EP2027062A2 - Verfahren zur herstellung von chlor durch gasphasenoxidation - Google Patents

Verfahren zur herstellung von chlor durch gasphasenoxidation

Info

Publication number
EP2027062A2
EP2027062A2 EP07725053A EP07725053A EP2027062A2 EP 2027062 A2 EP2027062 A2 EP 2027062A2 EP 07725053 A EP07725053 A EP 07725053A EP 07725053 A EP07725053 A EP 07725053A EP 2027062 A2 EP2027062 A2 EP 2027062A2
Authority
EP
European Patent Office
Prior art keywords
oxygen
hydrogen chloride
ruthenium
catalyst
tin dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07725053A
Other languages
English (en)
French (fr)
Inventor
Aurel Wolf
Jürgen KINTRUP
Oliver Felix-Karl SCHLÜTER
Leslaw Mleczko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro Deutschland AG
Original Assignee
Bayer MaterialScience AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer MaterialScience AG filed Critical Bayer MaterialScience AG
Publication of EP2027062A2 publication Critical patent/EP2027062A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/03Preparation from chlorides
    • C01B7/04Preparation of chlorine from hydrogen chloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • B01J23/622Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead
    • B01J23/626Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead with tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0211Impregnation using a colloidal suspension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis

Definitions

  • the present invention relates to a process for producing chlorine by catalytic gas-phase oxidation of hydrogen chloride with oxygen, wherein the catalyst comprises tin dioxide and at least one oxygen-containing ruthenium compound.
  • the oxidation of hydrogen chloride to chlorine is an equilibrium reaction.
  • the position of the equilibrium shifts with increasing temperature to the detriment of the desired end product. It is therefore advantageous to use catalysts with the highest possible activity, which allow the reaction to proceed at low temperature.
  • the first catalysts for the hydrogen chloride oxidation contained as active component copper chloride or oxide and were already described in 1868 by Deacon. However, these showed low activity at low temperature ( ⁇ 400 0 C). Although the activity could be increased by increasing the reaction temperature, it was disadvantageous that the volatility of the active components at high temperatures led to a rapid decrease in the catalyst activity.
  • EP 0 184 413 describes the oxidation of hydrogen chloride with catalysts based on chromium oxides. However, the process realized thereby had insufficient activity and high reaction temperatures. First catalysts for the hydrogen chloride oxidation with the catalytically active component
  • the content of ruthenium oxide is 0.1% by weight to 20% by weight and the average particle diameter of ruthenium oxide is 1.0 nm to 10.0 nm.
  • Further Ru catalysts supported on titanium dioxide or zirconium dioxide are known from DE-A 197 34 412 known.
  • Ru starting compounds such as, for example, ruthenium-carbonyl complexes, ruthenium salts of inorganic acids, ruthenium-nitrosyl complexes, ruthenium Amine complexes, ruthenium complexes of organic amines or ruthenium-acetylacetonate complexes.
  • TiO 2 was used as a carrier in the form of rutile.
  • the ruthenium oxide catalysts have a rather high activity, but their preparation is complex and requires a series of operations such as precipitation, impregnation followed by precipitation, etc., whose scale-up is technically difficult.
  • Ru oxide catalysts also tend to sinter at high temperatures and thus to deactivate.
  • EP 0 936 184 A2 describes a process for catalytic hydrogen chloride oxidation wherein the catalyst is selected from an extensive list of possible catalysts.
  • the catalysts is the variant designated by number (6), which consists of the active component (A) and a component (B).
  • the component (B) is a compound component having a certain thermal conductivity.
  • the component (A) can be mounted on a support.
  • possible carriers do not include tin dioxide. There is not a single example in which tin dioxide was used.
  • the object of the present invention was to provide a catalytic system which accomplishes the oxidation of hydrogen chloride at low temperatures and with high activities.
  • the task is solved by the development of a very specific combination of catalytically active components and a specific carrier material. Surprisingly, it has been rounded that by the targeted support of tin dioxide with a
  • Oxygen-containing ruthenium compound due to a special interaction between catalytically active component and carrier, new highly active catalysts are provided, which have a high catalytic activity especially at temperatures of ⁇ 350 0 C in the hydrogen chloride oxidation.
  • a further advantage of the catalyst system according to the invention is the simple and easily scalable application of the catalytically active component to the support.
  • the present invention thus provides a process for producing chlorine by catalytic gas-phase oxidation of hydrogen chloride with oxygen, wherein the catalyst comprises tin dioxide and at least one oxygen-containing ruthenium compound.
  • the invention also provides a catalyst for gas phase oxidation based on tin dioxide as a carrier material and an oxygen-containing ruthenium compound
  • tin (IV) oxide is used as a carrier of the catalytically active component, particularly preferably tin dioxide in rutile structure.
  • the catalytically active component used is an oxygen-containing ruthenium compound. It is a compound in which oxygen ionic to polarized is covalently bonded to a ruthenium atom.
  • the catalytically active preferred ruthenium oxyhalide compound in the context of the invention is preferably obtainable by a process which first comprises applying an aqueous solution or suspension of at least one halide, eg. B. chloride containing ruthenium compound on tin dioxide and the subsequent precipitation and optionally the calcination of the precipitated product.
  • at least one halide eg. B. chloride containing ruthenium compound on tin dioxide
  • the precipitation may be carried out alkaline with direct formation of the oxygen-containing ruthenium compound. It may also be reductive with primary formation of metallic ruthenium, which is then calcined with oxygen supply to form the oxygen-containing ruthenium compound.
  • the oxygen-containing ruthenium compound may also be prepared by applying metallic ruthenium to tin dioxide and then oxidizing the ruthenium metal in an oxygen-containing gas or, in particular, exposing the metal ruthenium to tin dioxide to a gas composition of the reactant gases for a Deacon reaction, ie, at least HCl and oxygen-containing gases, to be obtained.
  • ruthenium is deposited as metal on the tin dioxide by CVD or MOCVD.
  • a particularly preferred method includes applying an aqueous solution of
  • the application particularly includes soaking the optionally freshly precipitated tin dioxide with the solution of the halide-containing ruthenium compound.
  • halide-containing ruthenium compound After application of the halide-containing ruthenium compound is generally carried out a precipitation and a drying or calcination step, which is conveniently carried out in the presence of oxygen or air at temperatures up to 650 0 C.
  • the loading of the catalytically active component i. the oxygen-containing ruthenium compound, in the range from 0.1 to 80% by weight, preferably in the range from 1 to 50% by weight, particularly preferably in the range from 1 to 20% by weight, based on the total weight of the catalyst ( Catalyst component and carrier).
  • the catalytic component i.
  • the oxygen-containing ruthenium compound can be applied to the support by wet and wet impregnation of a support with suitable starting or starting compounds in liquid or colloidal form, up and co-deposition methods, as well as ion exchange and gas phase coating (CVD, PVD).
  • Suitable promoters are basic metals (for example alkali, alkaline earth and rare earth metals), preference is given to alkali metals, in particular Na and Cs, and alkaline earth metals, particular preference to alkaline earth metals, in particular Sr and Ba.
