EP2438634A1 - Matériau composite comprenant des nanoparticules ainsi que production de couches photoactives contenant des nanoparticules semi-conductrices quaternaires, pentanaires et supérieures - Google Patents

Matériau composite comprenant des nanoparticules ainsi que production de couches photoactives contenant des nanoparticules semi-conductrices quaternaires, pentanaires et supérieures

Info

Publication number
EP2438634A1
EP2438634A1 EP10726862A EP10726862A EP2438634A1 EP 2438634 A1 EP2438634 A1 EP 2438634A1 EP 10726862 A EP10726862 A EP 10726862A EP 10726862 A EP10726862 A EP 10726862A EP 2438634 A1 EP2438634 A1 EP 2438634A1
Authority
EP
European Patent Office
Prior art keywords
nanoparticles
composite material
component
coating solution
components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10726862A
Other languages
German (de)
English (en)
Inventor
Dieter Meissner
Thomas Rath
Eugen Maier
Gregor Trimmel
Albert Plessing
Franz Stelzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isovoltaic AG
Original Assignee
Isovoltaic AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isovoltaic AG filed Critical Isovoltaic AG
Publication of EP2438634A1 publication Critical patent/EP2438634A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • H10K30/35Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0326Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising AIBIICIVDVI kesterite compounds, e.g. Cu2ZnSnSe4, Cu2ZnSnS4
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/114Poly-phenylenevinylene; Derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Composite material comprising nanoparticles and production of photoactive layers containing quaternary, pentane and higher composite semiconductor nanoparticles
  • the invention relates to a composite material comprising nanoparticles and the production of photoactive layers containing quaternary, pentane and higher composite semiconductor nanoparticles.
  • the invention further relates to the use of the aforementioned photoactive layers.
  • Quaternary, pentane, and higher, more complex nanoparticles have many significant advantages over common binary and tertiary nanoparticles.
  • the use of quaternary nanoparticles makes it possible to replace expensive and rare elements such as indium in copper indium disulfide with cheap, abundant elements such as zinc and tin.
  • band gaps and also band positions can be set very precisely.
  • Binary and ternary compounds offer only limited possibilities for this, while the possibility of combining several elements makes the use of quaternary or pentanaric nanoparticles considerably more flexible in terms of setting certain properties.
  • copper zinc tin sulfide (Cu 2 ZnSnS 4 , CZTS, kesterite) is 1.4 to 1.5 eV 1 , which is quite close to the optimum value for a solar cell absorber material, and has a high absorption coefficient 1 of more than 10 4 cm "1 a promising and above all cheap semiconductor material for the production of solar cells on a large scale.Also, all raw materials for the production of this material are sufficiently present in the earth crust (zinc 75 ppm, tin: 2.2 ppm, for comparison indium: 0.049 ppm), that is they become available and non-toxic for the rest.
  • CZTS was formed in the above-mentioned photovoltaic applications only after the layer formation by thermally induced crystallization, which layers contain crystallites which have grain boundaries with each other, but not crystals with saturated surfaces. This is for the reduction of
  • CZTS coatings have also been produced using spray pyrolysis techniques.
  • Madarasz and co-workers 8 synthesized thiourea complexes of CuCl, ZnCl 2, and SnCl 2 to produce CZTS films with these starting materials in aqueous solution.
  • Kamoun et al. 9 used an aqueous solution of CuCl, ZnCl 2 , SnCl 4 and thiourea for the spray process.
  • the aqueous solutions are sprayed on preheated substrates at temperatures between 225 and 360 ° C.
  • nanocrystals out quaternaries such as B. CZTS, or pentanar chalcogenide compounds of the type Ib-IIb-IV-VI in a defined stoichiometric composition in the sense of the invention claimed herein could be produced. It is important, as already described above, the difference between crystallites in an initially completely disordered layer and crystallites with defined surfaces, as they do not arise in the first homogeneous layer forming processes, such as vapor deposition, spraying, sputtering, CVD and PECVD, if additional components in the layer do not form a defined matrix for nano-crystallites.
  • the semiconductors Cu 2 FeSnS 4 (Ib-VIII-IV-VI) and Cu 2 CoSnS 4 (Ib-IX-IV-VI) were already prepared nanocrystalline by An et al. 10 produced by means of an autoclave synthesis of the chlorides using thiourea as a sulfur source and water as a solvent. The reaction time was 14 to 20 hours. However, the method of manufacture is fundamentally different from the methods described herein which are the subject of this invention. An application for a composite has not previously been described.
