EP0653898B1 - Process for manufacturing ceramic heating elements - Google Patents

Process for manufacturing ceramic heating elements Download PDF

Info

Publication number
EP0653898B1
EP0653898B1 EP94117182A EP94117182A EP0653898B1 EP 0653898 B1 EP0653898 B1 EP 0653898B1 EP 94117182 A EP94117182 A EP 94117182A EP 94117182 A EP94117182 A EP 94117182A EP 0653898 B1 EP0653898 B1 EP 0653898B1
Authority
EP
European Patent Office
Prior art keywords
conductors
metallization
ceramic
heating
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94117182A
Other languages
German (de)
French (fr)
Other versions
EP0653898A2 (en
EP0653898A3 (en
Inventor
Alfred Dr. Thimm
Heinz Groschwitz
Peter Besold
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ceramtec GmbH
Original Assignee
Ceramtec GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ceramtec GmbH filed Critical Ceramtec GmbH
Publication of EP0653898A2 publication Critical patent/EP0653898A2/en
Publication of EP0653898A3 publication Critical patent/EP0653898A3/en
Application granted granted Critical
Publication of EP0653898B1 publication Critical patent/EP0653898B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/28Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material
    • H05B3/286Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material the insulating material being an organic material, e.g. plastic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/141Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/28Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material
    • H05B3/283Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material the insulating material being an inorganic material, e.g. ceramic

Definitions

  • the invention relates to a method for producing an electrical heating element, in the case of the metallic heating conductor between ceramic insulating layers are embedded, whereby as current leads and as current leads Contacting recesses in the ceramic insulating layers with electrical conductive mass are filled.
  • a ceramic heater is known, the one contains ceramic body and a heating element that is on the ceramic Body is formed.
  • This heating element consists of several areas.
  • the first area is a heat generating area.
  • Electrical line areas are used for power supply and power dissipation and connection areas connect the heat generating area with the electrical Line areas.
  • the heat generating area is made from a cermet formed which is a ceramic material and mainly from at least contains a metallic material consisting of a precious metal.
  • the electrical Pipe areas are formed from a metallic material that consists mainly of at least one base metal or one Cermet, which contains a ceramic material and the metallic material.
  • the materials of the Heat generation part and the connecting conductor also. Contains here too the material of the heat generating part as a main component is a precious metal.
  • the interconnector must be specially designed to be more specific Contact resistance is not higher than half the specific one Volume resistance of the heat development conductors.
  • the process for producing the invention Heating element is defined in claim 1, and that The heating element according to the invention is in claim 7 Are defined.
  • high temperature resistant metallization paste in thick film technology applied.
  • Layers are made using the screen printing process Layer thicknesses of up to 100 ⁇ m achieved.
  • the ceramic insulation layers with the applied metallization pastes are then preferably first dried.
  • the drying conditions depend on the used Screen printing oil, generally over a period of 5 to 30 minutes Temperatures in the range of 40 to 150 ° C is dried.
  • a metallization paste is used that at least 70 wt .-% metal powder consisting of tungsten or molybdenum or mixtures thereof, and not more than 35% by weight of one containing glass phase-forming ceramic powder or powder mixture Aluminum oxide, aluminum nitride, titanium nitride, titanium carbide or tungsten carbide and additionally contains 5 to 35% by weight of an organic pasting medium.
  • Organic pasting media are in particular oils such as mineral oil, vegetable Suitable oils or synthetic oils such as screen printing oil or recycling oil, it can but also fats, waxes, agents such as thixotropic agents, rosin or lecithin to achieve better filling levels, bentonites to improve the Strength of the unfired paste and / or organic solvents used become.
  • oils such as mineral oil, vegetable Suitable oils or synthetic oils such as screen printing oil or recycling oil
  • it can but also fats, waxes, agents such as thixotropic agents, rosin or lecithin to achieve better filling levels, bentonites to improve the Strength of the unfired paste and / or organic solvents used become.
  • unburned ceramic foils to enable electricity to be transported perpendicular to the Foil surface contacting recesses in the context of the present Invention also called "vias", punched or drilled.
  • the metallization paste is using a printing process such as screen printing, roller screen printing, Offset printing or pad printing on still unfired ceramic foils transferred, creating the desired pattern on the film surface becomes.
  • the fully filled vias have a diameter of 0.1 to 0.5 mm, preferably 0.3 mm.
  • the layer thickness of the metallization for the conductor tracks can be between 5 and 100 ⁇ m, preferably between 10 and 15 ⁇ m.
  • the width of the conductor track should be at least 0.25 mm in order to safely avoid a burnout, preferably about 0.5 mm.
  • the paste For processing the paste, it is recommended to use the paste to fill the vias to be used with a viscosity of 150 to 500 Pa • s for the flat Metallization printing, however, is advantageous, the paste by appropriate Add further small amounts of screen printing oil to a viscosity in the range from 50 to 90 Pa • s.
  • the metallization paste is matched to the shrinkage of the film so that during sintering, neither due to insufficient shrinkage of the Metallization compared to the shrinkage of the ceramic star cracks in the Ceramic, still due to excessive shrinkage of the metallization paste Voids or star cracks appear in the via.
  • the vote on the Shrinkage occurs through the composition and grain sizes of the powders.
  • the non-glass phase forming contained in the metallization paste Ceramic powder preferably has an average grain size of ⁇ 10 ⁇ m, particularly preferably ⁇ 2 ⁇ m. The grain sizes are determined with a Lasergranulometer® CILAS 850 measured by ALCATEL.
  • the overall resistance should be as constant as possible, which results from the surface resistance of the burned-in conductor track and the The area of the conductor track in the film layer level is obtained by multiplication. In In practice, total resistances of approximately 1 to 1000 ohms are used for such Miniature heating elements required. The distance between neighboring ones Conductors should be ⁇ 0.4 mm if possible to prevent them from burning out avoid. The overall arrangement of the conductor tracks should be chosen so that the loop has a heating temperature as uniform as possible over its extent having. Then the outer metallization parts of the Contact surfaces are nickel-plated without current. For this, a commercially available Metallization bath, for example, based on hypophosphite Reducing agents are used. If necessary, an additional copper and / or silver-containing solder layer can be applied.
  • an adhesive aid made of an organic mixture with a binder can be applied over the entire surface of the ceramic films.
  • Such adhesive aids are known from US Pat. No. 5,021,287 and contain organic resins such as polyvinyl butyral or acrylic resins in an organic solvent and possibly also plasticizers such as phthalic acid esters or polyethylene glycols.
  • the separation takes place, whereby at the same time the later form of the Heating element is generated.
  • the separation can, for example, by Cutting or punching is done.
  • the final size of the heating element is due to the sintering process Temperatures ⁇ 1600 ° C generated in a reducing, humid atmosphere.
  • the Furnace atmosphere preferably has a composition of about 75% Hydrogen and 25% nitrogen, the mixture being at a temperature of 55 ° C is saturated with water vapor.
  • heating elements which are produced by the method according to the invention, is a continuous operating temperature between 50 and, depending on Material composition, 1100 h at temperatures up to 1800 ° C possible.
  • the upper operating temperature limit is mainly from the chemical Composition of the ceramic insulating layers and their content of softening phases.
  • the ceramic Insulating layers materials such as aluminum oxide, aluminum nitride, zirconium oxide, Silicon dioxide or titanium nitride used.
  • the heating elements can be used as heating elements for Oxygen sensors or other measuring probes, especially for the Automotive technology, in laboratory measuring devices and infrared measuring transmitters or in the Heating technology, for example as an ignition element for igniting escaping flammable gases or as immersion heaters.
  • a 0.8 mm thick green film contained binder, plasticizer and Dispersant primarily aluminum oxide and 4% of a quartz-containing glass-forming offset.
  • the foil was cut with blades into cards that Recesses for the vias were made mechanically punched.
  • the vias were screen printed with a metallizing paste, which in addition to 84% by weight of tungsten with an average grain size of 2.5 ⁇ m 16% by weight of a fine-grained alumina with an average grain size of 1 ⁇ m and additionally 15% by weight as an organic pasting medium Screen printing oil, based on the weight of the solids content, contained.
  • Screen printing oil based on the weight of the solids content, contained.
  • For the Processing of the paste was a viscosity of 75 Pa • s for surface pressure and set to 175 Pa • s for the pressure of the vias.
  • FIG. 1 A graphical representation of this arrangement is illustrated in Figure 1.
  • the ceramic films 1 with the vias 2 can be recognized by reference numerals.
  • the Vias 2 are filled with via fillings, not shown.
  • the metallizations 4 are arranged in such a way that interconnect leads 5 and heating loops 6 result, the latter forming the heating area 7.
  • This stack of cards was pressed under a pressure of 90,000 hPa at a temperature of 90 ° C.
  • Several individual parts were cut from the laminate using a cutting tool.
  • the distance of the loop-shaped structure inside the heating element from the lateral outer edge of the heating element was 0.5 mm.
  • the rod-shaped heating elements were sintered under protective gas (moist mixture of nitrogen and hydrogen) at a temperature of 1630 ° C. in a hood furnace.
  • protective gas moist mixture of nitrogen and hydrogen
  • the ceramic material aluminum oxide with a content of 96% by weight Al 2 O 3 was produced, on the other hand, the conductor tracks were also sintered in a co-firing process.
  • the fully filled vias were 0.3 mm in diameter.
  • the layer thickness of the conductor track metallization was 12 ⁇ m and its width was 0.5 mm.
  • the surface resistance achieved with the conductor tracks according to Example 1 was 5 m ⁇ / cm 2 .
  • the finished heating element each had a width and height of approximately 2.5 mm and a length of its heating area of approximately 18 mm. The measurements made on the finished heating element are described after the examples and compared in a table.
  • Example 2 Analogously to Example 1, the same ceramic material was used made of 96% by weight aluminum oxide and 4% by weight quartz-containing, glass-forming Offset a heating element made with the same dimensions. One and only The difference was that the metallization paste consisted of 100% by weight Tungsten with an average particle size of 2.5 ⁇ m plus that for the Processing as a paste required the amount of screen printing oil. It's going on the measurement results referenced to the examples.
  • Ceramic film is analogous to the manufacturing process of Example 1.
  • ceramic material was an aluminum nitride with 3 wt .-% aluminum oxide and 4 wt% yttria.
  • a card was made from a unfired ceramic film with the help of those described below Metallizing paste printed with a wavy or meandering structure.
  • vias were mechanically created with a Stamped metal needle.
  • the metallization paste consisted of 84% by weight of molybdenum and 8% by weight Aluminum oxide and a further 8% by weight aluminum nitride.
  • the powders were fine Grain sizes as described in Example 1.
  • the metallizing paste was made with Screen printing oil adjusted to the viscosity described in Example 1.
  • the manufacturing process for a substantially annular heating element was in all points identical to the production processes of Examples 1 and 2.
  • Ceramic material was aluminum nitride with 10 wt .-% aluminum oxide and 3 wt .-% yttrium oxide.
  • the heatable Zone can be characterized by a slight shift in contact areas and vias the outer edge of the component become almost circular.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung eines elektrischen Heizelementes, bei dem metallische Heizleiter zwischen keramischen Isolierschichten eingebettet sind, wobei als Stromzuführungen und als Stromableitungen Kontaktierungsausnehmungen in den keramischen Isolierschichten mit elektrisch leitfähiger Masse gefüllt sind.The invention relates to a method for producing an electrical heating element, in the case of the metallic heating conductor between ceramic insulating layers are embedded, whereby as current leads and as current leads Contacting recesses in the ceramic insulating layers with electrical conductive mass are filled.