  • the promoters may, but are not limited to, be applied to the catalyst by impregnation and CVD methods, preferably an impregnation, particularly preferably after application of the main catalytic component.
  • various dispersion stabilizers such as scandium oxides, manganese oxides and lanthanum oxides, etc. can be used.
  • the stabilizers are preferably applied together with the main catalytic component by impregnation and / or precipitation.
  • the tin dioxide used in the present invention is commercially available (e.g., from Chempur, Alfa Aesar) or obtainable, for example, by alkaline precipitation of stannic chloride and subsequent drying. It has in particular BET surface areas of about 1 to 300 m2 / g.
  • the tin dioxide used as the support according to the invention can undergo a reduction of the specific surface under thermal stress (such as at temperatures of more than 250 ° C.), which may be accompanied by a reduction in catalyst activity.
  • Dispersion stabilizers can also serve to stabilize the surface of the tin dioxide at high temperatures.
  • the catalysts can be dried under normal pressure or preferably at reduced pressure, preferably at 40 to 200 ° C.
  • the drying time is preferably 10 minutes to 6 hours.
  • the novel catalyst is preferably used as described above in the catalytic process known as the Deacon process.
  • hydrogen chloride is oxidized with oxygen in an exothermic equilibrium reaction to chlorine, whereby water vapor is obtained.
  • the reaction temperature is usually 150 to 500 0 C, the usual reaction pressure is 1 to 25 bar. Since it is an equilibrium reaction, it is expedient to work at the lowest possible temperatures at which the catalyst still has sufficient activity.
  • oxygen in excess of stoichiometric amounts of hydrogen chloride. For example, a two- to four-fold excess of oxygen is customary. Since no loss of selectivity is to be feared, it may be economically advantageous to work at relatively high pressure and, accordingly, longer residence time than normal pressure.
  • suitable catalysts may also contain compounds of other noble metals, for example gold, palladium, platinum, osmium, iridium, silver, copper or rhenium. Suitable catalysts may further contain chromium (III) oxide.
  • the catalytic hydrogen chloride oxidation can be adiabatic or preferably isothermal or approximately isothermal, batchwise, but preferably continuously or as a fixed bed process, preferably as a fixed bed process, particularly preferably in tube bundle reactors to heterogeneous catalysts at a reactor temperature of 180 to 500 0 C, preferably 200 to 400 0th C, more preferably 220 to 350 ° C and a pressure of 1 to 25 bar (1000 to 25000 hPa), preferably 1.2 to 20 bar, more preferably 1, 5 to 17 bar and in particular 2.0 to 15 bar are performed ,
  • Typical reactors in which the catalytic hydrogen chloride oxidation is carried out are fixed bed or fluidized bed reactors.
  • the catalytic hydrogen chloride oxidation can preferably also be carried out in several stages.
  • a further preferred embodiment of a device suitable for the method consists in using a structured catalyst bed in which the catalyst activity increases in the flow direction.
  • Such structuring of the catalyst bed can be achieved by different impregnation of the catalyst support with active material or by different
  • an inert material for example, rings, cylinders or balls of titanium dioxide, zirconium dioxide or mixtures thereof,
  • Alumina, steatite, ceramic, glass, graphite or stainless steel can be used.
  • the inert material should preferably have similar external dimensions.
  • Suitable support materials which can be combined with tin dioxide are, for example, silicon dioxide, graphite, rutile or anatase titanium dioxide, zirconium dioxide, aluminum oxide or mixtures thereof, preferably titanium dioxide, zirconium dioxide, aluminum oxide or mixtures thereof, particularly preferably ⁇ - or ⁇ - Alumina or mixtures thereof.
  • the catalysts are suitable as promoters alkali metals such as lithium, sodium, potassium, rubidium and cesium, preferably lithium, sodium and potassium, more preferably potassium, alkaline earth metals such as magnesium, calcium, strontium and barium, preferably magnesium and calcium, particularly preferably magnesium, Rare earth metals such as scandium, yttrium, lanthanum, cerium, praseodymium and neodymium, preferably scandium, yttrium, lanthanum and cerium, more preferably lanthanum and cerium, or mixtures thereof.
  • alkali metals such as lithium, sodium, potassium, rubidium and cesium, preferably lithium, sodium and potassium, more preferably potassium, alkaline earth metals such as magnesium, calcium, strontium and barium, preferably magnesium and calcium, particularly preferably magnesium, Rare earth metals such as scandium, yttrium, lanthanum, cerium, praseodymium and neodymium, preferably scandium, yt
  • the moldings can then be dried at a temperature of 100 to 400 0 C, preferably 100 to 300 0 C, for example, under a nitrogen, argon or air atmosphere and optionally calcined.
  • the moldings are first dried at 100 to 150 0 C and then calcined at 200 to 400 0 C.
  • the conversion of hydrogen chloride in a single pass may preferably be limited to 15 to 90%, preferably 40 to 85%, particularly preferably 50 to 70%. Unreacted
  • Hydrogen chloride can be partially or completely separated into the catalytic after separation
  • Hydrogen chloride oxidation can be attributed.
  • the volume ratio of hydrogen chloride to oxygen at the reactor inlet is preferably 1: 1 to 20: 1, preferably 2: 1 to 8: 1, more preferably 2: 1 to 5: 1.
  • the heat of reaction of the catalytic hydrogen chloride oxidation can be used advantageously for the production of high-pressure steam. This can be used to operate a phosgenation reactor and / or distillation columns, in particular of isocyanate distillation columns.
  • the chlorine formed is separated off.
  • the separation step usually comprises several stages, namely the separation and optionally recycling of unreacted hydrogen chloride from the product gas stream of the catalytic hydrogen chloride oxidation, the drying of the obtained, substantially chlorine and oxygen-containing stream and the separation of chlorine from the dried stream.
  • the separation of unreacted hydrogen chloride and water vapor formed can be carried out by condensation of aqueous hydrochloric acid from the product gas stream of hydrogen chloride oxidation by cooling. Hydrogen chloride can also be absorbed in dilute hydrochloric acid or water.
  • the catalysts according to the invention for the hydrogen chloride oxidation are characterized by a high activity at low temperatures.
  • Example 1 Support of ruthenium oxide on Zin ⁇ (IV) oxide
  • the damp solid was dried h and then calcined at 120 0 C in a vacuum oven 4 at 300 0 C in the air flow, whereby a ruthenium oxide catalyst supported was obtained in the tin (rV) oxide.
  • the moist solid was dried at 120 ° C in a vacuum oven for 4 h and then calcined at 300 0 C in a stream of air, whereby a ruthenium oxide catalyst supported on titanium (IV) oxide was obtained.
  • Example 3 (reference): Blank test with tin dioxide
  • the catalysts from the example, the comparative example and the reference example were in a solid bed in a quartz reaction tube (diameter 10 mm) at 300 0 C with a gas mixture of 80 ml / min (STP) of hydrogen chloride and 80 ml / min (STP) oxygen flowed through.
  • STP 80 ml / min
  • STP 80 ml / min
  • the quartz reaction tube was heated by an electrically heated sand fluid bed. After 30 minutes, the product gas stream was passed into 16% potassium iodide solution for 10 minutes. The resulting iodine was then back titrated with 0.1 N thiosulfate standard solution to determine the amount of chlorine introduced. Table 1 shows the results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Chlor durch katalytische Gasphasenoxidation von Chlorwasserstoff mit Sauerstoff, worin der Katalysator Zinndioxid und mindestens eine Sauerstoff enthaltende Ruthenium-Verbindung umfasst.

