RU2695208C1 - Способ получения монозеренных кестеритных порошков - Google Patents
Способ получения монозеренных кестеритных порошков Download PDFInfo
- Publication number
- RU2695208C1 RU2695208C1 RU2018126287A RU2018126287A RU2695208C1 RU 2695208 C1 RU2695208 C1 RU 2695208C1 RU 2018126287 A RU2018126287 A RU 2018126287A RU 2018126287 A RU2018126287 A RU 2018126287A RU 2695208 C1 RU2695208 C1 RU 2695208C1
- Authority
- RU
- Russia
- Prior art keywords
- kesterite
- powders
- csi
- monograin
- ampoules
- Prior art date
Links
- 239000000843 powder Substances 0.000 title claims abstract description 17
- 238000004519 manufacturing process Methods 0.000 title abstract 2
- 239000000203 mixture Substances 0.000 claims abstract description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000010453 quartz Substances 0.000 claims abstract description 5
- 239000004570 mortar (masonry) Substances 0.000 claims abstract description 4
- 239000002243 precursor Substances 0.000 claims abstract description 4
- 150000004770 chalcogenides Chemical class 0.000 claims abstract description 3
- 239000008367 deionised water Substances 0.000 claims abstract description 3
- 238000000034 method Methods 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 229910021641 deionized water Inorganic materials 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 2
- 239000010409 thin film Substances 0.000 abstract description 4
- 239000000126 substance Substances 0.000 abstract description 2
- 239000003708 ampul Substances 0.000 abstract 1
- 239000010949 copper Substances 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 9
- 238000003786 synthesis reaction Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 7
- 229910052984 zinc sulfide Inorganic materials 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 239000011701 zinc Substances 0.000 description 5
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 3
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- PFNQVRZLDWYSCW-UHFFFAOYSA-N (fluoren-9-ylideneamino) n-naphthalen-1-ylcarbamate Chemical compound C12=CC=CC=C2C2=CC=CC=C2C1=NOC(=O)NC1=CC=CC2=CC=CC=C12 PFNQVRZLDWYSCW-UHFFFAOYSA-N 0.000 description 1
- 229910004613 CdTe Inorganic materials 0.000 description 1
- 239000005749 Copper compound Substances 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000013084 building-integrated photovoltaic technology Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 150000001880 copper compounds Chemical group 0.000 description 1
- MIUMTDPSDBCACC-UHFFFAOYSA-N copper zinc Chemical compound [Cu][Zn][Cu] MIUMTDPSDBCACC-UHFFFAOYSA-N 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 150000004771 selenides Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B17/00—Sulfur; Compounds thereof
- C01B17/20—Methods for preparing sulfides or polysulfides, in general
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B19/00—Selenium; Tellurium; Compounds thereof
- C01B19/002—Compounds containing, besides selenium or tellurium, more than one other element, with -O- and -OH not being considered as anions
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B19/00—Selenium; Tellurium; Compounds thereof
- C01B19/007—Tellurides or selenides of metals
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G1/00—Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
- C01G1/12—Sulfides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G19/00—Compounds of tin
- C01G19/006—Compounds containing, besides tin, two or more other elements, with the exception of oxygen or hydrogen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G3/00—Compounds of copper
- C01G3/006—Compounds containing, besides copper, two or more other elements, with the exception of oxygen or hydrogen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G3/00—Compounds of copper
- C01G3/12—Sulfides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G9/00—Compounds of zinc
- C01G9/006—Compounds containing, besides zinc, two ore more other elements, with the exception of oxygen or hydrogen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G9/00—Compounds of zinc
- C01G9/08—Sulfides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/46—Sulfur-, selenium- or tellurium-containing compounds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Photovoltaic Devices (AREA)
Abstract
Изобретение может быть использовано при создании тонкопленочных солнечных батарей. Для получения монозеренных кестеритных порошков используют прекурсорные смеси, состоящие из CuSe, CuSe, ZnS и SnSe. Указанные халькогениды берут в требуемых количествах, растирают с CsI в агатовой ступке и запаивают в кварцевых ампулах в вакууме при мольном соотношении синтезируемого кестерита к CsI более чем 1:5. Ампулы выдерживают при 740-750°С в течение 100 ч, после чего вскрывают. Содержимое ампул промывают деионизированной водой для удаления CsI и высушивают под вакуумом. Выделяют монозеренную фракцию с использованием сит. Изобретение позволяет получить монозеренные кестеритные порошки состава CuZnSnSeSдля создания высокоэффективных экологически чистых солнечных батарей. 5 ил., 1 пр.