  • the invention aims to remedy this situation.
  • the invention relates to a composite material of at least two components, which is characterized in that a component in the form of nanoparticles is present, which consist of at least three metals and at least one non-metal, and whose diameter is below one micron, preferably below 200 nm.
  • a component in the form of nanoparticles which consist of at least three metals and at least one non-metal, and whose diameter is below one micron, preferably below 200 nm.
  • the number of elements, such as three metals combined with a non-metal results in a quaternary composition. However, if four metals and another non-metal are used, the result is a pentane composition. Further advantageous embodiments of this composite material according to the invention are disclosed in the subclaims 2 to 6.
  • the invention further relates to photoactive layers comprising the composite material according to the invention which are characterized in that as the organic, electroactive component at least one organic, electroactive copolymer or oligomer selected from the group consisting of polythiophenes, polyparaphenylenevinylenes, polyfluorenes, polyparaphenylenes, polyanilines, polypyrroles, polyacetylenes, Polycarbazoles, polyarylamines, Polyisothianaphthene, Polybenzothiadiazole and / or their derivatives is present.
  • the photoactive layer according to the invention comprises nanoparticles which have X-ray reflections with a marked broadening, i. Magnification of the half-width of the reflections of the solid by at least 10%.
  • the invention furthermore relates to a method for producing the photoactive layer according to the invention, which is characterized in that a coating solution of metal ions and at least one precursor is applied to a surface which preferably has a temperature of less than 100 ° C.
  • the invention further relates to the use of the photoactive layer according to the invention for the production of components with fluorescence properties and of components or components with storage capacity such as solar cells, sensors or detectors, electrical or optical, including the UV, IR and microwave range, components, switches, displays or radiation emitting devices, such as lasers or LEDs.
  • components with fluorescence properties and of components or components with storage capacity such as solar cells, sensors or detectors, electrical or optical, including the UV, IR and microwave range, components, switches, displays or radiation emitting devices, such as lasers or LEDs.
  • the synthesis routes developed on the one hand use simple metal salts such as chlorides, bromides, iodides, nitrates, sulfates, acetates, acetylacetonates, carbonates, formats, carbamates, thiocarbamates, xanthates, trithiocarbonates, phosphates, thiolates, thiocyanantes, tartrates, ascorbates, phthalocyanines elemental sulfur , Selenium or tellurium as chalcogen source and oleylamine, dodecylamine or nonylamine or other amines as solvent. Furthermore, sulfur-containing anions of the metal salts can act as a source of sulfur.
  • This method yields multinear nanoparticles with uniform particle sizes around 5 nm and uniform particle shapes in defined stoichiometry.
  • multinear nanoparticle layers can also be prepared from simple metal salts such as chlorides, bromides, iodides, nitrates, sulfates, acetates, acetylacetonates, carbonates, formats, carbamates, thiocarbamates, xanthates, trithiocarbonates, phosphates, thiolates, thiocyanantes, tartrates, ascorbates, phthalocyanines and a sulfur source , as elemental sulfur, H 2 S, sulfides, thioacetamide, thiourea or anions of the metal salts used in pyridine or other organic solvents, such as acetone, methyl ethyl ketone, chloroform, toluene, chlorobenzene, THF or ethanol are prepared directly in a matrix. In this case, polymers, but also organic or inorganic compounds can be used as the matrix.
  • simple metal salts such as chlorides, bromides, i
  • nanoparticles have certain properties that are caused by the quantization, such as the change in the optical and electronic properties that can only be obtained in the long term if they do not grow or agglomerate. These special properties can therefore be found in solid matrix, since the nanoparticles are much more stable than, for example, in solution.
  • the synthesized nanoparticles are used to produce polycrystalline layers of semiconductor materials, which are particularly suitable for photovoltaic applications.
  • the nanoparticle solution is applied to a substrate and then heated to, on the one hand, the organic stabilizer from the