Description

Verfahren zur Herstellung von Chlor durch Gasphasenoxidation
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Chlor durch katalytische Gasphasenoxidation von Chlorwasserstoff mit Sauerstoff, worin der Katalysator Zinndioxid und mindestens eine Sauerstoff enthaltende Ruthenium-Verbindung umfasst.
Das von Deacon 1868 entwickelte Verfahren der katalytischen Chlorwasserstoffoxidation mit Sauerstoff in einer exothermen Gleichgewichtsreaktion stand am Anfang der technischen Chlorchemie:
4 HCl + O2 => 2 Cl2 + 2 H2O.
Durch die Chloralkalielektrolyse wurde das Deacon-V erfahren jedoch stark in den Hintergrund gedrängt. Nahezu die gesamte Produktion von Chlor erfolgte durch Elektrolyse wässriger Kochsalzlösungen [Ullmann Encyclopedia of industrial chemistry, seventh release, 2006]. Die Attraktivität des Deacon-V erfahrens nimmt jedoch in jüngster Zeit wieder zu, da der weltweite Chlorbedarf stärker wächst als die Nachfrage nach Natronlauge. Dieser Entwicklung kommt das Verfahren zur Herstellung von Chlor durch Oxidation von Chlorwasserstoff entgegen, das von der Natronlaugenherstellung entkoppelt ist. Darüber hinaus fällt Chlorwasserstoff in großen Mengen beispielsweise bei Phosgenierungsreaktionen, etwa bei der Isocyanat-Herstellung, als Koppelprodukt an.
Die Oxidation von Chlorwasserstoff zu Chlor ist eine Gleichgewichtsreaktion. Die Lage des Gleichgewichts verschiebt sich mit zunehmender Temperatur zu Ungunsten des gewünschten Endproduktes. Es ist daher vorteilhaft, Katalysatoren mit möglichst hoher Aktivität einzusetzen, die die Reaktion bei niedriger Temperatur ablaufen lassen.
Erste Katalysatoren für die Chlorwasserstoffoxidation enthielten als aktive Komponente Kupferchlorid bzw. -oxid und wurden schon 1868 von Deacon beschrieben. Diese wiesen jedoch bei niedriger Temperatur (< 4000C) nur geringe Aktivitäten auf. Durch eine Erhöhung der Reaktionstemperatur konnte zwar die Aktivität gesteigert werden, nachteilig war jedoch, dass die Flüchtigkeit der Aktivkomponenten bei höheren Temperaturen zu einer schnellen Abnahme der Katalysatoraktivität führte.
In EP 0 184 413 ist die Oxidation von Chlorwasserstoff mit Katalysatoren auf Basis von Chromoxiden beschrieben. Jedoch wies das hiermit realisierte Verfahren eine unzureichende Aktivität und hohe Reaktionstemperaturen auf. Erste Katalysatoren für die Chlorwasserstoffoxidation mit der katalytisch aktiven Komponente
Ruthenium wurden schon 1965 in DE 1 567 788 beschrieben. In diesem Fall ausgehend von RuCU z.B. geträgert auf Siliziumdioxid und Aluminiumoxid. Die Aktivität dieser RuCySiO2 Katalysatoren war jedoch sehr gering. Weitere Ru-basierte Katalysatoren mit der Aktivmasse Rutheniumoxid oder Rutheniummischoxid und als Trägermaterial verschiedene Oxide, wie bspw. Titandioxid, Zirkondioxid, usw. wurden in DE-A 197 48 299 beansprucht. Dabei beträgt der Gehalt an Rutheniumoxid 0,1 Gew.-% bis 20 Gew.-% und der mittlere Teilchendurchmesser von Rutheniumoxid 1,0 nm bis 10,0 nm. Weitere auf Titandioxid oder Zirkondioxid geträgerte Ru- Katalysatoren sind aus DE-A 197 34 412 bekannt. Für die Herstellung der darin beschriebenen Rutheniumchlorid und Rutheniumoxid-Katalysatoren, die mindestens eine Verbindung Titandioxid und Zirkondioxid enthalten, wurden eine Reihe von Ru-Ausgangsverbindungen angegeben, wie bspw. Ruthenium-Carbonyl-Komplexe, Rutheniumsalze anorganischer Säuren, Ruthenium- Nitrosyl-Komplexe, Ruthenium-Amin-Komplexe, Rutheniumkomplexe organischer Amine oder Ruthenium-Acetylacetonat-Komplexe. In einer bevorzugten Ausführung wurde Tiθ2 in Form von Rutil als Träger eingesetzt. Die Rutheniumoxidkatalysatoren besitzen eine recht hohe Aktivität, jedoch ist deren Herstellung aufwändig und erfordert eine Reihe von Operationen, wie Auffällung, Imprägnierung mit anschließender Fällung usw., deren Scale-up technisch schwierig ist. Zusätzlich neigen auch Ru-Oxidkatalysatoren bei hohen Temperaturen zur Versinterung und somit zur Deaktivierung.
Die EP 0 936 184 A2 beschreibt ein Verfahren zur katalytischen Chlorwasserstoffoxidation worin der Katalysator aus einer extensiven Liste von möglichen Katalysatoren ausgewählt wird. Unter den Katalysatoren befindet sich die mit der Nummer (6) bezeichnete Variante, die aus der aktiven Komponente (A) und einer Komponente (B) besteht. Die Komponente (B) ist eine Verbindungskomponente die eine bestimmte thermische Leitfähigkeit aufweist. Als Beispiel wird unter anderen Zinndioxid erwähnt. Daneben kann die Komponente (A) auf einen Träger aufgezogen werden. Mögliche Träger schließen Zinndioxid jedoch nicht ein. Es gibt auch kein einziges Beispiel, in dem Zinndioxid verwendet wurde.
Die bisher entwickelten Katalysatoren für das Deacon-Verfahren weisen eine Reihe von Unzulänglichkeiten auf. Bei niedrigen Temperaturen ist deren Aktivität unzureichend. Durch eine Erhöhung der Reaktionstemperatur konnte zwar die Aktivität gesteigert werden, jedoch führte dieses zu Versinterung/Deaktivierung oder zum Verlust der katalytischen Komponente.