Description
Изобретение относится к технологии создания тонкопленочных экологически чистых солнечных батарей. Изобретение может найти применение при создании солнечных батарей для строительной фотовольтаики (BIPV). Более конкретно изобретение относится к созданию монозеренных монокристаллических порошков с общей формулой Cu2-δZn2-xSnxSe4, имеющих структуру кестерита, применяемых в качестве поглощающих слоев в таких устройствах.
В последнее время приобретают популярность тонкопленочные солнечные батареи на основе CdTe, CuInxGa1-xSe2 (CIGS) или Cu2-δZn2-xSnx(S1-ySey)4 (CZTS,Se). Преимущество данных материалов состоит в том, что для эффективного поглощения солнечного света достаточно пленки толщиной всего несколько микрон, тогда как при использовании кристаллического кремния необходим слой около 200 мкм. При этом CZTS имеет ряд преимуществ перед другими соединениями. Основное из них состоит в том, что в его состав не входят редко встречающиеся элементы. При этом данный материал мало токсичен и сравнительно экологически чист, что делает солнечные батареи на его основе потенциально дешевыми. При этом особый интерес представляет новая отрасль - т.н. «порошковая» фотовольтаика, подразумевающая применения монозеренных порошков CZTS для создания гибких солнечных батарей. Слои на основе монозеренных порошков сочетают в себе высокие фотоэлектрические параметры монокристаллов и преимущества поликристаллических материалов и их технологий, например, низкая стоимость и простые методы синтеза, также возможность создания устройств на гибких подложках и эффективный расход материала. Данная технология предполагает разделение синтеза материалов от сборки модулей. Солнечные батареи больших размеров на их основе могут изготавливаться при комнатной температуре в непрерывном, так называемом «roll-to-roll» процессе. Однородный состав порошков дает дополнительное преимущество: простое масштабирование.
Впервые солнечные элементы на основе монозеренных порошков были созданы компанией Hoffman's Electronics в 1957 г. [Paradise, М.Е. (1957) Large area solar energy converter and method for making the same. US Patent 2,904,613, August 26]. В качестве материала использовался кремний. Однако такие устройства не нашли широкого применения. Солнечные элементы на основе четверных соединений меди - сравнительно новая технология. Их разработка, по-видимому, впервые началась в Таллиннском университете технологии в 1996 году [Ito K. «Copper Zinc Tin Sulfide-Based Thin-Film Solar Cells» West Sussex, U.K.: John Wiley & Sons, Ltd. 2015. 435 p]. Схема такого солнечного элемента приведена на фиг. 1. (На Фиг. 1. 1 - прозрачная подложка, 2 - нижний прозрачный контакт, 3 - буферный слой (CdS), 4 - монозерна CZTS, 5 - верхний контакт, 6 - верхняя полимерная пленка). Для их коммерческого внедрения была создана совместная австрийско-эстонская фирма CrystalSol [www.crystalsol.com]. По данным [A. Luque, S. Hegedus. Handbook of Photovoltaic Science and Engineering. A John Wiley and Sons, Ltd., Publication. 2011. 1128 p.] для создания солнечных батарей используются кестеритные монозеренные порошки состава Cu1.85ZnSnS4. Для их синтеза используются сульфиды CuS, SnS и ZnS, в качестве флюса - KI или CdCl2.
