EP2436711A1 - Biokompositplatte - Google Patents

Biokompositplatte Download PDF

Info

Publication number
EP2436711A1
EP2436711A1 EP20100012677 EP10012677A EP2436711A1 EP 2436711 A1 EP2436711 A1 EP 2436711A1 EP 20100012677 EP20100012677 EP 20100012677 EP 10012677 A EP10012677 A EP 10012677A EP 2436711 A1 EP2436711 A1 EP 2436711A1
Authority
EP
European Patent Office
Prior art keywords
alkyl
furyl
hydroxyalkylfurylalkyl
carboxyl
isocyanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20100012677
Other languages
English (en)
French (fr)
Inventor
Donald Schaefer
Lutz Reitzel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resopal GmbH
Original Assignee
Resopal GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Resopal GmbH filed Critical Resopal GmbH
Priority to EP20100012677 priority Critical patent/EP2436711A1/de
Priority to EP20110775907 priority patent/EP2621979B1/de
Priority to RU2013119961/05A priority patent/RU2586699C2/ru
Priority to PCT/EP2011/004921 priority patent/WO2012041521A1/de
Priority to US13/825,878 priority patent/US20130295399A1/en
Publication of EP2436711A1 publication Critical patent/EP2436711A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/28Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G16/00Condensation polymers of aldehydes or ketones with monomers not provided for in the groups C08G4/00 - C08G14/00
    • C08G16/02Condensation polymers of aldehydes or ketones with monomers not provided for in the groups C08G4/00 - C08G14/00 of aldehydes
    • C08G16/025Condensation polymers of aldehydes or ketones with monomers not provided for in the groups C08G4/00 - C08G14/00 of aldehydes with heterocyclic organic compounds
    • C08G16/0256Condensation polymers of aldehydes or ketones with monomers not provided for in the groups C08G4/00 - C08G14/00 of aldehydes with heterocyclic organic compounds containing oxygen in the ring
    • C08G16/0262Furfuryl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08L61/26Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/02Lignocellulosic material, e.g. wood, straw or bagasse
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21JFIBREBOARD; MANUFACTURE OF ARTICLES FROM CELLULOSIC FIBROUS SUSPENSIONS OR FROM PAPIER-MACHE
    • D21J1/00Fibreboard
    • D21J1/16Special fibreboard
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31942Of aldehyde or ketone condensation product
    • Y10T428/31946Next to second aldehyde or ketone condensation product

Definitions

  • the present invention relates to a biocomposite plate, process for its preparation and its use.
  • Blokomposites have been used for centuries, for example in the form of straw-reinforced mud bricks. Since the end of the 20th century, they are also increasingly used for industrial applications.
  • natural fiber composites and the so-called wood plastic composites are used, taking advantage of natural fibers in comparison to traditional reinforcement and filling materials. These are, in addition to their sustainability and the associated independence from fossil fuels, their CO 2 neutrality, as well as their physical properties, such as their low density, their high strength and rigidity.
  • biopolymers are increasingly being used as matrix material in recent years.
  • corn starch-based polylactide polylactic acid, PLA
  • resins or starches made from palm oil are also used.
  • These materials have several other advantages over natural fiber reinforced, petroleum based polymers. Thus, they are generally fully biodegradable and their manufacturing costs, with the exception of the amounts of energy used in the manufacturing process, independent of crude oil. In addition, they have a much better CO 2 balance.
  • polylactic acid has a very low heat resistance, has a very low Vicat softening temperature of about 70 ° C to 75 ° C softens incidentally already at temperatures around 60 ° C merkilch and allows only extremely low continuous use temperatures.
  • polylactic acid like many other thermoplastic polymers, shows a negative reaction to fire and drips off burning in the event of fire, which is disadvantageous from a safety point of view.
  • the invention should be able to be realized in the simplest possible way, as effectively and inexpensively as possible.
  • biocomposite panel having all the features of the present patent claim 1.
  • the subclaims referring back to claim 1 describe particularly expedient embodiments of the invention Biocomposite plate
  • preferred methods for producing the biocomposite plate according to the invention and particularly advantageous fields of application of the biocomposite plate according to the invention are put under protection.
  • the solution according to the invention is extremely environmentally friendly, both with regard to the raw material base from regenerative sources, as well as in terms of energy and the CO 2 balance, which are required for the preparation of the blokompositplatte invention.
  • their production costs with the exception of the amounts of energy used in the manufacturing process, independent of the price of oil.
  • the biocomposite plate according to the invention has a significantly improved CO 2 balance.
  • the Blokompositplatte invention is extremely safe from a health and environmental point of view. It comprises comparatively small amounts of halogen-containing, sulfur-containing and / or nitrogen-containing substances, with the result that the formation of halogen compounds, sulfur oxides and / or nitrogen oxides during combustion of the biocomposite plate according to the invention is comparatively low.
  • the invention can be realized in a comparatively simple manner, extremely effective and cost-effective.
  • the biocomposite plate according to the invention comprises at least one natural fiber.
  • Natural fibers are old fibers derived from natural sources such as plants, animals or minerals and can be used directly without further chemical conversion reactions. Preferred in this context are plant fibers and animal fibers, especially plant fibers.
  • the natural fibers according to the invention are thus to be distinguished from chemical fibers which are produced synthetically.
  • Plant fibers suitable for the purposes of the present invention may be of different origin and correspondingly have a variety of properties.
  • they comprise plant fibers which occur as vascular bundles in the stalk or stem or pseudostram, the bark, in particular as bast fiber, or as seed appendages.
  • they include wood fibers, which are very particularly suitable in the context of the present invention.
  • Preferred plant fibers include seed fibers, particularly cotton (CO) from the seed hairs of the fruit of the cotton plant, kapok (KP) from within the capsule fruit of the true kapok tree, poplar fluff and Akon; Bast fibers, in particular bamboo fibers, stinging nettle, hemp fibers (HA), jute (JU), kenaf, linen (LI) from the common flax, hops, ramie (RA) and sunn hemp; Leaf fibers, in particular abaca (Manila hemp), hard fibers from the leaves of a fiber banana, pineapple, caroea, curauá, henequen, macambira, New Zealander flax and sisal (SI) from agave leaves; and fruit fibers, especially coconut (CC) from the pericarp of the coconut palm fruits.
  • CO cotton
  • KP kapok
  • Bast fibers in particular bamboo fibers, stinging nettle, hemp fibers (HA), jute (JU),
  • the leaf fibers and the coconut fiber are sometimes referred to as hard fibers.
  • the u. a. belong to the genus Furcraea. These are also called Mauritius hemp and can also be advantageously used for the present invention,
  • Preferred natural fibers of animal origin include the fibers that make up the hair follicles of animals, especially the fibers that are in the form of a coat or a coat.
  • Particularly suitable natural fibers of animal origin include wool and fine animal hair, in particular wool from sheep (WO, sometimes referred to as new wool), alpaca, llama, vicuna, guanaco, angora (WA), rabbit, camel hair (WK), cashmere (WS) and mohair (WM); coarse animal hair, in particular Cattle hair, especially the hair of the yak, horsehair and goat hair; and silk, in particular mulberry silk (SE), tussah silk (ST) and sea silk.
  • wool and fine animal hair in particular wool from sheep (WO, sometimes referred to as new wool
  • alpaca alpaca
  • llama vicuna
  • guanaco angora
  • WA camel hair
  • WK camel hair
  • WS cashmere
  • WM mohair
  • coarse animal hair in particular Cattle hair, especially the hair of the yak, horsehair and goat hair
  • silk in particular mulberry silk (SE), tussah silk (ST)
  • the mineral fibers preferred according to the invention include attapulgite, sepiolite and wollastonite.
  • Preferred wood fibers include wood pulp and pulp.
  • Wood pulp is preferably obtained from the raw material wood, which consists mainly of lignocellulose.
  • the lignocellulose consists of cellulose molecules, which are stored together to form fibers.
  • a matrix of lignin permeates the cellulose, resulting in a pressure- and tear-resistant composite.
  • the wood is defibered, in particular after ground-grinding, the groundwood process, the pressure-ground process, the refining process, the TMP process (Thermo Mechanical Pulp process) or the CTMP process ( Chemo Thermo Mechanical Pulp method).
  • the lignin fraction is removed by chemical methods, in particular the alkaline sulphate process or the acid sulphite process, so that the higher-grade pulp, which consists almost entirely of cellulose, is obtained with lower yield and higher outlay.
  • the alkaline sulphate process or the acid sulphite process so that the higher-grade pulp, which consists almost entirely of cellulose, is obtained with lower yield and higher outlay.
  • Usually roundwood or whipping wood is used, with coniferous wood being preferred because of the long fiber crumb.
  • Cellulose fibers are particularly suitable for the purposes of the present invention. Accordingly, the proportion of cellulose fibers, based on the total weight of the natural fibers, preferably greater than 50.0 wt .-%, advantageously greater than 60.0 wt .-%, preferably greater than 70.0 wt .-%, particularly preferably greater than 80.0 Wt .-%, favorably greater than 90.0 wt .-%, in particular greater than 95.0 wt .-%. In a very particularly preferred embodiment of the present invention, only cellulose fibers are used.
  • the biocomposite plate comprises at least two sheets of paper, which preferably form a paper composite, which will occasionally also be referred to below as the core layer.
  • paper refers to a flat material consisting essentially of fibers of predominantly vegetable origin, which is formed by dewatering a fiber suspension on a sieve. This results in a fiber felt, which is then compressed and dried.
  • the paper preferably comprises at least 50.0% by weight, preferably at least 60.0% by weight, particularly preferably at least 70.0% by weight, advantageously at least 80.0% by weight, even more preferably at least 90.0% by weight, in particular 91.0 to 95.0% by weight, of natural fibers, in particular cellulose fibers.
  • the proportion of fillers, in particular of kaolin and / or calcium carbonate, is preferably less than 20.0 wt .-%, preferably less than 15.0 wt .-%, more preferably less than 10.0 wt .-% and is suitably in the range of 6.0% by weight to 9.0% by weight.
  • the paper is recycled paper, which preferably consists predominantly of recycled waste paper and is therefore particularly environmentally friendly. It is advantageous in addition to the conservation of wood reserves of compared to conventional paper production by two-thirds reduced energy and water consumption.
  • the quality and tear strength of the paper can be increased by adding new fibers, but the proportion of recycled paper is preferably at least 80.0% by weight, based on the total weight of the paper.
  • unbleached waste paper is used as recycled paper.
  • the aqueous slurry goes through a cleaning process to remove non-fibrous debris. This step often includes a washing process using chemical cleaners.
  • a decolorization of the fibers in particular by means of sodium hydroxide or sodium carbonate, is preferably not carried out.
  • peroxides or hydrosulfites to remove color particles from the pulp. Again, this is preferably not done.
  • a "new" paper product is made from the finished pulp, preferably by blending with primary fibers of trees in different proportions or simply by directly producing recycled paper.
  • This moving fiber web is pressed into a continuous sheet of paper and dried.
  • a certain amount of pulp is added to at least one sieve so that the fibers on the sieve form a sheet and excess water can drain off.
  • the paper can then be removed and begin to dry. After drying, this continuous fiber fabric can be wound on rolls.
  • kraft paper is a paper which consists predominantly of kraft pulp to which Kraft paper can be added, and which has a high strength, in particular a high tensile strength, and a high strength Resistant.
  • Kraft paper is usually made from at least 90% fresh, preferably unbleached sulphate pulp (kraft pulp).
  • kraft paper may contain starch, alum and / or glue in addition to the pulp in order to achieve, for example, certain surface effects and increases in strength.
  • a preferred kraft paper is soda kraft paper which is well known to those skilled in the art of composites.
  • the number of paper sheets used essentially depends on the desired thickness of the biocomposite plate. Preferably, it contains from two to 200 sheets, more preferably from 3 to 150 sheets, and especially from 4 to 100 sheets of paper, especially recycled paper.
  • the weight of the paper used in the invention is not further limited. It depends in particular on the number of paper sheets used and thus on the desired thickness of the biocomposite plate. According to a preferred embodiment, the weight of the paper sheets used is in the range from 125 g / m 2 to 250 g / m 2 , preferably 140 g / m 2 to 230 g / m 2 .
  • the final thickness of the biocomposite plate according to the invention is in the range of 0.75 mm to 0.85 mm, preferably 0.8 mm.
  • the final thickness of the biocomposite plate according to the invention is in the range of 0.95 mm to 1.05 mm, preferably 1.0 mm.
  • the final thickness of the biocomposite plate according to the invention in the range of 1.15 mm to 1.25 mm, preferably 1.2 mm.
  • the final thickness of the biocomposite plate according to the invention is greater than 1.0 mm, preferably greater than 1.25 mm, more preferably greater than 1.5 mm, in particular at least 2.0 mm and is preferably in the range of 2.0 mm to 40.0 mm, preferably in the range of 2.0 mm to 30.0 mm, particularly preferably in the range of 2.0 mm to 20.0 mm.
  • the preparation of this plate is preferably carried out using paper sheets having a weight in the range of 125 g / m 2 to 250 g / m 2 , preferably in the range of 140 g / m 2 to 230 g / m 2 .
  • a decorative layer is applied on a surface of the paper composite (core layer).
  • the biocomposite panel according to the invention preferably obtains its appearance through this decorative layer. Accordingly, the decorative layer designates the layer applied to the paper composite whose pattern can be visually perceived by the viewer.
  • Decorative layers particularly suitable for the purposes of the present invention include decorative papers, textiles, fabrics, fabrics, and wallpapers, with natural fiber-containing materials being most preferred in this context.
  • decorative paper refers to any material that is suitable for bonding to the underlying core layer and that can render a décor.
  • the preferred material for the decor paper is paper, especially recycled paper.
  • the decor is applied to the decorative paper by means of a printing process.
  • any desired motif can be created and imprinted on the decor paper in gravure printing.
  • the motif may consist of wood, stone, ceramic, color and / or fantasy patterns.
  • the motif can also be done by painting the decor paper with one or more colors.
  • the basis weight of the decor paper used is not further limited.
  • the basis weight is in the range from 40 g / m 2 to 120 g / m 2 , more preferably in the range of 60 g / m 2 to 100 g / m 2 , in particular 70 g / m 2 to 90 g / m 2 . This is especially true for printed designs.
  • textiles designate flexible materials which consist of a composite of fibers. Both fibers and yarns and textile surfaces, such as woven, knitted or knitted fabrics, are summarized under the generic term textiles. For more details refer to the standard DIN 60000.
  • Fabric is the generic term for manually or mechanically produced products of the weaving industry, such as cloth, coffin, velor, plush, terry cloth and other textile fabrics consisting of at least two thread systems crossed at right angles or at right angles.
  • the threads in the longitudinal direction are referred to as warp or warp threads.
  • the transverse threads are called weft or weft threads, the threads are connected by the type of connection Fadenver Regenung. Thread crossing does not mean that threads are crossing each other, but that threads in a particular rhythm (called binding) pass over and under the transverse threads.
  • the warp and weft threads are preferably woven relatively tightly.
  • Wallpapers are webs of cellulose, glass cloth or plastic, more rarely of gold leather, leather or canvas, which can be glued to the wall by means of a suitable adhesive.
  • wallpapers which comprise natural fibers, in particular cellulose, are particularly preferred.
  • an underlay layer may be arranged between the core layer and the decorative layer.
  • This underlay layer may, for example, serve to prevent distortion of the biocomposite plate and / or to reduce electrostatic charges.
  • the underlay layer comprises one or more sheets of recycled paper.
  • the biocomposite plate further comprises at least one biopolymer which binds the various paper sheets together as a binder. If, in addition to the core layer, a decorative layer and / or an underlay layer is provided, then the binder, if necessary, the underlay sheets with each other, if necessary, the core layer with the Underlay Mrs and possibly the underlay layer connects with the decorative layer, preferably also at least one biopolymer.
  • the interface between the core layer and decorative layer can come to a mixing of the binder used and the boundaries between the individual layers usually not defined by the binder used, but especially by the outermost, the individual layers forming sheets.
  • Biopolymers in the context of the present invention refer to polymers which are predominantly, preferably more than 50.0% by weight, preferably more than 75.0% by weight, more preferably more than 90.0% by weight, expediently more than 95.0% by weight, in particular 100.0% by weight, of renewable raw materials.
  • Biopolymers may be biodegradable or permanent polymers, with the latter being particularly preferred according to the invention.
  • the biopolymer is in the cured state as thermoset
  • Duroplastics also called thermosets, are plastics which can not be deformed after they have been cured at the temperature of use, preferably at temperatures in the range from 0 ° C. to 100 ° C., in particular at 25 ° C.
  • Thermosets are hard, glass-like polymer materials which are firmly cross-linked by the chemical valence bonds dreldimensiona4. The crosslinking takes place during the mixing of precursors with branching points and is activated either thermally (exothermically) at room temperature with the aid of catalysts chemically (isothermally) or at high temperatures.
  • alkyl means a straight or branched chain saturated hydrocarbon group in which the carbon atoms are linked together by carbon-carbon single bonds and which are preferably 1 to 20 carbon atoms, desirably 1 to 10 carbon atoms , preferably 1 to 8 carbon atoms, particularly preferably 1 to 6 carbon atoms, in particular 1, 2, 3 or 4 Kohlenstoffatorne having.
  • the index indicates the number of carbon atoms containing said group.
  • C 1-4 alkyl is an alkyl of 1 to 4 carbon atoms.
  • alkyl groups examples include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, 2-methylbutyl, pentyl, iso-amyl and its Isomers, hexyl and its isomers, heptyl and its isomers and octyl and its isomers.
  • alkyl is used together with another prefix, such as, for example, " alkyl " As in "hydroxyalkyl”, this refers to an alkyl group as defined above, which is substituted with one or two, preferably one, substituent of the specifically mentioned, also as defined herein group.
  • C 1 -C 20 -alkyl as used herein means an alkyl group of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 16, 17, 18, 19 or 20 carbon atoms.
  • alkenyl by itself or as part of another substituent, represents a straight or branched hydrocarbon chain comprising at least one carbon-carbon double bond and preferably from 2 to 20 carbon atoms, desirably from 2 to 10 carbon atoms, preferably from 2 to 8 carbon atoms , particularly preferably 2 to 6 carbon atoms, in particular 2, 3 or 4 carbon atoms.
  • alkenyl groups examples include ethenyl (vinyl), 2-propenyl, 2-butenyl, 3-butenyl, 2-pentenyl and its isomers, 2-hexenyl and its isomers, 2-heptenyl and its isomers, 2-octenyl and its isomers, 2 , 4-pentadienyl, etc.
  • C 2 -C 20 alkenyl as used herein means an alkenyl group having 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 carbon atoms.
  • alkynyl by itself or as part of another substituent, represents a straight or branched hydrocarbon chain comprising at least one carbon-carbon triple bond and preferably 2 to 20 carbon atoms, desirably 2 to 10 carbon atoms, preferably 2 to 8 carbon atoms , more preferably 2 to 6 carbon atoms, in particular 2, 3 or 4 carbon atoms.
  • alkynyl groups include ethynyl, 2-propynyl, 2-butynyl, 3-butynyl, 2-pentynyl and its isomers, 2-hexynyl and its isomers, 2-heptynyl and its isomers, 2-octynyl and its isomers, etc.
  • C 2 -C 20 alkynyl as used herein means an alkynyl group having 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 , 17, 18, 19 or 20 carbon atoms.
  • alkyl groups When the alkyl groups are divalent, d. H. they have two single bonds for attachment to two other groups, they are referred to as "alkylene" groups.
  • alkylene groups examples include methylene, ethylene, methylmethylene, trimethylene, propylene, tetramethylene, ethylethylene, 1,2-dimethylethylene, pentamethylene and hexamethylene.
  • alkenylene groups and alkynyl groups which have two single bonds for attachment to two other groups, referred to as “alkenylene” groups or as “alkynylene” groups.
  • aryl itself or as part of another substituent, means an aromatic hydrocarbon ring system, especially a monocyclic, bicyclic or tricyclic ring system or a ring system comprising 1 to 4 rings fused together or covalently linked together wherein the rings preferably each comprise 5 to 8 carbon atoms and at least one of the rings is aromatic.