Die Aufgabe der vorliegenden Erfindung bestand darin, ein katalytisches System bereit zustellen, welches die Oxidation von Chlorwasserstoff bei niedrigen Temperaturen und mit hohen Aktivitäten bewerkstelligt. Gelöst wird die Aufgabe durch die Entwicklung einer ganz spezifischen Kombination aus katalytisch aktiven Komponenten und einem spezifischem Trägermaterial. Überraschenderweise wurde gerunden, dass durch die gezielte Trägerung von Zinndioxid mit einer
Sauerstoff enthaltenden Ruthenium-Verbindung, aufgrund einer besonderen Wechselwirkung zwischen katalytisch aktiver Komponente und Träger, neue hochaktive Katalysatoren bereitgestellt werden, die insbesondere bei Temperaturen von < 350 0C bei der Chlorwasserstoff-Oxidation eine hohe katalytische Aktivität aufweisen. Ein weiterer Vorteil des erfindungsgemäßen Katalysatorssystems ist die einfache und leicht zu skalierende Aufbringung der katalytisch aktiven Komponente auf den Träger.
Die vorliegende Erfindung stellt somit ein Verfahren zur Herstellung von Chlor durch katalytische Gasphasenoxidation von Chlorwasserstoff mit Sauerstoff, worin der Katalysator Zinndioxid und mindestens eine Sauerstoff enthaltende Ruthenium-Verbindung umfasst. Gegenstand der Erfindung ist auch ein Katalysator für Gasphasenoxidation auf Basis von Zinndioxid als Trägermaterial und einer Sauerstoff enthaltenden Rutheniumverbindung
In einer bevorzugten Ausführung wird Zinn(IV)oxid als Träger der katalytisch aktiven Komponente eingesetzt, besonders bevorzugt Zinndioxid in Rutilstruktur.
Erfindungsgemäß wird als katalytisch aktive Komponente eine Sauerstoff enthaltende Ruthenium- Verbindung verwendet. Dabei handelt es sich um eine Verbindung bei der Sauerstoff ionisch bis polarisiert kovalent an ein Rutheniumatom gebunden ist.
Die katalytisch aktive bevorzugte Rutheniumoxyhalogenid-Verbindung im Sinne der Erfindung ist bevorzugt durch ein Verfahren erhältlich, welches zunächst das Aufbringen einer wässrigen Lösung oder Suspension von mindestens einer Halogenid, z. B. Chlorid, enthaltenden Rutheniumverbindung auf Zinndioxid und die anschließende Fällung und gegebenenfalls die Kalzinierung des gefällten Produktes umfasst.
Die Fällung kann alkalisch unter direkter Bildung der Sauerstoff enthaltenden Ruthenium- Verbindung durchgeführt werden. Sie kann auch reduzierend unter primärer Bildung von metallischem Ruthenium erfolgen, das anschließend unter Sauerstoffzufuhr kalziniert wird, wobei sich die Sauerstoff enthaltende Ruthenium-Verbindung bildet.
Alternativ kann die Sauerstoff enthaltende Rutheniumverbindung auch durch Aufbringen von metallischem Ruthenium auf Zinndioxid und anschließende Oxidation des Rutheniummetalls in einem Sauerstoff enthaltenden Gas oder insbesondere Aussetzen des metallischen Rutheniums auf Zinndioxid einer Gaszusammensetzung der Eduktgase für eine Deacon-Reaktion, d. h. mindestens HCl und Sauerstoff enthaltende Gase, erhalten werden. Beispielsweise wird Ruthenium als Metall mittels CVD- oder MOCVD-V erfahren auf das Zinndioxid aufgebracht. Ein besonders bevorzugtes Verfahren schließt das Aufbringen einer wässrigen Lösung von
Rutheniumchlorid auf das Zinndioxid ein.
Das Aufbringen schließt insbesondere das Tränken des gegebenenfalls frisch gefällten Zinndioxids mit der Lösung der Halogenid-enthaltenden Ruthenium-Verbindung ein.
Nach dem Aufbringen der Halogenid-enthaltenden Ruthenium-Verbindung erfolgt im allgemeinen ein Fällungs- und ein Trocknungs- oder Kalzinierungsschritt, der zweckmäßig in Anwesenheit von Sauerstoff bzw. Luft bei Temperaturen von bis zu 6500C erfolgt.
Üblicherweise liegt die Beladung der katalytisch aktiven Komponente, d.h. der Sauerstoff enthaltenen Rutheniumverbindung, im Bereich von 0,1 -80 Gew.-%, bevorzugt im Bereich von 1- 50 Gew.-%, besonders bevorzugt im Bereich von 1-20 Gew.-%, bezogen auf das Gesamtgewicht des Katalysators (Katalysator-Komponente und Träger).
Besonders bevorzugt kann die katalytische Komponente, d.h. die Sauerstoff enthaltende Rutheniumverbindung beispielsweise durch Feucht- und Nass-lmprägnierung eines Trägers mit geeigneten in Lösung vorhandenen Ausgangsverbindungen oder Ausgangsverbindungen in flüssiger oder kolloidaler Form, Auf- und Co-Auffällverfahren, sowie Ionenaustausch und Gasphasenbeschichtung (CVD, PVD) auf den Träger aufgebracht werden.
Als Promotoren kommen basisch wirkende Metalle in Frage (z.B. Alkali, Erdalkali und Seltenerdmetalle), bevorzugt sind Alkalimetalle insbesondere Na und Cs und Erdalkalimetalle, besonders bevorzugt sind Erdalkalimetalle, insbesondere Sr und Ba.
Die Promotoren können, ohne darauf beschränkt zu sein, durch Imprägnier- und CVD-V erfahren auf den Katalysator aufgebracht werden, bevorzugt ist eine Imprägnierung, insbesondere bevorzugt nach Aufbringen der katalytischen Hauptkomponente.
Zur Stabilisierung der Dispersion der katalytischen Hauptkomponente auf dem Träger können beispielsweise ohne darauf beschränkt zu sein, verschiedene Dispersionsstabilisatoren wie beispielsweise Scandiumoxide, Manganoxide und Lanthanoxide usw. eingesetzt werden Die Stabilisatoren werden bevorzugt zusammen mit der katalytischen Hauptkomponente durch Imprägnierung und/oder Fällung aufgebracht.