Otsuka et al. beschreiben in CERAMIC BULLETIN 60, S. 540 ff (1981), daß Bauteile aus keramischen Werkstoffen, die hauptsächlich Aluminiumoxid oder Aluminiumnitrid enthalten, mit hochschmelzenden Metallen wie Wolfram oder Molybdän metallisiert werden können, daß diese Metallisierung dann durch eine weitere Schicht aus grüner Keramik abgedeckt und der Verbund danach zur Werkstoffbildung gesintert werden kann. Besonders eignet sich hierzu die Folientechnik.Otsuka et al. describe in CERAMIC BULLETIN 60, pp. 540 ff (1981) that Components made of ceramic materials, mainly aluminum oxide or Contain aluminum nitride, with refractory metals such as tungsten or Molybdenum can be metallized, that this metallization then by a covered another layer of green ceramic and the composite afterwards Material formation can be sintered. The is particularly suitable for this Foil technique.

So hergestellte Bauteile können vor allem im Bereich der Elektronik und Elektrotechnik Anwendung finden. Dickwandige und große Heizelemente sind in verschiedenen Ausführungsformen bekannt. Bei der zunehmenden Miniaturisierung in der Elektronik und Elektrotechnik treten jedoch herstellungstechnische und anwendungstechnische Probleme auf.Components manufactured in this way can be used primarily in the field of electronics and electrical engineering Find application. Thick-walled and large heating elements are available in different Embodiments known. With increasing miniaturization in electronics and electrical engineering, however, manufacturing technology and application problems.

Bei hohen Heizleistungen müssen die verwendeten Werkstoffe hochtemperaturbeständig sein, ohne daß die Heizelemente durch Überlastung zerstört werden (Durchbrennen).At high heating outputs, the materials used must be resistant to high temperatures be without the heating elements being destroyed by overload (Run away).

So ist eine Anwendung als Heizelement möglich, bei der durch Einwirkung eines elektrischen Stromes große Wärmemengen bevorzugt an solchen Stellen im Metallisierungsmuster erzeugt werden, die einen hohen Widerstand aufweisen. So an application as a heating element is possible, in which by the action of a electrical current large amounts of heat preferred at such points in the Metallization patterns are generated that have a high resistance.

Aus der DE-OS 39 02 484 ist ein keramischer Heizkörper bekannt, der einen keramischen Körper und ein Heizelement enthält, das auf dem keramischen Körper gebildet ist. Dieses Heizelement besteht aus mehreren Bereichen. Der erste Bereich ist ein wärmeerzeugender Bereich. Elektrische Leitungsbereiche dienen der Stromzuführung und der Stromabführung und Verbindungsbereiche verbinden den wärmeerzeugenden Bereich mit den elektrischen Leitungsbereichen. Der wärmeerzeugende Bereich wird aus einem Cermet gebildet, das ein keramisches Material und ein hauptsächlich aus wenigstens einem Edelmetall bestehendes metallisches Material enthält. Die elektrischen Leitungsbereiche sind aus einem metallischen Material gebildet, das hauptsächlich aus wenigsten einem unedlen Metall besteht oder aus einem Cermet, das ein keramisches Material und das metallische Material enthält.From DE-OS 39 02 484 a ceramic heater is known, the one contains ceramic body and a heating element that is on the ceramic Body is formed. This heating element consists of several areas. The first area is a heat generating area. Electrical line areas are used for power supply and power dissipation and connection areas connect the heat generating area with the electrical Line areas. The heat generating area is made from a cermet formed which is a ceramic material and mainly from at least contains a metallic material consisting of a precious metal. The electrical Pipe areas are formed from a metallic material that consists mainly of at least one base metal or one Cermet, which contains a ceramic material and the metallic material.

Beim Gegenstand der DE 39 07 312 A1 unterscheiden sich die Werkstoffe des Wärmeerzeugungsteils und der Verbindungsleiter ebenfalls. Auch hier enthält der Werkstoff des Wärmeerzeugungsteils als Hauptbestandteil ein Edelmetall. Die Verbindungsleiter müssen besonders gestaltet sein, dass ihr spezifischer Durchgangswiderstand nicht höher ist als der halbe spezifische Durchgangswiderstand der Wärmeentwicklungsleiter.In the subject of DE 39 07 312 A1, the materials of the Heat generation part and the connecting conductor also. Contains here too the material of the heat generating part as a main component is a precious metal. The interconnector must be specially designed to be more specific Contact resistance is not higher than half the specific one Volume resistance of the heat development conductors.