  • the aromatic ring may optionally comprise 1 to 3 further rings, in particular cycloalkyl rings, heterocyclic rings or heteroaryl rings fused to the ring.
  • the aryl group preferably has 5 to 24 carbon atoms.
  • aryl groups include phenyl, biphenylyl, biphenylenyl, 5- or 6-tetralinyl, 1-, 2-, 3-, 4-, 5-, 6-, 7- or 8-azulenyl, 1- or 2-naphthyl, 1 , 2- or 3-indenyl, 1-, 2- or 9-anthryl, 1- 2-, 3-, 4- or 5-acenaphtylenyl, 3-, 4- or 5-acenaphthyl, 1-, 2-, 3-, 4- or 10-phenanthryl, 1- or 2-pentalenyl, 1, 2-, 3- or 4-fluorenyl, 4- or 5-indanyl, 5-, 6-, 7- or 8-tetrahydronaphthyl, 1 , 2,3,4-Tetrahydronaphthyl, 1,4-dihydronaphthyl, dibenzo [a, d] cylcoheptenyl, 1-, 2-, 3-, 4- or 5-pyren
  • heteroaryl by itself or as part of another substituent, represents 5 to 12 carbon-comprising aromatic rings or ring systems comprising 1 to 3 rings fused together or covalently bonded together, preferably comprising 5 to 8 atoms , At least one of the rings is aromatic, it being possible for one or more carbon atoms in one or more of these rings to be replaced by oxygen, nitrogen or sulfur atoms, it being possible for the nitrogen or sulfur heteroatoms to be oxidized and for the nitrogen atoms to be optionally quaternized.
  • Such rings may be fused to an aryl, cycloalkyl, heteroaryl or heterocyclyl ring.
  • hydroxyalkyl means a group -R b -OH in which R b is an alkylene as previously defined.
  • amino stands for a group -NH 2 .
  • alkylamino represents a group -N (R e ) (R f ), wherein R e and R f , each independently of one another, are hydrogen or an alkyl group optionally substituted by C 1 -C 20 alkyl, C C 2 -C 20 -alkenyl, C 2 -C 20 -alkynyl, C 5 -C 24 -aryl, hydroxyl, carboxyl, nitro, amino, furyl, furylalkyl, alkylfuryl, hydroxyalkylfurylalkyl, isocyanate, formyl, halocarbonyl, thiol and / or alkylthio may be substituted.
  • aminoalkyl means a group -R b -NH 2 .
  • R b is an alkylene as defined previously, optionally with C 1 -C 20 alkyl, C 2 -C 20 alkenyl, C 2 -C 20 alkynyl, C 5 -C 24 aryl, hydroxyl , Carboxyl, nitro, amino, furyl, furylalkyl, alkylfuryl, hydroxyalkylfurylalkyl, isocyanate, formyl, halocarbonyl, thiol and / or alkylthio may be substituted,
  • alkylaminoalkyl means a group -R b -N (R e ) (R f ) wherein R b is an alkylene as previously defined, optionally substituted with C 1 -C 20 alkyl, C 2 -C 20 alkenyl, C 2 -C 20 alkynyl, C 5 -C 24 aryl, hydroxyl, carboxyl, nitro, amino, furyl, furylalkyl, alkylfuryl, hydroxyalkylfurylalkyl, isocyanate, formyl, halocarbonyl, thiol and / or alkylthio substituted and wherein R e and R f , each independently, are hydrogen or an alkyl group optionally substituted by C 1 -C 20 alkyl, C 2 -C 20 alkenyl, C 2 -C 20 alkynyl, C 6 -C 24 -aryl, hydroxyl, carboxyl, nitro, amino,
  • carboxy corresponds to the term "hydroxycarbonyl” and represents a group -CO 2 H.
  • alkylcarboxy corresponds to the term “alkyloxycarbonyl” and represents a group -CO 2 -R a , wherein R a is an alkyl optionally substituted by C 1 -C 20 alkyl, C 2 -C 20 alkenyl, C 2 -C 20 alkynyl, C 5 -C 24 aryl, hydroxyl, carboxyl, nitro, amino, furyl, furylalkyl, alkylfuryl , Hydroxyalkylfurylalkyl, isocyanate, formyl, halocarbonyl, thiol and / or alkylthio.
  • alkenylcarboxy corresponds to the term “alkenyloxycarbonyl” and represents a group -CO 2 -R c , where R c is an alkenyl which is optionally substituted by C 1 -C 20 -alkyl, C 2 -C 20 -alkenyl, C 2 -C 20 alkynyl, C 5 -C 24 aryl, hydroxyl, carboxyl, nitro, amino, furyl, furylalkyl, alkylfuryl, hydroxyalkylfurylalkyl, isocyanate, formyl, halocarbonyl, thiol and / or alkylthio may be substituted.
  • Asterisks (*) are used herein to indicate the position at which the depicted radical is bound to the structure to which it belongs and to which it belongs.
  • furylalkyl represents a group -R b -Furyl wherein furyl is as previously defined and R b is an alkylene as previously defined optionally substituted with C 1 -C 20 alkyl, C 2 -C 20 alkenyl, C 2 -C 20 alkynyl, C 5 -C 24 aryl, hydroxyl, carboxyl, nitro, amino, furyl, furylalkyl, alkylfuryl, hydroxyalkylfurylalkyl, isocyanate, formyl, halocarbonyl, thiol and / or alkylthio may be substituted ,
  • hydroxyalkylfurylalkyl means a group -R b -Furyl-R b -OH wherein furyl is as previously defined and R b is an alkylene as previously defined.
  • alkylfuryl represents a group -Furyl-R b , wherein furyl is as defined above and R b is an alkylene as defined previously, optionally with C 1 -C 20 alkyl, C 2 -C 20 alkenyl, C 2 -C 20 alkynyl, C 5 -C 24 aryl, hydroxyl, carboxyl, nitro, amino, furyl, furylalkyl, alkylfuryl, hydroxyalkyfurylalkyl, isocyanate, formyl, halocarbonyl, thiol and / or alkylthio ,
  • alkoxy or "alkyloxy” denotes a group -OR a , where R a is an alkyl which is optionally substituted by C 1 -C 20 -alkyl, C 2 -C 20 -alkenyl, C 2 -C 20 - Alkynyl, C 5 -C 24 aryl, hydroxyl, carboxyl, nitro, amino, furyl, furylalkyl, alkylfuryl, hydroxyalkylfurylalkyl, isocyanate, formyl, halocarbonyl, thiol and / or alkylthio.
  • alkoxyalkyl or "alkyloxyalkyl” denotes a group -R b -OR a , where R a is an alkyl which may optionally be substituted by C 1 -C 20 -alkyl, C 2 -C 20 -alkenyl, C 2 - C 20 alkynyl, C 5 -C 24 aryl, hydroxyl, carboxyl, nitro, amino, furyl, furylalkyl, alkylfuryl, hydroxyalkylfurylalkyl, isocyanate, formyl, halocarbonyl, thiol and / or alkylthio may be substituted, and wherein R b is an alkylene is, as previously defined, optionally with C 1 -C 20 -alkyl, C 2 -C 20 -alkenyl, C 2 -C 20 -alkynyl, C 5 -C 24 -aryl, hydroxyl, carboxyl,
  • alkenyloxy stands for a group -OR b , where R b is an alkylene as defined previously, optionally substituted by C 1 -C 20 alkyl, C 2 -C 20 alkenyl, C 2 -C 20 -alkynyl, C 5 -C 24 -aryl, hydroxyl, carboxyl, nitro, amino, furyl, furylalkyl, alkylfuryl, hydroxyalkylfurylalkyl, isocyanate, formyl, halocarbonyl, thiol and / or alkylthio.
  • An example is vinyl ether.
  • oxiranyl means an epoxy group -C 2 H 3 O.
  • Preferred examples include acetyl, propionyl, butyryl, valeryl and pivaloyl.
  • alkenylcarbonyl denotes a group -C (OO) R c , where R c is an alkenyl which is optionally substituted by C 1 -C 20 -alkyl, C 2 -C 20 -alkyl, C 2 -C 20 Alkynyl, C 5 -C 24 aryl, hydroxyl, carboxyl, nitro, amino, furyl, furylalkyl, alkylfuryl, hydroxyalkylfurylalkyl, isocyanate, formyl, halocarbonyl, thiol and / or alkylthio.
  • a preferred example is vinyl ketone.
  • isocyanate-alkyl denotes a group -R a -isocyanate, where R a is an alkylene which is optionally substituted by C 1 -C 20 -alkyl, C 2 -C 20 -alkenyl, C 2 -C 20 - alkynyl, C 5 -C 24 aryl, hydroxyl, carboxyl, nitro, amino, furyl, furylalkyl, Alkylfuryl, Hydroxyalkylfurylalkyl, isocyanate, formyl, halocarbonyl, thiol and / or alkylthio may be substituted.
  • nitro stands for a group -NO 2 .
  • cyano stands for a group -CN.
  • amino denotes a group C (NHNH) R 9 , where R 9 is an alkyl, alkylene or aryl which is optionally substituted by C 1 -C 20 -alkyl, C 2 -C 20 -alkenyl, C 2 -C 20 alkynyl, C 5 -C 24 aryl, hydroxyl, carboxyl, nitro, amino, furyl, furylalkyl, alkylfuryl, hydroxyalkylfurylalkyl, isocyanate, formyl, halocarbonyl, thiol and / or alkylthio.
  • thiol or "sulfhydryl” means a group -SH.
  • alkylthol represents a group -SR a , wherein R a is an alkyl which is optionally substituted by C 1 -C 20 alkyl, C 2 -C 20 alkenyl, C 2 -C 20 alkynyl, C 8 C 24 -aryl, hydroxyl, carboxyl, nitro, amino, furyl, furylalkyl, alkylfuryl, hydroxyalkylfurylalkyl, Isocyanate, formyl, halocarbonyl, thiol and / or alkylthio may be substituted.
  • this term includes a group consisting of a sulfur atom linked to an alkyl group.
  • Preferred examples include methylthio (SCH 3 ), ethylthio (SCH 2 CH 3 ), n -propylthio, isopropylthio, n-butylthio, isobutylthio, sec-butylthio, tert-butylthio and n-hexylthio.
  • thioalkyl represents a group -R b -SH, wherein R b is an alkylene as defined above, optionally substituted by C 1 -C 20 alkyl, C 2 -C 20 alkenyl, C 2 -C 20 alkynyl, C 5 -C 24 aryl, hydroxyl, carboxyl, nitro, amino, furyl, furylalkyl, alkylfuryl, hydroxyalkylfurylalkyl, isocyanate, formyl, halocarbonyl, thiol and / or alkylthio.
  • alkylthioalkyl means a group -R b -SR a wherein R b is an alkylene as defined above optionally substituted with C 1 -C 20 alkyl, C 2 -C 20 alkenyl, C C 2 -C 20 alkynyl, C 6 -C 24 aryl, hydroxyl, carboxyl, nitro, amino, furyl, furylalkyl, alkylfuryl, hydroxyalkylfurylalkyl, isocyanate, formyl, halocarbonyl, thiol and / or alkylthio may be substituted, and wherein R a is an alkyl which is optionally substituted by C 1 -C 20 -alkyl, C 2 -C 20 -alkenyl, C 2 -C 20 -alkynyl, C 5 -C 24 -aryl, hydroxyl, carboxyl, nitro, amino, furyl, Furylalkyl, alky
  • halogen stands for fluorine, chlorine, bromine and / or iodine.
  • haloalkyl denotes an alkyl radical as defined above in which one or more hydrogen atoms have been replaced by a halogen as previously defined. Preferred examples include chloromethyl, 1-bromoethyl, fluoromethyl, difluoromethyl, trifluoromethyl and 1,1,1-trifluoroethyl.
  • haloalkenyl represents an alkenyl radical as previously defined in which one or more hydrogen atoms have been replaced by a halogen as previously defined.
  • haloaryl refers to an aryl radical as previously defined in which one or more hydrogen atoms have been replaced by a halogen as previously defined.
  • substituted is used in the present invention, it is intended to indicate that one or more hydrogen atoms on the atom indicated in the name using the term “substituted” are replaced by the indicated group , provided that the normal binding of the atom is not exceeded and that the substitution results in a chemically stable compound, d. H. a compound that is sufficiently robust to withstand isolation to a practical degree of purity from the reaction mixture.
  • the proportion of halogen-containing compounds in the polymerizable composition is preferably as low as possible and is advantageously less than 20.0% by weight, preferably less than 10.0% by weight, particularly preferably less than 5.0% by weight, in particular less than 1 , 0 wt .-%, each based on the total weight of the polymerizable compounds.
  • the polymerizable composition does not contain halo-containing compounds.
  • the proportion of sulfur-containing compounds in the polymerizable composition is preferably as low as possible and is desirably less than 20.0% by weight, preferably less than 10.0% by weight, more preferably less than 5.0% by weight, in particular less than 1.0% by weight. -%, in each case based on the total weight of the polymerizable compounds.
  • the polymerizable composition contains no sulfur-containing compounds.
  • the proportion of nitrogen-containing compounds in the polymerizable composition is preferably as low as possible and is favorably less than 20.0 wt .-%, preferably less than 10.0 wt .-%, more preferably less than 5.0 wt .-%, in particular less than 1 , 0 wt .-%, each based on the total weight of the polymerizable compounds.
  • the polymerizable composition does not contain nitrogen-containing compounds.
  • the radical R 17 is not hydrogen.
  • Preferred monomers for the preparation of the resin include 2,5-bis (hydroxymethyl) furan, 2,3,5-tris (hydroxymethyl) furan, 5-methyl-2-furfuryl alcohol, 3-hydroxymethyl-5-methyl-2-furfuryl alcohol, 2,2 '- (hydroxymethyl) diformylmethane, 2,2', 3,3 '- (hydroxymethyl) diformylmethane, 2,2', 4,4 '- (hydroxymethyl) diformylmethane, 5-hydroxymethyl- ⁇ - (methyl) furfurylalcohol , 5-hydroxymethyl-2-furancarboxaldehyde, 3,5-hydroxymethyl-2-furancarboxaldehyde, 4,5-hydroxymethyl-2-furancarboxaldehyde, 5-methyl-2-furancarboxaldehyde, 3-hydroxymethyl-5-methyl-2-furancarboxaldehyde, 5 Nitrofurfuraldehyde, 2,5-bis (carboxaldehyde) furan, 3-hydroxymethyl-2,5-bis (carboxal
  • the polymerizable composition comprises 2,5-bis (hydroxymethyl) furan (BHMF). In a further preferred embodiment of the present invention, the polymerizable composition comprises 2,3,5-tris (hydroxymethyl) furan (THMF). In a further preferred embodiment of the present invention, the polymerizable composition comprises 2,2'-hydroxymethyldifurylmethane (HMDM). In a further preferred embodiment of the present invention, the polymerizable composition comprises 5-hydroxymethyl-2-furfurylamine. In another preferred embodiment of the present invention, the polymerizable composition comprises 5-hydroxymethyl-2-furancarboxaldehyde. In another preferred embodiment of the present invention, the polymerizable composition comprises 5-methyl-2-furfuryl alcohol.
  • BHMF 2,5-bis (hydroxymethyl) furan
  • THMF 2,3,5-tris (hydroxymethyl) furan
  • HMDM 2,2'-hydroxymethyldifurylmethane
  • the polymerizable composition comprises 5-hydroxymethyl-2-furfurylamine.
  • the polymerizable composition
  • the polymerizable composition comprises 5-hydroxymethyl- ⁇ - (methyl) furfuryl alcohol.
  • the polymerizable composition comprises 2,2,3,3 '- (hydroxymethyl) diformylmethane.
  • the polymerizable composition comprises 2,2 ', 4,4' - (hydroxymethyl) difyrimethane.
  • the polymerizable composition comprises 2,5-bis (hydroxymethyl) furan (BHMF), 2,3,5-tris (hydroxymethyl) furan (THMF) and / or 2,2'-hydroxymethyldifurylmethane (HMDM ).
  • BHMF 2,5-bis (hydroxymethyl) furan
  • THMF 2,3,5-tris (hydroxymethyl) furan
  • HMDM 2,2'-hydroxymethyldifurylmethane
  • the polymerizable composition comprises 2,5-bis (hydroxymethyl) furan (BHMF), 2,3,5-tris (hydroxymethyl) furan (THMF), 2,2 '- (hydroxymethyl) dlfurylmethane (HMDM) and / or condensation products of BHMF, THMF and / or HMDM.
  • BHMF 2,5-bis (hydroxymethyl) furan
  • THMF 2,3,5-tris (hydroxymethyl) furan
  • HMDM 2,2 '- (hydroxymethyl) dlfurylmethane
  • the polymerizable composition comprises a compound of the formula (I) or (II), where n, t, s, w, z, X, Y, R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R 19 , R 20 , R 21 as before and wherein the dotted line represents a double bond, provided that R 17 and R 20 are not a C 1 -C 20 alkyl group, and preferably not methyl, and / or provided that the compound is not 2.5 dimethylfuran, 2 4 dimethylfuran, 2-acetyl-5-methylfuran, 2.5-dimethyl-3-acetylfuran, 2,3,5-trimethylfuran, 2-vinyl-3-methylfuran, 2-methylbenzofuran, dimethylbenzofuran, dimethylbenzofuran, di
  • radical R 17 is hydrogen
  • R 18 and R 19 are, in this context, each independently, suitably hydrogen, C 1 -C 20 alkyl, carboxaldehyde, hydroxyalkyl, carboxyl, amino, nitro, alkylamino, aminoalkyl, alkyloxyalkyl, alkylaminoalkyl, alkylcarboxy, Alkenylcarboxy, furyl, furylalkyl , Hydroxyalkylfurylalkyl, alkyloxy, alkenyloxy, alkylcarbonylalkenyl, oxiranyl, alkenylcarbonyl, alkylcarbonyloxyalkyl, alkyloxycarbonylalkenyl, alkenylcarbonyloxyalkyl, isocyanate, isocyanatoalkyl, alkylcarbonyl, halocarbonyl, haloalkyl, haloaryl, haloalkenyl, imino, thioalkyl, alkylthioalky
  • R 18 and R 19 are hydrogen, C 1 -C 2 alkyl, carboxaldehyde, hydroxyalkyl, carboxyl, aminoalkyl, alkylaminoalkyl, hydroxyalkylfurylalkyl, alkoxyalkyl, oxiranyl and / or isocyanate, especially hydrogen.
  • R 20 in this context is conveniently hydrogen, C 1 -C 20 alkyl, carboxyaldehyde, hydroxyalkyl, carboxyl, amino, nitro, alkylamino, aminoalkyl, alkyloxyalkyl, alkylaminoalkyl, alkylcarboxy, alkenylcarboxy, furyl, furylalkyl, hydroxyalkylfurylalkyl, alkyloxy, alkenyloxy, alkylcarbonylalkenyl , Oxiranyl, alkenylcarbonyl, alkylcarbonyloxyalkyl, alkyloxycarbonylalkenyl, alkenylcarbonyloxyalkyl, isocyanate, isocyanatoalkyl, alkylcarbonyl, halocarbonyl, haloalkyl, haloaryl, haloalkenyl, imino, thioalkyl, alkylthioalkyl and / or cyano,
  • R 20 is C 1 -C 2 alkyl, carboxaldehyde, hydroxyalkyl, carboxyl, aminoalkyl, alkylaminoalkyl, hydroxyalkylfurylalkyl, alkoxyalkyl, oxiranyl or isocyanate, especially hydroxyalkyl, especially CH 2 OH.
  • the dashed line represents in this context preferably a double bond.
  • the polymerizable composition contains, based on the total weight of the polymerizable components, at least 50.0% by weight, preferably at least 60.0% by weight, preferably at least 75.0% by weight. , Particularly preferably at least 90.0 wt .-%, suitably at least 95.0 wt .-%, in particular 100.0 wt .-%, furfuryl alcohol, which expediently from agricultural products, in particular from bagasse, maize straw or other agricultural raw materials won becomes.
  • Preferred comonomers in this context include compounds of the formula (I) or (II) in which R 17 is not hydrogen, in particular the compounds already mentioned above.
  • Other preferred comonomers include furfural, formaldehyde, ketones and phenols.
