EP2459312A2 - Verfahren zur herstellung von chlor durch gasphasenoxidation an nanostrukturierten rutheniumträgerkatalysatoren - Google Patents

Verfahren zur herstellung von chlor durch gasphasenoxidation an nanostrukturierten rutheniumträgerkatalysatoren

Info

Publication number
EP2459312A2
EP2459312A2 EP10732315A EP10732315A EP2459312A2 EP 2459312 A2 EP2459312 A2 EP 2459312A2 EP 10732315 A EP10732315 A EP 10732315A EP 10732315 A EP10732315 A EP 10732315A EP 2459312 A2 EP2459312 A2 EP 2459312A2
Authority
EP
European Patent Office
Prior art keywords
ruthenium
catalyst
compounds
catalyst material
material according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10732315A
Other languages
German (de)
English (en)
French (fr)
Inventor
Timm Schmidt
Christoph Gürtler
Jürgen KINTRUP
Thomas Ernst MÜLLER
Tim Loddenkemper
Frank Gerhartz
Walther Müller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro Deutschland AG
Original Assignee
Bayer MaterialScience AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer MaterialScience AG filed Critical Bayer MaterialScience AG
Publication of EP2459312A2 publication Critical patent/EP2459312A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/03Preparation from chlorides
    • C01B7/04Preparation of chlorine from hydrogen chloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • B01J23/622Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead
    • B01J23/626Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead with tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/644Arsenic, antimony or bismuth
    • B01J23/6445Antimony
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/644Arsenic, antimony or bismuth
    • B01J23/6447Bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0211Impregnation using a colloidal suspension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/349Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of flames, plasmas or lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina

