Schaltnetzteile.
  • Schaltnetzteile werden bekanntlich zur Energieversorgung von elektrischen Geräten, wie Personal-Computer, Video-monitoren und dgl. verwendet, in denen meist mehrere verschiedene Verbraucher mit unterschiedlichen Spannungen, insbesondere Gleichspannungen, versorgt werden müssen. Um die Baugröße dieser Schaltnetzteile möglichst klein zu halten, werden zum Betreiben dieser Netzteile möglichst hohe Frequenzen verwendet. Besonders vorteilhaft haben sich sogenannte getaktete Netzteile herausgestellt, wobei aber mit Erhöhung der Betriebsfrequenz meist eine Erhöhung der Schaltverluste in den Gleichrichter-Bauelementen einhergeht, was mit einer Wirkungsgradverminderung verbunden sein kann.
  • Dieses Problem kann meist durch den Einsatz von sinusförmigen Strömen und Spannungen beherrscht werden, um den Nachteil hoher Anstiegsgeschwindigkeiten von Strom und Spannung zu vermeiden. Auf diese Weise besteht die Möglichkeit, die Betriebsfrequenz bis in den MHz-Bereich hinein zu steigern. Die Schaltnetzteile können hierbei in Serien- oder Parallel-Resonanz betrieben werden. Für die nach dem Resonanzprinzip arbeitenden Schaltnetzteile besteht ein besonderes Problem darin, daß bei den Leistungsübertragern eine definierte Streuinduktivität eingehalten werden muß.
  • Bei einem durch die DE-OS 35 42 103 bekannt gewordenen Hochfrequenz-Leistungsübertrager wird das Problem der Streuinduktivität dadurch gelöst, daß einer der Mittelschenkel zweier symmetrisch zueinander angeordneter Ferrit-Topfkerne entsprechend verkürzt ausgeführt wird. Die Verkürzung des Mittelschenkels - bedingt durch den dabei entstehenden Luftspalt - hat eine sehr große Streuinduktivität zur Folge. Diese Maßnahme soll bewirken, daß bei Laständerungen die Ausgangsspannungen sowie die Resonanzfrequenz des Kreises nahezu konstant bleiben. Hierbei sind die in herkömmlicher Wicklungstechnik erstellte Primärwicklung und Sekundärwicklung auf je einen Mittelschenkel einer Topfkernhälfte angeordnet. Eine Änderung der Streuinduktivität ist nur durch Änderung des Luftspaltes bzw. durch eine Änderung der Länge der Mittelschenkel möglich. Bei Einsatz in Schaltnetzteilen wird der induktive Teil des Schwingkreises durch den Übertrager selbst realisiert.
  • Durch den Aufsatz "Power Transformer Design for 1 MHz Resonant Converter" in der Zeitschrift HFPC Proceedings, Mai 1986, Seiten 36 bis 54 ist ein Hochfrequenz-Leistungsübertrager bekannt geworden, der eine Art Sandwich-Bauweise aufweist. Wie Fig. 1 und 2 dieses Aufsatzes zeigen, werden bei dem bekannten Leistungsübertrager zwei Ferritkerne verwendet, wobei der in Fig. 1 dargestellte Kern eine EI-Kombination und der in Fig. 2 dargestellte Kern eine EE-Kombination aufweist. Wie aus Bild 2 dieser Veröffentlichung hervorgeht, sind die Primärwicklungen auf einem dielektrischen Basismaterial spiralförmig angeordnete Leiterbahnen.
  • Die Sekundärwicklungen bestehen aus aufeinander geschichteten Leiterplatten mit dazwischen gelegten Isolatoren. Um eine galvanische Netztrennung zwischen der Primär- und Sekundärseite zu gewährleisten, wurde ein eigens hierfür entwickelter Spulenkörper vorgesehen. Zur Verminderung sowohl der Streuinduktivität als auch des Platzbedarfs wird der Übertager in die Platine des Schaltnetzteiles integriert. Nachteilig bei dieser Ausführungsform ist, daß als Trägermaterial für die Primärwicklung kupferbeschichtete Platinen verwendet werden, welche nur eine beschränkte Höhe der Leiterbahnen erlauben.
