EP2457412B1 - Heater, in particular high-temperature heater, and method for the production thereof - Google Patents
Heater, in particular high-temperature heater, and method for the production thereof Download PDFInfo
- Publication number
- EP2457412B1 EP2457412B1 EP10736624.7A EP10736624A EP2457412B1 EP 2457412 B1 EP2457412 B1 EP 2457412B1 EP 10736624 A EP10736624 A EP 10736624A EP 2457412 B1 EP2457412 B1 EP 2457412B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- layer
- electrically conductive
- substrate
- protective layer
- heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 36
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 239000010410 layer Substances 0.000 claims description 119
- 238000010438 heat treatment Methods 0.000 claims description 73
- 239000011241 protective layer Substances 0.000 claims description 48
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 30
- 239000000463 material Substances 0.000 claims description 22
- 239000002041 carbon nanotube Substances 0.000 claims description 20
- 239000000758 substrate Substances 0.000 claims description 20
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 16
- 239000010439 graphite Substances 0.000 claims description 13
- 229910002804 graphite Inorganic materials 0.000 claims description 13
- 230000009969 flowable effect Effects 0.000 claims description 10
- 229920000084 Gum arabic Polymers 0.000 claims description 9
- 241000978776 Senegalia senegal Species 0.000 claims description 9
- 235000010489 acacia gum Nutrition 0.000 claims description 9
- 239000000205 acacia gum Substances 0.000 claims description 9
- 239000000919 ceramic Substances 0.000 claims description 9
- 239000000945 filler Substances 0.000 claims description 8
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 239000000853 adhesive Substances 0.000 claims description 5
- 239000002241 glass-ceramic Substances 0.000 claims description 5
- 238000005507 spraying Methods 0.000 claims description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 4
- 238000007639 printing Methods 0.000 claims description 4
- 239000012153 distilled water Substances 0.000 claims description 3
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 claims description 3
- 239000007864 aqueous solution Substances 0.000 claims description 2
- 238000009434 installation Methods 0.000 claims 8
- 230000005611 electricity Effects 0.000 claims 2
- 239000011159 matrix material Substances 0.000 claims 1
- 239000012876 carrier material Substances 0.000 description 31
- 239000006185 dispersion Substances 0.000 description 9
- 239000002131 composite material Substances 0.000 description 6
- 238000010411 cooking Methods 0.000 description 6
- 235000011837 pasties Nutrition 0.000 description 6
- 230000006835 compression Effects 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- 239000004020 conductor Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 230000035515 penetration Effects 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000007650 screen-printing Methods 0.000 description 4
- 230000035939 shock Effects 0.000 description 4
- 229920000049 Carbon (fiber) Polymers 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000004917 carbon fiber Substances 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 239000002346 layers by function Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 230000000149 penetrating effect Effects 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 238000004378 air conditioning Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 210000003298 dental enamel Anatomy 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000003618 dip coating Methods 0.000 description 2
- 238000010292 electrical insulation Methods 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 2
- 241001295925 Gegenes Species 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000002079 double walled nanotube Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000002048 multi walled nanotube Substances 0.000 description 1
- 239000012811 non-conductive material Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000011224 oxide ceramic Substances 0.000 description 1
- 229910052574 oxide ceramic Inorganic materials 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002109 single walled nanotube Substances 0.000 description 1
- 239000002195 soluble material Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/68—Heating arrangements specially adapted for cooking plates or analogous hot-plates
- H05B3/74—Non-metallic plates, e.g. vitroceramic, ceramic or glassceramic hobs, also including power or control circuits
- H05B3/748—Resistive heating elements, i.e. heating elements exposed to the air, e.g. coil wire heater
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/0014—Devices wherein the heating current flows through particular resistances
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/20—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
- H05B3/22—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
- H05B3/26—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/20—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
- H05B3/22—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
- H05B3/26—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base
- H05B3/265—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base the insulating base being an inorganic material, e.g. ceramic
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/68—Heating arrangements specially adapted for cooking plates or analogous hot-plates
- H05B3/74—Non-metallic plates, e.g. vitroceramic, ceramic or glassceramic hobs, also including power or control circuits
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2203/00—Aspects relating to Ohmic resistive heating covered by group H05B3/00
- H05B2203/002—Heaters using a particular layout for the resistive material or resistive elements
- H05B2203/005—Heaters using a particular layout for the resistive material or resistive elements using multiple resistive elements or resistive zones isolated from each other
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2203/00—Aspects relating to Ohmic resistive heating covered by group H05B3/00
- H05B2203/011—Heaters using laterally extending conductive material as connecting means
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2203/00—Aspects relating to Ohmic resistive heating covered by group H05B3/00
- H05B2203/013—Heaters using resistive films or coatings
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2203/00—Aspects relating to Ohmic resistive heating covered by group H05B3/00
- H05B2203/017—Manufacturing methods or apparatus for heaters
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2203/00—Aspects relating to Ohmic resistive heating covered by group H05B3/00
- H05B2203/028—Heaters specially adapted for trays or plates to keep food or liquids hot
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2214/00—Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
- H05B2214/04—Heating means manufactured by using nanotechnology
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49082—Resistor making
- Y10T29/49083—Heater type
Definitions
- the invention relates to a method for producing a heater, in particular high-temperature heating, as well as such a heater, in particular a high-temperature heating, in which on a carrier material at a current flow heat generating layer is provided.
- Such heaters are used for products of white goods, for example as a heater for an oven, toaster or hobs or glass ceramic hobs.
- a heater for an oven toaster or hobs or glass ceramic hobs.
- the use of such heating elements leads to an inhomogeneous warm-up process. A targeted focus on the food or to be heated Good is not given.
- there is an air cushion between the heating wires and the carrier material which has a negative effect on the heat transfer.
- induction hobs are known in which the heat is generated directly in the cooking pot by eddy currents.
- the initial cost is complex, and it requires special pots for heating the food.
- this high-temperature heating can not be easily transferred to any white goods.
- a plate-shaped heating element has become known, which is used for the air conditioning of homes and buildings.
- a heating layer of a carbon-fiber mixture with non-conductive materials has become known, which is applied to a gypsum board or composite panel provided on the backside with a composite building material.
- strip-shaped contact elements are provided, so that a surface heating of the layer is made possible on carbon-fiber mixture.
- Such sheet-like heaters allow due to their design of the heating layer only temperatures in a range of ⁇ 50 ° C and are not suitable for the use of white goods.
- the application of such fiber blends or fiber fabrics is very costly.
- an electric hotplate with at least one cooking zone has become known which uses glass ceramic, glass or ceramic as the carrier material.
- an electrical insulation layer is provided for heating the cooking zones and a thermally insulating cover layer, wherein a Schuwiderstandsmaterial is provided therebetween lying.
- the heating resistor material consists of electrically conductive carbon, graphite particles or carbon fibers which are contacted with electrodes.
- the heating resistor element may be mixed with a binder of heat-resistant organic or inorganic substances.
- the second thermally insulating covering layer applied thereon terminates airtight with respect to the atmosphere of the heating resistance element, wherein the covering layer consists of heat-resistant glass or an enamel layer.
- the assembly of the hot plate body is carried out by electrochemical bonding of the superimposed layers, wherein it is provided that the heating resistance element is brought by heating to a temperature above 400 ° C and in addition an electrical voltage of more than 400 V to the hotplate body and the Schuwiderstandselement is applied.
- This layer structure of the cooking zone has the disadvantage that a complex representation of the adhesion properties is given by high voltages and no free choice of the contacting method is possible because the contact must be directly on the conductive layer.
- an electric roasting oven plate for heating which is based on a structure of the electric hotplate according to of the DE 100 01 330 A1 Reference, this structure for electric baking, cooking or electric roasting ovens should be used.
- An infrared CNT heating device which comprises a thermally loadable molded body with an electrically conductive structural layer, which generates infrared heat rays when current flows through.
- the electrically conductive structural layer consists of CNT materials, which are obtained by extraction or manual application of CNT suspensions and applied to the molding with suitable support materials such as gel or pasty emulsions.
- a functional coating of thermally treated ceramic, metal, enamel, blocking, adhesive or insulating layer may be present between the shaped body and the conductive structural layer.