Die Herstellung dieser bekannten keramischen Heizkörper ist aufwändig, insbesondere dann, wenn jeder der genannten elektrischen Bereiche aus einem anderen Werkstoff besteht und somit in einem getrennten Arbeitsgang aufgetragen werden muss. Die jeweilige Verwendung mindestens eines Edelmetalls ist ein Kostenfaktor.The production of these known ceramic radiators is complex, especially if each of the named electrical areas consists of one other material and therefore in a separate operation must be applied. The respective use of at least one Precious metal is a cost factor.

Das Verfahren zur Herstellung des erfindungsgemäßen Heizelementes ist im Anspruch 1 definiert, und das erfindungsgemäße Heizelement ist im Anspruch 7 definiert. The process for producing the invention Heating element is defined in claim 1, and that The heating element according to the invention is in claim 7 Are defined.

In bevorzugter Ausgestaltung des erfindungsgemäßen Verfahrens wird die hochtemperaturbeständige Metallisierungspaste in Dickschichttechnik aufgetragen. Dabei werden nach dem Siebdruckverfahren Schichten mit Schichtdicken von bis zu 100 µm erreicht. Die keramischen Isolierschichten mit den aufgetragenen Metallisierungspasten werden vorzugsweise dann zunächst getrocknet. Die Trocknungsbedingungen richten sich nach dem verwendeten Siebdrucköl, wobei allgemein über einen Zeitraum von 5 bis 30 min bei Temperaturen im Bereich von 40 bis 150 °C getrocknet wird.In a preferred embodiment of the method according to the invention high temperature resistant metallization paste in thick film technology applied. Layers are made using the screen printing process Layer thicknesses of up to 100 µm achieved. The ceramic insulation layers with the applied metallization pastes are then preferably first dried. The drying conditions depend on the used Screen printing oil, generally over a period of 5 to 30 minutes Temperatures in the range of 40 to 150 ° C is dried.

Erfindungsgemäß wird eine Metallisierungspaste verwendet, die mindestens 70 Gew.-% Metallpulver, bestehend aus Wolfram oder Molybdän oder Mischungen daraus, und höchstens 35 Gew.-% eines nicht glasphasenbildenden Keramikpulvers oder Pulvergemisches enthaltend Aluminiumoxid, Aluminiumnitrid, Titannitrid, Titancarbid oder Wolframcarbid und zusätzlich 5 bis 35 Gew.-% eines organischen Anpastungsmediums enthält. Als organische Anpastungsmedien sind insbesondere Öle wie Mineralöl, pflanzliche Öle oder synthetische Öle wie Siebdrucköl oder Recyclingöl geeignet, es können aber auch Fette, Wachse, Stellmittel wie Thixotropierungsmittel, Kolophonium oder Lecithin zu Erzielung besserer Füllgrade, Bentonite zur Verbesserung der Festigkeit der ungebrannten Paste und/oder organische Lösemittel eingesetzt werden.According to the invention, a metallization paste is used that at least 70 wt .-% metal powder consisting of tungsten or molybdenum or mixtures thereof, and not more than 35% by weight of one containing glass phase-forming ceramic powder or powder mixture Aluminum oxide, aluminum nitride, titanium nitride, titanium carbide or tungsten carbide and additionally contains 5 to 35% by weight of an organic pasting medium. As Organic pasting media are in particular oils such as mineral oil, vegetable Suitable oils or synthetic oils such as screen printing oil or recycling oil, it can but also fats, waxes, agents such as thixotropic agents, rosin or lecithin to achieve better filling levels, bentonites to improve the Strength of the unfired paste and / or organic solvents used become.

Zur Herstellung des Heizelements werden gemäß einer bevorzugten Ausgestaltung der Erfindung in ungebrannte keramische Folien zur Ermöglichung eines Stromtransportes senkrecht zur Folienoberfläche Kontaktierungsausnehmungen, im Rahmen der vorliegenden Erfindung auch »Vias« genannt, gestanzt oder gebohrt. Die Metallisierungspaste wird mit Hilfe eines Druckverfahrens wie Siebdruck, Rollensiebdruck, Offset-Druck oder Tampondruck auf noch ungebrannte keramische Folien übertragen, wobei auf der Folienoberfläche das gewünschte Muster erzeugt wird. Die vollständig gefüllten Vias weisen einen Durchmesser von 0,1 bis 0,5 mm auf, vorzugsweise von 0,3 mm. Die Schichtdicke der Metallisierung für die Leiterbahnen kann zwischen 5 und 100 µm betragen, vorzugsweise zwischen 10 und 15 µm. Die Breite der Leiterbahn sollte mindestens 0,25 mm betragen, um ein Durchbrennen sicher zu vermeiden, vorzugsweise etwa 0,5 mm.To produce the heating element, according to a preferred embodiment of the invention, unburned ceramic foils to enable electricity to be transported perpendicular to the Foil surface contacting recesses, in the context of the present Invention also called "vias", punched or drilled. The metallization paste is using a printing process such as screen printing, roller screen printing, Offset printing or pad printing on still unfired ceramic foils transferred, creating the desired pattern on the film surface becomes. The fully filled vias have a diameter of 0.1 to 0.5 mm, preferably 0.3 mm. The layer thickness of the metallization for the conductor tracks can be between 5 and 100 μm, preferably between 10 and 15 µm. The width of the conductor track should be at least 0.25 mm in order to safely avoid a burnout, preferably about 0.5 mm.

Für die Verarbeitung der Paste empfiehlt es sich, die Paste zum Füllen der Vias mit einer Viskosität von 150 bis 500 Pa•s anzuwenden, für den flächigen Metallisierungsdruck hingegen ist er vorteilhaft, die Paste durch entsprechende Addition weiterer geringer Mengen an Siebdrucköl auf eine Viskosität im Bereich von 50 bis 90 Pa•s einzustellen.For processing the paste, it is recommended to use the paste to fill the vias to be used with a viscosity of 150 to 500 Pa • s for the flat Metallization printing, however, is advantageous, the paste by appropriate Add further small amounts of screen printing oil to a viscosity in the range from 50 to 90 Pa • s.

Es ist vorteilhaft, aber nicht erforderlich, die gleiche Metallisierungspaste zum Füllen der Vias und auch für die Leiterbahnen und Kontaktflächen zu verwenden, da dann das Auftreten von Fehlern an den Grenzflächen zwischen Vias und Metallisierungsebenen weitgehend vermieden wird.It is advantageous, but not necessary, to use the same metallization paste Filling the vias and also to use for the conductor tracks and contact areas, since then the occurrence of errors at the interfaces between vias and Metallization levels are largely avoided.

Die Metallisierungspaste ist so auf die Schwindung der Folie abgestimmt, daß während des Sinterns weder aufgrund einer zu geringen Schwindung der Metallisierung im Vergleich zur Schwindung der Keramik Sternrisse in der Keramik, noch aufgrund einer zu hohen Schwindung der Metallisierungspaste Hohlräume oder Sternrisse im Via entstehen. Die Abstimmung auf die Schwindung erfolgt über die Zusammensetzung und die Korngrößen der Pulver. Das in der Metallisierungspaste enthaltene nicht glasphasenbildende Keramikpulver besitzt vorzugsweise eine mittlere Korngröße von ≤ 10 µm, besonders bevorzugt ≤ 2 µm. Die Korngrößen werden mit einem Lasergranulometer® CILAS 850 der Firma ALCATEL gemessen.The metallization paste is matched to the shrinkage of the film so that during sintering, neither due to insufficient shrinkage of the Metallization compared to the shrinkage of the ceramic star cracks in the Ceramic, still due to excessive shrinkage of the metallization paste Voids or star cracks appear in the via. The vote on the Shrinkage occurs through the composition and grain sizes of the powders. The non-glass phase forming contained in the metallization paste Ceramic powder preferably has an average grain size of ≤ 10 µm, particularly preferably ≤ 2 µm. The grain sizes are determined with a Lasergranulometer® CILAS 850 measured by ALCATEL.