  • the proportion of comonomers, based on the total weight of the polymerizable components is preferably at most 50.0% by weight, advantageously at most 40.0% by weight, preferably at most 25.0% by weight, particularly preferably at most 10. 0 wt .-%, advantageously at most 5.0 wt .-%.
  • the polymerizable composition comprises no comonomers and contains only furfuryl alcohol.
  • the composition may also optionally contain up to 40.0% by weight, preferably up to 30.0% by weight, of condensation products of BHMF, THMF and / or HMDM.
  • the polymerizable composition preferably comprises disubstituted, trisubstituted or polysubstituted furan compounds or a mixture thereof. Furthermore, it may contain a solvent, a catalyst (initiator), coupling agents, fillers, flame retardants, oil (wax) and / or a surfactant.
  • the compounds of the present composition are diluted in a solvent.
  • concentration of the compounds in the solvent is preferably between 5.0 and 95.0 wt .-%, preferably between 10.0 wt .-% and 80.0 wt .-%, based on the total weight of the solution.
  • preferred solvents include water, alcohols, especially ethanol and methanol, dioxane, N, N dimethylformamide, acetone, ethylene glycol and glycerol.
  • the solvent is water.
  • the furan compounds of the present invention are preferably soluble in water.
  • the furan compounds of the present invention are soluble in water in the presence of a catalyst.
  • water-soluble refers to the amount that is soluble in water at room temperature after standing for 48 hours when 5.0 grams of furan compounds are added to 95.0 grams of deionized water.
  • the furan compounds can be reacted in the presence or absence of catalysts.
  • the polymerizable composition may therefore contain a catalyst.
  • Preferred catalysts include metal salts, ammonium salts, organic acids, anhydrides, inorganic acids, and mixtures thereof.
  • Preferred metal salts include metal halides, especially magnesium chloride, aluminum chloride and zinc chloride, metal sulfates, especially magnesium sulfate and aluminum sulfate, metal nitrates, especially magnesium nitrate, aluminum nitrate and zinc nitrate, metal phosphates and mixtures thereof.
  • Preferred ammonium salts include ammonium chloride, ammonium sulfate, ammonium phosphate, ammonium carbonate, ammonium bicarbonate, ammonium axalate, ammonium citrate, ammonium nitrate, ammonium fumarate, ammonium levulinate, and mixtures thereof.
  • Preferred organic or inorganic acids include formic, acetic, propionic, butyric, pentanoic, hexanoic, oxalic, maleic, maleic, adipic, citric, furoic, benzoic, phthalic, para-toluic, hydrochloric, sulfuric, nitric, phosphoric Benzoyl peroxide and mixtures thereof.
  • the composition preferably comprises up to 20% by weight.
  • the furan compounds in particular 2,5-bis (hydroxymethyl) furan (BHMF), 2,3,5-tris (hydroxymethyl) furan (THMF), 2,2 '- (hydroxymethyl) diformylmethane , (HMDM), condensation products thereof, 2,2 ', 3,3' - (hydroxymethyl) diformylmethane, 2,2 ', 4', 4 '- (hydroxymethyl) diformylmethane, by hydroxymethylation of furfuryl alcohol with a formaldehyde source, especially formaldehyde, Paraformaldehyde or trioxane, obtained.
  • BHMF 2,5-bis (hydroxymethyl) furan
  • THMF 2,3,5-tris (hydroxymethyl) furan
  • HMDM 2,2 '- (hydroxymethyl) diformylmethane
  • condensation products thereof 2,2 ', 3,3' - (hydroxymethyl) diformylmethane, 2,2 ', 4', 4 '- (hydroxymethyl) diformylmethane
  • the formation of the furan resin is preferably acid-catalyzed according to the general reaction equation where only the polycondensation of furfuryl alcohol has been shown and any comonomers have not been considered for clarity.
  • the crosslinking of the furan resin is preferably carried out primarily by condensation of a terminal methylol group in an oligomer or polymer with a methylene group of another chain; preferably again under acid catalysis:
  • crosslinking by addition of a terminal methylol group in one oligomer or polymer to a double bond of another chain is possible, although less preferred in the context of the present invention.
  • Suitable acids for the catalysis of polymerization and / or crosslinking include inorganic and organic acids, especially organic acids. Strong acids, in particular toluenesulfonic acid, xylenesulfonic acid, benzenesulfonic acid, hydrochloric acid and sulfuric acid, are particularly preferred in this context. In this case, a mixture of toluenesulfonic acid and benzenesulfonic has proven particularly useful.
  • a weak acid in particular phosphoric acid, is used which preferably gives rise to a longer pot life and preferably requires curing of the resin at a temperature in the range of 100 ° C to 200 ° C.
  • the amount of acid can be chosen freely in principle in this context. It is preferably in the range of 1.0 to 45.0 wt .-%, preferably in the range of 10.0 wt.% To 40.0 wt.%, In particular in the range of 15.0 wt.% To 35.0 % By weight, based in each case on the total weight of furan resin monomers and oligomers and acid catalyst.
  • Furan resins which are particularly suitable for the purposes of the present invention show a peak in the DSC (differential scanning calorimetry) diagram in the range from 120 ° C. to 160 ° C., preferably in the range from 130 ° C. to 146 ° C., in particular in the region of 131 ° ° C to 139 ° C.
  • the DSC measurement is preferably carried out at a heating rate of 5 ° C / minute.
  • furan resins for further details on furan resins and their preparation will refer to the specialist literature, in particular Römpp-Lexikon Chemistry; Publisher: Jürgen Falbe, Manfred Regitz; edited by Eckard Amelingmeier; Stuttgart, New York; Thieme; 10th edition - 1997; Volume 2 Cm-G , Keyword “furan resins” as well Ullmann's Encyclopedia of Industrial Chemistry, Fifth Edition on CD-ROM, 1997 , Keyword “Furan and derivatives - furfuryl alcohol” and the references given there, referenced.
  • the residual moisture content of the biocomposite plate according to the invention is less than 8.0% by weight, preferably less than 7.0% by weight, more preferably less than 6.0% by weight, in particular less than 5.0% by weight. , It is preferably determined according to the standard EN 20287 after drying in a drying oven at 105 ° C for 24 h, preferably after drying in a drying oven at 105 ° C for 48 h
  • the proportion by weight of the biopolymer, based on the total weight of the biocomposite plate, in the context of the present invention is at least 20.0% by weight and is expediently in the range from 20.0% by weight to 45.0% by weight, preferably Range from 25.0% to 40.0%, more preferably in the range of 28.0% to 36.0%, and even more preferably in the range of 30.0% by weight. % to 34.0% by weight.
  • the weight ratio of natural fibers to biopolymer according to the invention is preferably in the range of 5: 1 to 1: 5, in particular in the range of 4: 1 to 1: 1.
  • the preparation of the Blokompositplatte invention can be done in a known per se.
  • the biocomposite plate according to the invention is preferably obtained by producing a structure which contains the paper sheets, preferably recycled paper sheets, possibly the decorative paper sheet, preferably a recycled paper sheet, and a suitable binder system, preferably incorporates this structure between special press plates, compresses and hardens the binder system
  • individual sheets, preferably all sheets, of the various layers are preferably impregnated with a suitable binder.
  • the structure comprises a plurality of paper sheets, preferably two to 200 paper sheets, in particular kraft paper sheets. On the uppermost paper sheet a decorative paper sheet is preferably arranged.
  • the decorative paper sheet applied to the uppermost paper sheet is a prepreg of decorative paper and a suitable binder.
  • the paper sheets present in the structure are preferably impregnated with a composition which, based on the total weight of the polymerisable components, contains at least 50.0% by weight of at least one compound of the formula (I) and / or of the formula (II) , in particular Furturylalkohol, and / or furan resin prepolymers based on compounds of formula (I) and / or the formula (II), in particular furfuryl alcohol, and preferably at least one acidic catalyst.
  • a composition which, based on the total weight of the polymerisable components, contains at least 50.0% by weight of at least one compound of the formula (I) and / or of the formula (II) , in particular Furturylalkohol, and / or furan resin prepolymers based on compounds of formula (I) and / or the formula (II), in particular furfuryl alcohol, and preferably at least one acidic catalyst.
  • this is a thermosetting resin, which preferably at temperatures in the range of 70 ° C to 200 ° C, advantageously in the range of 100 ° C to 180 ° C, in particular in the range of 140 ° C to 160 ° C, cures ,
  • the decorative paper sheet possibly present in the structure is preferably likewise impregnated with a composition which, based on the total weight of the polymerisable components, contains at least 50.0% by weight of at least one compound of the formula (I) and / or of the formula (II), in particular Furfuryl alcohol, and / or furan resin prepolymers based on compounds of formula (I) and / or of formula (II), in particular furfuryl alcohol, and preferably contains an acidic catalyst.
  • this is a thermosetting resin, which preferably at temperatures in the range of 70 ° C to 200 ° C, advantageously in the range of 100 ° C to 180 ° C, in particular in the range of 140 ° C to 160 ° C, cures ,
  • the binder content of the impregnated decal sheet depends inter alia on the motif of the decal sheet.
  • the binder content of the impregnated decal sheet is preferably in the range of 35.0 wt% to 65.0 wt%, more preferably in the range of 42.0 wt% to 60.0 wt%, and more preferably in the range of 48.0 wt% to 55.0 wt%.
  • the binder content of the impregnated decal sheet is preferably in the range of 35.0 wt% to 65.0 wt%, more preferably in the range of 37.0 wt% to 50.0 % By weight, and more preferably in the range of 40.0% by weight to 45.0% by weight.
  • An inventively prepared structure is then preferably introduced and pressed between two press plates, which are preferably matte, smooth or textured.
  • the compression of the structure is preferably carried out at a temperature in the range of 70 ° C to 200 ° C, more preferably in the range 120 ° C to 160 ° C, in particular in the range of 130 ° C to 160 ° C, and preferably at elevated pressure of preferably at least 4 N / mm 2 , preferably at least 5 N / mm 2 and more preferably at least 7 N / mm 2 .
  • the pressing time is preferably in the range of 40 minutes to 90 minutes, more preferably in the range of 50 minutes to 80 minutes.
  • the finished biocomposite plate has, depending on the selected structure, different thicknesses.
  • Typical thicknesses are in the range of 0.5 mm to 2 mm, preferably in the range of 0.6 mm to 1.5 mm and particularly preferably in the range of 0.8 mm to 1.2 mm.
  • it is also possible to produce biocomposite plates with much larger thicknesses for example in the range from 2 mm to 40 mm, preferably in the range from 2 mm to 30 mm and particularly preferably in the range from 2 mm to 20 mm.
  • the thickness of the decorative layer is preferably in the range from 65 ⁇ m to 200 ⁇ m, particularly preferably in the range from 80 ⁇ m to 150 ⁇ m.
  • the thickness of the core layer is according to a first preferred embodiment of the present invention in the range of 250 microns to 1800 microns, more preferably in the range of 500 microns to 1500 microns.
  • the thickness of the core layer is Im Range of 1.7 mm to 39.7 mm, preferably in the range of 1.7 mm to 29.7 mm, more preferably in the range of 1.7 mm to 19.7 mm.
  • the final weight of the biocomposite plate according to the invention depends on several factors, such as the thickness of the biocomposite plate, the weight of the components used and the number of sheets used.
  • the weight of the biocomposite plate is in the range of 1.0 kg / m 2 to 1.6 kg / m 2 surface area of the biocomposite plate, more preferably in the range of 1.3 kg / m 2 to 1, 5 kg / m 2 , for example at 1.4 kg / m 2 .
  • the weight of the biocomposite plate is in the range from 2.8 kg / m 2 to 56.0 kg / m 2 surface area of the biocomposite plate, more preferably in the range from 2.8 kg / m 2 to 42 kg / m 2 , in particular in the range of 2.8 kg / m 2 to 28 kg / m 2 .
  • the biocomposite panel according to the invention is used in particular for wall cladding, work surfaces, shop fittings, shelves, counters and / or furniture. Furthermore, their use for floor coverings is also advantageous.
  • the invention relates to a panel comprising a support and a biocomposite panel according to the invention adhering to the support.
  • the panel is a wall cladding.
  • the panel may also be another panel, such as a table top or a furniture panel.
  • Preferred supports are chipboard, plywood, support plates (optionally coated with laminate), high-density fiberboard, medium-density fiberboard, hardboard, blockboard, furnisr, solid wood, honeycomb, foam, metal plates, sheets, mineral substrates, natural and artificial stone, tiles and plasterboard.
  • the supports may be coated with a suitable binder or uncoated. However, biopolymers are preferably used as binders again.
  • the biocomposite plate can be applied to both liquid-absorbent carriers such as uncoated particleboard and uncoated wood, and non-liquid-absorbent (non-absorbent) carriers such as metals, ceramics, glass, coated woods, coated chipboard, and so on.
  • liquid-absorbent carriers such as uncoated particleboard and uncoated wood
  • non-liquid-absorbent (non-absorbent) carriers such as metals, ceramics, glass, coated woods, coated chipboard, and so on.
  • biocomposite plate and carrier Methods and means for firmly bonding biocomposite plate and carrier are known in the art.
  • the bonding of the blocomposite plate and the carrier can be performed by gluing or by means of connecting elements known from the prior art.
  • the panel may also include other functional materials known in the art. Examples include materials for flame retardancy, radiation shielding, soundproofing, stabilization and moisture barrier.
  • the thickness of the panel is not limited. It is preferably in the range of 7 mm to 40 mm, more preferably in the range of 12 mm to 30 mm and most preferably in the range of 18 mm to 28 mm.
  • the thickness of the biocomposite plate present in the panel may, as described above, preferably in the range of 0.5 mm to 2 mm, more preferably in the range of 0.6 mm to 1.5 mm and most preferably in the range of 0.8 mm to 1.2 mm.
  • the thickness of the support is preferably in the range of 5 mm to 38 mm, more preferably in the range of 10 mm to 28 mm, most preferably in the range of 16 mm to 25 mm.
  • the final weight of the panel is not particularly limited. It is preferably in the range of 8 kg / m 2 to 25 kg / m 2 surface of the panel, more preferably in the range of 10 kg / m 2 to 21 kg / m 2 and most preferably in the range of 12 kg / m 2 to 18 kg / m 2 .
  • furan resin furan resin
  • the impregnated paper was allowed to dry for 2 hours at room temperature and then dried for 2 minutes at 130 ° C in a convection oven to obtain a pre-impregnated recycled paper.
  • composition prepared in this way was pressed between two press plates as texturizer at a pressure of 10 N / mm 2 and a maximum temperature of 145 ° C. for 25 minutes and then cooled to room temperature.
  • Example 1 The pre-impregnated recycled paper prepared in Example 1 was used to prepare a biocomposite plate of the present invention, and now 23 sheets of recycled paper impregnated with the furan resin were pressed together.
  • Embodiment 1 The pre-impregnated recycled paper prepared in Embodiment 1 was used to prepare a biocomposite plate of the present invention, and now 28 sheets of recycled paper impregnated with the furan resin were pressed together.
  • the prepreg recycled paper prepared in Example 1 was used to prepare a biocomposite sheet of the present invention, and now 48 sheets of recycled paper impregnated with the furan resin are pressed together.
  • the biocomposite sheets obtained in the embodiments were examined for their strengths.
  • the density was determined according to EN ISO 1183-1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paper (AREA)

Abstract

Biokompositplatte, umfassend a) mindestens eine Naturfaser und b) mindestens ein duroplastisches Biopolymer, wobei. o die Biokompositplatte eine Restfeuchte, bezogen auf ihr Gesamtgewicht, kleiner 8,0 Gew.% aufweist, o die Biokompositplatte mindestens zwei Bögen Papier umfasst, o das Biopolymer ein Furanharz einschließt, das durch Polymerisation einer Zusammensetzung erhältlich ist, die eine Verbindung der Formel (I) und/odei der Formel (II) enthält wobei n, t, s, w, z sowie die Reste X, Y, R 1 , R 2 , R 3 , R 4 , R 5 , R 8 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R 19 und R 20 gemäß der Beschreibung definiert sind und wobei die gestrichelte Linie eine optionale Doppelbindung darstellt, und o der Gewichtsanteil des Biopolymers, bezogen auf das Gesamtgewicht der Biokompositptatte, mindestens 20,0 Gew.·% beträgt.

Description

  • Die vorliegende Erfindung betrifft eine Biokompositplatte, Verfahren zu Ihrer Herstellung sowie ihre Verwendung.
  • Biokomposite oder Bioverbundwerkstoffe bezeichnen Verbundwerkstoffe mit einer biogenen Komponente, d. h. einer Komponente, die nicht durch chemische Syntheseverfahren gewonnen wurde. Drei Varianten kommen in diesem Zusammenhang insbesondere in Frage:
    • ■ Verbunde aus Naturfasern und traditionellen Polymeren und anderen Matrixmatertalien,
    • ■ Verbunde aus synthetischen Fasern und Biopolymeren und
    • ■ Verbunde aus Naturfasern und Biopolymeren, die im Rahmen der vorliegenden Erfindung besonders im Vordergrund stehen, da ihre Herstellung aus ökologischen Gesichtspunkten am Ressourcen schonensten ist.
  • Blokomposite werden schon seit Jahrhunderten zum Beispiel in Form von strohverstärkten Lehmziegeln eingesetzt. Seit dem Ende des 20. Jahrhunderts werden sie auch vermehrt für industrielle Anwendungen verwendet. Hier kommen vor allern Naturfaserverbundwerkstoffe und die sogenannten Wood Plastic Composites zum Einsatz, die sich die Vorteile von Naturfasern im Vergleich zu traditionellen Verstärkungs- und Füllmaterialien zu Nutze machen. Dies sind, neben ihrer Nachhaltigkeit und der damit verbundenen Unabhängigkeit von fossilen Brennstoffen, ihre CO2-Neutralität, aber auch ihre physikalischen Eigenschaften, wie ihre geringe Dichte, ihre hohe Festigkeit und ihre Steifigkeit.
  • Neben erdölbaslerten Polymeren, wie zum Beispiel Polypropylen und Polyethylen oder auch Epoxidharzen, werden in den letzten Jahren auch verstärkt Biopolymere als Matrixwerkstoff eingesetzt. Zu nennen sind vor allem das auf Maisstärke basierende Polylactid (Polymilchsäure; PLA), aber auch aus Palmöl hergestellte Harze oder Stärke kommen zum Einsatz. Diese Werkstoffe besitzen einige weitere Vorteile im Vergleich zu naturfaserverstärkten, erdölbasierten Polymeren. So sind sie in der Regel vollständig biologisch abbaubar und ihre Herstellungskosten, mit Ausnahme der im Herstellungsprozess eingesetzten Energiemengen, unabhängig vom Erdölprels. Zudem weisen sie eine deutlich bessere CO2-Bilanz auf.
  • Allerdings sind ihre mechanischen Eigenschaften, insbesondere Ihre Festigkeit und ihre Steiflgkeit, ihre Wärmeformbeständigkeit, Ihre Larigzeitbeständigkeit sowie ihre Dauergebrauchbarkeit, für viele Anwendungen unzureichend. Insbesondere Polymilchsäure weist eine sehr geringe Wärmeformbeständigkeit auf, besitzt eine sehr niedrige Vicat-Erweichungstemperatur von ca. 70°C bis 75°C, erweicht im Übrigen bereits bei Temperaturen um 60°C merkilch und erlaubt nur extrem niedrige Dauergebrauchstemperaturen.
  • Darüber hinaus zeigt Polymilchsäure, wie viele anderen thermoplastischen Polymere, ein negatives Brandverhalten und tropft im Brandfall brennend ab, was aus sicherheitstechnischen Gesichtspunkten nachteilig ist.
  • In Anbetracht des Standes der Technik war es daher Aufgabe der vorliegenden Erfindung, Möglichkeiten zur Lösung der in dieser Anmeldung diskutierten Nachteile des Standes der Technik aufzuzeigen. Insbesondere sollten Wege zur Verbesserung der mechanischen Eigenschaften, vor allem der Festigkeit, der Steifigkeit, der Wärmeformbeständigkeit, der Langzeitbeständigkeit und der Dauergebrauchbarkeit herkömmlicher Biokomposite und Verbundwerkstoffe, gefunden werden. Weiterhin wurden Biokomposite mit einer besseren Wärmeformbeständigkeit, einem besseren Erweichungsverhalten und höheren Dauergebrauchstemperaturen gesucht. Darüber hinaus wurde ein besseres Brandverhalten, möglichst ohne brennendes Abtropfen, gewünscht. Abgesehen davon sollte eine möglichst gute Witterungsbeständigkeit und Temperaturbeständigkeit erreicht werden.