Отличительной особенностью предложенной нами методики является использование прекурсорных смесей иного состава - Cu2Se, CuSe, ZnS и SnSe2 и строго контролируемых количеств флюса CsI для синтеза кестеритных порошков составов отличных от Cu1.85ZnSnS4.
Наиболее близкой к предложенной являются методики, описанные в [патент WO 2010/006623 А2] и [патент US 20120201741 А1]
Синтез прекурсоров - сульфидов и селенидов CuX, Cu2X, SnX, SnX2, где X=S, Se проводится из элементных Cu, Sn и X в несколько этапов. На первом этапе указанные вещества в требуемых соотношениях отжигаются в вакуумированных (рост=10-2 мм.рт.ст.) графитизированных кварцевых ампулах при T=800°С в течение 24 ч. После этого содержимое ампул растирается в агатовой ступке для гомогенизации. На следующем этапе полученные порошки вновь запаиваются в вакуумированных кварцевых ампулах и отжигались в течение 100 ч. Для Cu2X, SnX и SnX2 температура отжига 800°С, для CuX - 450°С.
Поскольку прямая реакция цинка с серой протекает слишком бурно, для синтеза ZnS через водный раствор ZnSO4 с добавкой CH3COONH4 в течение 5 ч пропускается ток сероводорода, после чего полученный осадок промывается 2% водным раствором СН3СООН, насыщенным сероводородом, фильтруется под вакуумом на воронке со стеклянным фильтром. Затем проводится последовательный отжиг в потоке азота при T=800°С, сероводороде при 600°С и динамическом вакууме.
Синтез селенида цинка осуществляется из сульфида цинка в токе инертного газа при 650°С по следующей схеме:
ZnS+2ZnO+3Se=3ZnSe+SO2
Для синтеза крупнокристаллических монозеренных порошков CZTS требуемые количества бинарных халькогенидом растираются с CsI в агатовых ступках, после чего запаиваются в карбонизированных кварцевых ампулах под вакуумом. Оптимальным является мольное соотношение CZT(S,Se):CsI более чем 1:5. Ампулы выдерживаются при 740-750°С в течение 100 ч, после чего вскрываются. Для удаления CsI содержимое ампул промывается деионизированной водой и высушивается под вакуумом. Для выделения монозеренной фракции проводится процеживание через сита с различным диаметром отверстий.
Заявляемое изобретение иллюстрируется, но никак не ограничивается следующим примером.
Пример 1. Синтез монозеренных порошков состава Cu1.5Zn1.1Sn0.9Se2.9S1.1.
Синтез образцов указанного состава может быть осуществлен по схеме: 0,4Cu2Se+0,7CuSe+1,1ZnS+0,9SnSe2=Cu1.5Zn1.1Sn0.9Se2.9S1.1
Исследование полученных порошков методом РФА (фиг. 2) и рамановской спектроскопии (фиг. 3) показало, что они имеют кестеритную структуру. По данным оптической (фиг. 4А.) и фиг. 4Б.)) и электронной микроскопии (фиг. 4В.)) полученные порошки состоят из монозерен с диаметром частиц 40-95 мкм. При этом преобладает фракция с размером частиц 74-94 мкм (фиг. 5). Исследование образцов методом микроволновой фотопроводимости показало, что времена жизни фотогенерированных носителей тока в них превышает 10 нс, что выше описанного в литературе [I. Repins, С. Beall, N. Vora et al, J. Solar Energy Materials and Solar Cells, 101, 154-159, (2012)].