Definitions

  • the present invention relates to a process for the preparation of chlorine by gas phase oxidation with a supported catalyst based on ruthenium, characterized in that the catalyst support has a plurality of pores, with a pore diameter> 50 nm and ruthenium and / or ruthenium compounds containing nanoparticles as catalytically active Components carries.
  • the oxidation of hydrogen chloride to chlorine is an equilibrium reaction.
  • the position of the equilibrium shifts with increasing temperature to the detriment of the desired end product. It is therefore advantageous to use catalysts with the highest possible activity, which allow the reaction to proceed at low temperature.
  • the first catalysts for the hydrogen chloride oxidation contained as active component copper chloride or oxide and were already described in 1868 by Deacon. However, these showed low activity at low temperature ( ⁇ 400 0 C). Although the activity could be increased by increasing the reaction temperature, it was disadvantageous that the volatility of the active components at high temperatures led to a rapid decrease in the catalyst activity and to the discharge of the active component from the reactor.
  • EP 0184413 describes the oxidation of hydrogen chloride with catalysts based on chromium oxides.
  • the process realized thereby requires high catalyst loadings due to insufficient catalyst activity and high reaction temperatures.
  • the first catalysts for the hydrogen chloride oxidation with the catalytically active component ruthenium were already described in 1965 in DE 1567788; in this case starting from RuCb, for example supported on silica or alumina.
  • RuCb / SiOa catalysts was very low.
  • Ru-based catalysts with the active component ruthenium oxide or ruthenium mixed oxide and as carrier material various oxides, such as, for example, titanium dioxide, zirconium oxide, etc., have been claimed in DE-A 19748299.
  • the content of ruthenium oxide is 0.1% by mass to 20% by mass and the average particle diameter of ruthenium oxide is 1.0 nm to 10.0 nm.
  • Further Ru catalysts supported on titanium dioxide or zirconium dioxide are known from DE-A 19734412.
  • ruthenium-carbonyl complexes ruthenium salts of inorganic acids
  • ruthenium-nitrosyl complexes ruthenium Amine complexes
  • ruthenium complexes of organic amines or ruthenium-acetylacetonate complexes In a preferred embodiment, TiC> 2 was used as a carrier in the form of rutile.
  • DE 102007020154Al and DE 102006024543 A1 describe a process for catalytic hydrogen chloride oxidation, in which the catalyst is tin dioxide (as carrier), preferably tin dioxide in the cassiterite structure and at least one halogen-containing ruthenium compound (DE 102007020154Al) or at least one oxygen-containing ruthenium compound (DE102006024543A1). contains.
  • the ruthenium-free catalysts previously developed for the Deacon process are either too inactive or too unstable.
  • the ruthenium-supported catalysts described hitherto are suitable in principle for use in the Deacon process, the preferred supports rutile titanium dioxide and cassiterite tin dioxide have only small surfaces due to their crystalline structure, which is disadvantageous for their use as carriers in the HCl oxidation ,
  • the object of the present invention was therefore to provide a catalytic system for the oxidation of hydrogen chloride, which offers a higher specific (on the ruthenium content) related activity than the catalysts known from the prior art.
  • the present invention relates to a catalyst material for the thermocatalytic production of chlorine from hydrogen chloride and oxygen-containing gas, based on a ruthenium-based carrying supported catalyst, characterized in that the catalyst support has a plurality of pores, with a pore diameter> 50 nm and ruthenium and / or ruthenium compounds containing nanoparticles as catalytically active components.
  • the thermocatalytic production of chlorine from hydrogen chloride and oxygen-containing gas is also generally referred to hereinafter as the Deacon process.
  • At least 50%, more preferably at least 80%, of the pore volume of the catalyst material of the present invention is present in pores whose diameter is within the macroporous range, i. > 50 nm.
  • This macroporosity allows a uniform loading of the catalyst support with nanoparticles, prevents the blocking of pores by agglomeration of nanoparticles and leads to reduced pore diffusion limitation during the Deacon reaction.
  • mercury porosimetry is used to determine the pore volume and the pore diameter.
  • the measurement is based on a mercury contact angle of 130 ° and a surface tension of 480 dyn / cm 2 .
  • the catalyst material preferably comprises one or more compounds of the series: aluminum compounds, silicon compounds, titanium compounds, zirconium compounds or tin compounds as support material, particularly preferably aluminum compounds and / or silicon compounds and very particularly preferably oxides, mixed oxides or mixed oxides of one or more of the metals of the series: aluminum, Silicon, titanium, zirconium or tin. Particularly preferred are mixed oxides of aluminum and silicon.