- the invention has the object of providing a method for producing a heater, in particular a high-temperature heating and a heater, in particular a high-temperature heating to propose, in which a heating element in a simple manner can be applied over the entire surface as a thin layer and allows homogeneous heat transfer.
- a method for producing a heater in particular for thermal household appliances, in which on the carrier material, a first electrically conductive layer is applied, which is formed from a flowable base material and carbon nanotubes dispersed therein that on the first Layer, a protective layer is applied, which penetrates by applying to the first layer in this, by compressing the layers by a temperature treatment and to prepare the protective layer, a silicate is used to form an inorganic layer.
- This method makes it possible to produce a very thin heating element which can be heated up very quickly and allows a uniform heat transfer to the carrier material.
- the heat treatment process after applying the first layer and the protective layer has surprisingly revealed that the carbon nanotube selected as the conductive material is temperature resistant in the first layer and the protective layer can be introduced and burning is avoided.
- a silicate as a protective layer, the carbon nanotubes dispersed in the base material can be completely incorporated or protected from the environment, so that especially at elevated temperatures oxidation protection of the carbon nanotubes is given, since they begin to degrade at these high temperatures , By penetrating the protective layer and the subsequent compression of this degradation is counteracted.
- a heating element which enables a corresponding thermal shock stability and a mechanical adhesion to the carrier material.
- the at least one layer is contacted with contact elements and the layers applied to the carrier material are heated.
- an increased mechanical adhesion between the contact element and the carrier material can be achieved.
- a further preferred embodiment of the method provides that the contact elements are strip-shaped. As a result, a sheet-like heating can be achieved.
- the applied first layer and protective layer is heated in particular to a temperature between 300 ° C to 700 ° C.
- a sintering process of the layers takes place. This can be done in particular a compression of the layers.
- This has the advantage that such high-temperature heaters are compressed by the sintering oxygen-tight and thus suitable for operation at temperatures of> 400 ° C and are resistant.
- a preferred embodiment of the method provides that the first layer is dried after application and then the protective layer is applied.
- This drying process has the advantage that the first layer is at least slightly compressed, in particular water-soluble constituents can evaporate before the further protective layer is applied. As a result, a thin structure of the heating element can be favored.
- the first layer and separately the protective layer or the functional layer are applied by a spray method by knife coating or a printing process.
- a screen printing method can be provided, by which the in particular pasty first layer is applied in a simple manner to the carrier material.
- the likewise preferred pasty trained second protective layer can be applied in the same way.
- known technologies can be used for the production of high-temperature heating elements.
- a spraying method or a spraying method may be provided in order to apply the first and second layer to the carrier material.
- a so-called spray coating, a dip coating, so a dip coating or a spin coating can be realized.
- a further preferred embodiment of the method provides that the first layer is applied over the entire surface or in adjacent strips, the protective layer is applied over the entire surface of the first layer and this completely envelopes the substrate, in particular before or after the application of the first layer strip-shaped contact elements be applied.
- the first layer is connected as an electrically conductive layer with the strip-shaped contact elements and then allows electrical insulation through the protective layer with the exception of connection points on the strip-shaped contact elements.
- the complete encapsulation of the first electrically conductive layer by the protective layer further makes it possible to use water-soluble materials as the basis for a dispersion for the production of the first electrically conductive layer. These in turn have the advantage that processing without the use of solvents is possible and thus harmless to health.
- a further preferred embodiment of the method provides that before applying the first layer to the carrier material in the heating region, an electrically insulating layer is applied to the carrier material. This is done in particular when the carrier material is not made of a dielectric material, but of an electrically conductive or weakly electrically conductive material.
- a preferred embodiment of the method provides that an aqueous solution, in particular water or distilled water, is used for producing the first layer as electrically non-conductive base material, which preferably comprises a dispersant, such as gum arabic.
- a dispersant such as gum arabic.
- a further preferred embodiment of the method provides that incorporated into the electrically non-conductive base material fillers of carbon nanotubes and / or graphite and this paste can then be printed.
- the last step describes the application of the protective layer (TopCoat), which preferably consists of ethyl silicate with graphite.
- single, double or multiwalled nanotubes can preferably be used.
- the combination of graphite and carbon nanotubes has the advantage that a flowable dispersion for the first layer for full-surface application to a carrier material is achieved.
- an adhesive in particular gum arabic
- an adhesive is dispersed into the first layer.
- an adhesion mediation between the first layer and a carrier material can be improved.
- the gum arabic is used before the application of the protective layer (TopCoat) as a primer. This guarantees that when printing the protective layer (TopCoat) this does not destroy the first layer (PreCoat).
- gum arabic During the penetration of the layers, the gum arabic is burned out. Before the protective layer forms gas-tight, the volatile constituents of gum arabic diffuse out.
- other surfactants such as SDS or Triton are also conceivable.
- a heating element in particular a high-temperature heating element, for example for thermal household appliances, in which a first electrically conductive layer consisting of a base material and a carbon nanotube dispersed therein and a protective layer are provided on the carrier material the first layer is penetrated and that the protective layer consists of silicate.
- a heating element allows high temperature resistance and thermal shock stability to be achieved.
- any desired geometries for the heating elements on a carrier material, in particular for forming a high-temperature heating can thereby be selected.
- a preferred embodiment of the heating element provides that the layers are contacted with contact elements. As a result, a simple connection can be created.
- the contact elements are strip-shaped.
- Eint further preferred embodiment of the heating provides that the layers are compressed by a temperature treatment. As a result, the temperature resistance and / or thermal shock stability can be further increased.
- the first layer and the protective layer form a heating element with a layer thickness of less than 500 ⁇ m, in particular less than 100 ⁇ m. Due to the choice of materials, an ultra-thin application may be possible. At the same time, a homogeneous heat generation within the first electrically conductive layer and thus of the carrier material can take place.
- the heater preferably has a first layer, which has a concentration of 0.1 to 100 wt% CNT in the flowable base material, in particular in water or distilled water. This can be given a high electrical conductivity, so that you can work with low voltages.
- a concentration of 1 to 3 wt% CNT and 5 to 50 wt% graphite is provided as a filler in the base material. By adding graphite, the flowability of the first layer or the mixture can be increased.
- the heating element preferably has a heating element with a first layer and a protective layer which has an electrical resistance of less than 100 ohms / sq. having. This allows a temperature generation of> 400 ° C on large substrates by means of a conventional power supply in the home. In addition, the layers could be made even thinner to ensure even better mechanical stabilities.
- a carrier material is preferably provided which consists of ceramic, glass ceramic, ceran ceramic, aluminum oxide ceramic, MgO, KER 520.
- FIG. 1 is a schematic side view of a heater 11, in particular a high-temperature heating shown.
- FIG. 2 shows a schematic view from below.
- the high-temperature heating 11 comprises a carrier material 12, which may be formed, for example, when used in the field of white goods as ceramics, glass ceramic, Cerankeramik, alumina ceramics or the like.
- On the underside of a heating element 14 is provided within a heating area.
- This heating element 14 comprises a first electrically conductive layer 16, on which a protective layer 17 is applied.
- the protective layer 17 completely surrounds the first electrical layer 16, so that it is electrically insulated and mechanically protected against the environment on the substrate 12 is provided.
- the first electrically conductive layer 16 extends between two strip-shaped contact elements 18, which are guided for contacting the electrical layer 16, for example, to an edge region of the carrier material 12. Between the two preferably parallel to each other extending contact elements 18, the first layer 16 extends and forms the heating area.
- the protective layer 17 covers the first layer 16 and preferably the strip-shaped contact elements 18, so that only for example in the edge region a free contact point can be recessed. Alternatively, it can also be provided that initially the first layer 16 and the protective layer 17 are applied and then the strip-shaped contact elements 18 are brought to the heating zone formed by the first layer 16 and protective layer 17.
- the first electrically conductive layer 16 consists of a flowable, electrically non-conductive base material.
- an aqueous-based dispersion is provided. Carbon nanotubes are dispersed in this dispersion as an electrically conductive material.
- the dispersion comprises a filler, in particular graphite, in order to support the electrical conductivity and to adjust the flowability.