  • Gewünscht wurden dabei möglichst umweltverträgliche Lösungen, sowohl hinsichtlich der Rohstoffbasis aus regenerativen Quellen, als auch hinsichtlich der Energie und der CO2-Bilanz, die zur Realisierung der Lösung erforderlich sind. Besonders wichtig war in diesem Zusammenhang insbesondere der Wunsch nach einer Lösung, die aus gesundheitlicher und umweltpolitischer Sicht möglichst unbedenklich ist und sich möglichst ohne den Einsatz von Halogen-haltigen, Schwefel-haltigen und/oder Stickstoff-haltigen Substanzen realisieren lässt, um die Bildung von Halogenverbindungen, Schwefeloxiden und/oder Stickoxiden bei der Verbrennung der Biokomposite bestmöglich zu vermeiden.
  • Schließlich sollte die Erfindung auf möglichst einfache Art und Weise, möglichst effektiv und kostengünstig verwirklicht werden können.
  • Gelöst werden diese sowie weitere Aufgaben, die sich aus den in dieser Anmeldung diskutierten Zusammenhängen unmittelbar ergeben, durch eine Biokompositplatte mit allen Merkmalen des vorliegenden Patentanspruchs 1. Die auf den Patentanspruch 1 rückbezogenen Unteransprüche beschreiben besonders zweckmäßige Ausführungsformen der erfindungsgemäßen Biokompositplatte Im Übrigen werden bevorzugte Verfahren zur Herstellung der erfindungsgemäßen Biokompositplatte sowie besonders vorteilhafte Anwendungsgebiete der erfindungsgemäßen Biokompositplatte unter Schutz gestellt.
  • Durch die Bereitstellung einer Biokompositplatte, die
    1. a) mindestens eine Naturfaser und
    2. b) mindestens ein duroplastisches Biopolymer umfasst,
      wobei
      • o die Biokompositplatte eine Restfeuchte, bezogen auf ihr Gesamtgewicht, kleiner 8,0 Gew.-% aufweist,
      • o die Biokompositplatte mindestens zwei Bögen Papier umfasst,
      • o das Biopolymer ein Furanharz einschließt, das durch Polymerisation einer Zusammensetzung erhältlich ist, die eine Verbindung der Formel (I) und/oder der Formel (II) enthält
        Figure imgb0001
        Figure imgb0002
        wobei
        • n eine ganze Zahl zwischen 0 und 20, vorzugsweise zwischen 0 und 10, insbesondere zwischen 0 und 6, ist,
        • t und s, jeweils unabhängig voneinander, eine ganze Zahl zwischen 1 und 20, vorzugsweise 1 und 10, Insbesondere zwischen 1 und 5, sind,
        • w und z, jeweils unabhängig voneinander, 0 oder 1 sind,
        • X und Y, jeweils unabhängig voneinander, O, S oder N-R21 sind,
        • R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, R16, R18, R19 und R21, jeweils unabhängig voneinander, Wasserstoff, C1-C20-Alkyl, C2-C20-Alkenyl, C2-C20-Alkinyl, C5-C24-Aryl, C6-C12-Heteroaryl, Carboxyaldehyd, Hydroxyl, Hydroxyalkyl, Carboxyl, Amino, Nitro, Formyl, Alkylamino, Aminoalkyl, Alkylaminoalkyl, Furyl, Furylalkyl, Hydroxyalkylfurylalkyl, Alkyloxy, Alkyloxyalkyl, Alkenyloxy, Alkylcarbonylalkenyl, Oxiranyl, Alkylcarbonaloxyalkyl, Alkyloxycarbonylalkenyl, Alkenylcarbonyloxyalkyl, Isocyanat, Isocyanatalkyl, Alkyloarboxy, Alkenylcarboxy, Alkylcarbonyl, Alkenylcarbonyl, Halogencarbonyl, Halogenalkyl, Halogenaryl, Halogenalkenyl, Imino, Thiol, Alkylthio, Thioalkyl, Alkylthioalkyl, Cyano, Alkylsulfonyl und/oder eine Sulfonsäuregruppe sind, wobei jede Gruppe mit C1-C20-Alkyl, C2-C20-Alkenyl, C2-C20-Alkinyl, C5-C24-Aryl, Hydroxyl, Carboxyl, Nitro, Amino, Furyl, Furylalkyl, Alkylfuryl, Hydroxyalkylfurylalkyl, Isocyanat, Formyl, Halogencarbonyl, Thiol und/oder Alkylthio substituiert sein kann, R17 Wasserstoff, C1-C20-Alkyl, C2-C20-Akenyl, C2-C20-Alkinyl, C5-C20-Aryl, C5-C12-Heteroaryl, Carboxyaldehyd, Hydroxyl, Hydroxyalkyl, Carboxyl, Amino, Nitro, Formyl, Alkylamino, Aminoalkyl, Alkylaminoalkyl, Furyl, Furylalkyl, Hydroxyalkylfurylalkyl, Alkyloxy, Alkyloxyalkyl, Alkenyloxy, Alkylcarbonylalkenyl, Oxiranyl, Alkylcarbonyloxyalkyl, Alkyloxycarbonylalkenyl, Alkenylcarbonyloxyalkyl, Isocyanat, Isocyanatalkyl, Alkylcarboxy, Alkenylcarboxy, Alkylcarbonyl, Alkenylcarbonyl, Halogencarbonyl, Halogenalkyl, Halogenaryl, Halogenalkenyl, Imino, Thiol, Alkylthio, Thioalkyl, Alkylthioalkyl, Cyano, Alkylsulfonyl und/oder eine Sulfonsäuregruppe ist, wobei jede Gruppe mit C1-C20-Alkyl, C2-C20-Alkenyl, C2-C20-Alkinyl, C5-C24-Aryl, Hydroxyl, Carboxyl, Nitro, Amino, Furyl, Furylalkyl, Alkylfuryl, Hydroxyalkylfurylalkyl, Isocyanat, Formyl, Halogencarbonyl, Thiol und/oder Alkylthio substituiert sein kann,
        • R20 C1-C20-Alkyl, C2-C20-Alkenyl, C2-C20-Alkinyl, C5-C24-Aryl, C5-C12-Heteroaryl, Carboxyaldehyd, Hydroxyl, Hydroxyalkyl, Carboxyl, Amino, Nitro, Formyl, Alkylamino, Aminoalkyl, Alkylaminoalkyl, Furyl, Furylalkyl, Hydroxyalkylfurylalkyl, Alkyloxy, Alkyloxyalkyl, Alkenyloxy, Alkylcarbonylalkenyl, Oxiranyl, Alkylcarbonyloxyalkyl, Alkyloxycarbonylalkenyl, Alkenylcarbonyloxyalkyl, Isocyanat, Isocyanatalkyl, Alkylcarboxy, Alkenylcarboxy, Alkylcarbonyl, Alkenylcarbonyl, Halogencarbonyl, Halogenalkyl, Halogenaryl, Halogenalkenyl, Imino, Thiol, Alkylthio, Thioalkyl, Alkylthioalkyl, Cyano, Alkylsulfonyl und/oder eine Sulfonsäuregruppe ist, wobei jede Gruppe mit C1-C20-Alkyl, C2-C20-Alkenyl, C2-C20-Alkinyl, C5-C24-Aryl, Hydroxyl, Carboxyl, Nitro, Amino, Furyl, Furylalkyl, Alkylfuryl, Hydroxyalkylfurylalkyl, Isocyanat, Formyl, Halogencarbonyl, Thiol und/oder Alkylthio substituiert sein kann, und wobei die gestrichelte Linie eine optionale Doppelbindung darstellt, und
      • o der Gewichtsanteil des Biopolymers, bezogen auf das Gesamtgewicht der Blokompositplatte, mindestens 20,0 Gew.-% beträgt,
    gelingt es auf nicht ohne Weiteres vorhersehbare Welse eine Möglichkeit zur Lösung der in dieser Anmeldung diskutierten Nachteile des Standes der Technik aufzuzeigen. Insbesondere wird ein Weg zur Verbesserung der mechanischen Eigenschaften, vor allem der Festigkeit, der Steifigkeit, der Wärmeformbeständigkeit, der Langzeitbeständigkeit und der Dauergebrauchbarkeit herkömmlicher Biokomposite und Verbundwerkstoffe, angegeben. Darüber hinaus weist die erfindungsgemäße Biokompositplatte eine bessere Wärmeformbeständigkeit auf, zeigt ein deutlich besseres Erweichungsverhalten und erlaubt höhere Dauergebrauchstemperaturen. Weiterhin ist ihr Brandverhalten wesentlich besser, insbesondere ohne 0brennendes Abtropfen. Schließlich zeichnet sie sich auch durch eine sehr gute Witterungsbeständigkeit und Temperaturbeständigkeit aus.
  • Dabei ist die erfindungsgemäße Lösung äußerst umweltfreundlich, sowohl hinsichtlich der Rohstoffbasis aus regenerativen Quellen, als auch hinsichtlich der Energie und der CO2-Bilanz, die zur Herstellung der erfindungsgemäßen Blokompositplatte erforderlich sind. So sind ihre Herstellkosten, mit Ausnahme der im Herstellungsprozess eingesetzten Energiemengen, unabhängig vom Erdölpreis. Weiterhin weist die erfindungsgemäße Biokompositplatte eine deutlich verbesserte CO2-Bilanz auf.
  • Besonders wichtig ist in diesem Zusammenhang insbesondere, dass die erfindungsgemäße Blokompositplatte aus gesundheitlicher und umweltpolitischer Sicht äußerst unbedenklich ist. Sie umfasst vergleichsweise geringe Mengen an Halogen-haltigen, Schwefel-haltigen und/oder Stickstoff-haltigen Substanzen, mit der Folge, dass die Bildung von Halogenverbindungen, Schwefeloxiden und/oder Stickoxiden bei der Verbrennung der erfindungsgemäßen Biokompositplatte vergleichsweise gering ist.
  • Schließlich kann die Erfindung auf vergleichbar einfache Art und Weise, äußerst effektiv und kostengünstig verwirklicht werden.
  • Die erfindungsgemäße Biokompositplatte umfasst mindestens eine Naturfaser. Naturfasern sind alte Fasern, die von natürlichen Quellen, wie Pflanzen, Tieren oder Mineralien, stammen und sich ohne weitere chemische Umwandlungsreaktionen direkt einsetzen lassen, Bevorzugt werden in diesem Zusammenhang Pflanzenfasern und Tierfasern, Insbesondere Pflanzenfasern.
  • Die erfindungsgemäßen Naturfasern sind damit abzugrenzen von Chemiefasern, die synthetisch hergestellt werden.
  • Für die Zwecke der vorliegenden Erfindung geeignete Pflanzenfasern können unterschiedlichen Ursprungs sein und entsprechend vielfältige Eigenschaften aufweisen. Sie umfassen insbesondere Pflanzenfasern, die als Leitbündel im Stängel oder Stamm oder Pseudostamm, der Rinde, insbesondere als Bastfaser, oder als Samen-Fortsätze vorkommen. Weiterhin schließen sie Holzfasern ein, die im Rahmen der vorliegenden Erfindung ganz besonders geeignet sind.
  • Bevorzugte Pflanzenfasern umfassen Samenfasern, insbesondere Baumwolle (CO) aus den Samenhaaren der Frucht der Baumwollpflanze, Kapok (KP) aus dem Inneren der Kapselfrucht des echten Kapokbaumes, Pappelflaum und Akon; Bastfasern, insbesondere Bambusfasern, Brennnessel, Hanffasern (HA), Jute (JU), Kenaf, Leinen (LI) aus dem Gemeinen Lein, Hopfen, Ramie (RA) und Sunn-Hanf; Blattfasern, insbesondere Abacä (Manilahanf), Hartfasern aus den Blättern einer Faserbanane, Ananas, Caroä, Curauá, Henequen, Macambira, Neuseeländer Flachs und Sisal (SI) aus Agaven-Blättern; sowie Fruchtfasern, insbesondere Kokos (CC) aus der Fruchthülle der Kokospalmenfrüchte.
  • Die Blattfasern sowie die Kokosfaser werden gelegentlich auch als Hartfasern bezeichnet.
  • Neben der Sisalagave gibt es noch eine Reihe weiterer Faser liefernder Arten aus der Familie der Agaven, die u. a. zur Gattung der Furcraea gehören. Diese werden auch als Mauritlushanf bezeichnet und können für die vorliegende Erfindung ebenfalls vorteilhaft eingesetzt werden,
  • Darüber hinaus ist auch die Verwendung von verschiedenen Binsengräser, insbesondere von gespaltenem Bambus und von anderen Pflanzen, als Faserstoff besonders günstig.
  • Bevorzugte Naturfasern tierischen Ursprungs schließen die Fasern ein, die die Haarfollikel bel Tieren bilden, insbesondere die Fasern, die in Form einer Behaarung oder eines Fells vorhanden sind. Hinzu kommen Seldenfasern aus dem Kokon verpuppter Seidenraupen sowie andere aus Sekreten gebildete Fasern, wie die Spinnenseide oder die Byssusfasern.
  • Besonders geeignete Naturfasern tierischen Ursprungs umfassen Wolle und feine Tierhaare, insbesondere Wolle von Schafen (WO; gelegentlich als Schurwolle bezeichnet), Alpaka, Lama, Vikunja, Guanako, Angora (WA), Kanin, Kamelhaar (WK), Kaschmir (WS) und Mohair (WM); grobe Tierhaare, insbesondere Rinderhaar, vor allem die Haare des Yaks, Rosshaar und Ziegenhaar; sowie seiden, insbesondere Maulbeerseide (SE), Tussahseide (ST) und Muschelseide.
  • Die Abkürzungen in Klammern geben in diesem Zusammenhang die gültigen Kurzbezeichnungen nach DIN 60001-1 an.
  • Zu den erfindungsgemäß bevorzugten mineralischen Fasern gehören Attapulgit, Sepiolith und Wollastonit.
  • Bevorzugte Holzfasern schließen Holzstoff und Zellstoff ein.
  • Holzstoff wird vorzugsweise aus dem Rohstoff Holz, der hauptsächlich aus Lignocellulose besteht, gewonnen. Dabei besteht die Lignocellulose aus Cellulosemolekülen, die zu Fasern zusammengelagert sind. Eine Matrix aus Lignin durchwirkt die Cellulose, so dass ein druck- und reißfester Verbund entsteht.
  • Bei der Herstellung von Holzstoff erfolgt eine Zerfaserung des Holzes, insbesondere nach dem Schliff-Verlahren, dem Holzschliff-Verfahren, dem Druckschliff-Verfahren, dem Refiner-Verfahren, dem TMP-Verfahren (Thermo Mechanical Pulp-Verfahren) oder dem CTMP-Verfahren (Chemo Thermo Mechanical Pulp-Verfahren).
  • Bei der Herstellung von Zellstoff hingegen wird der Ligninanteil mit chemischen Methoden, insbesondere dem alkalischen Sulfat-Verfahren oder dem sauren Sulfit-Verfahren, entfernt, so dass bei geringerer Ausbeute und höherem Aufwand der höherwertige Zellstoff gewonnen wird, der fast vollständig aus Cellulose besteht. Meist wird Rundholz oder Prügelholz eingesetzt, wobei Nadelholz wegen der Langfaserigkelt bevorzugt wird.
  • Für die Zwecke der vorliegenden Erfindung sind Cellulosefasern ganz besonders geeignet. Dementsprechend ist der Anteil von Cellulosefasern, bezogen auf das Gesarntgewicht der Naturfasern, vorzugsweise größer 50,0 Gew.-%, zweckmäßigerweise größer 60,0 Gew.-%, bevorzugt größer 70,0 Gew.-%, besonders bevorzugt größer 80,0 Gew.-%, günstigerweise größer 90,0 Gew.-%, Insbesondere größer 95,0 Gew.-%. Im Rahmen einer ganz besonders bevorzugten Ausführungsform der vorliegenden Erfindung werden ausschließlich Cellulosefasern verwendet.
  • Im Rahmen der vorliegenden Erfindung umfasst die Biokompositplatte mindestens zwei Bögen Papier, die vorzugsweise einen Papierverbund bilden, der im Folgenden gelegentlich auch als Kernschicht bezeichnet wird.
  • Papier bezeichnet gemäß DIN 6730 (1996-05) einen flächigen, im Wesentlichen aus Fasern vorwiegend pflanzlicher Herkunft bestehenden Werkstoff, der durch Entwässerung einer Faseraufschwemmung auf einem Sieb gebildet wird. Dabei entsteht ein Faserfilz, der anschließend verdichtet und getrocknet wird.
  • Für die Zwecke der vorliegenden Erfindung umfasst das Papier vorzugsweise mindestens 50,0 Gew.-%, bevorzugt mindestens 60,0 Gew.-%, besonders bevorzugt mindestens 70,0 Gew.-%, günstigerweise mindestens 80,0 Gew.-%, noch mehr bevorzugt mindestens 90,0 Gew.-%, insbesondere 91,0 bis 95,0 Gew.-%, Naturfasern, insbesondere Cellulosefasern. Der Anteil von Füllstoffen, insbesondere von Kaolin und/oder Calciumcarbonat, ist vorzugsweise kleiner 20,0 Gew.-%, bevorzugt kleiner 15,0 Gew.-%, besonders bevorzugt kleiner 10,0 Gew.-% und liegt zweckmäßigerweise im Bereich von 6,0 Gew.-% bis 9,0 Gew.-%. Diese Angaben beziehen sich jeweils auf das Gesamtgewicht des Papiers und addieren sich vorzugsweise zu 100,0 Gew.-%.
  • Im Rahmen einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung handelt es sich bei dem Papier um Recyclingpapier, weiches vorzugsweise überwiegend aus wiederverwertetem Altpapier besteht und deshalb besonders umweltfreundlich ist. Vorteilhaft ist dabei neben der Schonung der Holz-Reserven der im Vergleich zur konventionelle Papierherstellung um zwei Drittel verringerte Energie- und Wasserverbrauch.
  • Die Qualität und Reißfestigkeit des Papiers lässt sich durch das Beimischen neuer Fasern steigern, wobei der Anteil des Recyclingpapiers jedoch vorzugsweise mindestens 80,0 Gew.-%, bezogen auf das Gesamtpapiergewicht, beträgt.
  • Im Rahmen einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung wird ungebleichtes Altpapier als Recyclingpapier eingesetzt.
  • Das Papierrecycling erfolgt vorzugsweise nach dem folgenden Verfahren:
    • Zunächst wird das Papier in Wasser in seine einzelnen Papierlasern zerlegt, wodurch ein dünnflüssiger Brei entsteht; dieses Stadium wird üblicherweise als Wiederaufschlämmung (Re-Suspension) bezeichnet.
  • Als nächstes durchläuft der wässrige Brei einen Reinigungsvorgang, um nichtfaserige Fremdkörper zu entfernen. Dieser Schritt umfasst häufig auch einen Waschvorgang mithilfe chemischer Reinigungsmittel.
  • Ein Entfärben der Fasern, insbesondere mittels Natriumhydroxid oder Natriumcarbonat, wird vorzugsweise nicht durchgeführt. Gleiches gilt für ein Bleichen, z. B. mit Peroxiden oder Hydrosulfiten, um Farbpartikel aus dem Papierbrei zu entfernen. Auch dieses erfolgt vorzugsweise nicht.
  • Zuletzt wird aus dem fertigen Faserstoff ein "neues" Papiererzeugnis hergestellt, vorzugsweise durch Mischen mit Primärfasern von Bäumen in unterschiedlichen Proportionen oder einfach durch das direkte Erzeugen von Recyclingpapier.
  • Der Vorgang der eigentlichen Blattschöpfung ist dann üblicherweise derselbe wie bei Frischfaserpapier:
    • Zunächst wird die Papierbreimischung weiter mit Wasser verdünnt, wodurch ein sehr dünnflüssiger Brei entsteht. Diese dünnflüssige Masse lässt man dann durch eine feinmaschige Siebpartie sickern, um ein Fasergewebe zu bilden.