Das erfindungsgemäß verwendete Zinndioxid ist kommerziell erhältlich (z.B. von Chempur, Alfa Aesar) oder beispielsweise durch alkalische Fällung von Zinn(IV)-chlorid und anschließende Trocknung erhältlich. Es weist insbesondere BET-Oberflächen von etwa 1 bis 300 m2/g auf.
Das als erfindungsgemäßer Träger verwendete Zinndioxid kann unter thermischer Belastung (wie bei Temperaturen von mehr als 2500C) einer Verringerung der spezifischen Oberfläche unterliegen, was mit einer Verringerung der Katalysatoraktivität einhergehen kann. Die vorstehend erwähnten
Dispersionsstabilisatoren können auch dazu dienen, die Oberfläche des Zinndioxids bei hohen Temperaturen zu stabilisieren.
Die Katalysatoren können unter Normaldruck oder vorzugsweise bei vermindertem Druck bevorzugt bei 40 bis 2000C getrocknet werden. Die Trocknungsdauer beträgt bevorzugt 10 min bis 6 h.
Bevorzugt wird der neue Katalysator wie oben bereits beschrieben in den als Deacon-Prozess bekannten katalytischen Verfahren eingesetzt. Hierbei wird Chlorwasserstoff mit Sauerstoff in einer exothermen Gleichgewichtsreaktion zu Chlor oxidiert, wobei Wasserdampf anfällt. Die Reaktionstemperatur beträgt üblicherweise 150 bis 5000C, der übliche Reaktionsdruck beträgt 1 bis 25 bar. Da es sich um eine Gleichgewichtsreaktion handelt, ist es zweckmäßig, bei möglichst niedrigen Temperaturen zu arbeiten, bei denen der Katalysator noch eine ausreichende Aktivität aufweist. Ferner ist es zweckmäßig, Sauerstoff in überstöchiometrischen Mengen zum Chlorwasserstoff einzusetzen. Üblich ist beispielsweise ein zwei- bis vierfacher Sauerstoff- Überschuss. Da keine Selektivitätsverluste zu befürchten sind, kann es wirtschaftlich vorteilhaft sein, bei relativ hohem Druck und dementsprechend bei gegenüber Normaldruck längerer Verweilzeit zu arbeiten.
Geeignete Katalysatoren können ergänzend zu einer Rutheniumverbindung auch Verbindungen anderer Edelmetalle, beispielsweise Gold, Palladium, Platin, Osmium, Iridium, Silber, Kupfer oder Rhenium enthalten. Geeignete Katalysatoren können ferner Chrom(III)oxid enthalten.
Die katalytische Chlorwasserstoff- Oxidation kann adiabatisch oder bevorzugt isotherm oder annähernd isotherm, diskontinuierlich, bevorzugt aber kontinuierlich als Fließ- oder Festbettverfahren, bevorzugt als Festbettverfahren, besonders bevorzugt in Rohrbündelreaktoren an Heterogenkatalysatoren bei einer Reaktortemperatur von 180 bis 5000C, bevorzugt 200 bis 4000C, besonders bevorzugt 220 bis 350°C und einem Druck von 1 bis 25 bar (1000 bis 25000 hPa), bevorzugt 1,2 bis 20 bar, besonders bevorzugt 1 ,5 bis 17 bar und insbesondere 2,0 bis 15 bar durchgeführt werden.
Übliche Reaktionsapparate, in denen die katalytische Chlorwasserstoff-Oxidation durchgeführt wird, sind Festbett- oder Wirbelbettreaktoren. Die katalytische Chlorwasserstoff- Oxidation kann bevorzugt auch mehrstufig durchgeführt werden.
Bei der adiabatischen, der isothermen oder annähernd isothermen Fahrweise können auch mehrere, also 2 bis 10, bevorzugt 2 bis 6, besonders bevorzugt 2 bis 5, insbesondere 2 bis 3, in Reihe geschaltete Reaktoren mit Zwischenkühlung eingesetzt werden. Der Sauerstoff kann entweder vollständig zusammen mit dem Chlorwasserstoff vor dem ersten Reaktor oder über die verschiedenen Reaktoren verteilt zugegeben werden. Diese Reihenschaltung einzelner Reaktoren kann auch in einem Apparat zusammengeführt werden.
Eine weitere bevorzugte Ausführungsform einer für das Verfahren geeigneten Vorrichtung besteht darin, dass man eine strukturierte Katalysatorschüttung einsetzt, bei der die Katalysatoraktivität in Strömungsrichtung ansteigt. Eine solche Strukturierung der Katalysatorschüttung kann durch unterschiedliche Tränkung der Katalysatorträger mit Aktivmasse oder durch unterschiedliche
Verdünnung des Katalysators mit einem Inertmaterial erfolgen. Als Inertmaterial können beispielsweise Ringe, Zylinder oder Kugeln aus Titandioxid, Zirkondioxid oder deren Gemischen,
Aluminiumoxid, Steatit, Keramik, Glas, Graphit oder Edelstahl eingesetzt werden. Beim bevorzugten Einsatz von Katalysatorformkörpern sollte das Inertmaterial bevorzugt ähnliche äußeren Abmessungen haben.
Als Katalysatorformkörpεr eignen sich Foπnkörper mit beliebigen Formen, bevorzugt sind Tabletten, Ringe, Zylinder, Sterne, Wagenräder oder Kugeln, besonders bevorzugt sind Ringe, Zylinder oder Sternstränge als Form.
Als Trägermaterialen, die mit Zinndioxid kombiniert werden können, eignen sich beispielsweise Siliziumdioxid, Graphit, Titandioxid mit Rutil- oder Anatas-Struktur, Zirkondioxid, Aluminiumoxid oder deren Gemische, bevorzugt Titandioxid, Zirkondioxid, Aluminiumoxid oder deren Gemische, besonders bevorzugt γ- oder δ-Aluminiumoxid oder deren Gemische.
Zur Dotierung der Katalysatoren eignen sich als Promotoren Alkalimetalle wie Lithium, Natrium, Kalium, Rubidium und Cäsium, bevorzugt Lithium, Natrium und Kalium, besonders bevorzugt Kalium, Erdalkalimetalle wie Magnesium, Calcium, Strontium und Barium, bevorzugt Magnesium und Calcium, besonders bevorzugt Magnesium, Seltenerdmetalle wie Scandium, Yttrium, Lanthan, Cer, Praseodym und Neodym, bevorzugt Scandium, Yttrium, Lanthan und Cer, besonders bevorzugt Lanthan und Cer, oder deren Gemische.