Außerdem sollte ein möglichst konstanter Gesamtwiderstand eingestellt werden, der sich aus dem Flächenwiderstand der eingebrannten Leiterbahn und der Fläche der Leiterbahn in der Folienschichtebene durch Multiplikation ergibt. In der Praxis sind Gesamtwiderstände von etwa 1 bis 1000 Ohm bei derartigen Miniaturheizelementen erforderlich. Der Abstand zwischen benachbarten Leiterbahnen sollte möglichst ≥ 0,4 mm sein, um ein Durchbrennen zu vermeiden. Die Gesamtanordnung der Leiterbahnen soll so gewählt werden, daß die Schleife eine möglichst gleichmäßige Heiztemperatur über ihre Erstreckung aufweist. Danach können die außenliegenden Metallisierungspartien der Kontaktflächen stromlos vernickelt werden. Hierzu kann ein handelsübliches Metallisierungsbad zum Beispiel auf der Basis von Hypophosphit als Reduktionsmittel verwendet werden. Bei Bedarf kann zusätzlich eine kupferund/oder silberhaltige Lotschicht aufgetragen werden.In addition, the overall resistance should be as constant as possible, which results from the surface resistance of the burned-in conductor track and the The area of the conductor track in the film layer level is obtained by multiplication. In In practice, total resistances of approximately 1 to 1000 ohms are used for such Miniature heating elements required. The distance between neighboring ones Conductors should be ≥ 0.4 mm if possible to prevent them from burning out avoid. The overall arrangement of the conductor tracks should be chosen so that the loop has a heating temperature as uniform as possible over its extent having. Then the outer metallization parts of the Contact surfaces are nickel-plated without current. For this, a commercially available Metallization bath, for example, based on hypophosphite Reducing agents are used. If necessary, an additional copper and / or silver-containing solder layer can be applied.

Mehrere mit Metallisierungspaste überzogene Folien werden dann übereinandergestapelt und unter Anwendung von Druck (meist ≥ 5•104 hPa) ggf. in Kombination mit Wärme (RT bis ca. 150 °C) miteinander verpresst. Zur Erleichterung dieses Vorgangs kann auf die keramischen Folien eine Klebehilfe aus einem organischen Gemisch mit einem Binder vollflächig aufgebracht werden. Derartige Klebehilfen sind aus der US-PS 5,021,287 bekannt und enthalten organische Harze wie Polyvinylbutyral oder Acrylharze in einem organischen Lösemittel sowie eventuell noch Weichmacher wie Phthalsäureester oder Polyethylenglykole.Several foils covered with metallizing paste are then stacked on top of one another and pressed together using pressure (usually ≥ 5 • 10 4 hPa), possibly in combination with heat (RT to approx. 150 ° C). To facilitate this process, an adhesive aid made of an organic mixture with a binder can be applied over the entire surface of the ceramic films. Such adhesive aids are known from US Pat. No. 5,021,287 and contain organic resins such as polyvinyl butyral or acrylic resins in an organic solvent and possibly also plasticizers such as phthalic acid esters or polyethylene glycols.

Nachdem ein Mehrschichtlaminat hergestellt wurde, das zumeist mehrere Heizelemente in der Ebene seitlich zueinander versetzt gleichzeitig enthält, muß nun die Vereinzelung erfolgen, wobei gleichzeitig die spätere Form des Heizelementes erzeugt wird. Die Vereinzelung kann beispielsweise durch Schneiden oder Stanzen erfolgen.After a multilayer laminate was made, usually several Contains heating elements in the plane laterally offset from each other at the same time Now the separation takes place, whereby at the same time the later form of the Heating element is generated. The separation can, for example, by Cutting or punching is done.

Die endgültige Größe des Heizelementes wird durch den Sintervorgang bei Temperaturen ≥ 1600 °C in reduzierender, feuchter Atmosphäre erzeugt. Die Ofenatmosphäre hat vorzugsweise eine Zusammensetzung von etwa 75 % Wasserstoff und 25 % Stickstoff, wobei das Gemisch bei einer Temperatur von 55 °C mit Wasserdampf gesättigt wird.The final size of the heating element is due to the sintering process Temperatures ≥ 1600 ° C generated in a reducing, humid atmosphere. The Furnace atmosphere preferably has a composition of about 75% Hydrogen and 25% nitrogen, the mixture being at a temperature of 55 ° C is saturated with water vapor.

Bei besonderer Miniaturisierung des Heizelementes ist auf die Temperaturverteilung und Wärmeableitung besondere Sorgfalt zu legen. Im Heizbereich muß auf möglichst gleichmäßige Schichtdicke der Leiterbahnen geachtet werden, um örtliche Überhitzungen an Engstellen und Stellen mit geringerer Schichtdicke zu vermeiden. Darüber hinaus führt bereits eine schlechte Abstimmung zwischen der Geometrie und der Wärmeleitfähigkeit des Aluminiumoxid-Werkstoffs, der Zusammensetzung der Metallisierung und der Leiterbahnenausführung zum Durchbrennen aufgrund örtlicher Überhitzung.With special miniaturization of the heating element is due to the temperature distribution and heat dissipation to take special care. Must be in the heating area attention should be paid to the most uniform layer thickness of the conductor tracks in order to local overheating at narrow points and places with a smaller layer thickness avoid. In addition, there is already a poor coordination between the geometry and the thermal conductivity of the aluminum oxide material Composition of the metallization and the conductor track design for Burning out due to local overheating.

Mit Heizelementen, die nach dem erfindungsgemäßen Verfahren hergestellt sind, ist eine Dauereinsatztemperatur zwischen 50 und, je nach Werkstoffzusammensetzung, 1100 h bei Temperaturen bis 1800 °C realisierbar. Die obere Einsatztemperaturgrenze ist vor allem von der chemischen Zusammensetzung der keramischen Isolierschichten und ihrem Gehalt an erweichenden Phasen abhängig. Vorzugsweise werden für die keramischen Isolierschichten Materialien wie Aluminiumoxid, Aluminiumnitrid, Zirkonoxid, Siliziumdioxid oder Titannitrid eingesetzt.With heating elements which are produced by the method according to the invention, is a continuous operating temperature between 50 and, depending on Material composition, 1100 h at temperatures up to 1800 ° C possible. The upper operating temperature limit is mainly from the chemical Composition of the ceramic insulating layers and their content of softening phases. Preferably for the ceramic Insulating layers materials such as aluminum oxide, aluminum nitride, zirconium oxide, Silicon dioxide or titanium nitride used.

Die Heizelemente können Verwendung finden als Heizelemente für Sauerstoffsensoren oder andere Meßsonden, insbesondere für die Automobiltechnik, in Labormeßgeräten und Infrarotmeßsendern oder in der Heiztechnik, zum Beispiel als Zündelement zum Zünden von ausströmenden brennbaren Gasen oder als Tauchsieder.The heating elements can be used as heating elements for Oxygen sensors or other measuring probes, especially for the Automotive technology, in laboratory measuring devices and infrared measuring transmitters or in the Heating technology, for example as an ignition element for igniting escaping flammable gases or as immersion heaters.

Die Erfindung wird nachfolgend durch Ausführungsbeispiele für den Fachmann noch ausführlicher dargestellt, ohne daraus aber Einschränkungen auf die konketen Ausführungsformen ableiten zu wollen. The invention is illustrated below by exemplary embodiments for the person skilled in the art presented in more detail, but without restricting it to the want to derive concrete embodiments.