  • binders are added, such as. B. ⁇ -Al 2 ⁇ 3 , whose primary function is not that of a carrier of the active component.
  • the ruthenium-containing nanoparticles present on the catalyst material as catalytically active component preferably comprise one or more compounds from the series: ruthenium oxides, ruthenium mixed oxides, mixed ruthenium oxides, ruthenium oxyhalides, ruthenium halides or metallic ruthenium. Particular preference is given to ruthenium chloride, ruthenium oxychloride or mixtures of ruthenium oxide and ruthenium chloride.
  • the ruthenium-containing nanoparticles present on the catalyst preferably have at least 50% of a maximum diameter of 50 nm, more preferably at least 50% have a diameter of 5 nm to 50 nm, very preferably at least 80% have a diameter of 5 nm 50 nm. Most preferably, the average diameter of the present on the catalyst, ruthenium-containing nanoparticles, 10 to 30 nm.
  • the ruthenium content of the catalysts is preferably set at up to 20% by weight, preferably 0.1 to 20% by weight, more preferably 0.5 to 5% by weight, based on the total mass of the catalyst. Excessive loading may result in adverse agglomeration of nanoparticles.
  • Additional nanoparticles with the function of a further active component or as promoters are preferably present on the catalyst material, particularly preferably one or more further metals, metal compounds and mixed compounds of the elements Ag, Au, Bi, Ce, Co, Cr, Cu, Ni, Sb, Sn , Ti, W, Y, Zn, Zr and the platinum metals, most preferably the elements Bi, Sb, Sn and Ti.
  • a mass fraction of the present on the catalyst material additional nanoparticles of up to 20% by mass, more preferably up to 10% by mass, based on the total mass of the catalyst. Excessive loading may result in adverse agglomeration of nanoparticles.
  • the additional nanoparticles present on the catalyst have at least 50% of a maximum diameter of 50 nm, more preferably at least 50% have a diameter of 3 nm to 50 nm, most preferably at least 80% have a diameter of 3 nm to 50 nm. Most preferably, the average diameter, the existing on the catalyst, additional nanoparticles, between 5 and 30 nm.
  • nanoparticles which contain at least ruthenium and at least one further metal, preferably Ag, Au, Bi, Ce, Co, Cr, Cu, Ni, Sb, Sn, Ti, W, Y, Zn, are present on the catalyst.
  • Zr and platinum metals as a promoter most preferably Bi, Sb, Sn and Ti, ie can be referred to as bimetallic or multimetallic.
  • the nanoparticles characterized in this way contain oxides, mixed oxides, mixed oxides, oxyhalides, halides, metals and alloys.
  • the bimetallic or multimetal nanoparticles present on the catalyst have at least 50% of a maximum diameter of 50 nm, more preferably at least 50% have a diameter of 5 nm to 50 nm, most preferably at least 80% have a diameter of 5 nm up to 50 nm. Most preferably, the average diameter of the present on the catalyst, bimetallic or multimetal nanoparticles 10 to 30 nm.
  • a mass fraction of the bimetallic or multimetal nanoparticles present on the catalyst of up to 30 wt .-% is set, particularly preferably up to 20 wt .-%, based on the total mass of the catalyst. Excessive loading leads to disadvantageous agglomerations of nanoparticles.
  • the nanoparticles are preferably prepared by flame pyrolysis.
  • a preferred method of preparation is as follows:
  • At least one precursor is presented in powder form. If bimetallic or multimetal nanoparticles are to be prepared, various pulverulent precursors are preferably poured together and mixed. These powders are fed to a plasma chamber or free flame and vaporized abruptly therein. The generated gaseous metal compounds are discharged from the plasma and condense in a cooler area, whereby nanoparticles are formed with a defined size distribution. These nanoparticles are stabilized in an emulsion by the addition of surfactants and detergents. Preferably, water or an organic solvent is used for the preparation of the emulsion.
  • This emulsion, or a mixture of two or more emulsions containing the active component, further active components and / or promoters, is then used to impregnate a catalyst support, preferably by a method commonly referred to in the specialist literature as "incipient wetness".
  • incipient wetness a method commonly referred to in the specialist literature as "incipient wetness”.
  • this method as many of the active components containing impregnation solution is presented as the carrier to be impregnated can just record and thus ensures that the active components are completely absorbed by the carrier.
  • Patent application US20080277270-A1 can be found, for example, the patent application US20080277270-A1.
  • the catalyst is then calcined at elevated temperatures.
  • this calcination is carried out in an atmosphere containing oxygen, more preferably in air or an inert gas-oxygen mixture.
  • the temperature is up to 800 0 C, preferably between 250 0 C and 600 0 C.
  • the calcination time is appropriately selected preferably between Ih and 50h.