  • Diese sich bewegende Fasergewebebahn wird zu einem fortlaufenden Blatt Papier gepresst und getrocknet.
  • Während des Modellierungsvorgangs wird vorzugsweise eine gewisse Menge an Papierbrei, zweckmäigerweise kontinuierlich, auf mindestens ein Sieb gegeben, so dass die Fasern auf dem Sieb ein Blatt bilden und überschüssiges Wasser abfließen kann. Das Papier kann dann entnommen werden und zu trocknen beginnen. Nach dem Trocknen kann man dieses fortlaufende Fasergewebe auf Rollen wickeln.
  • Für weitere Details wird auf die Fachliteratur, insbesondere auf Römpp-Lexikon Chemie; Herausgeber: Jürgen Falbe, Manfred Regitz; bearbeitet von Eckard Amelingmeier; Stuttgart, New York; Thieme; 10. Auflage; Band 1 A-Cl (1996), Stichwort "Altpapier" und Band 4 M-Pk (1998), Stichwort "Papier" sowie die dort angegebenen Fundstellen, verwiesen.
  • Im Rahmen der vorliegenden Erfindung ist die Verwendung von Kraftpapier besonders vorteilhaft. Kraftpapier ist nach DIN 6730 ein Papier, das überwiegend aus Kraftzellstoff besteht, dem Kraftzellpapier zugesetzt sein kann, und das eine hohe Festigkeit, insbesondere eine hohe Zugfestigkeit, und eine hohe Beständigkeit aufweist. Kraftpapier wird üblicherweise wenigstens zu 90 % aus frischem, vorzugsweise ungebleichtem Sulfatzellstoff (Kraftzellstoff) hergestellt. Ferner kann Kraftpapier neben dem Zellstoff noch Stärke, Alaun und/oder Leim enthalten, um zum Beispiel bestimmte Oberflächeneffekte und Festigkeitssteigerungen zu erzielen. Ein bevorzugtes Kraftpapier ist Natron-Kraftpapier, das dem Fachmann auf dem Gebiet der Verbundwerkstoffe geläufig ist.
  • Die Anzahl der eingesetzten Papierbögen hängt im Wesentlichen von der gewünschten Dicke der Biokompositplatte ab. Vorzugsweise enthält sie zwei bis 200 Bögen, bevorzugter 3 bis 150 Bögen und insbesondere 4 bis 100 Bögen Papier, Insbesondere Recyclingpapier.
  • Das Gewicht des erfindungsgemäß verwendeten Papiers ist nicht weiter eingeschränkt. Es hängt insbesondere von der Anzahl der eingesetzten Papierbögen und somit von der gewünschten Dicke der Biokompositplatte ab. Gemäß einer bevorzugten Ausführungsform liegt das Gewicht der verwendeten Papierbögen im Bereich von 125 g/m2 bis 250 g/m2, vorzugsweise 140 g/m2 bis 230 g/m2.
  • Gemäß einer bevorzugten Ausführungsform liegt die Enddicke der erfindungsgemäßen Biokompositplatte im Bereich von 0,75 mm bis 0,85 mm, vorzugsweise bei 0,8 mm. In diesem Fall kann es bevorzugt sein, wenn 4 Papierbögen verwendet werden, die ein Gewicht von 125 g/m2 bis 175 g/m2, vorzugsweise 150 g/m2, aufweisen. Andererseits können hierfür auch 3 Papierbögen eingesetzt werden, die ein Gewicht im Bereich von 200 g/m2 bis 240 g/m2, vorzugsweise im Bereich von 210 g/m2 bis 230 g/m2, aufweisen.
  • Gemäß einer weiteren bevorzugten Ausführungsform liegt die Enddicke der erfindungsgemäßen Biokompositplatte im Bereich von 0,95 mm bis 1,05 mm, vorzugsweise bei 1,0 mm. In diesem Fall kann es bevorzugt sein, wenn 5 Papierbögen verwendet werden, die ein Gewicht von 125 g/m2 bis 175 g/m2, vorzugsweise 150 g/m2, aufweisen. Andererseits können hierfür auch 4 Papierbögen eingesetzt werden, die ein Gewicht im Bereich von 200 g/m2 bis 240 g/m2, vorzugsweise im Bereich von 210 g/m2 bis 230 g/m2, aufweisen.
  • Gemäß noch einer weiteren bevorzugten Ausführungsform liegt die Enddicke der erfindungsgemäßen Biokompositplatte im Bereich von 1,15 mm bis 1,25 mm, vorzugsweise bei 1,2 mm. In diesem Fall kann es bevorzugt sein, wenn 6 Papierbögen verwendet werden, die ein Gewicht von 125 g/m2 bis 175 g/m2, vorzugsweise 150 g/m2, aufweisen. Andererseits können hierfür auch 5 Papierbögen eingesetzt werden, die ein Gewicht im Bereich von 200 g/m2 bis 240 g/m2, vorzugsweise im Bereich von 210 g/m2 bis 230 g/m2, aufweisen.
  • Gemäß noch einer weiteren bevorzugten Ausführungsform ist die Enddicke der der erfindungsgemäßen Biokompositplatte größer 1,0 mm, bevorzugt größer 1,25 mm, besonders bevorzugt größer 1,5 mm, insbesondere mindestens 2,0 mm und liegt vorzugsweise im Bereich von 2,0 mm bis 40,0 mm, bevorzugt im Bereich von 2,0 mm bis 30,0 mm, besonders bevorzugt im Bereich von 2,0 mm bis 20,0 mm. Die Herstellung dieser Platte erfolgt vorzugsweise unter Verwendung von Papierbögen, die ein Gewicht im Bereich von 125 g/m2 bis 250 g/m2, vorzugsweise im Bereich von 140 g/m2 bis 230 g/m2, aufweisen.
  • Auf einer Oberfläche des Papierverbunds (Kernschicht) ist im Rahmen einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung eine Dekorschicht aufgebracht. Durch diese Dekorschicht erhält die erfindungsgemäße Biokompositplatte vorzugsweise ihre Optik Demnach bezeichnet die Dekorschicht diejenige auf dem Papierverbund aufgebrachte Schicht, deren Muster vom Betrachter visuell wahrgenommen werden kann.
  • Für die Zwecke der vorliegenden Erfindung besonders geeignete Dekorschichten umfassen Dekorpapiere, Textilien, Gewebe, Stoffe und Tapeten, wobei naturfaserhaltige Materialien in diesem Zusammenhang ganz besonders bevorzugt werden.
  • Hierin verwendet, bezieht sich Dekorpapier auf jedes Material, das für die Verbindung mit der darunter liegenden Kernschicht geeignet ist und ein Dekor wiedergeben kann. Das bevorzugte Material für das Dekorpapier ist Papier, insbesondere Recyclingpapier.
  • Üblicherweise wird das Dekor auf das Dekorpapier mittels eines Druckprozesses aufgebracht. So kann beispielsweise mittels fototechnischer Reproduktion ein beliebiges Motiv erstellt und im Tiefdruckverfahren auf das Dekorpapier aufgedruckt werden. Das Motiv kann zum Beispiel aus Holz-, Stein-, Keramik, Farb- und/oder Fantasiemustern bestehen. Ferner kann das Motiv aber auch durch Bestreichen des Dekorpapiers mit einer oder mehreren Farben erfolgen.
  • Das Flächengewicht des verwendeten Dekorpapiers Ist nicht weiter eingeschränkt. Vorzugsweise liegt das Flächengewicht im Bereich von 40 g/m2 bis 120 g/m2, mehr bevorzugt im Bereich von 60 g/m2 bis 100 g/m2, insbesondere bei 70 g/m2 bis 90 g/m2. Dies gilt insbesondere für Druckdekore.
  • Textilien bezeichnen im Sinne der vorliegenden Erfindung flexible Materialien, die aus einem Verbund von Fasern bestehen. Sowohl Fasern als auch Garne und textile Flächen, wie Gewebe, Gewirke oder Gestricke, werden unter dem Oberbegriff Textilien zusammengefasst. Für weitere Details wird auf die Norm DIN 60000 verwiesen.
  • Gewebe ist der Oberbegriff für manuell oder maschinell gefertigte Erzeugnisse der Weberei, wie Tuch, Sarnt, Velours, Plüsch, Frottee und sonstige textile Flächengebilde aus mindestens zwei rechtwinklig oder nahezu rechtwinklig verkreuzten Fadensystemen.
  • Die Fäden in Längsrichtung bezeichnet man als Kette oder Kettfäden. Die Querfäden heißen Schuss oder Schussfäden, Verbunden sind die Fäden durch die Verbindungsart Fadenverkreuzung. Fadenverkreuzung bedeutet nicht, dass Fäden kreuzend aufeinander liegen, sondern, dass Fäden in einem bestimmten Rhythmus (der Bindung genannt wird) über und unter den querliegenden Fäden durchgehen. Damit ein Gewebe ausreichend schiebefest ist, werden die Kett- und Schussfäden vorzugsweise relativ dicht gewebt.
  • Tapeten sind Bahnen aus Zellulose, Glasgewebe oder Kunststoff, seltener auch aus Goldleder, Leder oder Leinwand, die mittels geeignetem Klebstoff auf die Wand geklebt werden können. Für die Zwecke der vorliegenden Erfindung werden Tapeten besonders bevorzugt, die Naturfasern, insbesondere Cellulose, umfassen.
  • Zwischen der Kernschicht und der Dekorschicht können gegebenenfalls weitere Schichten, wie zum Beispiel eine Underlayschicht, angeordnet sein, Diese Underlayschicht kann beispielsweise dazu dienen, einen Verzug der Biokompositplatte zu verhindern und/oder elektrostatische Aufladungen zu reduzieren. Vorzugsweise umfasst die Underlayschicht einen oder mehrere Bögen Recyclingpapier.
  • Im Rahmen der vorliegenden Erfindung umfasst die Biokompositplatte weiterhin mindestens ein Biopolymer, das als Bindemittel die verschiedenen Papierbögen miteinander verbindet. Wenn neben der Kernschicht auch eine Dekorschicht und/oder eine Underlayschicht vorgesehen ist, dann umfasst das Bindemittel, das ggf. die Underlaybögen untereinander, ggf. die Kernschicht mit der Underlayschicht und ggf. die Underlayschicht mit der Dekorschicht verbindet, vorzugsweise ebenfalls mindestens ein Biopolymer.
  • Dabei ist dem Fachmann klar, dass es insbesondere an den Grenzflächen einzelner Schichten, wie z. B. der Grenzfläche zwischen Kernschicht und Dekorschicht zu einem Vermischen der verwendeten Bindemittel kommen kann und die Grenzen zwischen den einzelnen Schichten zumeist nicht durch das verwendete Bindemittel, sondern vor allem durch die äußersten, die einzelnen Schichten bildenden Bögen definiert werden.
  • Biopolymere bezeichnen im Rahmen der vorliegenden Erfindung Polymere, die überwiegend, vorzugsweise zu mehr als 50,0 Gew,-%, bevorzugt zu mehr als 75,0 Gew.-%, besonders bevorzugt zu mehr als 90,0 Gew.-%, zweckmäßigerweise zu mehr als 95,0 Gew.-%, insbesondere zu 100,0 Gew,-%, aus nachwachsenden Rohstoffen hergestellt werden. Bei Biopolymeren kann es sich um biologisch abbaubare oder um dauerhafte Polymere handeln, wobei letztere erfindungsgemäß besonders bevorzugt werden.
  • Für die Zwecke der vorliegenden Erfindung liegt das Biopolymer als Duroplast im ausgehärteten Zustand vor,
  • Duroplaste, auch Duromere genannt, sind Kunststoffe, die nach ihrer Aushärtung bei der Gebrauchstemperatur, vorzugsweise bei Temperaturen im Bereich von 0°C bis 100°C, insbesondere bei 25°C, nicht mehr verformt werden können. Duroplaste sind harte, glasartige Polymerwerkstoffe, die über chemische Hauptvalenzbindungen dreldimensiona4 fest vernetzt sind. Die Vernetzung erfolgt beim Mischen von Vorprodukten mit Verzweigungsstellen und wird entweder bei Raumtemperatur mit Hilfe von Katalysatoren chemisch (isotherm) oder bei hohen Temperaturen thermisch (exotherm) aktiviert.
  • Im Rahmen der vorliegenden Erfindung schließt das Biopolymer mindestens ein Furanharz ein, vorzugsweise ein Polymer, das in der Hauptkette ggf, substituierte Furanringe aufweist. Dabei ist das Furanharz durch Polymerisation einer Zusammensetzung erhältlich, die eine Verbindung der Formel (I) und/oder der Formel (II) enthält
    Figure imgb0003
    Figure imgb0004
    enthält, wobei
    • n eine ganze Zahl zwischen 0 und 20, vorzugsweise zwischen 0 und 10, insbesondere zwischen 0 und 5, ist,
    • t und s, jeweils unabhängig voneinander, eine ganze Zahl zwischen 1 und 20, vorzugsweise 1 und 10, insbesondere zwischen 1 und 5, sind,
    • w und z, jeweils unabhängig voneinander, 0 oder 1 sind,
    • X und Y, jeweils unabhängig voneinander, O, S oder N-R21 sind,
    • R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, R16, R18, R19 und R21, jeweils unabhängig voneinander, Wasserstoff, C1-C20-Alkyl, C2-C20-Alkenyl, C2-C20-Alkinyl, C5-C24-Aryl, C5-C12-Heteroaryl, Carboxyaldehyd, Hydroxyl, Hydroxyalkyl, Carboxyl, Amino, Nitro, Formyl, Alkylamino, Aminoalkyl, Alkylaminoalkyl, Furyl, Furylalkyl, Hydroxyalkylfurylalkyl, Alkyloxy, Alkyloxyalkyl, Alkenyloxy, Alkylcarbonylalkenyl, Oxiranyl, Alkylcarbonaloxyalkyl, Alkyloxycarbonylalkenyl, Alkenylcarbonyloxyalkyl, Isocyanat, Isocyanatalkyl, Alkylcarboxy, Alkenylcarboxy, Alkylcarbonyl, Alkenylcarbonyl, Halogencarbonyl, Halogenalkyl, Halogenaryl, Halogenalkenyl, Imino, Thiol, Alkylthio, Thioalkyl, Alkylthioalkyl, Cyano, Alkylsulfonyl und/oder eine Sulfonsäuregruppe sind, wobei jede Gruppe mit C1-C20-Alkyl, C2-C20-Alkonyl, C2-C20-Alkinyl, C5-C20-Aryl, Hydroxyl, Carboxyl, Nitro, Amino, Furyl, Furylalkyl, Alkylfuryl, Hydroxyalkylfurylalkyl, Isocyanat, Formyl, Halogencarbonyl, Thiol und/oder Alkylthio substituiert sein kann,
    • R17 Wasserstoff, C1-C20-Alkyl, C2-C20-Alkenyl, C2-C20-Alkinyl, C5-C24-Aryl, C5-C12-Heteroaryl, Carboxyaldehyd, Hydroxyl, Hydroxyalkyl, Carboxyl, Amino, Nitro, Formyl, Alkylamino, Aminoalkyl, Alkylaminoalkyl, Furyl, Furylalkyl, Hydroxyalkylfurylalkyl, Alkyloxy, Alkyloxyalkyl, Alkenyloxy, Alkylcarbonylalkenyl, Oxiranyl, Alkylcarbonyloxyalkyl, Alkyloxycarbonylalkenyl, Alkenylcarbonyloxyalkyl, Isocyanat, Isocyanatalkyl, Alkylcarboxy, Alkenylcarboxy, Alkylcarbonyl, Alkenylcarbonyl, Halogencarbonyl, Halogenalkyl, Halogenaryl, Halogenalkenyl, Imino, Thiol, Alkylthio, Thioalkyl, Alkylthioalkyl, Cyano, Alkylsulfonyl und/oder eine Sulfonsäuregruppe ist, wobei jede Gruppe mit C1-C20-Alkyl, C2-C20-Alkenyl, C2-C20-Alkinyl, C5-C24-Aryl, Hydroxyl, Carboxyl, Nitro, Amino, Furyl, Furylalkyl, Alkylfuryl, Hydroxyalkylfurylalkyl, Isocyanat, Formyl, Halogencarbonyl, Thiol und/oder Alkylthio substituiert sein kann,
    • R20 C1-C20-Alkyl, C2-C20-Alkenyl, C2-C20-Alkinyl, C5-C24-Aryl, C5-C12-Heteroaryl, Carboxyaldehyd, Hydroxyl, Hydroxyalkyl, Carboxyl, Amino, Nitro, Formyl, Alkylamino, Aminoalkyl, Alkylaminoalkyl, Furyl, Furylalkyl, Hydroxyalkylfurylalkyl, Alkyloxy, Alkyloxyalkyl, Alkenyloxy, Alkylcarbonylalkenyl, Oxiranyl, Alkylcarbonyloxyalkyl, Alkyloxycarbonylalkenyl, Alkenylcarbonyloxyalkyl, Isocyanat, Isocyanatalkyl, Alkylcarboxy, Alkenylcarboxy, Alkylcarbonyl, Alkenylcarbonyl, Halogencarbonyl, Halogenalkyl, Halogenaryl, Halogenalkenyl, Imino, Thiol, Alkylthio, Thioalkyl, Alkylthioalkyl, Cyano, Alkylsulfonyl und/oder eine Sulfonsäuregruppe ist, wobei jede Gruppe mit C1-C20-Alkyl, C2-C20-Alkenyl, C2-C20-Alkinyl, C5-C24-Aryl, Hydroxyl, Carboxyl, Nitro, Amino, Furyl, Furylalkyl, Alkylfuryl, Hydroxyalkylfurylalkyl, Isocyanat, Formyl, Halogencarbonyl, Thiol und/oder Alkylthio substituiert sein kann, und
    wobei die gestrichelte Linie eine optionale Doppelbindung darstellt.
  • Im Rahmen der vorliegenden Erfindung sind die verwendeten Bezeichnungen dabei wie folgt zu verstehen.
  • Die Bezeichnung "Alkyl", selber oder als Teil eines anderen Substituenten, steht für eine geradkettige oder verzweigte, gesättigte Kohlenwasserstoffgruppe, bei welcher die Kohlenstoffatome durch Kohlenstoff-Kohlenstoff-Einfachbindungen miteinander verbunden sind und die vorzugsweise 1 bis 20 Kohlenstoffatome, günstigerweise 1 bis 10 Kohlenstoffatome, bevorzugt 1 bis 8 Kohlenstoffatome, besonders bevorzugt 1 bis 6 Kohlenstoffatome, insbesondere 1, 2, 3 oder 4 Kohlenstoffatorne, aufweist. Wenn im Rahmen der vorliegenden Anmeldung ein tiefgestellter Index nach einem Kohlenstoffatom verwendet wird, dann gibt der Index die Anzahl der Kohlenstoffatome an, die die besagte Gruppe enthält. So steht C1-4 Alkyl beispielsweise für ein Alkyl mit 1 bis 4 Kohlenstoffatomen. Beispiele bevorzugter Alkylgruppen umfassen Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, sec-Butyl, tert.-Butyl, 2-Methylbutyl, Pentyl, Iso-Amyl und seine Isomere, Hexyl und seine Isomere, Heptyl und seine Isomere und Octyl und seine Isomere. Wenn der Ausdruck "Alkyl" zusammen mit einem weiteren, vorangestellten Ausdruck verwendet wird, wie z. B. in "Hydroxyalkyl", bezeichnet dies eine wie zuvor definierte Alkylgruppe, die mit einem oder zwei, vorzugsweise einem, Substituenten der konkret genannten, auch wie hierin definierten Gruppe substituiert ist. Der Ausdruck "C1-C20-Alkyl", so wie er hierin verwendet wird, steht für eine Alkylgruppe mit 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 16, 17, 18, 19 oder 20 Kohlenstoffatomen.