Beispiel 1example 1

Eine 0,8 mm starke grüne Folie enthielt neben Binder, Weichmacher und Dispergiermittel in erster Linie Aluminiumoxid und 4 % eines quarzhaltigen, glasbildenden Versatzes. Die Folie wurde mit Klingen zu Karten geschnitten, die Ausnehmungen für die Durchkontaktierungen (Vias) wurden mechanisch gestanzt. Die Vias wurden im Siebdruck mit einer Metallisierungspaste gefüllt, welche neben 84 Gew.-% Wolfram mit einer mittleren Korngröße von 2,5 µm noch 16 Gew.-% einer feinkörnigen Tonerde mit einer mittleren Korngröße von 1 µm und zusätzlich als organisches Anpastungsmedium noch 15 Gew.-% Siebdrucköl, bezogen auf das Gewicht des Feststoffanteils, enthielt. Für die Verarbeitung der Paste wurde eine Viskosität von 75 Pa•s für den Flächendruck und von 175 Pa•s für den Druck der Vias eingestellt.A 0.8 mm thick green film contained binder, plasticizer and Dispersant primarily aluminum oxide and 4% of a quartz-containing glass-forming offset. The foil was cut with blades into cards that Recesses for the vias were made mechanically punched. The vias were screen printed with a metallizing paste, which in addition to 84% by weight of tungsten with an average grain size of 2.5 µm 16% by weight of a fine-grained alumina with an average grain size of 1 µm and additionally 15% by weight as an organic pasting medium Screen printing oil, based on the weight of the solids content, contained. For the Processing of the paste was a viscosity of 75 Pa • s for surface pressure and set to 175 Pa • s for the pressure of the vias.

Nach dem Trocknen der gefüllten Vias an Luft bei 70 °C wurde auf die ungebrannten und viagefüllten Karten eine schleifenförmige Struktur unter Verwendung der beschriebenen Paste mit Hilfe einer Siebdruckmaschine in Dickschichttechnik aufgedruckt. Die bedruckten Karten wurden an Luft bei 70 °C getrocknet. Auf andere ungebrannte Karten wurde, ebenfalls mit der beschriebenen Metallisierungspaste, ein flächiges Muster mit Hilfe einer Siebdruckmaschine aufgedruckt. Diese Metallisierungsflächen sollen am fertigen Heizelement außen liegen und als Kontaktflächen den elektrischen Anschluß ermöglichen. Alle bedruckten Karten wurden an Luft bei 70 °C getrocknet.After drying the filled vias in air at 70 ° C was on the unfilled and via-filled cards using a looped structure the paste described using a screen printing machine in thick film technology printed. The printed cards were in air at 70 ° C dried. On other unfired cards was also described Metallization paste, a flat pattern using a screen printing machine printed. These metallization areas should be on the finished heating element on the outside lie and allow the electrical connection as contact surfaces. All printed cards were dried in air at 70 ° C.

Mehrere bedruckte Karten wurden dann so aufeinandergestapelt, daß jeweils zwei Karten mit Schleifenmuster mit ihrer nicht metallisierten Rückseite aufeinanderliegen und je eine weitere Karte mit dem Anschlußmuster darauf zu liegen kommt, wobei die Anschlußmuster jeweils nach außen weisen. Eine zeichnerische Darstellung dieser Anordnung ist in der Figur 1 veranschaulicht. Mit Bezugszeichen sind die Keramikfolien 1 mit den Vias 2 zu erkennen. Die Vias 2 sind mit nicht dargestellten Viafüllungen gefüllt. Die Metallisierungen 4 sind so angeordnet, daß sich Leiterbahnzuleitungen 5 und Heizschleifen 6 ergeben, welchletztere den Heizbereich 7 bilden. Schließlich sind auch noch die außen liegenden Kontaktflächen 8 zu erkennen.Several printed cards were then stacked on top of each other two cards with a bow pattern with their non-metallized back lie on top of each other and another card with the connection pattern on it lies, with the connection patterns facing outwards. A graphical representation of this arrangement is illustrated in Figure 1. The ceramic films 1 with the vias 2 can be recognized by reference numerals. The Vias 2 are filled with via fillings, not shown. The metallizations 4 are arranged in such a way that interconnect leads 5 and heating loops 6 result, the latter forming the heating area 7. Finally, there are also recognizable external contact surfaces 8.

Dieser Kartenstapel wurde unter einem Druck von 90 000 hPa bei einer Temperatur von 90 °C verpreßt. Aus dem Laminat wurden mehrere Einzelteile unter Verwendung eines Schneidewerkzeuges geschnitten. Dabei betrug der Abstand der schleifenförmigen Struktur im Inneren des Heizelementes von der seitlichen Außenkante des Heizelementes 0,5 mm. Die stabförmigen Heizelemente wurden unter Schutzgas (feuchte Mischung aus Stickstoff und Wasserstoff) bei einer Temperatur von 1630 °C in einem Haubenofen gesintert. Hierbei wurde einerseits der keramische Werkstoff Aluminiumoxid mit einem Gehalt von 96 Gew.-% Al2O3 erzeugt, andererseits wurden die Leiterbahnen in einem Co-firing Prozeß mitgesintert. Die vollständig gefüllten Vias wiesen einen Durchmesser von 0,3 mm auf. Die Schichtdicke der Leiterbahn-Metallisierung betrug 12 µm und ihre Breite 0,5 mm. Der mit den Leiterbahnen nach Beispiel 1 erzielte Flächenwiderstand lag bei 5 mΩ/cm2. Der fertige Heizstab wies eine Breite und Höhe von jeweils etwa 2,5 mm auf und eine Länge seines Heizbereiches von etwa 18 mm. Die an dem fertigen Heizelement vorgenommenen Messungen sind im Anschluß an die Beispiele beschrieben und tabellarisch gegenübergestellt.This stack of cards was pressed under a pressure of 90,000 hPa at a temperature of 90 ° C. Several individual parts were cut from the laminate using a cutting tool. The distance of the loop-shaped structure inside the heating element from the lateral outer edge of the heating element was 0.5 mm. The rod-shaped heating elements were sintered under protective gas (moist mixture of nitrogen and hydrogen) at a temperature of 1630 ° C. in a hood furnace. On the one hand, the ceramic material aluminum oxide with a content of 96% by weight Al 2 O 3 was produced, on the other hand, the conductor tracks were also sintered in a co-firing process. The fully filled vias were 0.3 mm in diameter. The layer thickness of the conductor track metallization was 12 μm and its width was 0.5 mm. The surface resistance achieved with the conductor tracks according to Example 1 was 5 mΩ / cm 2 . The finished heating element each had a width and height of approximately 2.5 mm and a length of its heating area of approximately 18 mm. The measurements made on the finished heating element are described after the examples and compared in a table.

Vergleichsbeispiel 1Comparative Example 1

Analog zu Beispiel 1 wurde aus dem gleichen keramischen Material bestehend aus 96 Gew.-% Aluminiumoxid und 4 Gew.-% quarzhaltigem, glasbildendem Versatz ein Heizelement mit den gleichen Dimensionen hergestellt. Der einzige Unterschied bestand darin, daß die Metallisierungspaste aus 100 Gew.-% Wolfram mit einer mittleren Teilchengröße von 2,5 µm plus der für die Verarbeitung als Paste notwendigen Menge an Siebdrucköl bestand. Es wird auf die Meßergebnisse im Anschluß an die Beispiele verwiesen. Analogously to Example 1, the same ceramic material was used made of 96% by weight aluminum oxide and 4% by weight quartz-containing, glass-forming Offset a heating element made with the same dimensions. One and only The difference was that the metallization paste consisted of 100% by weight Tungsten with an average particle size of 2.5 µm plus that for the Processing as a paste required the amount of screen printing oil. It's going on the measurement results referenced to the examples.