  • the catalyst impregnated with the emulsion is preferably dried before calcination, preferably at reduced pressure and expediently between 1 h and 50 h.
  • promoters are compounds of basic metals in question (eg, alkali, alkaline earth and rare earth metal salts), preferred are compounds of alkali metals, especially Na and Cs and alkaline earth metals, particularly preferred are compounds of alkaline earth metals, in particular Sr and Ba.
  • the basic metals are used as oxides, hydroxides, chlorides, oxychlorides or nitrates.
  • these types of promoters are applied to the catalyst by impregnation or CVD methods.
  • the carrier used according to the invention is preferably commercially available (for example from Saint Gobain Norpro).
  • the catalysts according to the invention for the hydrogen chloride oxidation are characterized by high activity coupled with high stability at high temperatures.
  • the catalytic hydrogen chloride oxidation may preferably be adiabatic or isothermal or approximately isothermal, batchwise, but preferably continuously or as a fixed bed process, preferably as a fixed bed process, more preferably in tube bundle reactors to heterogeneous catalysts at a reactor temperature of 180 to 500 0 C, preferably 200 to 400 0th C, more preferably 250 to 380 0 C and a pressure of 1 to 25 bar (1000 to 25000 hPa), preferably 1.2 to 20 bar, more preferably 1.5 to 17 bar and in particular 2.0 to 15 bar are performed ,
  • Typical reactors in which the catalytic hydrogen chloride oxidation is carried out are fixed bed or fluidized bed reactors.
  • the catalytic hydrogen chloride oxidation can preferably also be carried out in several stages.
  • a further preferred embodiment of a device suitable for the method consists in using a structured catalyst bed in which the catalyst activity increases in the flow direction.
  • Such structuring of the catalyst bed can be done by different impregnation of the catalyst support with active material or by different dilution of the catalyst with an inert material.
  • an inert material for example, rings, cylinders or balls of titanium dioxide, zirconium dioxide or mixtures thereof, alumina, steatite, ceramic, glass, graphite or stainless steel can be used.
  • the inert material should preferably have similar external dimensions.
  • Suitable shaped catalyst bodies are shaped bodies of any shape, with preference being given to tablets, extrudates, rings, cylinders, stars, wagon wheels or spheres, particular preference being given to rings, cylinders or star strands as a mold.
  • the dimensions (diameter in the case of spheres) of the shaped bodies are preferably in the range from 0.2 to 10 mm, particularly preferably 0.5 to 7 mm.
  • the support may also be a monolith of support material.
  • An alternative preferred embodiment is foams, sponges or the like with three-dimensional connections within the carrier body, as well as monoliths and carrier bodies with cross-flow channels.
  • the monolithic carrier may have a honeycomb structure, but also an open or closed cross-channel structure.
  • the monolithic carrier has a preferred cell density of 100 to 900 cpsi (cells per square inch), more preferably 200 to 600 cpsi.
  • a monolith according to the present invention is e.g. in "Monoliths in multiphase catalytic processes - aspects and prospects" by F. Kapteijn, J.J. Heiszwolf, T.A. Nijhuis and J.A. Moulijn, Cattech 3, 1999, p24.
  • the conversion of hydrogen chloride in a single pass is in the range of 15 to 100% and may preferably be limited to 15 to 90%, preferably 40 to 90%, particularly preferably 60 to 90%.
  • unreacted hydrogen chloride can be partially or completely recycled to the catalytic hydrogen chloride oxidation.
  • the volume ratio of hydrogen chloride to oxygen at the reactor inlet is preferably 1: 1 to 20: 1, particularly preferably 2: 1 to 8: 1, very particularly preferably 2: 1 to 6: 1.
  • the heat of reaction of the catalytic hydrogen chloride oxidation can be used advantageously for the production of high-pressure steam.
  • This can be used to operate a phosgenation reactor and / or distillation columns, in particular isocyanate distillation columns.
  • the chlorine formed is separated off.
  • the separation step usually comprises several stages, namely the separation and optionally recycling of unreacted hydrogen chloride from the product gas stream of the catalytic hydrogen chloride oxidation, the drying of the obtained, substantially chlorine and oxygen-containing stream and the separation of chlorine from the dried stream.
  • the separation of unreacted hydrogen chloride and water vapor formed can be carried out by condensation of aqueous hydrochloric acid from the product gas stream of hydrogen chloride oxidation by cooling. Hydrogen chloride can also be absorbed in dilute hydrochloric acid or water.
  • Example 1 (comparative example: Preparation of a catalyst not according to the invention)