  • Da zwischen den einzelnen spiralförmig angeordneten Windungen Mindestabstände eingehalten werden müssen, steht für den Primärstrom nur ein relativ kleiner Kupferquerschnitt zur Verfügung. Wird eine größere Ausgangsleistung gefordert, so bedingt dies primär- als auch sekundärseitig größere Kupferquerschnitte, denen auf der Primärseite nur mit einer größeren Anzahl von Platinen und somit einer größeren Bauform Rechnung getragen werden kann. Es hat sich gezeigt, daß die Verluste der bei hohen Frequenzen eingesetzten Leistungsübertrager im wesentlichen durch Stromverdrängungseffekte (Skin- Effekt, Proximity-Effekt) in der Primärwicklung entstehen. Diese Effekte lassen sich mit dem gegebenen Wicklungsaufbau nicht minimieren. Ein weiterer Nachteil ergibt sich durch den platinenintegrierten Aufbau, da - wie aus Bild 1 ersichtlich - der Leistungsübertrager direkt an der Platine zusammengefügt werden muß, wodurch höhere Montagekosten entstehen. Ferner ist eine Änderung der Streuinduktivität bei einer bereits vorhandenen Bauform nicht ohne weiteres möglich.
  • Aus der DE-OS 26 45 536, die den nächstliegenden Stand der Technik bildet, ist ein Breitband-Hochfrequenz-Leistungstransformator in Sandwich-Bauweise bekannt, der zum Einsatz in einem Gerät zur induktiven Erwärmung vorgesehen ist. Der Transformator soll sehr geringe Streuverluste aufweisen. Mit einem Kern aus zwei Ferrit-Teilen können Streuverluste realisiert werden, die praktisch Null sind. Ein Übertrager in Sandwich-Bauweise ist ferner aus den "Patent Abstracts of Japan", Band 10, Nr. 217 (E-423)(2273), JP-A-61 54 607 bekannt.
  • Der Erfindung liegt die Aufgabe zugrunde, einen Hochfrequenz-Leistungsübertager für nach dem Resonanzprinzip arbeitende Schaltnetzteile zu schaffen, mit dem sich nicht nur eine besonders kleine sondern auch eine genau definierte Streuinduktivität erreichen läßt. Diese Aufgabe wird durch einen Hochfrequenz-Leistungsübertrager mit den Merkmalen des Patentanspruches 1 gelöst. Weitere Einzelheiten und Merkmale der Erfindung ergeben sich aus der nachfolgenden Beschreibung und den Unteransprüchen.
  • Anhand der Zeichnung, in der mehrere Ausführungsbeispiele dargestellt sind, wird die Erfindung näher erläutert; es zeigen:
  • Fig. 1
    die explosionsartig auseinandergezogenen Teile eines Hochfrequenz-Leistungsübertragers,
    Fig. 2
    verschiedene Wicklungskombinationen,
    Fig. 3
    die Abhängigkeit der Streuinduktivität L vom Abstand a und
    Fig. 4
    die Schnittansicht eines in Fig. 2b schematisch dargestellten Hochfrequenz-Leistungsübertragers.
    Fig. 5
    die Schnittansicht eines schematisch dargestellten Hochfrequenz-Leistungsübertragers mit verkürztem Spulenträger.
  • Fig. 1 zeigt den erfindungsgemäßen mechanischen Aufbau des Hochfrequenz-Leistungsübertragers, der nach dem Sandwich-Prinzip aufgebaut ist. Die dargestellte Ausführungsform veranschaulicht eine der vielen Möglichkeiten, um die einzelnen Wicklungen miteinander zu verschachteln, wobei sich in dieser Form eine besonders kleine Streuinduktivität erreichen läßt. Auf zusätzliche Isolierungen der Leitungsherausführungen, insbesondere der Sekundärwicklungsteile wurde wegen einer besseren Darstellbarkeit verzichtet.
  • Mit 1 ist der Mittelschenkel eines weichmagnetischen Kernteils 2 bezeichnet, der zusammen mit einem Kernteil 3 mit Mittelschenkel 4 den eigentlichen Kern des Leistungsübertragers bildet. Die Kernteile 2 und 3 sind vom E-Typ, wobei die Mittelschenkel 1 und 4 rund und die die Spulen aufnehmenden Räume 5 und 6 im Bereich der Kernteile 2 und 3 entsprechend ringzylindrisch ausgebildet sind. Die zylindrische Form der Mittelschenkel ist besonders vorteilhaft, da die zu stapelnden Bauelemente kreisringförmig ausgebildet sein können, was deren Herstellbarkeit erheblich erleichert. Es ist aber verständlich, daß auch Kernteile verwendet werden können, bei welchen die Mittelschenkel im Querschnitt quadratisch oder rechteckig geformt sein können, bei entsprechender Ausbildung der sie umgebenden Räume 5 und 6.