Die Formkörper können anschließend bei einer Temperatur von 100 bis 4000C, bevorzugt 100 bis 3000C beispielsweise unter einer Stickstoff-, Argon- oder Luftatmosphäre getrocknet und gegebenenfalls calciniert werden. Bevorzugt werden die Formkörper zunächst bei 100 bis 1500C getrocknet und anschließend bei 200 bis 4000C calciniert.
Der Umsatz an Chlorwasserstoff im einfachen Durchgang kann bevorzugt auf 15 bis 90 %, bevorzugt 40 bis 85%, besonders bevorzugt 50 bis 70% begrenzt werden. Nicht umgesetzter
Chlorwasserstoff kann nach Abtrennung teilweise oder vollständig in die katalytische
Chlorwasserstoff-Oxidation zurückgeführt werden. Das Volumenverhältnis von Chlorwasserstoff zu Sauerstoff am Reaktoreintritt beträgt bevorzugt 1 :1 bis 20:1 , bevorzugt 2:1 bis 8: 1, besonders bevorzugt 2:1 bis 5:1.
Die Reaktionswärme der katalytischen Chlorwasserstoff-Oxidation kann in vorteilhafter Weise zur Erzeugung von Hochdruck-Wasserdampf genutzt werden. Dieser kann zum Betrieb eines Phosgenierungsreaktors und oder von Destillationskolonnen, insbesondere von Isocyanat- Destillationskolonnen genutzt werden.
In einem weiteren Schritt wird das gebildete Chlor abgetrennt. Der Abtrennschritt umfasst üblicherweise mehrere Stufen, nämlich die Abtrennung und gegebenenfalls Rückführung von nicht umgesetztem Chlorwasserstoff aus dem Produktgasstrom der katalytischen Chlorwasserstoff- Oxidation, die Trocknung des erhaltenen, im wesentlichen Chlor und Sauerstoff enthaltenden Stroms sowie die Abtrennung von Chlor aus dem getrockneten Strom.
Die Abtrennung von nicht umgesetztem Chlorwasserstoff und von gebildetem Wasserdampf kann durch Auskondensieren von wässriger Salzsäure aus dem Produktgasstrom der Chlorwasserstoffoxidation durch Abkühlung erfolgen. Chlorwasserstoff kann auch in verdünnter Salzsäure oder Wasser absorbiert werden.
Die erfindungsgemäßen Katalysatoren für die Chlorwasserstoffoxidation zeichnen sich durch eine hohe Aktivität bei niedrigen Temperaturen aus.
Die folgenden Beispiele veranschaulichen die vorliegende Erfindung.
Beispiele
Beispiel 1: Trägerung von Rutheniumoxid auf Zinπ(IV)oxid
In einem Rundkolben mit Tropftrichter und Rückflusskühler wurden 20 g handelübliches Zinn(IV)- oxid in einer Lösung aus im Handel erhältlichen 2,35 g Rutheniumchlorid-n-Hydrat in 50 ml Wasser suspendiert und 30 min gerührt. Dann wurden innerhalb von 30 min 24 g 10%-ige Natronlauge zugetropft und 30 min gerührt Anschließend wurden innerhalb von 15 min weitere 12 g 10%-ige Natronlauge zugetropft und die Reaktionsmischung auf 65°C erhitzt und 1 h bei dieser Temperatur gehalten. Nach Abkühlen wurde die Suspension abfiltriert und der Feststoff 5-mal mit 50 ml Wasser gewaschen. Der feuchte Feststoff wurde bei 1200C im Vakuumtrockenschrank 4 h getrocknet und anschließend bei 3000C im Luftstrom kalziniert, wobei ein Rutheniumoxidkatalysator geträgert auf Zinn(rV)-oxid erhalten wurde. Die berechnete Menge an Ruthenium betrag Ru/(RuO2 + SnO2) = 4,7 Gew.-% .
Beispiel 2: Trägerung von Rutbeniumoxid auf Titan(IV)oxid (Vergleich)
In einem Rundkolben mit Tropftrichter und Rückflusskühler wurden 20 g handelübliches Titan(IV)-oxid in einer Lösung aus im Handel erhältlichen 2,35 g Rutheniumchlorid-n-Hydrat in 50 ml Wasser suspendiert und 30 min gerührt. Dann wurden innerhalb von 30 min 24 g 10%-ige Natronlauge zugetropft und 30 min gerührt Anschließend wurden innerhalb von 15 min weitere 12 g 10%-ige Natronlauge zugetropft und die Reaktionsmischung auf 65°C erhitzt und 1 h bei dieser Temperatur gehalten. Nach Abkühlen wurde die Suspension abfiltriert und der Feststoff 5-mal mit 50 ml Wasser gewaschen. Der feuchte Feststoff wurde bei 120°C im Vakuumtrockenschrank 4 h getrocknet und anschließend bei 3000C im Luftstrom kalziniert, wobei ein Rutheniumoxidkatalysator geträgert auf Titan(IV)-oxid erhalten wurde. Die berechnete Menge an Ruthenium betrug Ru/(RuO2 + TiO2) = 4,7 Gew.-% .
Beispiel 3 (Referenz): Blindversuch mit Zinndioxid
Als Blindversuch wurde statt eines Katalysators Zinndioxid verwendet und wie nachfolgend beschrieben getestet. Die geringe Menge produzierten Chlors ist auf die Gasphasenreaktion zurückzuführen. Katalysator-Tests
Einsatz der Katalysatoren in der HCl-Oxidation
Die Katalysatoren aus dem Beispiel, dem Vergleichsbeispiel und dem Referenzbeispiel wurden in einer Festbettschüttung in einem Quarzreaktionsrohr (Durchmesser 10 mm) bei 3000C mit einem Gasgemisch aus 80 ml/min (STP) Chlorwasserstoff und 80 ml/min (STP) Sauerstoff durchströmt. Das Quarzreaktionsrohr wurde durch eine elektrisch beheizte Sandwirbelschicht beheizt. Nach 30 min wurde der Produktgasstrom für 10 min in 16%-ige Kaliumiodidlösung geleitet. Das entstandene Iod wurde anschließend mit 0,1 N Thiosulfat-Maßlösung zurücktitriert, um die eingeleitete Chlormenge festzustellen. Tabelle 1 zeigt die Ergebnisse.
Tabelle 1 : Aktivität in der HCl-Oxidation
Beispiel Zusammensetzung Chlorbildung Chlorbildung
mmol/min. g mmol/min.g
(Kat) (Ru)
1 RuO2/SnO2 (4,7% 0,48 10,3
Ru)
2 (VgI.) RuO2/TiO2 (4,7% 0,38 8,1
Ru)
3 (Ref.) SnO2 (0,08)