  • Stable oxides of Ru (RuO 2 ), Sn (SnO 2 ), Ni (NiO), Sb (Sb 2 O 5 ), Zr-Y (90 mass% ZrO 2 , 10 mass% Y 2 Os), Ti (TiO 2 ), Bi (Bi 2 O 5 ) were presented as ⁇ m-scale powder. These powders were individually (samples with the names 2a-b, 2e-i -> monometallic nanoparticles) or premixed (samples with the names 2c-d - ⁇ bimetallic nanoparticles) supplied to a plasma chamber and therein (at a temperature above 20,000 K) evaporates abruptly.
  • the resulting gaseous metal compounds were discharged from the plasma and condensed in a cooler range (temperature less than 500 0 C), whereby nanoparticles were formed with a defined size distribution. These nanoparticles were stabilized in an aqueous emulsion by adding an amine-based non-ionic comb polymer (manufacturer: SDC material) with the content of nanoparticles adjusted to 7.5% by weight.
  • SDC material an amine-based non-ionic comb polymer
  • the wet catalyst samples were dried between the impregnation steps and finally at 110 0 C for 2-5 h and calcined at 550 0 C for 2 h in air.
  • the mass fraction of the metallic content of the nanoparticles in the total mass of the catalysts can be taken from Table 1 (determined by means of XRF).
  • Example 3 (Comparative Example): Test of a catalyst not according to the invention (from Example 1)
  • Example 4 Test of Inventive Catalysts (from Example 2)
  • each Ig of the shaped catalyst body with the name 2a-i were diluted with inert Spheriglaskugeln in a quartz reaction tube (inner diameter 10 mm) presented.
  • the mixtures each with a gas mixture (10 L / h), composed of 1 L / h of hydrogen chloride, 4 L / h of oxygen, 5 L / h of nitrogen at 380 0 C for about 16h.
  • the temperature was lowered to 330 0 C and determines the space-time yield (starting-RZA).
  • starting-RZA space-time yield
  • the temperature was raised to 430 0 C.
  • the temperature was lowered in intervals to 330 0 C (RZA after xh).
  • the space-time yield was determined in which the product gas stream of the respective reactors for about 15 min. was passed through a 20% potassium iodide solution and the resulting iodine was then titrated with 0.1 N thiosulfate standard solution (duplicate determination). From the so determined amount of chlorine specific (on the ruthenium content) space-time yield (RZA) was determined according to the following formula (Tab. 3a / b):
  • RZA Ru g (Chloro) * g "1 (ruthenium mass on the catalyst used) * h " 1 (time)
  • the RZA Ru evolution was modeled with a power approach:
  • the stability (modeled deactivation parameter -b) of some exemplified, inventive catalysts (2a, 2b, 2g, 2h, 2i) is obviously in some cases significantly higher than that of the prior art catalyst not according to the invention.
  • the specific initial activity of some exemplified, erf ⁇ ndungswasher catalysts (2b, 2f, 2i) is obviously partially significantly higher than that of the non-inventive catalyst according to the prior art.
  • the catalyst samples 2a and 2c even have significantly higher (high temperature) stability and significantly higher initial activity than the prior art catalyst.
  • Example 5 Size distribution of the nanoparticles on the catalyst
  • Fig. 1 (Cat. 2a): 34 primary particles with a diameter between 5 and 34 nm (mean value of 16 nm) were counted.
  • Fig. 2 (Cat 2b): The primary particle distribution (ruthenium dioxide and tin dioxide) is similar to that of 2a.
  • Fig. 3 (Cat. 2c): The primary particle distribution (ruthenium dioxide and tin dioxide) is similar to that of
  • Fig. 4 (Cat. 2d): The primary particle distribution (ruthenium dioxide and tin dioxide) is similar to that of 2a.
  • ruthenium dioxide on rutile TiC> 2 (see Example 1) evidently exists as a carrier-coating layer owing to the comparable lattice spacing of the two rutile structures ("Development of an improved HCl oxidation process: structure of the RuCVrutile Ti ⁇ 2 catalyst "by Seki, Kohei, Iwanaga, Kiyoshi, Hibi, Takuo, Issoh, Koharto, Mori, Yasuhiko, Abe, Tadashi in Studies in Surface Science and Catalysis (2007), 172 (Science and Technology in Catalysis 2006), 55-60).
  • this catalyst are compared with ruthenium catalysts on the basis of Al 2 O 3 or SiO 2, which have a significantly lower activity despite assumable high dispersion.
  • the high dispersion is on these carriers in comparison with the planar Application to rutile TiO 2 detrimental to the catalytic properties.
  • nano-structured supported ruthenium catalysts according to the invention with defined ruthenium primary particle sizes are obviously even superior to ruthenium-supported catalysts based on RuUl-TiO 2 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
EP10732315A 2009-07-25 2010-07-14 Verfahren zur herstellung von chlor durch gasphasenoxidation an nanostrukturierten rutheniumträgerkatalysatoren Withdrawn EP2459312A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009034773A DE102009034773A1 (de) 2009-07-25 2009-07-25 Verfahren zur Herstellung von Chlor durch Gasphasenoxidation an nanostrukturierten Rutheniumträgerkatalysatoren
PCT/EP2010/004287 WO2011012226A2 (de) 2009-07-25 2010-07-14 Verfahren zur herstellung von chlor durch gasphasenoxidation an nanostrukturierten rutheniumträgerkatalysatoren