  • the syntheses presented here for the preparation of photoactive layers consisting of a mixture of these nanoparticles with an organic electroactive component - this can be either a low molecular electroactive organic compound, or an electroactive polymer - can be used.
  • the nanoparticles may be prepared by a thermally induced reaction directly in the electroactive component after the coating step.
  • the organic components function as electron donors and hole conductors, the nanoparticles as electron acceptors and electron conductors.
  • Example 1 Synthesis of Cu 2 ZnSnS 4 nanoparticles in solution for the production of polycrystalline semiconductor layers
  • the nanoparticle solution is applied to a substrate and the resulting layer is then heated to 500 ° C. for 2 hours. This forms a polycrystalline layer.
  • the diffractograms of the nanoparticles (TR 105 A) and the polycrystalline layer (TR 105 B) are shown in Figure 1 and Figure 2, respectively.
  • the Figure 1 shows the C. XRD analysis of Cu 2 ZnSnS 4 nanoparticles
  • Figure 2 shows the XRD-analysis of Cu 2 ZnSnS 4 nanoparticles (A) immediately after the synthesis, and (B) after 2 hours heat treatment at 500 0
  • the broad peaks at 28.4 ° (112), 32.9 ° (200/004), 47.3 ° (220/204), 56.1 ° (312/116), 69.1 ° (400/008 ) and 76.3 ° (332/316) are from the highest intensity reflections of the kesterite, the broad peak by 20 ° comes from the still present in the sample stabilizer oleylamine.
  • a primary crystallite size of 5.6 nm was obtained using the Debye-Scherrer formula.
  • the primary crystallite size increases to ⁇ 30 nm.
  • the XRD analyzes show clearly that the nanoparticles produced are quaternary CZTS particles (crystal structure: kesterite).
  • CZTS nanoparticles were prepared with the following synthesis parameters (see Table 1): O
  • the nanoparticles obtained were obtained by optical methods such as UV-Vis spectroscopy u. Examined fluorescence spectroscopy.
  • the UV-Vis spectrum of the Cu 2 ZnSnS 4 nanoparticles dissolved in hexane is shown in Figure 3 and shows that the nanoparticle solution begins to absorb easily from about 850 nm, which corresponds to the band gap of CZTS. A greater increase in absorption can be seen from 650 nm.
  • the emission and excitation spectra in Figure 4 show that the produced CZTS nanoparticles, namely Cu 2 ZnSnS 4 nanoparticles dissolved in hexane, have a clear fluorescence with a maximum at 445 nm.
  • 0.165 mmol (20.2 mg) of CuAc, 0.0825 mmol (18.1 mg) of ZnAc 2 , 0.0825 mmol (29.3 mg) of SnAc 4 and 1.65 mmol (125.6 mg) of thiourea are sonicated dissolved in 2 ml of pyridine.
  • the slightly yellowish solution is dropped on glass substrates.
  • the solution was also applied by means of spraying techniques, such as airbrushing.
  • the layers thus obtained were under an inert atmosphere for 8 min to 100 0 C, 8 min at 150 ° C and 8 min to 200 0 C heated. The layer turns reddish, then brown and finally black.
  • the broad peaks at 28.4 ° (112), 47.3 ° (220/204), 56.1 ° (312/116), 69.1 ° (400/008) and 76.3 ° (332/316 ) are from the most intense reflections of Cu 2 ZnSnS 4 .
  • the primary crystallite size determined by the Debye-Scherrer relationship is 3.5 nm.
  • the primary crystal size slightly larger (5 nm), the peak width is narrower, and more are characteristic peaks at 18.2 ° (101) and 32.9 ° (220/004) for light.
  • Example 3 Preparation of a poly-3-hexylthiophene (P3HT) / Cu 2 ZnSnS 4 - BuIk heterojunction solar cell
  • P3HT as donor for the active layer of a nanocomposite
  • Nanoparticle concentration 12 mg / ml).
  • the solar cell is built up layer by layer on an ITO-coated glass substrate.
  • polyethylene dioxythiophene: polystyrene sulfonate PEDOT: PSS
  • PEDOT polystyrene sulfonate
  • the applied layer is dried under inert gas at about 80 ° C.
  • the active layer P3HT / Cu 2 ZnSnS 4 solution in chloroform
  • a PPV layer is applied to an ITO-coated gypsum substrate to avoid short circuits.
  • an aqueous PPV (polyparaphenylene vinylene) precursor solution (poly (p-xylene tetrahydrothiophenium chloride)) is dripped onto the substrate and heated at 160 0 C for 15 min.
  • a PPV / Cu 2 ZnSnS 4 precursor solution (mixture of 2 ml PPV precursor (2.5 mg / ml) with a Cu 2 ZnSnS 4 nanoparticle precursor (17.3 mg CuI, 6.6 mg ZnCl 2 , 20 , 8 mg SnAc 4 , 68.4 mg TAA, 2 ml pyridine)), diluted 1:10, added dropwise to the PPV layer and heated at 160 ° C for 15 min under an inert gas atmosphere.
  • the solar cell is completed by vapor deposition of aluminum electrodes.
  • the PPV / Cu 2 ZnSnS 4 - BuIk heterojunction solar cell has a photovoltage of 389 mV and a photocurrent density of 1.0 ⁇ A / cm 2 .
  • the nanoparticles according to the invention because of their quaternary, pentanaric or even higher composition, are very well suited for the formation of polycrystalline layers with semiconductor properties.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