  • Auf dem Mittelschenkel 1 ist ein hülsenförmiger Spulenträger 7 aufschiebbar, der einen Flansch 8 aufweist, mit dem er sich gegen den Kernteil 2 abstützt. Auf den Spulenträger 7 sind die Wicklungsteile 9 der Primärwicklungen bzw. die diese tragenden Spulenkörper 10 und die Wicklungsteile 12 der Sekundärwicklungen sowie dazwischenliegende Isolationsscheiben 13 aufstapelbar. Bei dem Ausführungsbeispiel nach Fig. 1 sind die Spulenkörper 10 für die Wicklungsteile 9 der Primärwicklung kreisringförmig ausgebildet, wobei in einem vorzugsweise U-förmigem Querschnitt die Wicklung 9 eingelegt ist.
  • Fig. 1 zeigt eine besonders vorteilhafte Ausführungsform der Sekundärwicklungsteile 12, die als flache, einwindige, kreisringförmige Stanzteile mit Anschlußfahnen 12a und 12b ausgeführt sind. Normalerweise sind die Anschlußfahnen 12a und 12b isoliert herausgeführt. Es wird darauf hingewiesen, daß mehrere Wicklungsteile 12 der Sekundärwicklung hintereinander schaltbar sind, wobei dann zusammengehörende Anschlußfahnen 12b miteinander elektrisch verbunden werden. Diese Verbindung kann nach außen geführt werden und stellt dann eine Mittelanzapfung der in Reihe geschalteten Wicklungsteile.
  • Nachdem die Wicklungsteile 9 bzw. deren Spulenkörper 10 sowie die Wicklungsteile 12 und die Isolationsscheiben 13 entsprechend placiert auf den Spulenträger 7 aufgestapelt sind, wird der Spulenträger 7 auf den Mittelschenkel 1 des Kernteiles 2 aufgeschoben. Dann wird von oben der Kernteil 3 aufgesetzt, wobei der Mittelschenkel 4 in das Innere des hülsenförmigen Spulenträgers 7 eingreift, wodurch sämtliche Teile zueinander gesichert sind. Die Kernteile 2 und 3 können mit Hilfe von federnden Klammern, welche nicht dargestellt sind, gegeneinander gepreßt werden. Durch die seitlichen Ausnehmungen in den Kernteilen 2 und 3 werden die Anschlußfahnen 12a und 12b sowie die Anschlüsse der Wicklungsteile 9 herausgeführt.
  • Erfindungsgemäß kann mit dem in Fig. 1 dargestellten prinzipiellen Aufbau eine definierte Streuinduktivität mit den Isolationsscheiben 13 zwischen den Primärwicklungsteilen 9 und den Sekundärwicklungsteilen 12 eingestellt werden und zwar durch die jeweilige Anzahl der Isolationsscheiben und deren Stärke.
  • In Fig. 2 sind einige der grundsätzlichen Wicklungskombinationen dargestellt, mit welchen ein großer Streuinduktivitätsbereich in Abhänigkeit des Abstandes a überstrichen werden kann. Mit 12 sind wiederum die Sekundärwicklungsteile und mit 9 die Primärwicklungsteile dargestellt. Die dünnen Linien 13 stellen Isolierscheiben bzw. Isolier-Distanzscheiben dar.
  • Mit einer Wicklungsanordnung nach Fig. 2a läßt sich eine sehr kleine, fest eingestellte Streuinduktivität bei guter Kopplung erreichen. Die Anordnung gemäß Fig. 2b erlaubt eine gute Einstellbarkeit kleiner Streuinduktivitätswerte im Gegensatz zu dem Ausführungsbeispiel nach Fig. 2c, mit welcher relativ große Streuinduktivitäten vorgegeben werden können. Fig. 2d zeigt eine Ausführungsform gemäß Fig. 2a, jedoch mit zusätzlichen Primär- und Sekundärwicklungsteilen.
  • Das Schaubild gemäß Fig. 3 läßt den Zusammenhang zwischen der Streuinduktivität L und dem Abstand a, erzeugt durch die Abstandsisolationsscheiben 13, für verschiedene Wicklungskombinationen erkennen. Mit größer werdendem Abstand a ergibt sich zwangsläufig eine geringfügige Verschlechterung des Kopplungsfaktors zwischen Primär- und Sekundärwicklungsteilen, die aber einen vernachlässigbaren Einfluß auf die Übertragbarkeit der Leistung hat. Das Ausführungsbeispiel nach Fig. 2d zeigt weiter, daß auch mit mehr als zwei Primärteilwickungen eine einstellbare Streuinduktivität realisiert werden kann.