- an adhesive is preferably provided in the dispersion. This may be, for example, gum arabic. Other surfactants such as SDS or Triton can be used. As a result, a flowable or pasty mass can be produced, which can be applied to the carrier material 12 by a printing process or spraying process.
- the protective layer 17 is preferably made of a silicate, which may preferably be enriched with adhesive, filler or other particles in order to increase the adhesion properties. As a result, the thermal shock stability and the mechanical adhesion to the substrate can be improved. By penetrating the protective layer 17 into the first layer 16, these CNTs are also suitable for use at temperatures above 350 ° C., since the protective layer 17 encloses the CNTs airtight.
- the electrically conductive material preferably consists of a composite of CNTs and graphite or further electrically conductive particles or constituents which make it possible to form a pasty mass or a sprayable mass.
- heating element 14 is prepared by first mixing the components of an electrically non-conductive base material and carbon nanotubes dispersed therein or a composite of carbon nanotubes with other electrically conductive materials to form a flowable or pasty mass, which by means of a Screen printing process is applied over the entire surface of the substrate 12. Subsequently, the strip-shaped contact elements 18 can preferably be printed by applying a conductive paste, in particular silver conductive paste, by screen printing. These contact elements 18 can also be provided on the carrier material 12 before the application of the first layer 16. Following this For example, according to a variant of the first embodiment of the production method, this first layer 16 can be subjected to temperature treatment.
- the protective layer 17 is preferably applied by a screen printing method. Alternatively, this can also be applied without an intervening drying process of the first layer 16.
- the carrier material 12 is treated with the layers 17 applied thereto as well as the contact elements 18, so that at least the protective layer 17 is preferably sintered.
- the compression takes place and requires a further "compression" of the conductive particles, which due to the increased number of contacts and the compactness to a lower spec. Resistance leads. This in turn can be used to create a conductivity improvement in the first layer 16.
- Such high-temperature heaters 11 have heating elements 14, the thickness of which may be formed, for example, ⁇ 100 ⁇ m.
- heating elements 14 the thickness of which may be formed, for example, ⁇ 100 ⁇ m.
- the full-surface arrangement of the electrically conductive layer 16 on the carrier material 12 a homogeneous heating and thermal radiation of the carrier material 12 is made possible.
- the protective layer 17 may be associated with a reflector to reflect the heat radiation from the heating element 14 in the opposite direction to the carrier material 12 and to accelerate the heating of the carrier material 12.
- FIG. 3 is an alternative embodiment to FIG. 1 shown.
- This embodiment differs from that in FIG. 1 from that prior to the application of the first electrically conductive layer 16, an electrical insulating layer 19 is applied over the entire surface of the carrier material 12 in order to arrange the electrically conductive layer 16 relative to the carrier material 12 in isolation.
- This arrangement of the insulating layer 19 may also be provided when applying a mixture consisting of the first electrically conductive layer 16 and the protective layer 17.
- an electrically insulating layer 19 are applied over the entire surface.
- FIG. 4 is an alternative embodiment to FIG. 1 shown.
- This embodiment differs only in that instead of a full-surface first electrically conductive layer 16, a strip-shaped layer 16 is formed.
- Such webs or ribs can be adapted in geometry and contour to the corresponding applications.
- the strip geometry can heat targeted areas. In addition, it further favors the adhesion properties of the respective substrate.
- the strips can be arranged as desired, so that different heating zones can be implemented on a substrate in a targeted manner.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Resistance Heating (AREA)
- Surface Heating Bodies (AREA)
Description
Die Erfindung betrifft ein Verfahren zur Herstellung einer Heizung, insbesondere Hochtemperaturheizung, sowie eine solche Heizung, insbesondere eine Hochtemperaturheizung, bei der auf einem Trägermaterial eine bei Stromdurchfluss Wärme erzeugende Schicht vorgesehen ist.The invention relates to a method for producing a heater, in particular high-temperature heating, as well as such a heater, in particular a high-temperature heating, in which on a carrier material at a current flow heat generating layer is provided.
Solche Heizungen, insbesondere Hochtemperaturheizungen, werden für Produkte der Weißen Ware, beispielsweise als Heizung für einen Backofen, Toaster oder auch Herdplatten bzw. Glaskeramikkochfelder, eingesetzt. Zur Aufheizung dieser Gegenstände bis zu Temperaturen von > 400 °C werden bislang Heizstäbe eingesetzt, von denen aus eine Wärmestrahlung erfolgte, um das angrenzende Trägermaterial aufzuheizen. Durch den Einsatz solcher Heizstäbe kommt es zu einem inhomogenen Aufwärmvorgang. Eine gezielte Fokussierung auf das Kochgut oder das zu erwärmende Gut ist dadurch nicht gegeben. Des Weiteren besteht zwischen den Heizdrähten und dem Trägermaterial ein Luftpolster, welches sich negativ auf die Wärmeübertragung auswirkt.Such heaters, especially high-temperature heaters, are used for products of white goods, for example as a heater for an oven, toaster or hobs or glass ceramic hobs. To heat these objects up to temperatures of> 400 ° C so far heating rods are used, from which a heat radiation took place in order to heat the adjacent carrier material. The use of such heating elements leads to an inhomogeneous warm-up process. A targeted focus on the food or to be heated Good is not given. Furthermore, there is an air cushion between the heating wires and the carrier material, which has a negative effect on the heat transfer.
Zur Vermeidung eines inhomogenen Aufheizvorganges sind beispielsweise Induktionskochfelder bekannt, bei denen die Wärme im Kochtopf durch Wirbelströme direkt erzeugt wird. Dadurch wird zwar eine homogene Aufheizung des Kochgutes erzielt, jedoch sind die Anschaffungskosten aufwändig, und es werden spezielle Töpfe zum Erwärmen des Kochgutes benötigt. Diese Hochtemperaturheizung lässt sich jedoch nicht ohne Weiteres auf beliebige Produkte der Weißen Ware übertragen.To avoid an inhomogeneous heating process, for example induction hobs are known in which the heat is generated directly in the cooking pot by eddy currents. As a result, although a homogeneous heating of the cooking material is achieved, however, the initial cost is complex, and it requires special pots for heating the food. However, this high-temperature heating can not be easily transferred to any white goods.
Aus der
Analoges gilt beispielsweise für die aus der
Aus der
Dieser Schichtaufbau der Kochzone weist den Nachteil auf, dass eine aufwendige Darstellung der Haftungseigenschaften durch hohe Spannungen gegeben ist und keine freie Wahl der Kontaktierungsmethode ermöglicht ist, da die Kontaktierung direkt an der leitfähigen Schicht sein muss.This layer structure of the cooking zone has the disadvantage that a complex representation of the adhesion properties is given by high voltages and no free choice of the contacting method is possible because the contact must be directly on the conductive layer.
Aus der
Aus der
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Herstellung einer Heizung, insbesondere eine Hochtemperaturheizung sowie eine Heizung, insbesondere eine Hochtemperaturheizung, vorzuschlagen, bei welchem ein Heizelement in einfacher Weise als dünne Schicht ganzflächig aufgebracht werden kann und eine homogene Wärmeübertragung ermöglicht.The invention has the object of providing a method for producing a heater, in particular a high-temperature heating and a heater, in particular a high-temperature heating to propose, in which a heating element in a simple manner can be applied over the entire surface as a thin layer and allows homogeneous heat transfer.
Diese Aufgabe wird erfindungsgemäß durch ein Verfahren zur Herstellung einer Heizung, insbesondere für thermische Hausgeräte, gelöst, bei dem auf dem Trägermaterial eine erste elektrisch leitfähige Schicht aufgebracht wird, welche aus einem fließfähigen Grundmaterial und darin dispergierten Carbon-Nanotubes gebildet wird, dass auf diese erste Schicht eine Schutzschicht aufgebracht wird, welche durch das Aufbringen auf die erste Schicht in diese penetriert, indem die Schichten durch eine Temperaturbehandlung komprimiert werden und zur Herstellung der Schutzschicht ein Silikat zur Bildung einer anorganischen Schicht eingesetzt wird.This object is achieved by a method for producing a heater, in particular for thermal household appliances, in which on the carrier material, a first electrically conductive layer is applied, which is formed from a flowable base material and carbon nanotubes dispersed therein that on the first Layer, a protective layer is applied, which penetrates by applying to the first layer in this, by compressing the layers by a temperature treatment and to prepare the protective layer, a silicate is used to form an inorganic layer.