  • Die Bezeichnung "Alkenyl", selber oder als Teil eines anderen Substituenten, steht für eine geradkettige oder verzweigte Kohlenwasserstoffkette, die mindestens eine Kohlenstoff-Kohlenstoff-Doppelbindung umfasst und die vorzugsweise 2 bis 20 Kohlenstoffatome, günstigerweise 2 bis 10 Kohlenstoffatome, bevorzugt 2 bis 8 Kohlenstoffatome, besonders bevorzugt 2 bis 6 Kohlenstoffatome, insbesondere 2, 3 oder 4 Kohlenstoffatome, aufweist. Beispiele bevorzugter Alkenylgruppen umfassen Ethenyl (Vinyl), 2-Propenyl, 2-Butenyl, 3-Butenyl, 2-Pentenyl und seine Isomere, 2-Hexenyl und seine Isomere, 2-Heptenyl und seine Isomere, 2-Octenyl und seine Isomere, 2,4-Pentadienyl usw. Der Ausdruck "C2-C20-Alkenyl", so wie er hierin verwendet wird, steht für eine Alkenylgruppe mit 2, 3, 4, 5, 6, 7, 8,9,10,11, 12, 13,14, 15,16, 17,18, 19 oder 20 Kohlenstoffatomen.
  • Die Bezeichnung "Alkinyl", selber oder als Teil eines anderen Substituenten, steht für eine geradkettige oder verzweigte Kohlenwasserstoffkette, die mindestens eine Kohlenstoff-Kohlenstoff-Dreifachbindung umfasst und die vorzugsweise 2 bis 20 Kohlenstoffatome, günstigerweise 2 bis 10 Kohlenstoffatome, bevorzugt 2 bis 8 Kohlenstoffatome, besonders bevorzugt 2 bis 6 Kohlenstoffatome, Insbesondere 2, 3 oder 4 Kohlenstoffatome, aufweist. Beispiele bevorzugter Alkinylgruppen umfassen Ethinyl, 2-Propinyl, 2-Butinyl, 3-Butinyl, 2-Pentinyl und seine Isomere, 2-Hexinyl und seine Isomere, 2-Heptinyl und seine Isomere, 2-Octinyl und seine Isomere usw. Der Ausdruck "C2-C20-Alkinyl", so wie er hierin verwendet wird, steht für eine Alkinylgruppe mit 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 oder 20 Kohlenstoffatomen.
  • Wenn die Alkylgruppen divalent sind, d. h. sie zwei Einfachbindungen zur Anbindung an zwei andere Gruppen aufweisen, werden sie als "Alkylen" Gruppen bezeichnet.
  • Beispiele bevorzugter Alkylengruppen umfassen Methylen, Ethylen, Methylmethylen, Trimethylen, Propylen, Tetramethylen, Ethylethylen, 1,2-Dimethylethylen, Pentamethylen und Hexamethylen. Entsprechend werden Alkenylgruppen und Alkinylgruppen, die zwei Einfachbindungen zur Anbindung an zwei andere Gruppen aufweisen, als "Alkenylen" Gruppen bzw. als "Alkinylen" Gruppen bezeichnet.
  • Die Bezeichnung "Aryl", selber oder als Teil eines anderen Substituenten, steht für ein aromatisches Kohlenwasserstoff-Ringsystem, insbesondere für ein monocyclisches, bicyclisches oder tricyclisches Ringsystem oder ein Ringsystem, das 1 bis 4 Ringe umfasst, die miteinander verschmolzen oder kovalent miteinander verbunden sind, wobei die Ringe vorzugsweise jeweils 5 bis 8 Kohlenstoffatome umfassen und mindestens einer der Ringe aromatisch ist. Der aromatische Ring kann ggf. 1 bis 3 weitere Ringe, insbesondere Cycloalkylringe, heterocyclische Ringe oder Heteroarylringe, umfassen, die mit dem Ring verschmolzen sind. Im Rahmen der vorliegenden Erfindung weist die Arylgruppe vorzugsweise 5 bis 24 Kohlenstoffatome auf. Beispiele bevorzugter Arylgruppen umfassen Phenyl, Biphenylyl, Biphenylenyl, 5- oder 6-Tetralinyl, 1-, 2-, 3-, 4-, 5-, 6-, 7- oder 8-Azulenyl, 1- oder 2-Naphthyl, 1-, 2- oder 3-Indenyl, 1-, 2- oder 9-Anthryl, 1- 2-, 3-, 4- oder 5-Acenaphtylenyl, 3-, 4- oder 5-Acenaphtenyl, 1-, 2-, 3-, 4- oder 10-Phenanthryl, 1- oder 2-Pentalenyl, 1, 2-, 3- oder 4-Fluorenyl, 4- oder 5-Indanyl, 5-, 6-, 7- oder 8-Tetrahydronaphthyl, 1,2,3,4-Tetrahydronaphthyl, 1,4-Dihydronaphthyl, Dibenzo[a,d]cylcoheptenyl, 1 -, 2-, 3-, 4- oder 5-Pyrenyl, Der Ausdruck "C5-C24-Aryl", so wie er hierin verwendet wird, steht für eine Arylgruppe mit 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 oder 24 Kohlenstoffatomen.
  • Die Bezeichnung "Heteroaryl", selber oder als Teil eines anderen Substituenten, steht für 5 bis 12 Kohlenstoff-umfassende, aromatische Ringe oder Ringsysteme, die 1 bis 3 Ringe umfassen, die miteinander verschmolzen oder kovalent miteinander verbunden sind und vorzugsweise 5 bis 8 Atome umfassen. Dabei ist wenigstens einer der Ringe aromatisch, wobei ein oder mehrere Kohlenstoffatome in einem oder mehreren dieser Ringe durch Sauerstoff, Stickstoff oder Schwefelatome ersetzt sein kann, wobei die Stickstoff- oder Schwefelheteroatome ggf. oxidiert sein können und die Stickstoffatome ggf. quaternisiert sein können. Derartige Ringe können mit einem Aryl-, Cycloalkyl-, Heteroaryl- oder Heterocyclylring verschmolzen sein.
  • Die Bezeichnung "Hydroxyalkyl" steht für eine Gruppe -Rb-OH, bei welcher Rb ein Alkylen ist, wie es zuvor definiert wurde.
  • Die Bezeichnung "Amino" steht für eine Gruppe -NH2.
  • Die Bezeichnung "Alkylamino" steht für eine Gruppe -N(Re)(Rf), wobei Re und Rf, jeweils unabhängig voneinander, Wasserstoff oder eine Alkylgruppe sind, die ggf. mit C1-C20-Alkyl, C2-C20-Alkenyl, C2-C20-Alkinyl, C5-C24-Aryl, Hydroxyl, Carboxyl, Nitro, Amino, Furyl, Furylalkyl, Alkylfuryl, Hydroxyalkylfurylalkyl, Isocyanat, Formyl, Halogencarbonyl, Thiol und/oder Alkylthio substituiert sein können.
  • Die Bezeichnung "Aminoalkyl" steht für eine Gruppe -Rb-NH2. wobei Rb ein Alkylen ist, wie es zuvor definiert wurde, das ggf, mit C1-C20-Alkyl, C2-C20-Alkenyl, C2-C20-Alkinyl, C5-C24-Aryl, Hydroxyl, Carboxyl, Nitro, Amino, Furyl, Furylalkyl, Alkylfuryl, Hydroxyalkylfurylalkyl, Isocyanat, Formyl, Halogencarbonyl, Thiol und/oder Alkylthio substituiert sein kann,
  • Die Bezeichnung "Alkylaminoalkyl" steht für eine Gruppe -Rb-N(Re)(Rf), wobei Rb ein Alkylen ist, wie es zuvor definiert wurde, das ggf. mit C1-C20-Alkyl, C2-C20-Alkenyl, C2-C20-Alkinyl, C5-C24-Aryl, Hydroxyl, Carboxyl, Nitro, Amino, Furyl, Furylalkyl, Alkylfuryl, Hydroxyalkylfurylalkyl, Isocyanat, Formyl, Halogencarbonyl, Thiol und/oder Alkylthio substituiert sein kann, und wobei Re und Rf, jeweils unabhängig voneinander, Wasserstoff oder eine Alkylgruppe sind, die ggf. mit C1-C20-Alkyl, C2-C20-Alkenyl, C2-C20-Alkinyl, C6-C24-Aryl, Hydroxyl, Carboxyl, Nitro, Amino, Furyl, Furylalkyl, Alkylfuryl, Hydroxyalkylfurylalkyl, Isocyanat, Formyl, Halogencarbonyl, Thiol und/oder Alkylthio substituiert sein können.
  • Die Bezeichnung "Carboxy" entspricht der Bezeichnung "Hydroxycarbonyl" und steht für eine Gruppe -CO2H. Die Bezeichnung "Alkylcarboxy" entspricht der Bezeichnung "Alkyloxycarbonyl" und steht für eine Gruppe -CO2-Ra, wobei Ra ein Alkyl ist, das ggf. mit C1-C20-Alkyl, C2-C20-Alkenyl, C2-C20-Alkinyl, C5-C24-Aryl, Hydroxyl, Carboxyl, Nitro, Amino, Furyl, Furylalkyl, Alkylfuryl, Hydroxyalkylfurylalkyl, Isocyanat, Formyl, Halogencarbonyl, Thiol und/oder Alkylthio substituiert sein kann. Die Bezeichnung "Alkenylcarboxy" entspricht der Bezeichnung "Alkenyloxycarbonyl" und steht für eine Gruppe -CO2-Rc, wobei Rc ein Alkenyl ist, das ggf. mit C1-C20-Alkyl, C2-C20-Alkenyl, C2-C20-Alkinyl, C5-C24-Aryl, Hydroxyl, Carboxyl, Nitro, Amino, Furyl, Furylalkyl, Alkylfuryl, Hydroxyalkylfurylalkyl, Isocyanat, Formyl, Halogencarbonyl, Thiol und/oder Alkylthio substituiert sein kann.
  • Die Bezeichnung "Carboxyaldehyd" oder "Formyl" steht für die Gruppe C(=O)H.
  • Die Bezeichnung "Furyl" steht für eine Gruppe, die durch die Formel (III) dargestellt wird:
    Figure imgb0005
  • Sternchen (*) werden hierin verwendet, um die Position anzugeben, an welcher das dargestellte Radikal an die Struktur gebunden ist, auf die es sich bezieht und zu der es gehört.
  • Die Bezeichnung "Furylalkyl" steht für eine Gruppe -Rb-Furyl, wobei Furyl wie zuvor definiert ist und Rb ein Alkylen ist, wie es zuvor definiert wurde, das ggf. mit C1-C20-Alkyl, C2-C20-Alkenyl, C2-C20-Alkinyl, C5-C24-Aryl, Hydroxyl, Carboxyl, Nitro, Amino, Furyl, Furylalkyl, Alkylfuryl, Hydroxyalkylfurylalkyl, Isocyanat, Formyl, Halogencarbonyl, Thiol und/oder Alkylthio substituiert sein kann.
  • Die Bezeichnung "Hydroxyalkylfurylalkyl" steht für eine Gruppe -Rb-Furyl-Rb-OH, wobei Furyl wie zuvor definiert ist und Rb ein Alkylen ist, wie es zuvor definiert wurde.
  • Die Bezeichnung "Alkylfuryl" steht für eine Gruppe -Furyl-Rb, wobei Furyl wie zuvor definiert ist und Rb ein Alkylen ist, wie es zuvor definiert wurde, das ggf. mit C1-C20-Alkyl, C2-C20-Alkenyl, C2-C20-Alkinyl, C5-C24-Aryl, Hydroxyl, Carboxyl, Nitro, Amino, Furyl, Furylalkyl, Alkylfuryl, Hydroxyalkyfurylalkyl, Isocyanat, Formyl, Halogencarbonyl, Thiol und/oder Alkylthio substituiert sein kann.
  • Die Bezeichnung "Alkoxy" oder "Alkyloxy" steht für eine Gruppe -O-Ra, wobei Ra ein Alkyl ist, das ggf. mit C1-C20-Alkyl, C2-C20-Alkenyl, C2-C20-Alkinyl, C5-C24-Aryl, Hydroxyl, Carboxyl, Nitro, Amino, Furyl, Furylalkyl, Alkylfuryl, Hydroxyalkylfurylalkyl, Isocyanat, Formyl, Halogencarbonyl, Thiol und/oder Alkylthio substituiert sein kann.
  • Die Bezeichnung "Alkoxyalkyl" oder "Alkyloxyalkyl" steht für eine Gruppe -Rb-O-Ra, wobei Ra ein Alkyl ist, das ggf, mit C1-C20-Alkyl, C2-C20-Alkenyl, C2-C20-Alkinyl, C5-C24-Aryl, Hydroxyl, Carboxyl, Nitro, Amino, Furyl, Furylalkyl, Alkylfuryl, Hydroxyalkylfurylalkyl, Isocyanat, Formyl, Halogencarbonyl, Thiol und/oder Alkylthio substituiert sein kann, und wobei Rb ein Alkylen ist, wie es zuvor definiert wurde, das ggf. mit C1-C20-Alkyl, C2-C20-Alkenyl, C2-C20-Alkinyl, C5-C24-Aryl, Hydroxyl, Carboxyl, Nitro, Amino, Furyl, Furylalkyl, Alkylfuryl, Hydroxyalkylfurylalkyl, Isocyanat, Formyl, Halogencarbonyl, Thiol und/oder Alkylthio substituiert sein kann.
  • Die Bezeichnung "Alkenyloxy" steht für eine Gruppe -O-Rb, wobei Rb ein Alkylen ist, wie es zuvor definiert wurde, das ggf. mit C1-C20-Alkyl, C2-C20-Alkenyl, C2-C20-Alkinyl, C5-C24-Aryl, Hydroxyl, Carboxyl, Nitro, Amino, Furyl, Furylalkyl, Alkylfuryl, Hydroxyalkylfurylalkyl, Isocyanat, Formyl, Halogencarbonyl, Thiol und/oder Alkylthio substituiert sein kann. Ein Beispiel ist Vinylether.
  • Die Bezeichnung "Alkyloxycarbonylalkenyl" steht für eine Gruppe -Rd-C(=O)-O-Ra, wobei Rd ein Alkenylen ist, wie es zuvor definiert wurde, das ggf. mit C1-C20. Alkyl, C2-C20-Alkenyl, C2-C20-Alkinyl, C5-C24-Aryl, Hydroxyl, Carboxyl, Nitro, Amino, Furyl, Furylalkyl, Alkylfuryl, Hydroxyalkylfurylalkyl, Isocyanat, Formyl, Halogencarbonyl, Thiol und/oder Alkylthio substituiert sein kann, und wobei Ra ein Alkyl ist, das ggf. mit C1-C20-Alkyl, C2-C20-Alkenyl, C2-C20-Alkinyl, C5-C24-Aryl, Hydroxyl, Carboxyl, Nitro, Amino, Furyl, Furylalkyl, Alkylfuryl, Hydroxyalkylfurylalkyl, Isocyanat, Formyl, Halogencarbonyl, Thiol und/oder Alkylthio substituiert sein kann.
  • Die Bezeichnung "Oxiranyl" steht für eine Epoxygruppe -C2H3O.
  • Die Bezeichnung "Alkylcarbonyl" steht für eine Gruppe -G(=O)Ra, wobei Ra ein Alkyl ist, das ggf. mit C1-C20-Alkyl, C2-C20-Alkenyl, C2-C20-Alkinyl, C5-C24-Aryl, Hydroxyl, Carboxyl, Nitro, Amino, Furyl, Furylalkyl, Alkylfuryl, Hydroxyalkylfurylalkyl, Isocyanat, Formyl, Halogencarbonyl, Thiol und/oder Alkylthio substituiert sein kann. Bevorzugte Beispiele umfassen Acetyl, Propionyl, Butyryl, Valeryl und Pivaloyl.
  • Die Bezeichnung "Alkenylcarbonyl" steht für eine Gruppe -C(=O)Rc, wobei Rc ein Alkenyl ist, das ggf. mit C1-C20-Alkyl, C2-C20-Alkonyl, C2-C20-Alkinyl, C5-C24-Aryl, Hydroxyl, Carboxyl, Nitro, Amino, Furyl, Furylalkyl, Alkylfuryl, Hydroxyalkylfurylalkyl, Isocyanat, Formyl, Halogencarbonyl, Thiol und/oder Alkylthio substituiert sein kann. Ein bevorzugtes Beispiel ist Vinylketon.
  • Die Bezeichnung "Alkylcarbonyloxyalkyl" steht für eine Gruppe -Rb-O-C(=O)Ra, wobei Rb ein Alkylen ist, wie es zuvor definiert wurde, das ggf. mit C1-C20-Alkyl, C2-C20-Alkenyl, C2-C20-Alkinyl, C5-C24-Aryl, Hydroxyl, Carboxyl, Nitro, Amino, Furyl, Furylalkyl, Alkylfuryl, Hydroxyalkylfurylalkyl, Isocyanat, Formyl, Halogencarbonyl, Thiol und/oder Alkylthio substituiert sein kann, und Ra ein Alkyl ist, das ggf. mit C1-C20-Alkyl, C2-C20-Alkenyl, C2-C20-Alkinyl, C5-C24-Aryl, Hydroxyl, Carboxyl, Nitro, Amino, Furyl, Furylalkyl, Alkylfuryl, Hydroxyalkylfurylalkyl, Isocyanat, Formyl, Halogencarbonyl, Thiol und/oder Alkylthio substituiert sein kann.
  • Die Bezeichnung "Alkenylcarbonyloxyalkyl" steht für eine Gruppe -Rb-O-C(=O)Rc, wobei Rb ein Alkylen ist, wie es zuvor definiert wurde, das ggf. mit C1-C20-Alkyl, C2-C20-Alkenyl, C2-C20-Alkinyl, C5-C24-Aryl, Hydroxyl, Carboxyl, Nitro, Amino, Furyl, Furylalkyl, Alkylfuryl, Hydroxyalkylfurylalkyl, Isocyanat, Formyl, Halogencarbonyl, Thiol und/oder Alkylthio substituiert sein kann, und Ro ein Alkenyl ist, das ggf. mit C1-C20-Alkyl, C2-C20-Alkenyl, C2-C20-Alkinyl, C5-C24-Aryl, Hydroxyl, Carboxyl, Nitro, Amino, Furyl, Furylalkyl, Alkylfuryl, Hydroxyalkylfurylalkyl, Isocyanat, Formyl, Halogencarbonyl, Thiol und/oder Alkylthio substituiert sein kann.
  • Die Bezeichnung "Alkylcarbonyloxyalkenyl" steht für eine Gruppe -Rd-O-C(=O)Ra, wobei Rd ein Alkenylen ist, wie es zuvor definiert wurde, das ggf. mit C1-C20-Alkyl, C2-C20-Alkenyl, C2-C20-Alkinyl, C5-C24-Aryl, Hydroxyl, Carboxyl, Nitro, Amino, Furyl, Furylalkyl, Alkylfuryl, Hydroxyalkylfurylalkyl, Isocyanat, Formyl, Halogencarbonyl, Thiol und/oder Alkylthio substituiert sein kann, und Ra ein Alkyl ist, das ggf. mit C1-C20-Alkyl, C2-C20-Alkenyl, C2-C20-Alkinyl, C5-C24-Aryl, Hydroxyl, Carboxyl, Nitro, Amino, Furyl, Furylalkyl, Alkylfuryl, Hydroxyalkylfurylalkyl, isocyanat, Formyl, Halogencarbonyl, Thiol und/oder Alkylthio substituiert sein kann.
  • Die Bezeichnung "isocyanat" steht für eine Gruppe -N=C=O. Die Bezeichnung "Isocyanat-alkyl" steht für eine Gruppe -Ra-Isocyanat, wobei Ra ein Alkylen ist, das ggf. mit C1-C20-Alkyl, C2-C20-Alkenyl, C2-C20-Alkinyl, C5-C24-Aryl, Hydroxyl, Carboxyl, Nitro, Amino, Furyl, Furylalkyl, Alkylfuryl, Hydroxyalkylfurylalkyl, Isocyanat, Formyl, Halogencarbonyl, Thiol und/oder Alkylthio substituiert sein kann.
  • Die Bezeichnung "Nitro" steht für eine Gruppe -NO2.