  • Eine Aufteilung der Primärwicklung in mehrere Teilwicklungen auf mehreren Spulenkörpern hat den Vorteil, daß durch die bessere räumliche Verteilung der Windungen kleinere Stromverdrängungseffekte (Kupferverluste) als in den Ausführungsbeispielen nach Fig. 2a bis 2c erreicht werden können. Es besteht die Möglichkeit - außer Massivkupferdrähten -, auch HF-Litze mit beliebigem Querschnitt und Litzenzahl auf den einzelnen Spulenkörpern einzusetzen. Dies gilt gleichermaßen für die Primärwicklung als auch für die Sekundärwicklungen. Im Ausführungsbeispiel sind sekundärseitig Massivkupferbleche eingesetzt, die bei höheren Frequenzen zur Minimierung der Stromverdrängungseffekte gegen mehrere dünne zueinander isolierte Kupferbleche ersetzt werden können.
  • Die in den Schaltnetzteil-Anwendungen benötigten unterschiedlichen Ausgangsleistungen der Übertrager erfordern verschiedene Kupferquerschnitte der Wicklungen. Dies ist problemlos mit dem erfindungsgemäßen Wicklungsprinzip möglich. Die gezeigten Beispiele sind mit vier Sekundärwicklungen ausgeführt, welche beliebig nach den jeweiligen Anforderungen, wie Ausgangsspannung und Ausgangsstrom, verschaltbar sind. Eine Erhöhung oder Reduzierung der Anzahl der Wicklungsteile ist jederzeit möglich.
  • Fig. 4 zeigt eine Schnittbildzeichnung des Hochfrequenz-Leistungsübertragers, der entsprechend der Wicklungskombination nach Fig. 2b aufgebaut ist. Die nach den VDE-Richtlinien geforderten Luft- und Kriechstrecken können bei entsprechender Wahl der Primärwicklungsdurchmesser und der sekundärseitigen Kupferblech-Durchmesser einfach eingehalten werden. Auf eine Isolation zwischen den Primärwicklungsteilen 9 und den Sekundärwicklungsteilen 12 kann in dieser besonderen Ausführungsform verzichtet werden, da die Spulenträger 10 über den Spulenträger 7 geschoben sind. Die Herausführung der Anschlußdrähte für die Primär- und Sekundärseite erfolgt durch eine räumliche Trennung von 180°. Hierfür sind am besten die Kernformen mit einem runden Mittelschenkel, wie die RM-, PM-und ETD-Typen geeignet.
  • Fig. 5 zeigt eine Schnittbildzeichnung des Hochfrequenz-Leistungsübertragers mit einem verkürzten gemeinsamen Spulenträger (7, 8). In dieser Ausführungsform umhüllt der gemeinsame Spulenträger (7, 8) im zusammengebauten Zustand nur einen Teil der Mittelschenkel (1, 4) und ein weiterer Spulenkörper (11) ist direkt auf den freigebliebenen Teil des Mittelschenkels (4) aufgesteckt. Diese Ausführungsform kann insbesondere dann vorteilhaft eingesetzt werden, wenn eine der Wicklungen - im dargestellten Beispiel die Primärwicklung (9) - eine höhe Windungszahl erfordert, oder eine Wicklung mit einem größeren Leiterquerschnitt benötigt wird.
  • Durch die Verwendung einfacher Stanzteile für die Sekundärwicklungen, Abstandsisolationsscheiben und Isolationsscheiben sowie unkomplizierte Spritzgußteile für die Spulenkörper wird eine kostengünstige Herstellung ermöglicht. Je nach Anwendungsfall können die einzelnen Komponenten durch einfaches Stapeln zusammengefügt werden. Fertigungstechnisch gesehen, führt dies zu einer flexiblen Automatisierung von Hochfrequenz-Leistungsübertragern. Die so gefertigten Bauelemente können, um eine höhere mechanische Festigkeit und eine bessere Netzisolation zu erlangen, vergossen werden. Der Einbau in die gedruckten Schaltungen geschieht in der gewohnten Technik, wobei aber besonders kleine Streuinduktivitätswerte erreicht werden können, wenn die Gleichrichterdioden direkt mit den sekundärseitigen Anschlußblechen verbunden sind und nicht über die Leiterbahnen der Platinen.