Dieses Verfahren ermöglicht, dass ein sehr dünnes Heizelement hergestellt wird, welches sehr schnell aufgeheizt werden kann und eine gleichmäßige Wärmeübertragung auf das Trägermaterial ermöglicht. Durch den Wärmebehandlungsprozess nach dem Auftragen der ersten Schicht und der Schutzschicht hat sich erstaunlicherweise herausgestellt, dass die als leitfähiges Material ausgewählten Carbon-Nanotubes temperaturbeständig in der ersten Schicht und der Schutzschicht eingebracht werden können und ein Verbrennen vermieden wird. Durch die Verwendung eines Silikats als Schutzschicht können die in dem Grundmaterial dispergierten Carbon-Nanotubes vollständig eingebunden beziehungsweise gegenüber der Umgebung geschützt werden, so dass gerade bei erhöhten Temperaturen ein Oxidationsschutz der Carbon-Nanotubes gegeben ist, da diese bei diesen hohen Temperaturen mit einer Degradation beginnen. Durch das Einpenetrieren der Schutzschicht und der anschließenden Komprimierung wird dieser Degradation entgegengewirkt. Dadurch wird ein Heizelement bereitgestellt, welches eine entsprechende Thermoschockstabilität und eine mechanische Haftung auf dem Trägermaterial ermöglicht. Durch die Wärmebehandlung beziehungsweise durch das Erhitzen wird ergänzend bei der ersten Schicht und der Schutzschicht eine Komprimierung der Schichten erzielt. Dies weist den Vorteil auf, dass solche Hochtemperaturheizelemente luft- beziehungsweise sauerstoffdicht komprimiert werden. Dadurch kann auch die Temperaturstabilität der eindispergierten Carbon-Nanotubes erzielt werden.This method makes it possible to produce a very thin heating element which can be heated up very quickly and allows a uniform heat transfer to the carrier material. The heat treatment process after applying the first layer and the protective layer has surprisingly revealed that the carbon nanotube selected as the conductive material is temperature resistant in the first layer and the protective layer can be introduced and burning is avoided. By using a silicate as a protective layer, the carbon nanotubes dispersed in the base material can be completely incorporated or protected from the environment, so that especially at elevated temperatures oxidation protection of the carbon nanotubes is given, since they begin to degrade at these high temperatures , By penetrating the protective layer and the subsequent compression of this degradation is counteracted. As a result, a heating element is provided which enables a corresponding thermal shock stability and a mechanical adhesion to the carrier material. By the heat treatment or by heating, in addition to the first layer and the protective layer, a compression of the layers is achieved. This has the advantage that such Hochtemperaturheizelemente be compressed air or oxygen tight. As a result, the temperature stability of the dispersed carbon nanotubes can be achieved.
Nach einer bevorzugten Ausgestaltung des Verfahrens ist vorgesehen, dass die zumindest eine Schicht mit Kontaktelementen kontaktiert und die auf dem Trägermaterial aufgebrachten Schichten erhitzt werden. Dadurch kann eine erhöhte mechanische Haftung zwischen dem Kontaktelement und dem Trägermaterial erzielt werden.According to a preferred embodiment of the method, it is provided that the at least one layer is contacted with contact elements and the layers applied to the carrier material are heated. As a result, an increased mechanical adhesion between the contact element and the carrier material can be achieved.
Eine weitere bevorzugte Ausgestaltung des Verfahrens sieht vor, dass die Kontaktelemente streifenförmig sind. Dadurch kann eine flächenförmige Aufheizung erzielt werden.A further preferred embodiment of the method provides that the contact elements are strip-shaped. As a result, a sheet-like heating can be achieved.
Nach einer bevorzugten Ausgestaltung des Verfahrens ist vorgesehen, dass die aufgebrachte erste Schicht und Schutzschicht insbesondere auf eine Temperatur zwischen 300 °C bis 700 °C erhitzt wird. Durch diese Temperaturbehandlung erfolgt ein Sinterprozess der Schichten. Dadurch kann insbesondere eine Komprimierung der Schichten erfolgen. Dies weist den Vorteil auf, dass solche Hochtemperaturheizungen durch den Sinterprozess luftsauerstoffdicht komprimiert werden und somit für einen Betrieb bei Temperaturen von > 400 °C geeignet und beständig sind.According to a preferred embodiment of the method is provided that the applied first layer and protective layer is heated in particular to a temperature between 300 ° C to 700 ° C. By this temperature treatment, a sintering process of the layers takes place. This can be done in particular a compression of the layers. This has the advantage that such high-temperature heaters are compressed by the sintering oxygen-tight and thus suitable for operation at temperatures of> 400 ° C and are resistant.
Eine bevorzugte Ausgestaltung des Verfahrens sieht vor, dass die erste Schicht nach dem Aufbringen getrocknet und anschließend die Schutzschicht aufgebracht wird. Dieser Trocknungsvorgang weist den Vorteil auf, dass die erste Schicht zumindest geringfügig komprimiert wird, insbesondere wasserlösliche Bestandteile ausdampfen können, bevor die weitere Schutzschicht aufgetragen wird. Dadurch kann ein dünner Aufbau des Heizungselementes begünstigt werden.A preferred embodiment of the method provides that the first layer is dried after application and then the protective layer is applied. This drying process has the advantage that the first layer is at least slightly compressed, in particular water-soluble constituents can evaporate before the further protective layer is applied. As a result, a thin structure of the heating element can be favored.
Nach einer weiteren bevorzugten Ausgestaltung des Verfahrens ist vorgesehen, dass die erste Schicht und getrennt davon die Schutzschicht oder die Funktionsschicht durch ein Sprühverfahren durch Aufrakeln oder ein Druckverfahren aufgebracht werden. Beispielsweise kann ein Siebdruckverfahren vorgesehen sein, durch welches die insbesondere pastöse erste Schicht in einfacher Weise auf das Trägermaterial aufgebracht wird. Anschließend kann in gleicher Weise die ebenfalls bevorzugt pastös ausgebildete zweite Schutzschicht aufgetragen werden. Somit können bekannte Technologien für die Herstellung von Hochtemperaturheizelementen eingesetzt werden. Alternativ kann ein Spritzverfahren bzw. ein Sprühverfahren vorgesehen sein, um die erste und zweite Schicht das Trägermaterial aufzubringen. Hier kann ein sogenanntes Spraycoating, ein Dipcoating, also eine Tauchbeschichtung oder ein Spincoating realisiert werden.According to a further preferred embodiment of the method, it is provided that the first layer and separately the protective layer or the functional layer are applied by a spray method by knife coating or a printing process. For example, a screen printing method can be provided, by which the in particular pasty first layer is applied in a simple manner to the carrier material. Subsequently, the likewise preferred pasty trained second protective layer can be applied in the same way. Thus, known technologies can be used for the production of high-temperature heating elements. Alternatively, a spraying method or a spraying method may be provided in order to apply the first and second layer to the carrier material. Here, a so-called spray coating, a dip coating, so a dip coating or a spin coating can be realized.
Eine weitere bevorzugte Ausgestaltung des Verfahrens sieht vor, dass die erste Schicht vollflächig oder in nebeneinander liegenden Streifen aufgebracht wird, die Schutzschicht vollflächig auf die erste Schicht aufgebracht wird und diese vollständig zum Trägermaterial umhüllt, wobei insbesondere vor oder nach dem Aufbringen der ersten Schicht streifenförmige Kontaktelemente aufgebracht werden. Dadurch wird die erste Schicht als elektrisch leitfähige Schicht mit den streifenförmigen Kontaktelementen verbunden und anschließend eine elektrische Isolierung durch die Schutzschicht mit Ausnahme von Anschlussstellen an den streifenförmigen Kontaktelementen ermöglicht. Durch die vollständige Umhüllung der ersten elektrisch leitfähigen Schicht durch die Schutzschicht wird des Weiteren ermöglicht, dass für die Herstellung der ersten elektrisch leitfähigen Schicht wasserlösliche Materialien als Basis für eine Dispersion eingesetzt werden können. Diese weisen wiederum den Vorteil auf, dass eine Verarbeitung ohne den Einsatz von Lösungsmitteln möglich und somit gesundheitlich unbedenklich ist.A further preferred embodiment of the method provides that the first layer is applied over the entire surface or in adjacent strips, the protective layer is applied over the entire surface of the first layer and this completely envelopes the substrate, in particular before or after the application of the first layer strip-shaped contact elements be applied. Thereby, the first layer is connected as an electrically conductive layer with the strip-shaped contact elements and then allows electrical insulation through the protective layer with the exception of connection points on the strip-shaped contact elements. The complete encapsulation of the first electrically conductive layer by the protective layer further makes it possible to use water-soluble materials as the basis for a dispersion for the production of the first electrically conductive layer. These in turn have the advantage that processing without the use of solvents is possible and thus harmless to health.