Claims

Patentansprüche:
1. Verfahren zur Herstelllang von Chlor durch katalytische Gasphasenoxidation von Chlorwasserstoff mit Sauerstoff, worin der Katalysator Zinndioxid und mindestens eine Sauerstoff enthaltende Ruthenium-Verbindung umfasst.
2. Verfahren nach Anspruch 1 , worin der Katalysator erhältlich ist, durch ein Verfahren, welches das Aufbringen einer wässrigen Lösung oder Suspension von mindestens einer Halogenid enthaltenden Rutheniumverbindungen auf Zinndioxid und die alkalische Fällung der Sauerstoff enthaltenden Ruthenium-Verbindung umfasst.
3. Verfahren nach Anspruch 2, worin eine wässrige Lösung von RuC13 verwendet wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, worin die Reaktionstemperatur bei der katalytischen Gasphasenoxidation bis zu 450°C beträgt.
5. Verfahren nach einem der Ansprüche 1 bis 4, worin das Zinndioxid in der Rutilform vorliegt.
6. Katalysator für Gasphasenoxidationen auf Basis von Zinndioxid als Trägermaterial und einer Sauerstoff enthaltenden Rutheniumverbindung.
EP07725053A 2006-05-23 2007-05-10 Verfahren zur herstellung von chlor durch gasphasenoxidation Withdrawn EP2027062A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006024543A DE102006024543A1 (de) 2006-05-23 2006-05-23 Verfahren zur Herstellung von Chlor durch Gasphasenoxidation
PCT/EP2007/004131 WO2007134721A2 (de) 2006-05-23 2007-05-10 Verfahren zur herstellung von chlor durch gasphasenoxidation

Publications (1)

Publication Number Publication Date
EP2027062A2 true EP2027062A2 (de) 2009-02-25

Family

ID=38622212

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07725053A Withdrawn EP2027062A2 (de) 2006-05-23 2007-05-10 Verfahren zur herstellung von chlor durch gasphasenoxidation

Country Status (10)

Country Link
US (1) US20070292336A1 (de)
EP (1) EP2027062A2 (de)
JP (1) JP2009537446A (de)
KR (1) KR20090020635A (de)
CN (1) CN101448735A (de)
BR (1) BRPI0711895A2 (de)
DE (1) DE102006024543A1 (de)
RU (1) RU2008150595A (de)
TW (1) TW200808655A (de)
WO (1) WO2007134721A2 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013004649A1 (en) 2011-07-05 2013-01-10 Bayer Intellectual Property Gmbh Process for the production of chlorine using a cerium oxide catalyst in an adiabatic reaction cascade
WO2013004651A1 (en) 2011-07-05 2013-01-10 Bayer Intellectual Property Gmbh Process for the production of chlorine using a cerium oxide catalyst in an isothermic reactor
WO2013060628A1 (de) 2011-10-24 2013-05-02 Bayer Intellectual Property Gmbh Katalysator und verfahren zur herstellung von chlor durch gasphasenoxidation
EP3421416A1 (de) 2017-06-29 2019-01-02 Covestro Deutschland AG Photokatalytische oxidation von chlorwasserstoff mit kohlenstoffmonoxid
EP3670444A1 (de) 2018-12-18 2020-06-24 Covestro Deutschland AG Photokatalytische oxidation von salzsäure mit sauerstoff

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007020148A1 (de) 2007-04-26 2008-10-30 Bayer Materialscience Ag Prozess zur Herstellung von Chlor aus HCI
DE102007020096A1 (de) * 2007-04-26 2008-10-30 Bayer Materialscience Ag Verfahren zur Oxidation von Kohlenmonoxid in einem HCI enthaltenden Gasstrom
DE102008015406A1 (de) 2008-03-22 2009-09-24 Bayer Materialscience Ag Verfahren zur Regeneration eines mit Schwefel in Form von Schwefelverbindungen vergifteten, Ruthenium oder Rutheniumverbindungen enthaltenden Katalysators
DE102008039278A1 (de) * 2008-08-22 2010-02-25 Bayer Materialscience Ag Verfahren zur Gewinnung von metallischem Ruthenium oder Rutheniumverbindungen aus Ruthenium-haltigen Feststoffen
DE102008052012A1 (de) 2008-10-17 2010-04-22 Bayer Materialscience Ag Katalysator und Verfahren zur Herstellung von Chlor durch Gasphasenoxidation
DE102009034773A1 (de) 2009-07-25 2011-01-27 Bayer Materialscience Ag Verfahren zur Herstellung von Chlor durch Gasphasenoxidation an nanostrukturierten Rutheniumträgerkatalysatoren
JP5589239B2 (ja) * 2009-11-27 2014-09-17 住友化学株式会社 担持酸化ルテニウムの製造方法および塩素の製造方法
DE102010039735A1 (de) 2010-08-25 2012-03-01 Bayer Materialscience Aktiengesellschaft Katalysator und Verfahren zur Herstellung von Chlor durch Gasphasenoxidation
DE102010039734A1 (de) 2010-08-25 2012-03-01 Bayer Materialscience Aktiengesellschaft Katalysator und Verfahren zur Herstellung von Chlor durch Gasphasenoxidation
DE102011005897A1 (de) 2011-03-22 2012-09-27 Bayer Materialscience Aktiengesellschaft Verfahren zur Bereitstellung von Chlor für chemische Umsetzungen
WO2017194537A1 (de) * 2016-05-12 2017-11-16 Covestro Deutschland Ag Photokatalytische oxidation von chlorwasserstoff mit sauerstoff
EP3403723A1 (de) 2017-05-19 2018-11-21 Covestro Deutschland AG Verfahren zur regeneration eines vergifteten, ruthenium oder rutheniumverbindungen enthaltenden katalysators