Claims (7)

  1. Hochfrequenz-Leistungsübertrager mit
    - weichmagnetischen Kernteilen (2,3), die mindestens einen Mittelschenkel (1) aufweisen,
    - Primär- und Sekundärwicklungen (9,12), die in mehreren Teilwicklungen ausgeführt sein können,
    - einem hülsenförmigen Spulenträger (7,8), der auf dem Mittelschenkel (1) sitzt und auf dem die Primär- und/oder Sekundärwicklung (9,12) oder Teile davon aufstapelbar und nach dem Zusammenfügen der Kernteile (2,3) fixiert und gehalten sind,
    - auf dem Mittelschenkel (1) bzw. dem hülsenförmigen Spulenträger (7,8) aufgestapelten, kreisringförmigen Isolations-Distanzscheiben (13) zwischen der Primär- und Sekundärwicklung (9,12) sowie gegebenenfalls zwischen den Teilwicklungen der Primär- und/oder Sekundärwicklung (9,12),
    dadurch gekennzeichnet,
    - daß es sich um einen Hochfrequenz-Leistungsübertrager eines nach dem Resonanzprinzip arbeitenden Schaltnetzteils handelt, bei dem der induktive Teil des Schwingkreises durch den Leistungsübertrager selbst realisiert wird, und
    - daß durch die Stärke und Anzahl der Isolations-Distanzscheiben (13) zwischen Primär- und Sekundärwicklung (9,12) die für den Schwingkreis vorgesehene definierte, von Null verschiedene Streuinduktivität eingestellt wird.
  2. Hochfrequenz-Leistungsübertrager nach Patentanspruch 1,
    dadurch gekennzeichnet,
    daß die Wicklungsteile (9) auf kreisringförmigen Spulenkörpern (10) aus Isoliermaterial mit vorzugsweise U-förmigem Querschnitt untergebracht sind.
  3. Hochfrequenz-Leistungsübertrager nach den Ansprüchen 1 und 2,
    dadurch gekennzeichnet,
    daß einzelne Wicklungsteile (12) als flache einwindige kreisringförmige Stanzteile mit Anschlußfahnen (12a, 12b) ausgeführt sind.
  4. Hochfrequenz-Leistungsübertrager nach Anspruch 3,
    dadurch gekennzeichnet,
    daß mehrere Stanzteile zur Bildung von Wicklungsteilen (12) mit mehreren Windungen und/oder Mittelanzapfungen zusammengefaßt sind.
  5. Hochfrequenz-Leistungsübertrager nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet,
    daß der hülsenförmige, allen Wicklungsteilen (9, 12) gemeinsame Spulenträger (7, 8) auf dem Mittelschenkel (1) des einen Kernteils (2) aufsteckbar ist, derart, daß er im zusammengebauten Zustand auch den Mittelschenkel (4) des anderen Kernteils (3) umhüllt und zentriert.
  6. Hochfrequenz-Leistungsübertrager nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet,
    daß der hülsenförmige, allen Wicklungsteilen (9, 12) gemeinsame Spulenträger (7, 8) auf dem Mittelschenkel (1) des einen Kernteils (2) aufsteckbar ist, derart, daß er im zusammengebauten Zustand nur einen Teil der Mittelschenkel (1, 4) umhüllt und daß mindestens ein Spulenkörper (11) direkt auf den freigebliebenen Teil der Mittelschenkel (1, 4) aufsteckbar ist.
  7. Hochfrequenz-Leistungsübertrager nach Anspruch 5 oder 6,
    dadurch gekennzeichnet,
    daß die Spulenkörper (10) der einzelnen Wicklungsteile (9) und/oder der rohrförmige Spulenträger (7, 8) als Spritzgußteile hergestellt sind.
EP88107116A 1987-06-02 1988-05-04 Hochfrequenz-Leistungsübertrager Expired - Lifetime EP0293617B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3718383 1987-06-02
DE19873718383 DE3718383A1 (de) 1987-06-02 1987-06-02 Hochfrequenz-leistungsuebertrager