Beispiel 2Example 2

Das Herstellverfahren für ein stabförmiges Heizelement mit je einer Kontaktfläche an jedem der Stabenden und bestehend aus nur zwei Lagen keramischer Folie ist analog zu dem Herstellverfahren des Beispieles 1. Als keramischer Werkstoff wurde ein Aluminiumnitrid mit 3 Gew.-% Aluminiumoxid und 4 Gew.-% Yttriumoxid hergestellt. Dazu wurde eine Karte aus einer ungebrannten keramischen Folie mit Hilfe der nachfolgend beschriebenen Metallisierungspaste mit einer wellen- oder mäanderförmigen Struktur bedruckt. In eine zweite ungebrannte keramische Karte wurden Vias mechanisch mit einer Metallnadel gestanzt.The manufacturing process for a rod-shaped heating element with one Contact area at each of the rod ends and consisting of only two layers Ceramic film is analogous to the manufacturing process of Example 1. As ceramic material was an aluminum nitride with 3 wt .-% aluminum oxide and 4 wt% yttria. For this, a card was made from a unfired ceramic film with the help of those described below Metallizing paste printed with a wavy or meandering structure. In a second unfired ceramic card, vias were mechanically created with a Stamped metal needle.

Die Metallisierungspaste bestand aus 84 Gew.-% Molybdän sowie 8 Gew.-% Aluminiumoxid und weiteren 8 Gew.-% Aluminiumnitrid. Die Pulver hatten feine Korngrößen wie in Beispiel 1 beschrieben. Die Metallisierungspaste wurde mit Siebdrucköl auf die in Beispiel 1 beschriebene Viskosität eingestellt.The metallization paste consisted of 84% by weight of molybdenum and 8% by weight Aluminum oxide and a further 8% by weight aluminum nitride. The powders were fine Grain sizes as described in Example 1. The metallizing paste was made with Screen printing oil adjusted to the viscosity described in Example 1.

Die Vias wurden mit der beschriebenen Paste gefüllt und getrocknet. Dann wurde auf eine Seite dieser Karte ein flächen- oder mäanderförmiger Druck mit Hilfe der beschriebenen Paste aufgebracht und wiederum getrocknet. Beide Karten wurden in einen wasserdichten Beutel eingeschweißt und mit Hilfe einer isostatisch arbeitenden Presse bei einer Temperatur von 70 °C unter hohem Druck von über 100 000 hPa so laminiert, daß die wellen- oder mäanderförmige Struktur zwischen die beiden Karten zu liegen kommt, während die Kontaktfläche nach außen weist. Eine solche Anordnung ist in Figur 2 veranschaulicht. Das weitere Herstellverfahren wurde wie im Beispiel 1 angegeben durchgeführt.The vias were filled with the paste described and dried. Then a flat or meandering print was printed on one side of this card Apply the paste described and dried again. Both Cards were sealed in a waterproof pouch and using a isostatic press at a temperature of 70 ° C under high Laminated pressure of over 100,000 hPa so that the wave-shaped or meandering Structure comes to lie between the two cards while the Contact surface faces outwards. Such an arrangement is shown in FIG. 2 illustrated. The further production process was as in Example 1 specified carried out.

Beispiel 3Example 3

Das Herstellverfahren für ein im wesentlichen ringförmiges Heizelement war in allen Punkten identisch mit den Herstellungsverfahren der Beispiele 1 und 2. Als keramischer Werkstoff wurde Aluminiumnitrid mit 10 Gew.-% Aluminiumoxid und 3 Gew.-% Yttriumoxid eingesetzt. Dazu wurden Karten aus einer ungebrannten keramischen Folie mit Hilfe der Metallisierungspaste des Beispiels 2 mit einer im wesentlichen ringförmigen und bei Bedarf wellen- oder mäanderförmigen Struktur bedruckt.The manufacturing process for a substantially annular heating element was in all points identical to the production processes of Examples 1 and 2. As Ceramic material was aluminum nitride with 10 wt .-% aluminum oxide and 3 wt .-% yttrium oxide. For this purpose, cards from a unfired ceramic film using the metallizing paste of the example 2 with a substantially ring-shaped and if necessary wave or meandering structure printed.

Falls die übereinanderliegenden Leiterbahnen unterschiedliche Formen bzw. Längen aufweisen, lassen sich ihre elektrischen Widerstände und Heiztemperaturen über den Querschnitt der Leiterbahnen anpassen. Die heizbare Zone kann durch eine geringe Verlagerung der Kontaktflächen und der Vias an den äußeren Rand des Bauteils nahezu kreisförmig werden.If the superimposed conductor tracks have different shapes or Have lengths, their electrical resistances and Adjust heating temperatures across the cross-section of the conductor tracks. The heatable Zone can be characterized by a slight shift in contact areas and vias the outer edge of the component become almost circular.

Um die Belastbarkeit der hergestellten Heizelemente zu testen, wurden zwei verschiedene Meßreihen durchgeführt. Bei der Meßreihe 1 wurde an die Kontakte der Heizelemente eine elektrische Spannung von 17 V angelegt während das Heizelement in einem Ofen auf eine Temperatur von konstant 1000 °C aufgeheizt wurde. Die Stromstärke des Stromes, der dabei durch das Heizelement fließt, regelt sich von selbst ein und wird an einem Ampèremeter angezeigt. Bei der Messung wird aber nur die Zeit gemessen, die vergeht bis auf dem Ampèremeter die Stromstärke 0 A angezeigt wird, weil das Element dann defekt ist.To test the load capacity of the heating elements manufactured, two various series of measurements carried out. In measurement series 1, the Contacts of the heating elements applied an electrical voltage of 17 V. while the heating element in a furnace to a temperature of constant 1000 ° C was heated. The current intensity of the current, which is thereby through the Heating element flows, regulates itself and is on an ammeter displayed. During the measurement, however, only the time is measured that passes by the ammeter shows the current 0 A, because then the element is broken.

Bei der zweiten Messung wird ein sogenannter Überlastungstest durchgeführt. Dabei wird an die Heizelement eine elektrische Spannung von 30 V angelegt, wobei sich in diesem Fall Stromstärke und Temperatur frei einstellen. Gemessen wird auch in diesem Fall die Zeit, die vergeht bis das Heizelement durchgebrannt ist und infolgedessen 0 A angezeigt werden. Die Ergebnisse sind in der nachfolgenden Tabelle zusammengestellt: Beispiel Nr. 1 2 3 V 1 17 V/1000 °C 199 h 212 h 148 h 25 h 30 V 34 m 69 m 28 m 12 m In the second measurement, a so-called overload test is carried out. An electrical voltage of 30 V is applied to the heating element, in which case the current intensity and temperature are freely set. In this case, too, the time is measured that elapses until the heating element has burnt out and 0 A is displayed as a result. The results are summarized in the table below: Example No. 1 2 3 V 1 17 V / 1000 ° C 199 h 212 h 148 h 25 h 30 V 34 m 69 m 28 m 12 m

Claims (9)