Publications (1)

Publication Number Publication Date
EP2459312A2 true EP2459312A2 (de) 2012-06-06

Family

ID=42735804

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10732315A Withdrawn EP2459312A2 (de) 2009-07-25 2010-07-14 Verfahren zur herstellung von chlor durch gasphasenoxidation an nanostrukturierten rutheniumträgerkatalysatoren

Country Status (9)

Country Link
US (1) US20120148478A1 (ko)
EP (1) EP2459312A2 (ko)
JP (1) JP2013500145A (ko)
KR (1) KR20120040701A (ko)
CN (1) CN102711986A (ko)
DE (1) DE102009034773A1 (ko)
IN (1) IN2012DN00739A (ko)
TW (1) TW201117880A (ko)
WO (1) WO2011012226A2 (ko)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103501895B (zh) * 2011-04-28 2016-05-25 巴斯夫欧洲公司 用于氧化脱氢的具有低金属负载的贵金属催化剂
EP2729407A1 (en) * 2011-07-05 2014-05-14 Bayer Intellectual Property GmbH Process for the production of chlorine using a cerium oxide catalyst in an adiabatic reaction cascade
IN2014CN02995A (ko) * 2011-10-24 2015-07-03 Bayer Ip Gmbh
RU2485046C1 (ru) * 2012-01-10 2013-06-20 Учреждение Российской академии наук Институт химии и химической технологии Сибирского отделения РАН (ИХХТ СО РАН) Способ получения хлора из хлороводорода с помощью вольфрамсодержащих соединений
US9382177B2 (en) * 2014-04-28 2016-07-05 Celanese International Corporation Hydrogenation catalysts comprising a mixed oxide comprising a promoter metal
EP3411146A1 (de) * 2016-02-04 2018-12-12 Covestro Deutschland AG Katalysator und verfahren zur herstellung von chlor durch gasphasenoxidation
CN106902848B (zh) * 2017-02-09 2019-06-28 西安近代化学研究所 一种氯化氢转化催化剂
CN111032214B (zh) * 2017-09-01 2024-02-06 恩亿凯嘉股份有限公司 核氢化反应用催化剂
US20210008528A1 (en) * 2018-04-04 2021-01-14 3M Innovative Properties Company Catalyst comprising pt, ni, and ru
KR102262496B1 (ko) * 2018-12-21 2021-06-07 한화솔루션 주식회사 염소 제조용 산화루테늄 담지 촉매의 제조방법 및 이에 의해 제조된 촉매
KR102287846B1 (ko) * 2018-12-21 2021-08-06 한화솔루션 주식회사 염소 제조를 위한 염화수소 산화반응용 촉매 및 이의 제조방법
CN109806864B (zh) * 2019-03-15 2022-03-15 西安近代化学研究所 一种氯化氢氧化制氯气的高稳定性催化剂
KR102709294B1 (ko) 2019-12-31 2024-09-23 한화솔루션 주식회사 염화수소 산화반응 공정용 성형촉매 및 이의 제조방법
CN112547059B (zh) * 2020-09-07 2024-01-26 北京工业大学 一种具有良好稳定性的Ru/3DOM SnO2催化剂的制备方法及应用
KR20220105387A (ko) 2021-01-20 2022-07-27 한화솔루션 주식회사 염화수소 산화반응을 통한 염소의 고수율 제조방법
WO2023174923A1 (en) * 2022-03-14 2023-09-21 Basf Se Continuous process for preparing chlorine and a catalyst for preparing chlorine
CN116550321A (zh) * 2023-05-22 2023-08-08 康纳新型材料(杭州)有限公司 一种用于氯化氢氧化制氯气的高分散度钌催化剂及其制备方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6404460A (ko) 1964-04-23 1965-10-25
CN1003504B (zh) 1984-12-03 1989-03-08 三井东圧化学有限公司 氯气制备方法
CN1150127C (zh) 1996-08-08 2004-05-19 住友化学工业株式会社 氯的生产方法
DE19748299A1 (de) * 1996-10-31 1998-05-07 Sumitomo Chemical Co Verfahren zur Herstellung von Chlor
KR101516812B1 (ko) * 1998-02-16 2015-04-30 스미또모 가가꾸 가부시끼가이샤 염소의 제조방법
DE19852547A1 (de) * 1998-11-13 2000-05-18 Studiengesellschaft Kohle Mbh Wasserlösliche nanostrukturierte Metalloxid-Kolloide und Verfahren zu ihrer Herstellung
WO2006114831A1 (ja) * 2005-04-06 2006-11-02 Mitsubishi Heavy Industries, Ltd. So3の還元処理が可能な排ガス処理用触媒、その製造方法、及び該排ガス処理用触媒を用いた排ガス処理方法
DE102005030728A1 (de) * 2005-07-01 2007-01-04 Lanxess Deutschland Gmbh Verfahren zur Ruthenium-katalysierten Oxidation von Alkoholen mit Hypochlorit
US20070167323A1 (en) * 2006-01-16 2007-07-19 Toda Kogya Corporation Porous carrier for steam-reforming catalysts, steam-reforming catalyst and process for producing reactive mixed gas
DE102006024543A1 (de) 2006-05-23 2007-11-29 Bayer Materialscience Ag Verfahren zur Herstellung von Chlor durch Gasphasenoxidation
DE102007020154A1 (de) 2006-05-23 2007-11-29 Bayer Materialscience Ag Verfahren zur Herstellung von Chlor durch Gasphasenoxidation
US20080220296A1 (en) * 2007-01-08 2008-09-11 University Of Maryland Office Of Technology Commercialization PtRu core-shell nanoparticles for heterogeneous catalysis
US9173967B1 (en) 2007-05-11 2015-11-03 SDCmaterials, Inc. System for and method of processing soft tissue and skin with fluids using temperature and pressure changes
WO2009079713A1 (en) * 2007-12-24 2009-07-02 The University Of Sydney Method of oxidising organic compounds