Eine weitere bevorzugte Ausgestaltung des Verfahrens sieht vor, dass vor dem Aufbringen der ersten Schicht auf das Trägermaterial im Erwärmungsbereich eine elektrisch isolierende Schicht auf das Trägermaterial aufgebracht wird. Dies erfolgt insbesondere dann, wenn das Trägermaterial nicht aus einem dielektrischen Material, sondern aus einem elektrisch leitfähigen oder schwach elektrisch leitfähigem Material, hergestellt ist.A further preferred embodiment of the method provides that before applying the first layer to the carrier material in the heating region, an electrically insulating layer is applied to the carrier material. This is done in particular when the carrier material is not made of a dielectric material, but of an electrically conductive or weakly electrically conductive material.
Eine bevorzugte Ausführung des Verfahrens sieht vor, dass zur Herstellung der ersten Schicht als elektrisch nicht leitfähiges Grundmaterial eine wässrige Lösung, insbesondere Wasser oder destilliertes Wasser, eingesetzt wird, welches vorzugsweise einen Dispergenten, wie beispielsweise Gummi Arabicum umfasst. Dieser ermöglicht ein einfaches Aufbringen, insbesondere als vollflächige Schicht, ohne Lösungsmittel für die Herstellung der Dispersion als auch für die Reinigung von Maschinen einzusetzen.A preferred embodiment of the method provides that an aqueous solution, in particular water or distilled water, is used for producing the first layer as electrically non-conductive base material, which preferably comprises a dispersant, such as gum arabic. This allows easy application, in particular as a full-surface layer, without using solvents for the preparation of the dispersion as well as for the cleaning of machines.
Eine weitere bevorzugte Ausgestaltung des Verfahrens sieht vor, dass in das elektrisch nicht leitende Grundmaterial Füllstoffe aus Carbon-Nanotubes und/oder Graphit eingearbeitet und diese Paste dann verdruckt werden kann. Der letzte Schritt beschreibt das Aufbringen der Schutzschicht (TopCoat), welche vorzugsweise aus Ethylsilikat mit Graphit besteht.A further preferred embodiment of the method provides that incorporated into the electrically non-conductive base material fillers of carbon nanotubes and / or graphite and this paste can then be printed. The last step describes the application of the protective layer (TopCoat), which preferably consists of ethyl silicate with graphite.
Dabei können bevorzugt Single-, Double- oder Multiwalled-Nanotubes eingesetzt werden. Insbesondere die Kombination von Graphit und Carbon-Nanotubes weist den Vorteil auf, dass eine fließfähige Dispersion für die erste Schicht zum vollflächigen Aufbringen auf ein Trägermaterial erzielt wird.In this case, single, double or multiwalled nanotubes can preferably be used. In particular, the combination of graphite and carbon nanotubes has the advantage that a flowable dispersion for the first layer for full-surface application to a carrier material is achieved.
Nach einer weiteren bevorzugten Ausgestaltung des Verfahrens ist vorgesehen, dass in die Schutzschicht ein Füllmittel, insbesondere Graphit, eindispergiert wird. Dies weist den Vorteil auf, dass insbesondere bei der ersten alternativen Ausführungsform des Verfahrens beim Einpenetrieren der Schutzschicht in die erste elektrisch leitfähige Schicht das Füllstoffverhältnis erhöht wird, wodurch sich auch die Leitfähigkeit in der zweiten Schicht erhöht. Dadurch kann die Kontaktierung zu beliebigen Zeitpunkten aufgebracht und an unterschiedlichen Orten flexibel angebracht werden. Die Schutzschicht dient nicht nur zur Isolierung gegen Luftsauerstoff, durch die Zugabe von Graphit, welches temperaturstabiler an Luft als die CNTs ist, wird ebenso nach der Penetration und der daraus resultierenden Verschiebung der Gewichtsprozentanteile der Füllstoffe eine Funktionsschicht zur effektiven Durchkontaktierung gegeben. Insgesamt hat diese Schicht also drei Merkmale:
- 1) Haftung durch Penetration; 2) Isolierung gegen Luftsauerstoff; 3) leitfähige, CNT freie Schicht zur Durchkontaktierung.
- 1) liability by penetration; 2) insulation against atmospheric oxygen; 3) conductive, CNT-free layer for via.
Des Weiteren ist bevorzugt vorgesehen, dass in die erste Schicht ein Haftmittel, insbesondere Gummi Arabicum eindispergiert wird. Dadurch kann eine Haftvermittlung zwischen der ersten Schicht und einem Trägermaterial verbessert werden. Das Gummi Arabicum dient vor dem Aufbringen der Schutzschicht (TopCoat) als Haftvermittler. Dadurch ist garantiert, dass beim Aufdrucken der Schutzschicht (TopCoat) dieses nicht die erste Schicht (PreCoat) zerstört.Furthermore, it is preferably provided that an adhesive, in particular gum arabic, is dispersed into the first layer. As a result, an adhesion mediation between the first layer and a carrier material can be improved. The gum arabic is used before the application of the protective layer (TopCoat) as a primer. This guarantees that when printing the protective layer (TopCoat) this does not destroy the first layer (PreCoat).
Während dem Einbrand der Schichten wird das Gummi Arabicum ausgebrannt. Bevor sich die Schutzschicht gasdicht ausbildet, diffundieren die flüchtigen Bestandteile des Gummi Arabicum aus. Alternativ zum Gummi Arabicum sind auch ebenso andere Tenside wie SDS oder Triton denkbar.During the penetration of the layers, the gum arabic is burned out. Before the protective layer forms gas-tight, the volatile constituents of gum arabic diffuse out. As an alternative to gum arabic, other surfactants such as SDS or Triton are also conceivable.
Die Aufgabe wird des Weiteren erfindungsgemäß durch ein Heizelement, insbesondere ein Hochtemperaturheizelement, beispielsweise für thermische Hausgeräte, gelöst, bei dem auf dem Trägermaterial eine erste elektrisch leitfähige Schicht bestehend aus einem Grundmaterial und einem darin eindispergierten Carbon-Nanotube und eine Schutzschicht vorgesehen sind, welche in die erste Schicht penetriert ist und dass die Schutzschicht aus Silikat besteht. Dieser besondere Aufbau des Heizelementes ermöglicht, dass eine hohe Temperaturbeständigkeit sowie die Thermoschockstabilität geschaffen werden kann. Gleichzeitig können dadurch beliebige Geometrien für die Heizelemente auf einem Trägermaterial, insbesondere zur Bildung einer Hochtemperaturheizung, ausgewählt werden.The object is further achieved according to the invention by a heating element, in particular a high-temperature heating element, for example for thermal household appliances, in which a first electrically conductive layer consisting of a base material and a carbon nanotube dispersed therein and a protective layer are provided on the carrier material the first layer is penetrated and that the protective layer consists of silicate. This special design of the heating element allows high temperature resistance and thermal shock stability to be achieved. At the same time, any desired geometries for the heating elements on a carrier material, in particular for forming a high-temperature heating, can thereby be selected.
Eine bevorzugte Ausgestaltung des Heizelementes sieht vor, dass die Schichten mit Kontaktelementen kontaktiert sind. Dadurch kann ein einfacher Anschluss geschaffen sein.A preferred embodiment of the heating element provides that the layers are contacted with contact elements. As a result, a simple connection can be created.
Bevorzugt sind die Kontaktelemente streifenförmig ausgebildet.Preferably, the contact elements are strip-shaped.