  1. Method of producing an electrical heating element in which, prior to sintering, there are embedded, between mutually stacked ceramic insulating layers (1), metallic heating conductors (6) that each have current supply conductors and current drain conductors and wherein there are provided in the ceramic insulating layers, as the current supply conductors and current drain conductors (5) between the layered heating conductors, contacting cutouts (2) that are filled with electrically conductive material, characterized in that there is used both for the heating conductors and for the current supply conductors and current drain conductors, a high-temperature-resistant metallization paste that contains at least 70 wt.% of metal powder composed of tungsten or molybdenum or mixtures thereof and at most 30 wt.% of a ceramic powder or powder mixture that does not form a glass phase, containing aluminium oxide, aluminium nitride, titanium nitride, titanium carbide or tungsten carbide and additionally 5 to 35 wt.% of an organic pasting medium, based on the total solids content.
  2. Method according to Claim 1, characterized in that the ceramic powder contained in the metallization paste and not forming a glass phase has a mean particle size of ≤ 10 µm, preferably ≤ 3 µm.
  3. Method according to Claim 1 or 2, characterized in that the metallization paste is transferred with the aid of a printing method, such as screen printing, rotary screen printing, offset printing or pad printing to an unfired ceramic web, wherein there is generated on the web surface the desired pattern in which the completely filled contacting cutouts have a diameter of 0.1 to 0.5 mm, preferably of 0.3 mm, in which the layer thickness of the metallization for the conductor tracks is in the range from 5 to 100 µm, preferably between 10 and 25 µm, and in which the width of the conductor track is at least 0.25 mm, preferably at least 0.5 mm.
  4. Method according to any of Claims 1 to 3, characterized in that the viscosity of the metallization paste that is used to fill the contacting cutouts is adjusted to a value in the range from 150 to 500 Pa·s and in that the viscosity of the metallization paste that is used for the laminar metallization printing is adjusted to a value in the range from 50 to 90 Pa·s.
  5. Method according to any of Claims 1 to 4, characterized in that the metallization paste is applied using thick-film technology and in that the ceramic insulating layers with the applied metallization pastes are stacked above one another and are dried at temperatures of 40 to 150°C.
  6. Method according to any of Claims 1 to 5, characterized in that the sintering operation is performed at temperatures of ≥ 1600°C in a reducing, moist atmosphere.
  7. Electrical heating element, obtainable by a method according to any of Claims 1 to 6, in which there are embedded, between ceramic insulating layers (1), metallic heating conductors (6) that each have current supply conductors and current drain conductors (5) and wherein there are provided in the ceramic insulating layers, as current supply conductors and current drain conductors between the layered heating conductors, contacting cutouts (2) that are filled with electrically conductive material, characterized in that it has a constant total resistance that results from the sheet resistance of the built-in conductor track and the area of the conductor track in the web layer plane by multiplication and that is in the range from 1 to 1000 Ω, wherein both the heating conductors and the current supply conductors and current drain conductors are made from high-temperature-resistant metallization paste that contains at least 70 wt.% metal powder composed of tungsten or molybdenum or mixtures thereof and not more than 30 wt.% of a ceramic powder or powder mixture that does not form a glass phase, containing aluminium oxide, aluminium nitride, titanium nitride, titanium carbide or tungsten carbide, and additionally 5 to 35 wt.% of an organic pasting medium, based on the total solids content.
  8. Heating element according to Claim 7, characterized in that its outer metallization sections of the contact areas are electrolessly nickel-plated and in that, optionally, a copper-containing and/or silver-containing solder layer is additionally applied.
  9. Heating element according to Claim 7 or 8, characterized in that it is an oxygen sensor or other measuring sensor that is provided, in particular for use in automobile technology, in engine construction or in laboratory measuring instruments and infrared measuring transmitters, or in that it is an ignition element in heating technology for igniting escaping combustible gases or it is an immersion heater.
EP94117182A 1993-11-11 1994-10-31 Process for manufacturing ceramic heating elements Expired - Lifetime EP0653898B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4338539A DE4338539A1 (en) 1993-11-11 1993-11-11 Method of making ceramic heating elements
DE4338539 1993-11-11

Publications (3)

Publication Number Publication Date
EP0653898A2 EP0653898A2 (en) 1995-05-17
EP0653898A3 EP0653898A3 (en) 1996-01-17
EP0653898B1 true EP0653898B1 (en) 2003-05-14

Family

ID=6502368

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94117182A Expired - Lifetime EP0653898B1 (en) 1993-11-11 1994-10-31 Process for manufacturing ceramic heating elements

Country Status (4)

Country Link
US (1) US5560851A (en)
EP (1) EP0653898B1 (en)
JP (1) JP3664757B2 (en)
DE (2) DE4338539A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2975951B1 (en) 2013-03-22 2018-12-05 British American Tobacco (Investments) Ltd Heating smokeable material

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5726621A (en) * 1994-09-12 1998-03-10 Cooper Industries, Inc. Ceramic chip fuses with multiple current carrying elements and a method for making the same
US6133557A (en) * 1995-01-31 2000-10-17 Kyocera Corporation Wafer holding member
JPH08264269A (en) * 1995-03-28 1996-10-11 Rohm Co Ltd Heater for sheet material
US5657532A (en) * 1996-01-16 1997-08-19 Ferro Corporation Method of making insulated electrical heating element using LTCC tape
JP3826961B2 (en) * 1996-03-25 2006-09-27 ローム株式会社 Heating body and manufacturing method thereof
US5889462A (en) * 1996-04-08 1999-03-30 Bourns, Inc. Multilayer thick film surge resistor network
BR9804787A (en) * 1997-03-21 1999-08-17 Hereaus Sensor Nite Technik Gm Insulated flue with mineral
WO2000004085A1 (en) * 1998-07-15 2000-01-27 Thermon Manufacturing Company Thermally-conductive, electrically non-conductive heat transfer material and articles made thereof
JP2000268944A (en) * 1998-08-03 2000-09-29 Denso Corp Ceramic heater, its manufacture, and gas sensor
US6967313B1 (en) * 1999-05-07 2005-11-22 Ibiden Company, Ltd. Hot plate and method of producing the same
WO2001059833A1 (en) * 2000-02-08 2001-08-16 Ibiden Co., Ltd. Ceramic board for semiconductor production and inspection devices
JP2001244320A (en) * 2000-02-25 2001-09-07 Ibiden Co Ltd Ceramic substrate and manufacturing method therefor
GB2363307A (en) * 2000-06-05 2001-12-12 Otter Controls Ltd Thick film heating element stack
EP1274110A1 (en) * 2001-07-02 2003-01-08 Abb Research Ltd. Fuse
JP2005040408A (en) * 2003-07-24 2005-02-17 Olympus Corp Heating element
AT7326U1 (en) * 2003-12-04 2005-01-25 Econ Exp & Consulting Group Gm METHOD FOR PRODUCING A FLAT HEATING ELEMENT AND PRODUCED FLOOR HEATING ELEMENT THEREOF
WO2005069690A1 (en) * 2003-12-24 2005-07-28 Kyocera Corporation Ceramic heater and method for manufacturing same
US7180302B2 (en) * 2004-07-16 2007-02-20 Simula, Inc Method and system for determining cracks and broken components in armor
JP4518885B2 (en) * 2004-09-09 2010-08-04 京セラ株式会社 Ceramic electronic component and method for manufacturing the same
EP1831120B1 (en) * 2004-11-23 2015-08-19 Ferro Techniek Holding B.V. Enamel composition, assembly and use thereof on a substrate surface
NL1027571C2 (en) * 2004-11-23 2006-05-24 Ferro Techniek Holding Bv Email composition for use as a dielectric, and use of such an email composition.
FR2879819B1 (en) * 2004-12-21 2007-02-23 Ulis Soc Par Actions Simplifie COMPONENT FOR DETECTING ELECTROMAGNETIC RADIATION, IN PARTICULAR INFRARED
US7638737B2 (en) * 2005-06-16 2009-12-29 Ngk Spark Plug Co., Ltd. Ceramic-metal assembly and ceramic heater
US7696455B2 (en) * 2006-05-03 2010-04-13 Watlow Electric Manufacturing Company Power terminals for ceramic heater and method of making the same
US7800020B2 (en) * 2007-01-19 2010-09-21 Ceva Carlos Jose Heating plate for hair straightening iron and its manufacturing process
US20080186045A1 (en) * 2007-02-01 2008-08-07 Matsushita Electric Industrial Co., Ltd. Test mark structure, substrate sheet laminate, multilayered circuit substrate, method for inspecting lamination matching precision of multilayered circuit substrate, and method for designing substrate sheet laminate
KR101120599B1 (en) * 2008-08-20 2012-03-09 주식회사 코미코 Ceramic heater, method for manufacturing the same, and apparatus for depositing a thin film including the same
KR101961290B1 (en) * 2013-12-31 2019-03-25 한온시스템 주식회사 PTC heater
CN104582024B (en) * 2014-12-19 2016-07-06 苏州路路顺机电设备有限公司 A kind of sub-sectional cooling is with adding heat pipe and using method thereof
DE102016120536A1 (en) 2016-10-27 2018-05-03 Heraeus Noblelight Gmbh infrared Heaters
US11535086B2 (en) * 2016-12-20 2022-12-27 Lg Innotek Co., Ltd. Heating rod, heating module including same, and heating device including same
GB201700136D0 (en) 2017-01-05 2017-02-22 British American Tobacco Investments Ltd Aerosol generating device and article
US11452179B2 (en) * 2017-01-06 2022-09-20 Lg Innotek Co., Ltd. Heating rod and heater having same
GB201700620D0 (en) 2017-01-13 2017-03-01 British American Tobacco Investments Ltd Aerosol generating device and article
DE102017112611A1 (en) 2017-06-08 2018-12-13 Heraeus Noblelight Gmbh Infrared radiator and method for its manufacture
CN107548174A (en) * 2017-09-29 2018-01-05 珠海惠友电子有限公司 A kind of vehicle thermoregulator ceramic heating element and preparation method thereof
GB201720338D0 (en) 2017-12-06 2018-01-17 British American Tobacco Investments Ltd Component for an aerosol-generating apparatus
EP3777474A4 (en) 2018-03-27 2022-08-10 SCP Holdings, an Assumed Business Name of Nitride Igniters, LLC. Hot surface igniters for cooktops
TWI801559B (en) * 2018-04-17 2023-05-11 美商瓦特洛威電子製造公司 All aluminum heater
US11818813B2 (en) * 2018-09-28 2023-11-14 Kyocera Corporation Wafer-use member, wafer-use system, and method for manufacturing wafer-use member
DE102020200639A1 (en) * 2020-01-21 2021-07-22 Eberspächer Catem Gmbh & Co. Kg Electric heater
CN113248237A (en) * 2021-06-15 2021-08-13 江苏天宝陶瓷股份有限公司 Method for manufacturing far infrared ceramic heater
CN114953100A (en) * 2022-05-09 2022-08-30 深圳市吉迩技术有限公司 Preparation method of multi-material ceramic atomizing core and injection molding machine
GB2618803A (en) * 2022-05-17 2023-11-22 Dyson Technology Ltd Thick film heating elements