L'invention concerne un matériau composite comprenant au moins deux constituants, au moins un constituant étant présent sous la forme de nanoparticules qui sont constituées d'au moins trois métaux et d'au moins un non-métal et dont le diamètre est inférieur à un micromètre, de préférence inférieur à 200 nm. Le matériau composite selon l'invention convient notamment pour la production de couches photoactives.
EP10726862A 2009-06-02 2010-05-27 Matériau composite comprenant des nanoparticules ainsi que production de couches photoactives contenant des nanoparticules semi-conductrices quaternaires, pentanaires et supérieures Withdrawn EP2438634A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0084709A AT508283A1 (de) 2009-06-02 2009-06-02 Kompositmaterial umfassend nanopartikel sowie herstellung von photoaktiven schichten enthaltend quaternäre, pentanäre und höher zusammengesetzte halbleiternanopartikel
PCT/AT2010/000184 WO2010138982A1 (fr) 2009-06-02 2010-05-27 Matériau composite comprenant des nanoparticules ainsi que production de couches photoactives contenant des nanoparticules semi-conductrices quaternaires, pentanaires et supérieures

Publications (1)

Publication Number Publication Date
EP2438634A1 true EP2438634A1 (fr) 2012-04-11

Family

ID=42359496

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10726862A Withdrawn EP2438634A1 (fr) 2009-06-02 2010-05-27 Matériau composite comprenant des nanoparticules ainsi que production de couches photoactives contenant des nanoparticules semi-conductrices quaternaires, pentanaires et supérieures

Country Status (16)