Eint weitere bevorzugte Ausgestaltung der Heizung sieht vor, dass die Schichten durch eine Temperaturbehandlung komprimiert sind. Dadurch kann die Temperaturbeständigkeit und/oder Thermoschockstabilität weiter erhöht werden.Eint further preferred embodiment of the heating provides that the layers are compressed by a temperature treatment. As a result, the temperature resistance and / or thermal shock stability can be further increased.
Des Weiteren ist bevorzugt vorgesehen, dass die erste Schicht und die Schutzschicht ein Heizelement mit einer Schichtdicke von weniger als 500 µm, insbesondere weniger als 100 µm, bilden. Aufgrund der Auswahl der Materialien kann ein ultradünnes Auftragen ermöglicht sein. Gleichzeitig kann eine homogene Wärmeerzeugung innerhalb der ersten elektrisch leitfähigen Schicht und somit des Trägermaterials erfolgen.Furthermore, it is preferably provided that the first layer and the protective layer form a heating element with a layer thickness of less than 500 μm, in particular less than 100 μm. Due to the choice of materials, an ultra-thin application may be possible. At the same time, a homogeneous heat generation within the first electrically conductive layer and thus of the carrier material can take place.
Die Heizung weist bevorzugt eine erste Schicht auf, welche eine Konzentration von 0,1 bis 100 wt% CNT im fließfähigen Grundmaterial, insbesondere im Wasser oder destilliertem Wasser, aufweist. Dadurch kann eine hohe elektrische Leitfähigkeit gegeben sein, so dass mit niederen Spannungen gearbeitet werden kann. Bevorzugt ist eine Konzentration von 1 bis 3 wt% CNT und 5 bis 50 wt% Graphit als Füllmittel in dem Grundmaterial vorgesehen. Durch die Hinzugabe von Graphit kann die Fließfähigkeit der ersten Schicht oder des Gemisches erhöht werden.The heater preferably has a first layer, which has a concentration of 0.1 to 100 wt% CNT in the flowable base material, in particular in water or distilled water. This can be given a high electrical conductivity, so that you can work with low voltages. Preferably, a concentration of 1 to 3 wt% CNT and 5 to 50 wt% graphite is provided as a filler in the base material. By adding graphite, the flowability of the first layer or the mixture can be increased.
Das Heizelement weist bevorzugt ein Heizelement mit einer ersten Schicht und einer Schutzschicht auf, welches einen elektrischen Widerstand von weniger als 100 Ohm/Sq. aufweist. Dies ermöglicht eine Temperaturgenerierung von > 400 °C auf großen Substraten mittels einer üblichen Spannungsversorgung im Haushalt. Darüber hinaus könnten die Schichten noch dünner ausgelegt werden, um noch bessere mechanische Stabilitäten zu gewährleisten.The heating element preferably has a heating element with a first layer and a protective layer which has an electrical resistance of less than 100 ohms / sq. having. This allows a temperature generation of> 400 ° C on large substrates by means of a conventional power supply in the home. In addition, the layers could be made even thinner to ensure even better mechanical stabilities.
Zur Herstellung der Heizung ist bevorzugt ein Trägermaterial vorgesehen, welches aus Keramik, Glaskeramik, Cerankeramik, Aluminiumoxidkeramik, MgO, KER 520 besteht. Dadurch werden vielfältige Einsatzbereiche, insbesondere in der Weißen Ware, ermöglicht. Gleichzeitig kann dadurch eine kostengünstige Herstellung erzielt werden.To produce the heating, a carrier material is preferably provided which consists of ceramic, glass ceramic, ceran ceramic, aluminum oxide ceramic, MgO, KER 520. As a result, a variety of applications, especially in the white goods, allows. At the same time, a cost-effective production can be achieved.
Die Erfindung sowie weitere vorteilhafte Ausführungsformen und Weiterbildungen derselben werden im Folgenden anhand der in den Zeichnungen dargestellten Beispiele näher beschrieben und erläutert. Die der Beschreibung und den Zeichnungen zu entnehmenden Merkmale können einzeln für sich oder zu mehreren in beliebiger Kombination erfindungsgemäß angewandt werden. Es zeigen:
- Figur 1
- eine schematische Schnittdarstellung einer ersten Ausführungsform einer Heizung,
- Figur 2
- eine schematische Seitenansicht von unten auf die Heizung gemäß
Figur 1 , - Figur 3
- eine schematische Seitenansicht einer alternativen Heizung zu
Figur 1 und - Figur 4
- eine schematische Seitenansicht einer weiteren alternativen Ausführungsform zu
Figur 1 .
- FIG. 1
- a schematic sectional view of a first embodiment of a heater,
- FIG. 2
- a schematic side view of the bottom of the heater according to
FIG. 1 . - FIG. 3
- a schematic side view of an alternative heating to
FIG. 1 and - FIG. 4
- a schematic side view of another alternative embodiment to
FIG. 1 ,
In
Die erste elektrisch leitfähige Schicht 16 besteht aus einem fließfähigen, elektrisch nicht leitfähigen Grundmaterial. Bevorzugt ist eine Dispersion auf wässriger Basis vorgesehen. In dieser Dispersion sind als elektrisch leitfähiges Material Carbon-Nanotubes dispergiert. Ergänzend umfasst die Dispersion ein Füllmittel, insbesondere Graphit, um die elektrische Leitfähigkeit zu unterstützen und die Fließfähigkeit einzustellen. Ergänzend ist bevorzugt in der Dispersion ein Haftmittel vorgesehen. Dieses kann beispielsweise Gummi Arabicum sein. Auch andere Tenside wie SDS oder Triton sind einsetzbar. Dadurch kann eine fließfähige oder pastöse Masse hergestellt werden, welche durch ein Druckverfahren oder Sprühverfahren auf das Trägermaterial 12 applizierbar ist. Diese Dispersion ist hochtemperatur-, thermoschockstabil und hydrophob. Die Schutzschicht 17 besteht bevorzugt aus einem Silikat, das bevorzugt mit Haftmittel, Füllmittel oder weiteren Partikeln angereichert sein kann, um die Haftungseigenschaften zu erhöhen. Dadurch kann die Thermoschockstabilität sowie die mechanische Haftung auf dem Trägermaterial verbessert werden. Durch das Penetrieren der Schutzschicht 17 in die erste Schicht 16 sind diese CNT's auch für einen Temperatureinsatz oberhalb von 350 °C geeignet, da die Schutzschicht 17 die CNT's luftdicht einschließt. Bevorzugt besteht das elektrisch leitfähige Material aus einem Verbund aus CNT's und Graphit oder weiteren elektrisch leitfähigen Partikeln oder Bestandteilen, die das Ausbilden einer pastösen Masse oder einer sprühfähigen Masse ermöglichen.The first electrically
Das in
Solche Hochtemperaturheizungen 11 weisen Heizelemente 14 auf, deren Dicke beispielsweise < 100 µm ausgebildet sein können. Darüber hinaus wird aufgrund der vollflächigen Anordnung der elektrisch leitfähigen Schicht 16 an dem Trägermaterial 12 eine homogene Erwärmung und Wärmestrahlung des Trägermaterials 12 ermöglicht.Such high-
Bevorzugt kann der Schutzschicht 17 ein Reflektor zugeordnet sein, um die vom Heizelement 14 in entgegengesetzter Richtung zum Trägermaterial 12 erfolgende Wärmestrahlung zu reflektieren und das Aufheizen des Trägermaterials 12 zu beschleunigen.Preferably, the
In
In
Claims (17)
- Method for producing a heating installation, particularly for thermal household appliances, in which a layer generating heat by electricity flow is provided on a substrate (12) as a heating element (14), and on the substrate (12), a first electrically conductive layer (16) is applied, which is formed from a flowable base material, and carbon nanotubes dispersed therein, characterised in- that on this first layer (16), a protective layer (17) is applied, which by means of the application onto the first layer (16) penetrates into this,- that the layers (16, 17) are compressed by temperature-treatment and- that for producing the protective layer (17), a silicate is used to form an inorganic layer.
- Method according to claim 1, characterised in that the at least one layer (16, 17) contacts with preferably strip-shaped contact elements (18), and the layers (16, 17), applied to the substrate, are heated, in particular are only heated by applying a voltage to the contact elements (18).