  • Die Bezeichnung "Cyano" steht für eine Gruppe -CN. Die Bezeichnung "Imino" steht für eine Gruppe C(=NH)R9, wobei R9 ein Alkyl, Alkylen oder Aryl ist, das ggf. mit C1-C20-Alkyl, C2-C20-Alkenyl, C2-C20-Alkinyl, C5-C24-Aryl, Hydroxyl, Carboxyl, Nitro, Amino, Furyl, Furylalkyl, Alkylfuryl, Hydroxyalkylfurylalkyl, Isocyanat, Formyl, Halogencarbonyl, Thiol und/oder Alkylthio substituiert sein kann.
  • Die Bezeichnung "Thiol" oder "Sulfhydryl" steht für eine Gruppe -SH.
  • Die Bezeichnung "Alkylthlol" steht für eine Gruppe -SRa, wobei Ra ein Alkyl ist, das ggf. mit C1-C20-Alkyl, C2-C20-Alkenyl, C2-C20-Alkinyl, C8-C24-Aryl, Hydroxyl, Carboxyl, Nitro, Amino, Furyl, Furylalkyl, Alkylfuryl, Hydroxyalkylfurylalkyl, Isocyanat, Formyl, Halogencarbonyl, Thiol und/oder Alkylthio substituiert sein kann. Diese Bezeichnung schließt insbesondere eine Gruppe ein, die aus einem Schwefelatom besteht, das mit einer Alkylgruppe verbunden ist. Bevorzugte Beispiele umfassen Methylthio (SCH3), Ethylthio (SCH2CH3), n-Propylthio, Isopropylthio, n-Butylthio, Isobutylthio, sec-Butylthio, tert-Butylthio und n-Hexylthio.
  • Die Bezeichnung "Thioalkyl" steht für eine Gruppe -Rb-SH, wobei Rb ein Alkylen ist, wie es zuvor definiert wurde, das ggf. mit C1-C20-Alkyl, C2-C20-Alkenyl, C2-C20-Alkinyl, C5-C24-Aryl, Hydroxyl, Carboxyl, Nitro, Amino, Furyl, Furylalkyl, Alkylfuryl, Hydroxyalkylfurylalkyl, Isocyanat, Formyl, Halogencarbonyl, Thiol und/oder Alkylthio substituiert sein kann.
  • Die Bezeichnung "Alkylthioalkyl" steht für eine Gruppe -Rb-SRa, wobei Rb ein Alkylen ist, wie es zuvor definiert wurde, das ggf. mit C1-C20-Alkyl, C2-C20-Alkenyl, C2-C20-Alkinyl, C6-C24-Aryl, Hydroxyl, Carboxyl, Nitro, Amino, Furyl, Furylalkyl, Alkylfuryl, Hydroxyalkylfurylalkyl, Isocyanat, Formyl, Halogencarbonyl, Thiol und/oder Alkylthio substituiert sein kann, und wobei Ra ein Alkyl ist, das ggf. mit C1-C20-Alkyl, C2-C20-Alkenyl, C2-C20-Alkinyl, C5-C24-Aryl, Hydroxyl, Carboxyl, Nitro, Amino, Furyl, Furylalkyl, Alkylfuryl, Hydroxyalkylfurylalkyl, Isocyanat, Formyl, Halogencarbonyl, Thiol und/oder Alkylthlo substituiert sein kann.
  • Die Bezeichnung "Sulfonsäuregruppe" steht für eine Gruppe -S(=O)2OH.
  • Die Bezeichnung "Alkylsulfonyl" steht für eine Gruppe -S(=O)2ORa, wobei Ra ein Alkyl ist, das ggf. mit C1-C20-Alkyl, C2-C20-Alkenyl, C2-C20-Alkinyl, C5-C24-Aryl, Hydroxyl, Carboxyl, Nitro, Amino, Furyl, Furylalkyl, Alkylfuryl, Hydroxyalkylfurylalkyl, Isocyanat, Formyl, Halogencarbonyl, Thiol und/oder Alkylthio substituiert sein kann.
  • Die Bezeichnung "Halogen" steht für Fluor, Chlor, Brom und/oder Jod.
  • Die Bezeichnung "Halogenalkyl" steht für einen wie zuvor definierten Alkylrest, bei welchem ein oder mehrere Wasserstoffatome durch ein wie zuvor definiertes Halogen ersetzt wurden. Bevorzugte Beispiele umfassen Chlormethyl, 1-Bromethyl, Fluormethyl, Difluormethyl, Trifluormethyl und 1,1,1-Trifluorethyl.
  • Die Bezeichnung "Halogenalkenyl" steht für einen wie zuvor definierten Alkenylrest, bei welchem ein oder mehrere Wasserstoffatome durch ein wie zuvor definiertes Halogen ersetzt wurden.
  • Die Bezeichnung "Halogencarbonyl" steht für eine Gruppe -C(=O)-Hal, wobei Hal für ein wie zuvor definiertes Halogen steht. Bevorzugte Beispiele umfassen Chlorcarbonyl (-C(=O)Cl), Bromcarbonyl (-C(=O)Br) und Fluorcarbonyl (-C(=O)F).
  • Die Bezeichnung "Halogenaryl" steht für einen wie zuvor definierten Arylrest, bei welchem ein oder mehrere Wasserstoffatome durch ein wie zuvor definiertes Halogen ersetzt wurden.
  • Immer wenn der Ausdruck "substituiert" in der vorliegenden Erfindung benutzt wird, soll dies darauf hinweisen, dass ein oder mehrere Wasserstoffatome an dem Atom, das in der Bezeichnung angegeben wird, die den Ausdruck "substituiert"` verwendet, durch die angegebene Gruppe ersetzt werden, unter der Voraussetzung, dass die normale Bindigkeit des Atoms nicht überschritten wird und dass die Substitution zu einer chemisch stabilen Verbindung führt, d. h. einer Verbindung, die hinreichend robust ist, um eine Isolation zu einem praktikablen Reinheitsgrad aus der Reaktionsmischung zu überstehen.
  • Im Rahmen der vorliegenden Erfindung ist der Anteil halogenhaltiger Verbindungen in der polymerisierbaren Zusammensetzung vorzugsweise möglichst gering und ist günstigerweise kleiner 20,0Gew.- bevorzugt kleiner 10,0 Gew.-%, besonders bevorzugt kleiner 5,0 Gew.-%, insbesondere kleiner 1,0 Gew.-%, jeweils bezogen auf das Gesamtgewicht der polymerisierbaren Verbindungen. Im Rahmen einer ganz besonders bevorzugten Ausführungsform der vorliegenden Erfindung enthält die polymerisierbare Zusammensetzung keine halogerthaltigen Verbindungen.
  • Weiterhin ist auch der Anteil schwefelhaltiger Verbindungen in der polymerisierbaren Zusammensetzung vorzugsweise möglichst gering und ist günstigerweise kleiner 20,0Gew.- bevorzugt kleiner 10,0 Gew.%, besonders bevorzugt kleiner 5,0 Gew.-%, insbesondere kleiner 1,0 Gew.-%, jeweils bezogen auf das Gesamtgewicht der polymerisierbaren Verbindungen. Im Rahmen einer ganz besonders bevorzugten Ausführungsform der vorliegenden Erfindung enthält die polymerisierbare Zusammensetzung keine schwefelhaltigen Verbindungen.
  • Darüber hinaus ist auch der Anteil stickstoffhaltiger Verbindungen In der polymerisierbaren Zusammensetzung vorzugsweise möglichst gering und ist günstigerweise kleiner 20,0Gew.-%, bevorzugt kleiner 10,0 Gew.-%, besonders bevorzugt kleiner 5,0 Gew.-%, insbesondere kleiner 1,0 Gew.-%, jeweils bezogen auf das Gesamtgewicht der polymerisierbaren Verbindungen. Im Rahmen einer ganz besonders bevorzugten Ausführungsform der vorliegenden Erfindung enthält die polymerisierbare Zusammensetzung keine stickstoffhaltigen Verbindungen.
  • Gemäß einer ersten besonders bevorzugten Variante der vorliegenden Erfindung ist der Rest R17 kein Wasserstoff.
  • Im Rahmen einer bevorzugten Ausführungsform der vorliegenden Erfindung ist das Harz durch Polymerisation einer Zusammensetzung erhältlich, die mindestens eine Verbindung der Formel (I) und/oder der Formel (II) enthält, wobei
    • n eine ganze Zahl zwischen 0 und 5 ist,
    • t und s, jeweils unabhängig voneinander, eine ganze Zahl zwischen 1 und 5, vorzugsweise 1 oder 2, sind,
    • w und z, jeweils unabhängig voneinander, 0 oder 1 sind,
    • X und Y, jeweils unabhängig voneinander, 0, S oder N-R21 sind,
    • R1 R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, R16, R18, R19 und R21, jeweils unabhängig voneinander, Wasserstoff, C1-C20-Alkyl, Carboxyaldehyd, Hydroxyalkyl, Carboxyl, Amino, Nitro, Alkylamino, Aminoalkyl, Alkyloxyalkyl, Alkylaminoalkyl, Alkylcarboxy, Alkenylcarboxy, Furyl, Furylalkyl, Hydroxyalkylfurylalkyl, Alkyloxy, Alkenyloxy, Alkylcarbonylalkenyl, Oxiranyl, Alkenylcarbonyl, Alkylcarbonyloxyalkyl, Alkyloxycarbonylalkenyl, Alkenylcarbonyloxyalkyl, Isocyanat, Isocyanatalkyl, Alkylcarbonyl, Halogencarbonyl, Halogenalkyl, Halogenaryl, Halogenalkenyl, Imino, Thioalkyl, Alkylthioalkyl und/oder Cyano, vorzugsweise Wasserstoff, C1-C20-Alkyl, Carboxyaldehyd, Hydroxyalkyl, Carboxyl, Alkylamino, Aminoalkyl, Alkylaminoalkyl, Alkyloxy, Alkyloxyalkyl, Furylalkyl, Hydroxyalkylfurylalkyl, Alkenyloxy, Alkycarbonylalkenyl, Alkonylcarbonyl, Alkylcarbonaloxyalkyl, Alkyloxycarbonylalkenyl, Alkenylcarbonyloxyalkyl, Alkylcarboxy, Alkenylcarboxy und/oder Alkylcarbonyl, besonders bevorzugt Wasserstoff, C1-C10-Alkyl, Carboxyaldehyd, Hydroxyalkyl, Alkylamino, Aminoalkyl, Alkylaminoalkyl, Alkyloxy, Alkyloxyalkyl, Furylalkyl, Hydroxyalkylfurylalkyl, Carboxyl, Alkenyloxy, Alkylcarboxy, Alkenylcarboxy, Alkylcarbonyl, und/oder Alkylencarbonyl, insbesondere Wasserstoff, C1-C10-Alkyl, Carboxyaldehyd, Hydroxyalkyl, Aminoalkyl, Alkylaminoalkyl, Alkyloxyalkyl, Furylalkyl, Hydroxyalkylfurylalkyl und/oder Carboxyl, sind, wobei jede Gruppe mit C1C20-Alkyl, C2-C20-Alkenyl, C2-C20-Alkinyl, C5-C24-Aryl, Hydroxyl, Carboxyl, Nitro, Amino, Furyl, Furylalkyl, Alkylfuryl, Hydroxyalkylfurylalkyl, Isocyanat, Formyl, Halogencarbonyl, Thiol und/oder Alkylthio substituiert sein kann,
    • R17 und R20, jeweils unabhängig voneinander, C1-C20 Alkyl, Carboxaldehyd, Hydroxyalkyl, Carboxyl, Amino, Nitro, Alkylamino, Aminoalkyl, Alkyloxyalkyl, Alkylaminoalkyl, Alkylcarboxy, Alkenylcarboxy, Furyl, Furylalkyl, Hydroxyalkylfurylalkyl, Alkyloxy, Akenyloxy, Akylcarbonylalkanyl, Oxiranyl, Alkenylcarbonyl, Alkylcarbonyloxyalkyl, Alkyloxycarbonylalkenyl, Alkenylcarbonyloxyalkyl, Isocyanat, Isocyanatalkyl und/oder Alkylcarbonyl, vorzugsweise C1-C20 Alkyl, Carboxaldehyd, Hydroxyalkyl, Carboxyl, Alkylamino, Aminoalkyl, Alkylaminoalkyl, Alkyloxy, Alkyloxyalkyl, Furylalkyl, Hydroxyalkylfurylalkyl, Alkenyloxy, Alkylcarbonylalkenyl, Alkenylcarbonyl, Alkylcarbonyloxyalkyl, Alkyloxycarbonylalkenyl, Alkenylcarbonyloxyalkyl, Alkylcarboxy, Alkenylcarboxy und/oder Alkylcarbonyl, bevorzugt C1-C10 Alkyl, Carboxaldehyd, Hydroxyalkyl, Alkylamino, Aminoalkyl, Alkylaminoalkyl, Carboxyl, Alkyloxy, Alkyloxyalkyl, Furylalkyl, Hydroxyalkylfurylalkyl, Alkenyloxy, Alkylcarboxy, Alkenylcarboxy, Alkylcarbonyl und/oder Alkenylcarbonyl, insbesondere C1-C10 Alkyl, Carboxaldehyd, Hydroxyalkyl, Aminoalkyl und/oder Carboxyl, sind, wobei jede Gruppe mit C1-C20-Alkyl, C2-C20-Alkenyl, C2-C20-Alkinyl, C5-C24-Aryl, Hydroxyl, Carboxyl, Nitro, Amino, Furyl, Furylalkyl, Alkylfuryl, Hydroxyalkylfurylalkyl, Isocyanat, Formyl, Halogencarbonyl, Thiol und/oder Alkylthio substituiert sein kann, und
    wobei die gestrichelte Linie eine Doppelbindung darstellt.
  • Im Rahmen einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung ist das Harz durch Polymerisation einer Zusammensetzung erhältlich, die eine Verbindung der Formel (I) und/oder der Formel (II) enthält, wobei
    • n 0, 1, 2, 3,4 oder 5 ist,
    • t und s, jeweils unabhängig voneinander, 1 oder 2 sind,
    • w und z, jeweils unabhängig voneinander, 0 oder 1 sind,
    • X und Y, jeweils unabhängig voneinander, O, S oder N-R21 sind,
    • R2, R3, R4, R5, R6, R7, R9, R10, R11, R12, R13, R14, R15, R16, R18, R19, und R21, jeweils unabhängig voneinander, Wasserstoff, C1-C2 Alkyl, Carboxaldehyd, Hydroxyalkyl, Carboxyl, Aminoalkyl, Alkylaminoalkyl, Hydroxyalkylfurylalkyl, Alkyloxy, Alkyloxyalkyl, Akylcarbonylalkenyl, Alkylcarbonyloxyalkyl, Alkyloxycarbonylalkenyl, Alkenylcarbonyloxyalkyl, Oxiranyl, Isocyanat, Isocyanatalkyl, Alkylcarboxy, Alkenylcarboxy, Alkylcarbonyl, Alkenylcarbonyl, Halogencarbonyl, Halogenalkyl, Halogenaryl, Halogenalkenyl, Imino, Thioalkyl, Alkylthioalkyl, und/oder Cyano, wobei jede Gruppe mit C1-C2-Alkyl, C2-C4-Alkenyl, C2-C4-Alkinyl, Hydroxyl, Carboxyl, Nitro, Amino, Alkylfuryl, Hydroxyalkylfurylalkyl, Isocyanat, Formyl, Halogencarbonyl und/oder Thiol substituiert sein kann,
    • R1, R8, R17 und R20, jeweils unabhängig voneinander, C1-C2 Alkyl, Carboxaldehyd, Hydroxyalkyl, Carboxyl, Aminoalkyl, Alkylaminoalkyl, Hydroxyalkylfurylalkyl, Alkyloxy, Alkoxyalkyl, Akylcarbonylalkenyl, Akylcarbonyloxyalkyl, Akyloxycarbonylalkenyl, Akenylcarbonyloxyalkyl, Oxiranyl, Isocyanat, Isocyanatalkyl, Alkylcarboxy, Alkenylcarboxy, Alkylcarbonyl, Alkenylcarbonyl, Halogencarbonyl, Halogenalkyl, Halogenaryl, Halogenalkenyl, Imino, Thioalkyl, Alkylthioalkyl und/oder Cyano, wobei jede Gruppe mit C1-C2-Alkyl, C2-C2-Alkenyl, C2-C4-Alkinyl, Hydroxyl, Carboxyl, Nitro, Amino, Alkylfuryl, Hydroxyalkylfurylalkyl, Isocyanat, Formyl, Halogencarbonyl und/oder Thiol substituiert sein kann, und
    wobei die gestrichelte Linie eine Doppelbindung darstellt.
  • Im Rahmen noch einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung ist das Harz durch Polymerisation einer Zusammensetzung erhältlich, die eine Verbindung der Formel (I) und/oder der Formel (II) enthält, wobei
    • n eine ganze Zahl zwischen 0 und 5 ist,
    • t und s, jeweils unabhängig voneinander, 1 oder 2 sind,
    • w und z, jeweils unabhängig voneinander, 0 oder 1 sind,
    • X und Y, jeweils unabhängig voneinander, 0, S oder N-R21 sind,
    • R2, R3, R4, R5, R6, R7, R9, R10, R11, R12, R13, R14, R15, R16, R18, R19 und R21, jeweils unabhängig voneinander, Wasserstoff, C1-C2 Alkyl, Carboxaldehyd, Hydroxyalkyl, Carboxyl, Aminoalkyl, Alkylaminoalkyl, Hydroxyalkylfurylalkyl, Alkoxyalkyl, Oxiranyl und/oder Isocyanat sind,
    • R1, R8, R17 und R20, jeweils unabhängig voneinander, C1-C2 Alkyl, Carboxaldehyd, Hydroxyalkyl, Carboxyl, Aminoalkyl, Alkylaminoalkyl, Hydroxyalkylfurylalkyl, Alkoxyalkyl, Oxiranyl und/oder Isocyanat sind, und
    wobei die gestrichelte Linie eine Doppelbindung darstellt.