Claims (1)
- Способ получения монозеренных кестеритных порошков, отличающийся тем, что порошки получают из прекурсорных смесей, состоящих из Cu2Se, CuSe, ZnS и SnSe2, при этом требуемые количества указанных халькогенидов растирают с CsI в агатовой ступке и запаивают в кварцевых ампулах в вакууме при мольном соотношении синтезируемого кестерита к CsI более чем 1:5, ампулы выдерживают при 740-750°С в течение 100 ч, после чего вскрывают, содержимое ампул промывают деионизированной водой для удаления CsI и высушивают под вакуумом, затем выделяют монозеренную фракцию с использованием сит.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018126287A RU2695208C1 (ru) | 2018-07-17 | 2018-07-17 | Способ получения монозеренных кестеритных порошков |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018126287A RU2695208C1 (ru) | 2018-07-17 | 2018-07-17 | Способ получения монозеренных кестеритных порошков |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2695208C1 true RU2695208C1 (ru) | 2019-07-22 |
Family
ID=67512170
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2018126287A RU2695208C1 (ru) | 2018-07-17 | 2018-07-17 | Способ получения монозеренных кестеритных порошков |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2695208C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2744157C1 (ru) * | 2020-07-14 | 2021-03-03 | Федеральное государственное бюджетное учреждение науки Институт проблем химической физики Российской Академии наук (ФГБУН ИПХФ РАН) | Способ получения фоточувствительных кестеритных пленок |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2347299C1 (ru) * | 2007-07-28 | 2009-02-20 | Государственное научно-производственное объединение "Научно-практический центр Национальной академии наук Беларуси по материаловедению" (ГО "НПЦ НАН Беларуси по материаловедению") | СПОСОБ ПОЛУЧЕНИЯ ПОГЛОЩАЮЩЕГО СЛОЯ Cu2ZnSnS4 ДЛЯ СОЛНЕЧНЫХ ЭЛЕМЕНТОВ |
WO2011066205A1 (en) * | 2009-11-25 | 2011-06-03 | E. I. Du Pont De Nemours And Company | Aqueous process for producing crystalline copper chalcogenide nanoparticles, the nanoparticles so-produced, and inks and coated substrates incorporating the nanoparticles |
US20120129322A1 (en) * | 2009-06-02 | 2012-05-24 | Isovoltaic Ag | Composite material comprising nanoparticles and production of photoactive layers containing quaternary, pentanary and higher-order composite semiconductor nanoparticles |
US20120201741A1 (en) * | 2009-11-25 | 2012-08-09 | E.I. Du Pont De Nemours And Company | Syntheses of quaternary chalcogenides in cesium, rubidium, barium and lanthanum containing fluxes |
US20130037111A1 (en) * | 2011-08-10 | 2013-02-14 | International Business Machines Corporation | Process for Preparation of Elemental Chalcogen Solutions and Method of Employing Said Solutions in Preparation of Kesterite Films |
US20130125988A1 (en) * | 2009-11-25 | 2013-05-23 | E I Du Pont De Nemours And Company | CZTS/Se PRECURSOR INKS AND METHODS FOR PREPARING CZTS/Se THIN FILMS AND CZTS/Se-BASED PHOTOVOLTAIC CELLS |
-
2018
- 2018-07-17 RU RU2018126287A patent/RU2695208C1/ru active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2347299C1 (ru) * | 2007-07-28 | 2009-02-20 | Государственное научно-производственное объединение "Научно-практический центр Национальной академии наук Беларуси по материаловедению" (ГО "НПЦ НАН Беларуси по материаловедению") | СПОСОБ ПОЛУЧЕНИЯ ПОГЛОЩАЮЩЕГО СЛОЯ Cu2ZnSnS4 ДЛЯ СОЛНЕЧНЫХ ЭЛЕМЕНТОВ |
US20120129322A1 (en) * | 2009-06-02 | 2012-05-24 | Isovoltaic Ag | Composite material comprising nanoparticles and production of photoactive layers containing quaternary, pentanary and higher-order composite semiconductor nanoparticles |