Country Link
US (1) US20120129322A1 (fr)
EP (1) EP2438634A1 (fr)
JP (1) JP2012529161A (fr)
CN (1) CN102460762A (fr)
AT (2) AT508283A1 (fr)
AU (1) AU2010256322A1 (fr)
BR (1) BRPI1013021A2 (fr)
CA (1) CA2764349A1 (fr)
CL (1) CL2011003034A1 (fr)
CO (1) CO6470853A2 (fr)
MA (1) MA33414B1 (fr)
MX (1) MX2011012882A (fr)
RU (1) RU2011153983A (fr)
TW (1) TW201105585A (fr)
WO (1) WO2010138982A1 (fr)
ZA (1) ZA201108789B (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2676300A4 (fr) * 2011-02-18 2017-05-03 University of Washington Through Its Center for Commercialization Procédés de formation de films semiconducteurs comprenant des films semiconducteurs i2-ii-iv-vi4 et i2-(ii,iv)-iv-vi4 et dispositifs électroniques comprenant
JP5476336B2 (ja) * 2011-04-25 2014-04-23 株式会社田中化学研究所 複合硫化物粉体及びその製造方法、化合物半導体、並びに太陽電池
WO2014039937A1 (fr) 2012-09-07 2014-03-13 Cornell University Synthèse, procédé et applications d'un chalcogénure métallique
USRE48454E1 (en) 2013-03-14 2021-03-02 Shoei Electronic Materials, Inc. Continuous flow reactor for the synthesis of nanoparticles
EP2969178B1 (fr) * 2013-03-14 2019-07-31 Shoei Electronic Materials, Inc. Réacteur à écoulement continu pour la synthèse de nanoparticules
JP6012866B2 (ja) * 2013-06-03 2016-10-25 東京応化工業株式会社 錯体およびその溶液の製造方法、太陽電池用光吸収層の製造方法および太陽電池の製造方法
US9574135B2 (en) * 2013-08-22 2017-02-21 Nanoco Technologies Ltd. Gas phase enhancement of emission color quality in solid state LEDs
JP6209796B2 (ja) * 2013-09-06 2017-10-11 国立大学法人 宮崎大学 化合物半導体ナノ粒子による光吸収層の作製方法
CO6870008A1 (es) 2014-02-07 2014-02-20 Pontificia Universidad Javeriana Método para la fabricación de una película delgada formada por un cristal coloidal infiltrado con el polímero luminiscente mdmo-ppv formado a partir de esferas de sílice (sio2) con estructura cubica centrada en las caras (fcc)
RU2610606C2 (ru) * 2014-12-25 2017-02-14 Акционерное общество "Государственный научно-исследовательский и проектный институт редкометаллической промышленности "Гиредмет" Способ получения композиционного материала на основе полимерной матрицы для микроэлектроники
CN104952979B (zh) * 2015-06-11 2016-09-14 岭南师范学院 一种微米级球形铜锌锡硫单晶颗粒的制备方法及其单晶颗粒和应用
CN105355720B (zh) * 2015-12-03 2017-02-01 华东师范大学 一种制备铜锡硫薄膜太阳能电池吸收层的方法
RU2695208C1 (ru) * 2018-07-17 2019-07-22 Федеральное государственное бюджетное учреждение науки Институт проблем химической физики Российской академии наук (ИПХФ РАН) Способ получения монозеренных кестеритных порошков
RU2701467C1 (ru) * 2018-12-25 2019-09-26 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" (Университет ИТМО) Прозрачный проводящий оксид
RU2718124C1 (ru) * 2019-06-10 2020-03-30 Федеральное государственное бюджетное учреждение науки Институт проблем химической физики Российской Академии наук (ФГБУН ИПХФ РАН) Способ получения монозеренных кестеритных порошков из тройных халькогенидов меди и олова и соединений цинка

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7777303B2 (en) * 2002-03-19 2010-08-17 The Regents Of The University Of California Semiconductor-nanocrystal/conjugated polymer thin films
US8048477B2 (en) * 2004-02-19 2011-11-01 Nanosolar, Inc. Chalcogenide solar cells
US8426722B2 (en) * 2006-10-24 2013-04-23 Zetta Research and Development LLC—AQT Series Semiconductor grain and oxide layer for photovoltaic cells