- Method according to any one of the preceding claims, characterised in that the layers (16, 17), applied on the substrate (12), are heated to a temperature of 300 °C to 700 °C.
- Method according to claim 1, characterised in that the first electrically conductive layer (16) is dried after application on the substrate (12), and the protective layer (17) is subsequently applied.
- Method according to any one of the preceding claims, characterised in that the first electrically conductive layer (16), and, separately, the protective layer (17) are applied by a spraying process, by squeegee or a printing process.
- Method according to any one of the preceding claims, characterised in that the first electrically conductive layer (16) is applied onto the substrate (12) over the whole area or in strips, whereby the protective layer (17) is subsequently applied onto the first layer (16) over the whole area, and covering the substrate (12), whereby before or after the application of the first electrically conductive layer (16) or protective layer (17), strip-shaped contact elements (18) are applied on the substrate (12).
- Method according to any one of the preceding claims, characterised in that before the application of the first electrically conductive layer (16) in the heating region, an electrically insulating layer (19) is applied onto the substrate (12).
- Method according to any one of the preceding claims, characterised in that for producing a first electrically conductive layer (16), as a non- electrically conductive, flowable base material, an aqueous solution, particularly water or distilled water is used, which preferably includes a dispergent, such as gum arabic, for example.
- Method according to any one of the preceding claims, characterised in that carbon nanotubes and/or graphite are dispersed as an electrically conductive, flowable material into the base material, of the first electrically conductive layer (16).
- Method according to claim 1, characterised in that a filler, particularly graphite, is dispersed into the protective layer (17).
- Method according to claim 1, characterised in that an adhesive agent, particularly gum arabic, is dispersed into the first layer (16).
- Heating installation, particularly high-temperature heating installation, in particular for household appliances, which comprise a layer generating heat by electricity flow on a substrate (12) as a heating element (11), characterised in that on the substrate (12), a first electrically conductive layer (16) consisting of a base material and carbon nanotubes dispersed therein and a protective layer (17) is provided, which is penetrated into the first layer (16), and that the protective layer (17) consists of silicate.
- Heating installation according to claim 12, characterised in that the layers (16, 17) are contacted with particularly strip-shaped contact elements (18).
- Heating installation according to claim 12 or 13, characterised in that the first and second layer (16, 17) comprise a layer thickness of less than 500 µm, particularly less than 100 µm.
- Heating installation according to claim 12 to 14, characterised in that the first electrically conductive layer (16) has a concentration of 0.1 to 100 wt% carbon nanotubes in the flowable base material, or that a matrix of a concentration of 1 to 3 wt% carbon nanotubes and 5 to 50 wt% graphite is provided in the base material.
- Heating installation according to claim 12 to 15, characterised in that the heating element (14) produced by the first and second layer (16, 17) has an electrical resistance of less than 100 Ω/Sq.
- Heating installation according to claim 12 to 16, characterised in that the substrate (12) consists of ceramic, glass ceramic, Ceran ceramic, aluminium oxide ceramic, MgO, KER500.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL10736624T PL2457412T3 (en) | 2009-07-21 | 2010-07-19 | Heater, in particular high-temperature heater, and method for the production thereof |
SI201030272T SI2457412T1 (en) | 2009-07-21 | 2010-07-19 | Heater, in particular high-temperature heater, and method for the production thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009034307A DE102009034307A1 (en) | 2009-07-21 | 2009-07-21 | High temperature heating and process for its production |
PCT/EP2010/004389 WO2011009577A1 (en) | 2009-07-21 | 2010-07-19 | Heater, in particular high-temperature heater, and method for the production thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2457412A1 EP2457412A1 (en) | 2012-05-30 |
EP2457412B1 true EP2457412B1 (en) | 2013-05-01 |
Family
ID=42668837
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10736624.7A Active EP2457412B1 (en) | 2009-07-21 | 2010-07-19 | Heater, in particular high-temperature heater, and method for the production thereof |
Country Status (8)
Country | Link |
---|---|
US (2) | US9578691B2 (en) |
EP (1) | EP2457412B1 (en) |
KR (1) | KR20120038998A (en) |
DE (1) | DE102009034307A1 (en) |
ES (1) | ES2422704T3 (en) |
PL (1) | PL2457412T3 (en) |
SI (1) | SI2457412T1 (en) |
WO (1) | WO2011009577A1 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011086448A1 (en) * | 2011-11-16 | 2013-05-16 | Margarete Franziska Althaus | Method for producing a heating element |
DE112013001177T5 (en) * | 2012-02-28 | 2014-11-13 | Halla Visteon Climate Control Corp. | car heater |
CN104584681B (en) * | 2012-04-20 | 2018-09-25 | 未来碳有限责任公司 | Electric heater unit, component and its manufacturing method |
JP5989901B2 (en) * | 2012-07-09 | 2016-09-14 | ハノン システムズ | Vehicle heater |
ITMO20120243A1 (en) * | 2012-10-04 | 2014-04-05 | Giemme S N C Di Corradini Marco & C | HEATING PANEL HIGH EFFICIENCY AND RELATIVE PROCEDURE OF REALIZATION |
FR3005388B1 (en) * | 2013-05-03 | 2017-10-06 | Topinox Sarl | HEATING ELEMENT WITH SECTIONS HAVING DIFFERENT HEATING POWERS, AND COOKING APPARATUS. |
DE102014110186B4 (en) * | 2014-07-18 | 2018-10-31 | Anneliese Backtechnik Gmbh | Apparatus for heat treatment of food |
KR101718076B1 (en) * | 2015-05-14 | 2017-03-20 | 주식회사 대화알로이테크 | Heater apparatus for electric automobile and cotnrol method thereof |
KR101698908B1 (en) | 2015-05-14 | 2017-02-01 | 주식회사 대화알로이테크 | Battery preheating device for hybrid vehicle and method for controlling the same |
FR3054947A1 (en) * | 2016-08-05 | 2018-02-09 | Bp Systemes Int | HEATED STRUCTURE |
US10917942B2 (en) | 2017-07-31 | 2021-02-09 | Samsung Electronics Co., Ltd. | Structure, planar heater including the same, heating device including the planar heater, and method of preparing the structure |
DE102018203430A1 (en) | 2018-03-07 | 2019-09-12 | Voestalpine Stahl Gmbh | AREA ELECTRO COMPONENT AND METHOD OF MANUFACTURING |
FR3088835B1 (en) * | 2018-11-27 | 2022-03-04 | Blackleaf | Process for producing, applying and fixing a multilayer surface coating on a host substrate and host substrate device capable of being obtained by said process |
DE102019112528A1 (en) * | 2019-05-14 | 2020-11-19 | Michael Steidle | Surface heating element |
US11825568B2 (en) * | 2021-04-01 | 2023-11-21 | Whirlpool Corporation | Segmented thermoresistive heating system |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9721812D0 (en) * | 1997-10-15 | 1997-12-17 | Glaverbel | Transparent heat-swellable material |
DE10001330A1 (en) | 2000-01-14 | 2001-07-19 | Heinrich Schuermann | Electric cooker plate has flat coating of electrical heating resistance material with binding material containing electrical resistance element of conducting carbon in contact with underside |
JP2003109732A (en) * | 2001-09-27 | 2003-04-11 | Seiji Motojima | Heating element equipped with coiled carbon fiber and coiled carbon fiber for use with same as well as uses |
DE10336920A1 (en) | 2003-08-07 | 2005-03-10 | Heinrich Schuermann | Electric oven grill plate made of planar glass-ceramic has electrical resistance heating element made of conducting carbon that is in contact with lower side of grill plate body |
US7164104B2 (en) * | 2004-06-14 | 2007-01-16 | Watlow Electric Manufacturing Company | In-line heater for use in semiconductor wet chemical processing and method of manufacturing the same |
KR101185794B1 (en) * | 2004-06-28 | 2012-10-02 | 쿄세라 코포레이션 | Wafer heating equipment and semiconductor manufacturing equipment |
DE102004044352B4 (en) * | 2004-09-09 | 2010-09-02 | E.G.O. Elektro-Gerätebau GmbH | Heating device for an electric heating device |
DE202005013822U1 (en) | 2005-05-19 | 2006-09-28 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Nanotube laminar system, useful in actuator, sensor and tissue engineering, comprises nanotubes and fibers, where the nanotubes are absorbed in the fibers |
DE102005049428A1 (en) | 2005-10-15 | 2007-06-06 | Schürmann, Heinrich | Plate-shaped electrical resistance heater for e.g. building, has interconnecting structural panel provided with thermal insulation building material and coated with structural panel that is made from plaster, cement and ceramic compound |
JP4864899B2 (en) * | 2005-10-28 | 2012-02-01 | 京セラ株式会社 | Multilayer piezoelectric element and jetting apparatus using the same |
JP4482535B2 (en) * | 2006-03-24 | 2010-06-16 | 日本碍子株式会社 | Heating device |
US8197621B2 (en) * | 2006-06-27 | 2012-06-12 | Naos Co. Ltd. | Method for manufacturing planar heating element using carbon micro-fibers |