WO2011066205A1 (en) * | 2009-11-25 | 2011-06-03 | E. I. Du Pont De Nemours And Company | Aqueous process for producing crystalline copper chalcogenide nanoparticles, the nanoparticles so-produced, and inks and coated substrates incorporating the nanoparticles |
US20120201741A1 (en) * | 2009-11-25 | 2012-08-09 | E.I. Du Pont De Nemours And Company | Syntheses of quaternary chalcogenides in cesium, rubidium, barium and lanthanum containing fluxes |
US20130125988A1 (en) * | 2009-11-25 | 2013-05-23 | E I Du Pont De Nemours And Company | CZTS/Se PRECURSOR INKS AND METHODS FOR PREPARING CZTS/Se THIN FILMS AND CZTS/Se-BASED PHOTOVOLTAIC CELLS |
US20130037111A1 (en) * | 2011-08-10 | 2013-02-14 | International Business Machines Corporation | Process for Preparation of Elemental Chalcogen Solutions and Method of Employing Said Solutions in Preparation of Kesterite Films |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2744157C1 (ru) * | 2020-07-14 | 2021-03-03 | Федеральное государственное бюджетное учреждение науки Институт проблем химической физики Российской Академии наук (ФГБУН ИПХФ РАН) | Способ получения фоточувствительных кестеритных пленок |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bosio et al. | Polycrystalline CdTe thin films for photovoltaic applications | |
Jäger-Waldau | Progress in chalcopyrite compound semiconductor research for photovoltaic applications and transfer of results into actual solar cell production | |
Fella et al. | Technological status of Cu2ZnSn (S, Se) 4 thin film solar cells | |
Kahraman et al. | Effects of the sulfurization temperature on sol gel-processed Cu2ZnSnS4 thin films | |
US8071875B2 (en) | Manufacture of thin solar cells based on ink printing technology | |
Sinha et al. | A review on atomic layer deposited buffer layers for Cu (In, Ga) Se2 (CIGS) thin film solar cells: Past, present, and future | |
Takei et al. | Crystallographic and optical properties of CuSbS2 and CuSb (S1-xSex) 2 solid solution | |
Bosio et al. | The second‐generation of CdTe and CuInGaSe2 thin film PV modules | |
US8815123B2 (en) | Fabrication method for ibiiiavia-group amorphous compound and ibiiiavia-group amorphous precursor for thin-film solar cells | |
Yan et al. | Kesterite Cu2ZnSnS4 solar cell from sputtered Zn/(Cu & Sn) metal stack precursors | |
Vasekar et al. | Thin film solar cells using earth-abundant materials | |
JP2013064108A (ja) | インク組成物及びその形成方法 | |
Haque et al. | Prospects of zinc sulphide as an alternative buffer layer for CZTS solar cells from numerical analysis | |
Bosio et al. | Why CuInGaSe2 and CdTe polycrystalline thin film solar cells are more efficient than the corresponding single crystal? | |
Cao et al. | Cu (In, Ga) S2 absorber layer prepared for thin film solar cell by electrodeposition of Cu-Ga precursor from deep eutectic solvent | |
Mellikov et al. | CZTS monograin powders and thin films | |
RU2695208C1 (ru) | Способ получения монозеренных кестеритных порошков | |
Mitzi et al. | Torwards marketable efficiency solution-processed kesterite and chalcopyrite photovoltaic devices | |
RU2718124C1 (ru) | Способ получения монозеренных кестеритных порошков из тройных халькогенидов меди и олова и соединений цинка | |
Prakash et al. | Solution-processed CZTS thin films and its simulation study for solar cell applications with ZnTe as the buffer layer | |
Mazalan et al. | Influence of antimony dopant on CuIn (S, Se) 2 solar thin absorber layer deposited via solution-processed route | |
CN105474371B (zh) | 用于具有钠铟硫化物缓冲层的薄层太阳能电池的层系统 | |
Joshi et al. | Annealing induced modifications in physicochemical and optoelectronic properties of CdS/CuInGaSe2 thin film | |
US10490680B2 (en) | Method for manufacturing light absorption layer | |
Arba et al. | Determination of the optimal conditions for the deposition of Cu 2 ZnSnS 4 (CZTS) thin films by spray pyrolysis using Taguchi method |