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010138982A1 *

Also Published As

Publication number Publication date
WO2010138982A1 (fr) 2010-12-09
CL2011003034A1 (es) 2012-07-06
MX2011012882A (es) 2012-01-12
US20120129322A1 (en) 2012-05-24
AT508283A1 (de) 2010-12-15
MA33414B1 (fr) 2012-07-03
AT12057U1 (de) 2011-09-15
CA2764349A1 (fr) 2010-12-09
CO6470853A2 (es) 2012-06-29
BRPI1013021A2 (pt) 2016-03-29
AU2010256322A1 (en) 2012-01-19
RU2011153983A (ru) 2013-07-20
ZA201108789B (en) 2013-02-27
JP2012529161A (ja) 2012-11-15
TW201105585A (en) 2011-02-16
CN102460762A (zh) 2012-05-16

Similar Documents

Publication Publication Date Title
EP2438634A1 (fr) Matériau composite comprenant des nanoparticules ainsi que production de couches photoactives contenant des nanoparticules semi-conductrices quaternaires, pentanaires et supérieures
Kumar et al. Substitution of Zn in Earth‐Abundant Cu2ZnSn (S, Se) 4 based thin film solar cells–A status review
US10273403B2 (en) Nanoparticles for photovoltaic and LED devices and methods of making the same
DE112010004154B4 (de) Verfahren zum Herstellen einer Halbleiter-Dünnschicht und einerphotovoltaischen Einheit, welche die Dünnschicht enthält
EP2438633B1 (fr) Composant photoactif à succession inverse de couches et son procédé de fabrication
EP2281310B1 (fr) Système multicouche pour cellules solaires
CN107964024A (zh) 包括具有混合阴离子的有机金属钙钛矿的光电器件
EP2030245A2 (fr) Procédé de fabrication de couches photoactives et composants comprenant une (de) telle(s) couche(s)
EP2867932B1 (fr) Électrode transparente pour composants optoélectroniques
Han et al. Research progress of absorber film of inorganic perovskite solar cells: fabrication techniques and additive engineering in defect passivation
Madhusudanan et al. Photoactive Cu2FeSnS4 thin films: Influence of stabilizers
WO2020254665A1 (fr) Cellule solaire multijonction en pérovskite comportant un système multicouche comme couche de liaison
Zhou et al. Preparation of Sb2S3 nanorod arrays by hydrothermal method as light absorbing layer for Sb2S3-based solar cells
EP0173642A2 (fr) Couche de pyrite photoactive, méthode pour sa préparation et application de telles couches de pyrite
Yang et al. Can vacuum deposition apply to bismuth-doped γ-CsPbI3 perovskite? Revealing the role of Bi3+ in the formation of black phase
WO2007147182A1 (fr) Procédé de fabrication d'une couche contenant des particules semi-conductrices inorganiques et composants comprenant cette couche
WO2007147183A2 (fr) Procédé de fabrication de couches photoactives et composants comprenant ces couches
DE102012105810B4 (de) Transparente Elektrode für optoelektronische Bauelemente
WO2023047116A1 (fr) Processus de production de perovskite
Fan et al. Component and Dimension Engineering towards Highly Stable and Efficient Perovskite Photovoltaics
WO2011085425A1 (fr) Solutions pour la fabrication de couches photoactives homogènes de surface élevée, constituées d'un polymère électro-actif et de nanoparticules semi-conductrices, et leur utilisation en photovoltaïque et opto-électronique
DE102021130501A1 (de) Schichtsystem mit mindestens einer photoaktiven Schicht mit mindestens einer Zwischenschicht für ein organisches elektronisches Bauelement
Marg Synthesis of AgInS2 nanoparticles Directly in Poly (3-hexylthiophene)(P3HT) Matrix: Photoluminescence quenching studies

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111229

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120811