Publications (2)

Publication Number Publication Date
EP0293617A1 EP0293617A1 (de) 1988-12-07
EP0293617B1 true EP0293617B1 (de) 1992-10-14

Family

ID=6328845

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88107116A Expired - Lifetime EP0293617B1 (de) 1987-06-02 1988-05-04 Hochfrequenz-Leistungsübertrager

Country Status (2)

Country Link
EP (1) EP0293617B1 (de)
DE (2) DE3718383A1 (de)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991015861A1 (en) * 1990-03-30 1991-10-17 Multisource Technology Corporation Low-profile planar transformer for use in off-line switching power supplies
JP2531897B2 (ja) * 1991-05-15 1996-09-04 インターナショナル・ビジネス・マシーンズ・コーポレイション 平面変圧器
US5175525A (en) * 1991-06-11 1992-12-29 Astec International, Ltd. Low profile transformer
DE4137776C2 (de) * 1991-11-16 1996-11-07 Vacuumschmelze Gmbh Hochfrequenzleistungsübertrager in Multilayer-Technik
DE9211148U1 (de) * 1992-08-20 1993-02-25 Zink, Manfred, 77723 Gengenbach Hochfrequenz-Leistungstransformator
DE59308189D1 (de) * 1993-12-01 1998-04-02 Melcher Ag Dc/dc-wandler für niedrige ausgangsspannungen
WO1997001177A1 (de) * 1995-06-22 1997-01-09 Vogt Electronic Ag Transformator für ein schaltnetzteil zum erzeugen einer selv-spannung
DE19540525A1 (de) * 1995-10-31 1997-05-07 Vogt Electronic Ag Transformator für Schaltnetzteilanwendungen, insbesondere zum Speisen von Halogenlampen
ES2128827T3 (es) * 1996-07-17 1999-05-16 Magnetek Spa Dispositivo magnetico ultra-plano para circuitos electronicos.
DE19818673A1 (de) * 1998-04-27 1999-10-28 Thomson Brandt Gmbh Spule
IL139714A0 (en) * 2000-11-15 2002-02-10 Payton Planar Magnetics Ltd A bobbin for hybrid coils in planar magnetic components
ATE491214T1 (de) * 2002-10-01 2010-12-15 Det Int Holding Ltd Spulenkörper
CN1937117B (zh) * 2005-09-21 2010-06-09 台达电子工业股份有限公司 具有绕线单体的变压器
DE202006013658U1 (de) * 2006-09-06 2008-01-24 Vogt Electronic Components Gmbh Transformator mit Steckblechwicklung
DE102011075707A1 (de) * 2011-05-12 2012-11-15 SUMIDA Components & Modules GmbH Transformator mit geblechter Wicklung
US9007794B2 (en) * 2011-08-18 2015-04-14 Solidstate Controls, Llc Control system for a power supply having a first half-bridge leg and a second half-bridge leg
DE102011082046A1 (de) * 2011-09-02 2013-03-07 Schmidhauser Ag Transformator und zugehöriges Herstellungsverfahren
DE102013200265A1 (de) * 2013-01-10 2014-07-10 SUMIDA Components & Modules GmbH Kleintransformator für hohe Ausgangsspannungen
EP3561824A1 (de) * 2018-04-26 2019-10-30 Siemens Healthcare GmbH Spulenanordnung für einen resonanzwandler
EP3796347A1 (de) * 2019-09-23 2021-03-24 Wall Box Chargers S.L. Planarer transformator mit reduzierten parasitischen verlusten