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011012226A2 *

Also Published As

Publication number Publication date
KR20120040701A (ko) 2012-04-27
WO2011012226A3 (de) 2012-03-01
IN2012DN00739A (ko) 2015-06-19
WO2011012226A2 (de) 2011-02-03
DE102009034773A1 (de) 2011-01-27
TW201117880A (en) 2011-06-01
CN102711986A (zh) 2012-10-03
JP2013500145A (ja) 2013-01-07
US20120148478A1 (en) 2012-06-14

Similar Documents

Publication Publication Date Title
EP2459312A2 (de) Verfahren zur herstellung von chlor durch gasphasenoxidation an nanostrukturierten rutheniumträgerkatalysatoren
EP2608879B1 (de) Katalysator und verfahren zur herstellung von chlor durch gasphasenoxidation
WO2013060628A1 (de) Katalysator und verfahren zur herstellung von chlor durch gasphasenoxidation
KR102359554B1 (ko) 응집된 odh 촉매
WO2009010167A1 (de) Temperaturstabiler katalysator für die chlorwasserstoffgasphasenoxidation
EP1399255A2 (de) Ruthenium-katalysatoren auf einem träger auf sio2-basis für die katalytische hydrierung von sacchariden
EP1919611A1 (de) Mechanisch stabiler katalysator auf basis von alpha-aluminiumoxid
EP2384240A1 (de) Katalysator für die chlorwasserstoffoxidation enthaltend ruthenium und nickel
EP2027062A2 (de) Verfahren zur herstellung von chlor durch gasphasenoxidation
EP2026905A1 (de) Verfahren zur herstellung von chlor durch gasphasenoxidation
WO2009118095A2 (de) Verfahren zur regeneration eines mit schwefel in form von schwefelverbindungen vergifteten, ruthenium oder rutheniumverbindungen enthaltenden katalysators
EP2608880B1 (de) Verfahren zur herstellung von chlor durch gasphasenoxidation
EP3403723A1 (de) Verfahren zur regeneration eines vergifteten, ruthenium oder rutheniumverbindungen enthaltenden katalysators
EP2401072B1 (de) Katalysator für die chlorwasserstoffoxidation enthaltend ruthenium und silber und/oder calcium
EP2177268A1 (de) Ru/MgF2 Katalysator und Verfahren zur Herstellung von Chlor durch Gasphasenoxidation
EP0206265A1 (de) Geformter Katalysator, Verfahren zu seiner Herstellung und dessen Verwendung bei der Oxichlorierung von Ethylen zu 1,2-Dichlorethan
EP3411146A1 (de) Katalysator und verfahren zur herstellung von chlor durch gasphasenoxidation
DE102007033113A1 (de) Temperaturstabiler Katalysator für die Chlorwasserstoffgasphasenoxidation
WO2007134723A2 (de) Verfahren zur herstellung von chlor durch gasphasenoxidation
EP2408555B1 (de) Urankatalysator auf träger besonderer porengrössenverteilung und verfahren zu dessen herstellung, sowie dessen verwendung
DE102009014541A1 (de) Katalysatoranordnung zur Oxidation von Methanol zu Formaldehyd
DE102007033114A1 (de) Verfahren zur Herstellung von Chlor durch Gasphasenoxidation von Chlorwasserstoff
EP2355925A1 (de) Verfahren zur aktivierung eines katalysators

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

17P Request for examination filed

Effective date: 20120903

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130911

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140122