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4172017A (en) * 1977-10-27 1979-10-23 Abraham Bernard M Process for producing chlorine from ammonium chloride
CN1003504B (zh) * 1984-12-03 1989-03-08 三井东圧化学有限公司 氯气制备方法
US5176897A (en) * 1989-05-01 1993-01-05 Allied-Signal Inc. Catalytic destruction of organohalogen compounds
GB9409389D0 (en) * 1994-05-11 1994-06-29 Johnson Matthey Plc Catalytic combustion
DE19734412B4 (de) * 1996-08-08 2008-04-10 Sumitomo Chemical Co. Ltd. Verfahren zur Herstellung von Chlor
CN1182717A (zh) * 1996-10-31 1998-05-27 住友化学工业株式会社 氯气的生产方法
US6852667B2 (en) * 1998-02-16 2005-02-08 Sumitomo Chemical Company Limited Process for producing chlorine
JP3812101B2 (ja) * 1997-11-17 2006-08-23 三菱化学株式会社 アルデヒド類及び、又はアルコール類の製造法
KR100533877B1 (ko) * 2003-05-03 2005-12-29 동양종합건설 주식회사 다이옥신을 포함한 방향족할로겐화합물, 일산화탄소 및질소산화물을 제거하는 촉매 및 이의 용도

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007134721A2 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013004649A1 (en) 2011-07-05 2013-01-10 Bayer Intellectual Property Gmbh Process for the production of chlorine using a cerium oxide catalyst in an adiabatic reaction cascade
WO2013004651A1 (en) 2011-07-05 2013-01-10 Bayer Intellectual Property Gmbh Process for the production of chlorine using a cerium oxide catalyst in an isothermic reactor
WO2013060628A1 (de) 2011-10-24 2013-05-02 Bayer Intellectual Property Gmbh Katalysator und verfahren zur herstellung von chlor durch gasphasenoxidation
EP3421416A1 (de) 2017-06-29 2019-01-02 Covestro Deutschland AG Photokatalytische oxidation von chlorwasserstoff mit kohlenstoffmonoxid
EP3670444A1 (de) 2018-12-18 2020-06-24 Covestro Deutschland AG Photokatalytische oxidation von salzsäure mit sauerstoff
WO2020127022A1 (de) 2018-12-18 2020-06-25 Covestro Intellectual Property Gmbh & Co. Kg Photokatalytische oxidation von salzsäure mit sauerstoff

Also Published As

Publication number Publication date
DE102006024543A1 (de) 2007-11-29
RU2008150595A (ru) 2010-06-27
WO2007134721A3 (de) 2008-03-27
JP2009537446A (ja) 2009-10-29
CN101448735A (zh) 2009-06-03
TW200808655A (en) 2008-02-16
WO2007134721A2 (de) 2007-11-29
KR20090020635A (ko) 2009-02-26
BRPI0711895A2 (pt) 2012-01-10
US20070292336A1 (en) 2007-12-20

Similar Documents

Publication Publication Date Title
EP2027062A2 (de) Verfahren zur herstellung von chlor durch gasphasenoxidation
EP2608879B1 (de) Katalysator und verfahren zur herstellung von chlor durch gasphasenoxidation
EP2026905A1 (de) Verfahren zur herstellung von chlor durch gasphasenoxidation
EP2257372B1 (de) Verfahren zur regeneration eines mit schwefel in form von schwefelverbindungen vergifteten, ruthenium oder rutheniumverbindungen enthaltenden katalysators
EP2178637A1 (de) Katalysator und verfahren zur herstellung von chlor durch gasphasenoxidation von chlorwasserstoff
DE102005040286A1 (de) Mechanisch stabiler Katalysator auf Basis von alpha-Aluminiumoxid
EP2150497A2 (de) Verfahren zur rückgewinnung von ruthenium aus einem rutheniumhaltigen geträgerten katalysatormaterial
WO2010076262A1 (de) Katalysator für die chlorwasserstoffoxidation enthaltend ruthenium und nickel
EP2771108A1 (de) Katalysator und verfahren zur herstellung von chlor durch gasphasenoxidation
EP2157198A1 (de) Verfahren zur Gewinnung von metallischem Ruthenium oder Rutheniumverbindungen aus Ruthenium-haltigen Feststoffen
EP2608880B1 (de) Verfahren zur herstellung von chlor durch gasphasenoxidation
EP2177268A1 (de) Ru/MgF2 Katalysator und Verfahren zur Herstellung von Chlor durch Gasphasenoxidation
EP2401072B1 (de) Katalysator für die chlorwasserstoffoxidation enthaltend ruthenium und silber und/oder calcium
EP1546032A1 (de) Katalysator für die katalytische chlorwasserstoff-oxidation
DE102009021675A1 (de) Verfahren zur Herstellung von Chlor durch Gasphasenoxidation von Chlorwasserstoff in Gegenwart eines Ceroxid-Katalysators
EP2054340A2 (de) Verfahren zur herstellung von chlor durch gasphasenoxidation
EP3411146A1 (de) Katalysator und verfahren zur herstellung von chlor durch gasphasenoxidation
DE102007033114A1 (de) Verfahren zur Herstellung von Chlor durch Gasphasenoxidation von Chlorwasserstoff
WO2007125004A1 (de) Verfahren zur herstellung von katalysatoren für die katalytische chlorwasserstoff-oxidation
WO2011006612A1 (de) Verfahren zur herstellung von chlor durch gasphasenoxidation von chlorwasserstoff in anwesenheit von schwefeloxiden

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20081223

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17Q First examination report despatched

Effective date: 20090525

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20131203