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2327617A1 (fr) * 1975-10-10 1977-05-06 Tocco Stel Transformateur de puissance haute-frequence a large bande

Also Published As

Publication number Publication date
EP0293617A1 (de) 1988-12-07
DE3718383A1 (de) 1988-12-15
DE3875278D1 (de) 1992-11-19

Similar Documents

Publication Publication Date Title
EP0293617B1 (de) Hochfrequenz-Leistungsübertrager
EP2030301B1 (de) Anlage zur berührungslosen energieübertragung
EP2462596B1 (de) Stromkompensierte drossel und verfahren zur herstellung einer stromkompensierten drossel
DE102004025076B4 (de) Spulenanordnung und Verfahren zu deren Herstellung
EP2419910B1 (de) Wicklung und herstellungsverfarhen einer wicklung
EP2549493B1 (de) Längenvariabler Spulenkörper und induktives Bauelement
EP2817873B1 (de) Multiphasenwandler
DE4137776C2 (de) Hochfrequenzleistungsübertrager in Multilayer-Technik
EP2863403B1 (de) Transformator
DE102018220415A1 (de) Transformator, Gleichspannungswandler und elektrischer Kraftwagen
EP2030300B1 (de) Übertragerkopf und anlage
DE2848832A1 (de) Zeilenablenktransformator
DE102013111433A1 (de) Planare symmetrische Spule für integrierte HF-Schaltungen
EP0096807A2 (de) Elektrischer Übertrager
DE3108161A1 (de) Wicklung fuer eine statische induktionsvorrichtung
EP0479966B1 (de) Induktives schaltungselement für leiterplattenmontage
DE102004008961B4 (de) Spulenkörper für geschlossenen magnetischen Kern und daraus hergestellte Entstördrossel
EP3161836B1 (de) Stapeleinheit für die aufnahme von kernplatten für ein induktives bauelement
EP1183696B1 (de) Kapazitiv gesteuerte hochspannungswicklung
EP2523198B1 (de) Transformator mit geblechter Wicklung
DE102020214444A1 (de) Transformator, elektrische Schaltungsanordnung und Magnetresonanzbildgebungseinrichtung
DE19627817A1 (de) Flachspule
DE102012215862B4 (de) Oberflächenmontierbare Drossel
DE102022110526A1 (de) Gekoppelter Induktor und Spannungsregler
WO2024068181A1 (de) Induktivität, verfahren zur simulation, computersystem, computerprogrammprodukt

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB IT NL

17P Request for examination filed

Effective date: 19881222

17Q First examination report despatched

Effective date: 19910808

ITF It: translation for a ep patent filed

Owner name: ING. ZINI MARANESI & C. S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
REF Corresponds to:

Ref document number: 3875278

Country of ref document: DE

Date of ref document: 19921119

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19980514

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19980518

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990531

BERE Be: lapsed

Owner name: VACUUMSCHMELZE G.M.B.H.

Effective date: 19990531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19991201

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020416

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020517

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020712

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031202

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050504