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5152531A (en) * 1974-10-31 1976-05-10 Kyoto Ceramic HATSUNETSUSOSHI
JPS55126989A (en) * 1979-03-24 1980-10-01 Kyoto Ceramic Ceramic heater
JPS58209084A (en) * 1982-05-28 1983-12-05 株式会社日立製作所 Direct heater heater material
US4510000A (en) * 1983-11-30 1985-04-09 International Business Machines Corporation Method for palladium activating molybdenum metallized features on a ceramic substrate
JPS61109289A (en) * 1984-11-01 1986-05-27 日本碍子株式会社 Ceramic heater and manufacture thereof
JPS6244971A (en) * 1985-08-23 1987-02-26 日本特殊陶業株式会社 Ceramic substrate heater
GB8526397D0 (en) * 1985-10-25 1985-11-27 Oxley Dev Co Ltd Metallising paste
US4804823A (en) * 1986-07-31 1989-02-14 Kyocera Corporation Ceramic heater
DE3630066C1 (en) * 1986-09-04 1988-02-04 Heraeus Gmbh W C Process for the production of sintered metallized aluminum nitride ceramic bodies
JPH01169989A (en) * 1987-12-24 1989-07-05 Ngk Insulators Ltd Ceramic green sheet
JPH01194282A (en) * 1988-01-28 1989-08-04 Ngk Insulators Ltd Ceramics heater, electrochemical element, and oxygen analysis device
JP2535372B2 (en) * 1988-03-09 1996-09-18 日本碍子株式会社 Ceramic heater, electrochemical device and oxygen analyzer
DE3901545A1 (en) * 1989-01-20 1990-08-02 Bosch Gmbh Robert High-temperature heating element and method for its production
JP2781420B2 (en) * 1989-08-07 1998-07-30 株式会社日立製作所 Method for producing conductor paste
US5264681A (en) * 1991-02-14 1993-11-23 Ngk Spark Plug Co., Ltd. Ceramic heater
JP2804393B2 (en) * 1991-07-31 1998-09-24 京セラ株式会社 Ceramic heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2975951B1 (en) 2013-03-22 2018-12-05 British American Tobacco (Investments) Ltd Heating smokeable material

Also Published As

Publication number Publication date
EP0653898A2 (en) 1995-05-17
DE59410284D1 (en) 2003-06-18
JPH07192906A (en) 1995-07-28
JP3664757B2 (en) 2005-06-29
DE4338539A1 (en) 1995-05-18
EP0653898A3 (en) 1996-01-17
US5560851A (en) 1996-10-01

Similar Documents

Publication Publication Date Title
EP0653898B1 (en) Process for manufacturing ceramic heating elements
DE10032850B4 (en) Electroceramic multilayer component
DE3538460C2 (en)
DE3738343C2 (en)
DE3733192C1 (en) PTC temperature sensor and method for producing PTC temperature sensor elements for the PTC temperature sensor
DE69732065T2 (en) Process for the preparation of a monolithic ceramic capacitor
EP0016307B1 (en) Method of making a multi-layer glass-ceramic structure having copper-based internal conductors
DE112006002451B4 (en) Ceramic multilayer substrate, ceramic multilayer module, and method of making the same
DE2703956A1 (en) METHOD OF MANUFACTURING MULTI-LAYER CERAMICS
DE102013205837A1 (en) PARTICLE DETECTION ELEMENT AND METHOD FOR THE PRODUCTION THEREOF
DE10042909A1 (en) Multilayered ceramic substrate comprises substrate ceramic layers each containing a ceramic material that sinters at a low temperature, a shrinkage-preventing layer containing an inorganic material in the non-sintered state and wiring cable
DE112007001859B4 (en) Glass ceramic composition, glass ceramic sintered body and multilayer ceramic electronic component
DE3630066C1 (en) Process for the production of sintered metallized aluminum nitride ceramic bodies
DE10053769A1 (en) Monolithic ceramic electronic component e.g. ceramic capacitor, varistor has inner electrode layers distributed alternately between ceramic layers, with suitable coarseness at crossover area
DE10304671A1 (en) Oxygen sensor for automotive engines
DE19700700C2 (en) Sensor element and method for its production
DE3734274A1 (en) ELECTRICALLY INSULATING, CERAMIC, SINTERED BODY
DE102017002736B4 (en) COMPOSITE BODY AND METHOD FOR PRODUCING THE COMPOSITE BODY
DE19608484B4 (en) Ceramic circuit substrate fired at low temperature
DE3434449A1 (en) CERAMIC MULTILAYER SUBSTRATE AND METHOD FOR PRODUCING THE SAME
WO2009050299A1 (en) Piezoceramic multi-layer element
DE69726056T2 (en) Dielectric thick film composition for capacitors
DE112022001724T5 (en) OXYGEN SENSOR ELEMENT AND METHOD FOR PRODUCING IT
DE19611239A1 (en) Conductive paste for connections in ceramic electronic devices
DE112010000971B4 (en) Dielectric ceramic composition, dielectric body, ceramic substrate, electronic component and method of manufacturing a dielectric body

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB IT NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE ES FR GB IT NL

17P Request for examination filed

Effective date: 19960717

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CERAMTEC AG INNOVATIVE CERAMIC ENGINEERING

17Q First examination report despatched

Effective date: 20010417

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE ES FR GB IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030514

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20030514

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030514

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59410284

Country of ref document: DE

Date of ref document: 20030618

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030825

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20030514

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040217

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59410284

Country of ref document: DE

Owner name: CERAMTEC GMBH, DE

Free format text: FORMER OWNER: CERAMTEC AG, 73207 PLOCHINGEN, DE

Effective date: 20110216

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20121220

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20131022

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59410284

Country of ref document: DE

Effective date: 20140501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140501