US8166645B2 (en) * | 2006-08-23 | 2012-05-01 | Rockwell Collins, Inc. | Method for providing near-hermetically coated, thermally protected integrated circuit assemblies |
DE102007018540A1 (en) * | 2007-04-19 | 2008-10-30 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Electrically conductive composition for use as transparent or non-transparent conductive coating for resistance heating elements e.g. for heating disks, comprises electrically conductive polymer, carbon nanotubes and baytron |
DE102007028109A1 (en) * | 2007-06-19 | 2008-12-24 | Märkisches Werk GmbH | Thermally sprayed, gas-tight protective layer for metallic substrates |
DE202009000136U1 (en) | 2008-07-29 | 2009-05-20 | Beier, Gerhard M., Dipl.-Ing. | Infrared CNT heater |
DE102009000136A1 (en) | 2009-01-12 | 2010-07-15 | Robert Bosch Gmbh | Device for information retrieval from vehicle interior for motor vehicle or airplane, has retaining unit for retaining electromagnetic radiation |
-
2009
- 2009-07-21 DE DE102009034307A patent/DE102009034307A1/en not_active Withdrawn
-
2010
- 2010-07-19 ES ES10736624T patent/ES2422704T3/en active Active
- 2010-07-19 US US13/386,477 patent/US9578691B2/en not_active Expired - Fee Related
- 2010-07-19 SI SI201030272T patent/SI2457412T1/en unknown
- 2010-07-19 KR KR1020127003192A patent/KR20120038998A/en not_active Application Discontinuation
- 2010-07-19 WO PCT/EP2010/004389 patent/WO2011009577A1/en active Application Filing
- 2010-07-19 PL PL10736624T patent/PL2457412T3/en unknown
- 2010-07-19 EP EP10736624.7A patent/EP2457412B1/en active Active
-
2017
- 2017-02-02 US US15/422,916 patent/US10149350B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
PL2457412T3 (en) | 2013-09-30 |
KR20120038998A (en) | 2012-04-24 |
ES2422704T3 (en) | 2013-09-13 |
US20120118873A1 (en) | 2012-05-17 |
US10149350B2 (en) | 2018-12-04 |
WO2011009577A1 (en) | 2011-01-27 |
US9578691B2 (en) | 2017-02-21 |
SI2457412T1 (en) | 2013-08-30 |
EP2457412A1 (en) | 2012-05-30 |
US20170150552A1 (en) | 2017-05-25 |
DE102009034307A1 (en) | 2011-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2457412B1 (en) | Heater, in particular high-temperature heater, and method for the production thereof | |
DE69431643T2 (en) | Device and method for producing coatings, agents and articles which are conductive and resistant at high temperatures | |
DE60221973T2 (en) | RESISTIVE AND CONDUCTIVE COATING MANUFACTURED IN THE SOL-GEL PROCESS | |
EP0653898B1 (en) | Process for manufacturing ceramic heating elements | |
EP2638776B1 (en) | Domestic appliance and method for production of a domestic appliance heater | |
DE3884569T2 (en) | Vitro-ceramic heating element. | |
DE3734274A1 (en) | ELECTRICALLY INSULATING, CERAMIC, SINTERED BODY | |
DE69906804T2 (en) | CERAMIC IGNITER WITH HIGH OXIDATION RESISTANCE AND METHOD FOR PRODUCING THE SAME | |
DE68917966T2 (en) | Electrically conductive ceramic material. | |
EP2696720B1 (en) | Hair-shaping-appliance heating plate | |
DE19835378A1 (en) | Heated surface element | |
DE1912216B2 (en) | ELECTRIC HEATING ELEMENT | |
DE102005017816A1 (en) | Electro ceramic element such as a resistive layer having a PTC characteristic is formed by thermal spraying of PTC particles onto a carrier base | |
EP2680666B1 (en) | Hairdryer | |
DE102005028250A1 (en) | Conductor paste for producing an electrical conductor and method of manufacturing the electrical conductor using the conductor paste | |
DE10001330A1 (en) | Electric cooker plate has flat coating of electrical heating resistance material with binding material containing electrical resistance element of conducting carbon in contact with underside | |
EP1696705A1 (en) | Flat heating element of small thickness, in particular for cooking oven | |
DE2455395C3 (en) | Resistor composition for making electrical resistors | |
AT525295B1 (en) | SILICATE CERAMIC COMPOSITE MATERIAL AND APPLICATIONS THEREOF | |
DE10207515A1 (en) | cooking system | |
WO2005047205A2 (en) | Heat insulation for a heating device, and use of a foamed mineral material for a heat-insulating moulded body of a heating device | |
DE10356211A1 (en) | Heating device, in particular ceramic hob, and method for producing such | |
EP1519630B1 (en) | Heater for cooking apparatus or the like | |
EP1445244A2 (en) | Composite material for ceramic heating elements and manufacturing process thereof | |
DE1590363A1 (en) | Method of connecting lead wires to electrodes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20120123 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 610585 Country of ref document: AT Kind code of ref document: T Effective date: 20130515 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502010003211 Country of ref document: DE Effective date: 20130704 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2422704 Country of ref document: ES Kind code of ref document: T3 Effective date: 20130913 |
|
REG | Reference to a national code |
Ref country code: PL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20130501 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130902 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130501 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130501 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130901 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130802 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130801 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130501 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130501 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130501 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130501 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130501 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130501 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130501 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20140204 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502010003211 Country of ref document: DE Effective date: 20140204 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130719 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140731 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130501 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A Owner name: BSH HAUSGERATE GMBH Effective date: 20150529 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130719 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20100719 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130501 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DERANGEW, DE Effective date: 20151022 Ref country code: FR Ref legal event code: CD Owner name: BSH HAUSGERATE GMBH, DE Effective date: 20151022 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 610585 Country of ref document: AT Kind code of ref document: T Effective date: 20150719 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150719 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130501 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20190613 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20190617 Year of fee payment: 10 Ref country code: FR Payment date: 20190619 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20190801 Year of fee payment: 10 Ref country code: SE Payment date: 20190710 Year of fee payment: 10 Ref country code: SI Payment date: 20190702 Year of fee payment: 10 Ref country code: IT Payment date: 20190719 Year of fee payment: 10 Ref country code: TR Payment date: 20190708 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20190717 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502010003211 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200201 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R073 Ref document number: 502010003211 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R074 Ref document number: 502010003211 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502010003211 Country of ref document: DE Representative=s name: MAMMEL UND MASER, PATENTANWAELTE, DE Ref country code: DE Ref legal event code: R081 Ref document number: 502010003211 Country of ref document: DE Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANG, DE Free format text: FORMER OWNERS: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V., 80686 MUENCHEN, DE; BSH BOSCH UND SIEMENS HAUSGERAETE GMBH, 81739 MUENCHEN, DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200201 |
|
PGRI | Patent reinstated in contracting state [announced from national office to epo] |
Ref country code: DE Effective date: 20200724 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200719 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200719 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200731 Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200720 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200720 |
|
REG | Reference to a national code |
Ref country code: SI Ref legal event code: KO00 Effective date: 20210810 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200719 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20211229 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200720 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200719 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200719 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R084 Ref document number: 502010003211 Country of ref document: DE |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230524 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240719 Year of fee payment: 15 |