  • Im Rahmen noch einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung ist das Harz durch Polymerisation einer,Zusammensetzung erhältlich, die eine Verbindung der Formel (I) und/oder der Formel (II) enthält, wobei
    • n 0, 1, 2, 3, 4, 5 ist,
    • t 1 oder 2 ist,
    • s 1 oder 2 ist,
    • w 0 oder 1 ist,
    • z 0 oder 1 ist,
    • X O, S oder N-R21 ist,
    • Y O, S oder N-R21 ist,
    • R1 Wasserstoff, C1-C8 Alkyl, C2-C8 Alkenyl, Carboxaldehyd, Hydroxyalkyl, Carboxyl, Formyl, Aminoalkyl, Alkylaminoalkyl, Furylalkyl, Hydroxyalkylfurylalkyl, Alkylcarboxy, Alkenylcarboxy, Alkylcarbonyloxyalkyl, Alkenylcarbonyloxyalkyl, Isocyanat oder Isocyanatalkyl, insbesondere -CH3,-C2H5, -C3H7, -C4H9, -CH2=CH, -CH2OH, -CH2NH2, -COOH, -C(=O)H, -NO2,-C2H3O, -CH2NH2, -N=C=O, -CH2-N=C=O, -O-CH=CH2, -C(=O)OCH3, - C(=O)OC2H5, -CH2-Furyl-CH2OH oder -CH2-O-C(=O)-CH=CH2 ist,
    • R2 Wasserstoff, C1-C8 Alkyl, C2-C8 Alkenyl, Carboxaldehyd, Hydroxyalkyl, Carboxyl, Formyl, Aminoalkyl, Alkylaminoalkyl, Furylalkyl, Hydroxyalkylfurylalkyl, Alkylcarboxy, Alkenylcarboxy, Alkylcarbonyloxyalkyl, Alkenylcarbonyloxyalkyl, Isocyanat oder Isocyanatalkyl, insbesondere -CH3, - C2H5, -C3H7, -C4H9, -CH2=CH, -CH2OH, -CH2NH2, -COOH, -C(=O)H, -NO2, - C2H3O, -CH2NH2, N=C=O, -CH2-N=C=O, -O-CH=CH2, -C(=O)OCH3, - C(=O)OC2H5, -CH2-Furyl-CH2OH oder -CH2-O-C(=O)-CH=CH2 ist,
    • R3 Wasserstoff, C1-C8 Alkyl, C2-C8 Alkenyl, Carboxaldehyd, Hydroxyalkyl, Carboxyl, Formyl, Aminoalkyl, Alkylaminoalkyl, Furylalkyl, Hydroxyalkylfurylalkyl, Alkylcarboxy, Alkenylcarboxy, Alkylcarbonyloxyalkyl, Alkenylcarbonyloxyalkyl, Isocyanat oder Isocyanatalkyl, insbesondere -CH3, - C2H6, -C3H7, -C4H9, -CH2=CH, -CH2OH, -CH2NH2, -COOH, -C(=O)H, -NO2, - C2H3O, -CH2NH2, -N=C=O, -CH2-N=C=O, -O-CH=CH2, -C(=O)OCH3, - C(=O)OC2H5, -CH2-Furyl-CH2OH oder -CH2-O-C(=O)-CH=CH2 ist,
    • R4 Wasserstoff, C1-C8 Alkyl, C2-C8 Alkenyl, Carboxaldehyd, Hydroxyalkyl, Carboxyl, Formyl, Aminoalkyl, Alkylaminoalkyl, Furylalkyl, Hydroxyalkylfurylalkyl, Alkylcarboxy, Alkenylcarboxy, Alkylcarbonyloxyalkyl, Alkonylcarbonyloxyalkyl, Isocyanat oder Isocyanatalkyl, insbesondere -CH3, - C2H6, -C3H7, -C4H9, -CH2=CH, -CH2OH, -CH2NH2, -COOH, -C(=O)H, -NO2, - C2H3O, -CH2NH2, -N=C=O, -CH2-N=C=O, -O-CH=CH2, -C(=O)OCH3, - C(=O)OC2H5, -CH2-Furyl-CH2OH oder -CH2-O-C(=O)-CH=CH2 ist,
    • R5 Wasserstoff, C1-C8 Alkyl, C2-C8 Alkenyl, Carboxaldehyd, Hydroxyalkyl, Carboxyl, Formyl, Aminoalkyl, Alkylaminoalkyl, Furylalkyl, Hydroxyalkylfurylalkyl, Alkylcarboxy, Alkenylcarboxy, Alkylcarbonyloxyalkyl, Alkenylcarbonyloxyalkyl, Isocyanat oder Isocyanatalkyl, insbesondere -CH3,-C2H5, -C3H7, -C4H9, -CH2=CH, -CH2OH, -CH2NH2, -COOH, -C(=O)H, -NO2, - C2H3O, -CH2NH2, -N=C=O, -CH2-N=O=O, O-CH=CH2, -C(=0)OCHa, - C(=:O)OC2H5, -CH2-Furyl-CH2OH oder -CH2-O-C(=O)-CH=CH2 ist,
    • R5 Wasserstoff, C1-C8 Alkyl, C2-C8 Alkenyl, Carboxaldehyd, Hydroxyalkyl, Carboxyl, Formyl, Aminoalkyl, Alkylaminoalkyl, Furylalkyl, Hydroxyalkylfurylalkyl, Alkylcarboxy, Alkenylcarboxy, Alkylcarbonyloxyalkyl, Alkenylcarbonyloxyalkyl, Isocyanat oder Isocyanatalkyl, insbesondere -CH3, - C2H5, -C3H7, -C4H8, -CH2=CH, -CH2OH, -CH2NH2, -COOH, -C(=O)H, -NO2, - C2H30, -CH2NH2, -N=C=O, -CH2-N=C=O, -O-CH=CH2, -C(=O)OCH3, - C(=O)OC2Hs, -CH2-Furyl-CH2OH oder -CH2-O-C(=O)-CH=CH2 Ist,
    • R7 Wasserstoff, C1-C8 Alkyl, Cz-C8 Alkenyl, Carboxaldehyd, Hydroxyalkyl, Carboxyl, Formyl, Aminoalkyl, Alkylaminoalkyl, Furylalkyl, Hydroxyalkylfurylalkyt, Alkylcarboxy, Alkenylcarboxy, Alkylcarbonyloxyalkyl, Alkenylcarbonyloxyalkyl, Isocyanat oder Isocyanatalkyl, insbesondere -CH3, - C2H5, -C3H7, -C4H9, -CH2=CH, -CH2OH, -CH2NH2, -COOH, -C(=O)H, -NO2, - C2H3O, -CH2NH2, -N=C=O, -CH2-N=C=O, -O-CH=CH2, -C(=O)OCH3, - C(=O)OC2H5, -CH2-Furyl-CH2OH oder -CH2-O-C(O)-CH=CH2 ist,
    • R8 Wasserstoff, C1-C8 Alkyl, C2-C8 Alkenyl, Carboxaldehyd, Hydroxyalkyl, Carboxyl, Formyl, Aminoalkyl, Alkylaminoalkyl, Furylalkyl, Hydroxyalkylfurylalkyl, Alkylcarboxy, Alkenylcarboxy, Alkylcarbonyloxyalkyl, Alkenylcarbonyloxyalkyl, Isocyanat oder Isocyanatalkyl, insbesondere -CH3, - C2H5, -C3H7, -C4H9, -CH2=CH, -CH2OH, -CH2NH2, -COOH, -C(=O)H, -NO2, - C2H3O, -CH2NH2, -N=C=O, -CH2-N=C=O, -O-CH=CH2, -C(=O)OCH3, - C(=O)OC2H5, -CH2-Furyl-CH2OH oder -CH2-O-C(=O)-CH=CH2 ist,
    • R9 Wasserstoff, C1-C8 Alkyl, C2-C8 Alkenyl, Carboxaldehyd, Hydroxyalkyl, Carboxyl, Formyl, Aminoalkyl, Alkylaminoalkyl, Furylalkyl, Hydroxyalkylfurylalkyl, Alkylcarboxy, Alkenylcarboxy, Alkylcarbonyloxyalkyl, Alkenylcarbonyloxyalkyl, Isocyanat oder Isocyanatalkyl, insbesondere -CH3, - C2H5, -C3H7, -C4H9, -CH2=CH, -CH2OH, -CH2NH2, -COOH, -C(=O)H, -NO2, - C2H3O, -CH2NH2, -N=C=O, -CH2-N=C=O, -O-CH=CH2, -C(=O)OCH3, - C(=O)OC2H5, -CH2-Furyl-CH2OH oder -CH2-O-C(=O)-CH-CH2 ist,
    • R10 Wasserstoff, C1-C8 Alkyl, C2-C8 Alkenyl, Carboxaldehyd, Hydroxyalkyl, Carboxyl, Formyl, Aminoalkyl, Alkylaminoalkyl, Furylalkyl, Hydroxyalkylfurylalkyl, Alkylcarboxy, Alkenylcarboxy, Alkylcarbonyloxyalkyl, Alkonylcarbonyloxyalkyl, Isocyanat oder Isocyanatalkyl, insbesondere -CH3, - C2H5, -C3H7, -C4H9, -CH2=CH, -CH2OH, -CH2NH2, -COOH, -C(=O)H, -NO2, - C2H3O, -CH2NH2, -N=C=O, -CH2-N=O=O, -O-CH=CH2, -C(=O)OCH3, - C(=O)OC2H5, -CH2-Furyl-CH2OH oder -CH2-O-C(=O)-CH=CH2 ist,
    • R11 Wasserstoff, C1-C8 Alkyl, C2-C8 Alkenyl, Carboxaldehyd, Hydroxyalkyl, Carboxyl, Formyl, Aminoalkyl, Alkylaminoalkyl, Furylalkyl, Hydroxyalkylfurylalkyl, Alkylcarboxy, Alkenylcarboxy, Alkylcarbonyloxyalkyl, Alkenylcarbanyloxyalkyl, Isocyanat oder Isocyanatalkyl, insbesondere -CH3, - C2H5, -C3H7, -C4H9, -CH2=CH, -CH2OH, -CH2NH2, -COOH, -C(=O)H, -NO2, - C2H3O, -CH2NH2, -N=C=O, -CH2-N=C=O, -O-CH=CH2, -C(=O)OCH3, - C(=O)OC2H5, -CH2-Furyl-CH2OH oder -CH2-O-C(=O)-CH=CH2 ist,
    • R12 Wasserstoff, C1-C8 Alkyl, C2-C8 Alkenyl, Carboxaldehyd, Hydroxyalkyl, Carboxyl, Formyl, Aminoalkyl, Alkylaminoalkyl, Furylalkyl, Hydroxyalkylfurylalkyl, Alkylcarboxy, Alkenylcarboxy, Alkylcarbonyloxyalkyl, Alkenylcarbonyloxyalkyl, Isocyanat oder Isocyanatalkyl, insbesondere -CH3, - C2H5, -C3H7, -C4H9, -CH2=CH, -CH2OH, -CH2NH2, -COOH, -C(=O)H, -NO2, - C2H3O, -CH2NH2, -N=C=O, -CH2-N=C=O, -O-CH=CH2, -C(=O)OCH3, - C(=O)OC2H5, -CH2-Furyl-CH2OH oder CH2-O-C(=O)-CH=CH2 ist,
    • R13 Wasserstoff, C1-C8 Alkyl, C2-C8 Alkenyl, Carboxaldehyd, Hydroxyalkyl, Carboxyl, Formyl, Aminoalkyl, Alkylaminoalkyl, Furylalkyl, Hydroxyalkylfurylalkyl, Alkylcarboxy, Alkenylcarboxy, Alkylcarbonyloxyalkyl, Alkenylcarbonyloxyalkyl, Isocyanat oder Isocyanatalkyl, insbesondere -CH3, - C2H6, -C3H7, -C4H9, -CH2=CH, -CH2OH, -CH2NH2, -COOH, -C(=O)H, -NO2, - C2H3O, -CH2NH2, -N=C=O, -CH2-N=C=O, -O-CH=CH2, -C(=O)OCH3, - C(=O)OC2H5, -CH2-Furyl-CH2OH oder -CH2-O-C(=O)-CH=CH2 ist,
    • R14 Wasserstoff, C1-C8 Alkyl, C2-C8 Alkenyl, Carboxaldahyd, Hydroxyalkyl, Carboxyl, Formyl, Aminoalkyl, Alkylaminoalkyl, Furylalkyl, Hydroxyalkylfurylalkyl, Alkylcarboxy, Alkenylcarboxy, Alkylcarbonyloxyalkyl, Alkenylcarbonyloxyalkyl, Isocyanat oder Isocyanatalkyl, insbesondere -CH3, - C2H5, -C3H7, -C4H9, -CH2=CH, -CH2OH, -CH2NH2, -COOH, -C(=O)H, -NO2, - C2H3O, -CH2NH2, -N=O=O, -CH2-N=C=O, -O-CH=CH2, -C(=O)OCH3,-C(=O)OC2H5, -CH2-Furyl-CH2OH oder -CH2-O-C(=O)-CH=CH2 ist,
    • R15 Wasserstoff, C1-C8 Alkyl, C2-C8 Alkenyl, Carboxaldehyd, Hydroxyalkyl, Carboxyl, Formyl, Aminoalkyl, Alkylaminoalkyl, Furylalkyl, Hydroxyalkylfurylalkyl, Alkylcarboxy, Alkenylcarboxy, Alkylcarbonyloxyalkyl, Alkenylcarbonyloxyalkyl, Isocyanat oder Isocyanatalkyl, insbesondere -CH3, - C2H5, -C3H7, -C4H9. -CH2=CH, -CH2OH, -CH2NH2, -COOH, -C(=O)H, -NO2, - C2H3O, -CH2NH2, -N=C=O, -CH2-N=C=O, -O-CH=CH2, -C(=O)OCH3, - C(=O)OC2H5, -CH2-Furyl-CH2OH oder -CH2-O-C(=O)-CH=CH2 ist,
    • R16 Wasserstoff, C1-C8 Alkyl, C2-C8 Alkenyl, Carboxaldehyd, Hydroxyalkyl, Carboxyl, Formyl, Aminoalkyl, Alkylaminoalkyl, Furylalkyl, Hydroxyalkylfurylalkyl, Alkylcarboxy, Alkenylcarboxy, Alkylcarbonyloxyalkyl, Alkenylcarbonyloxyalkyl, Isocyanat oder Isocyanatalkyl, insbesondere -CH3, - C2H6, -C-3H7, -C4H9, CH2=CH, -CH2CH, -CH2NH2, -COOH, -C(=O)H, -NO2, - C2H3O, -CH2NH2, -N=C=O, -CH2-N=C=O, -O-CH=CH2, -C(=O)OCH3, - C(=O)OC2H6, -CH2-Furyl-CH2OH oder -CH2-O-C(=O)-CH=CH2 ist,
    • R17 Wasserstoff, C1-C8 Alkyl, C2-C8 Alkenyl, Carboxaldehyd, Hydroxyalkyl, Carboxyl, Formyl, Aminoalkyl, Alkylaminoalkyl, Furylalkyl, Hydroxyalkylfurylalkyl, Alkylcarboxy, Alkenylcarboxy, Alkylcarbonyloxyalkyl, Alkenylcarbonyloxyalkyl, Isocyanat oder Isocyanatalkyl, insbesondere -CH3, - C2H5, -C3H7, -C4H9, -CH2=CH, -CH2OH, -CH2NH2, -COOH, -C(=O)H, -NO2, - C2H3O, -CH2NH2, -N=C=O, -CH2-N=C=O, -O-CH=CH2, -C(=O)OCH3, - C(=O)OC2H5, -CH2-Furyl-CH2OH oder -CH2-O-C(=O)-CH=CH2 ist,
    • R18 Wasserstoff, C1-C8 Alkyl, C2-C8 Alkenyl, Carboxaldehyd, Hydroxyalkyl, Carboxyl, Formyl, Aminoalkyl, Alkylaminoalkyl, Furylalkyl, Hydroxyalkylfurylalkyl, Alkylcarboxy, Alkenylcarboxy, Alkylcarbonyloxyalkyl, Alkenylcarbonyloxyalkyl, Isocyanat oder Isocyanatalkyl, Insbesondere -CH3, - C2H5, -C3H7, -C4H9, -CH2=CH, -CH2OH, -CH2NH2, -COOH, -C(=O)H, -NO2,-C2H3O, -CH2NH2, -N=C=O, -CH2-N=C=O, -O-CH=CH2, -C(=O)OCH3, - C(=O)OC2H5, -CH2-Furyl-CH2OH oder -CH2-O-C(=O)-CH=CH2 ist,
    • R19 Wasserstoff, C1-C8 Alkyl, C2-C8 Alkenyl, Carboxaldehyd, Hydroxyalkyl, Carboxyl, Formyl, Aminoalkyl, Alkylaminoalkyl, Furylalkyl, Hydroxyalkylfurylalkyl, Alkylcarboxy, Alkenylcarboxy, Alkylcarbonyloxyalkyl, Alkenylcarbonyloxyalkyl, Isocyanat oder Isocyanatalkyl, insbesondere -CH3, - C2H5, -C3H7, -C4H9, -CH2=CH, -CH2OH, -CH2NH2, -COOH, -C(=O)H, -NO2, - C2H3O, -CH2NH2, -N=C=O, -CH2-N=C-O, -O-CH=CH2, -C(=O)OCH3, - C(=O)OC2H5, -CH2-Furyl-CH2OH oder -CH2-O-C(=O)-CH-CH2 ist,
    • R20 Wasserstoff, C1-C8 Alkyl, C2-C8 Alkenyl, Carboxaldehyd, Hydroxyalkyl, Carboxyl, Formyl, Aminoalkyl, Alkylaminoalkyl, Furylalkyl, Hydroxyalkylfurylalkyl, Alkylcarboxy, Alkenylcarboxy, Alkylcarbonyloxyalkyl, Alkenylcarbonyloxyalkyl, Isocyanat oder Isocyanatalkyl, insbesondere -CH3, - C2H5, -C3H7, -C4H9, -CH2=CH, -CH2OH, -CH2NH2, -COOH, -C(=O)H, -NO2, - C2H3O, -CH2NH2, -N=C=O, -CH2-N=C=O, -O-CH=CH2, -C(=O)OCH3, - C(=O)OC2H5, -CH2-Furyl-CH2OH oder -CH2-O-C(=O)-CH=CH2 ist,
    • R21 Wasserstoff, C1-C8 Alkyl, C2-C8 Alkenyl, Carboxaldehyd, Hydroxyalkyl, Carboxyl, Formyl, Aminoalkyl, Alkylaminoalkyl, Furylalkyl, Hydroxyalkylfurylalkyl, Alkylcarboxy, Alkenylcarboxy, Alkylcarbonyloxyalkyl, Alkenylcarbonyloxyalkyl, Isocyanat oder Isocyanatalkyl, insbesondere -CH3, - C2H5, -C3H7, -C4H9, -CH2=CH, -CH2OH, -CH2NH2, -COOH, -C(=O)H, -NO2, - C2H3O, -CH2NH2, -N=C=O, -CH2-N=C=O, -O-CH=CH2, -C(=O)OCH3, - C(=O)OC2H6, -CH2-Furyl-CH2OH oder -CH2-O-C(=O)-CH=CH2 ist,
    • jeder Rest R ggf. mit C1-C20 Alkyl, C2-C20 Alkenyl, C2-C20 Alkinyl, C5-C24 Aryl, Hydroxyl, Carboxyl, Nitro, Amino, Furyl, Fuylalkyl, Akylfuryl, Hydroxyalkylfurylalkyl, Isocyanat, Formyl, Halogencarbonyl, Thiol und/oder Alkylthio, insbesondere mit C1-C2 Alkyl, C2-C4 Alkenyl, C2-C4 Alkinyl, Hydroxyl, Carboxyl, Nitro, Amino, Alkylfuryl, Hydroxyalkylfurylalkyl, Isocyanat, Formyl, Halogencarbonyl und/oder Thiol, substituiert sein kann, und
    wobei die gestrichelte Linie eine Doppelbindung darstellt.
  • Bevorzugte Monomere für die Herstellung des Harzes umfassen 2,5-Bis(hydroxymethyl)furan, 2,3,5-Tris(hydroxymethyl)furan, 5-Methyl-2-furfurylalkohol, 3-Hydroxymethyl-5-methyl-2-furfurylalkohol, 2,2'-(Hydroxymethyl)difurylmethan, 2,2',3,3'-(Hydroxymethyl)difurylmethan, 2,2',4,4'-(Hydroxymethyl)difurylmethan, 5-Hydroxymethyl-α-(methyl)furfurylalkohol, 5-Hydroxymethyl-2-furancarboxaldehyd, 3,5-Hydroxymethyl-2-furancarboxaldehyd, 4,5-Hydroxymethyl-2-furancarboxaldehyd, 5-Methyl-2-furancarboxaldehyd, 3-Hydroxymethyl-5-methyl-2-furancarboxaldehyd, 5-Nitrofurfuraldehyd, 2,5-Bis(carboxaldehyd)furan, 3-Hydroxymethyl-2,5-bis(carboxaldehyd)furan, 4-Hydroxymethyl-2,5-bis(carboxaldehyd)furan, 5-Hydroxymethyl-2-furansäure, 5-Methyl-2-furansäure, 5-Carboxaldehyd-2-furansäure, 2,5-Furandicarbonsäure, 2,5-Furandisäurechlorid, 2,5-Furandicarbonsäuredimethylester, 5-Hydroxymethyl-2-furfurylamin, 5-Methyl-2-furfurylamin, 5-Carboxaldehyd-2-furfurylamin, 5-Carboxy-2-furfurylamin, 2,5-Bis(aminomethyl)furan, 5-Methyl-2-vinylfuroat, 5-tert.-Butyl-2-vinylfuroat, 5-Methyl-2-vinylfuran, 5-Methyl-2-furfurylidenaceton, 5-Methyl-2-furyloxiran, 5-Methyl-furfurylvinylether, 5-Hydroxymethyl-2-ethylfuranacrylat, Bis-(2,5-lsocyanatmethyl)furan und Bis(2,5-isocyanat)furan sowie Mischungen davon.
  • In einer bevorzugten Ausführungsform der vorliegende Erfindung umfasst die polymerisierbare Zusammensetzung 2,5-Bis(hydroxymethyl)furan (BHMF). In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung umfasst die polymerisierbare Zusammensetzung 2,3,5-Tris(hydroxymethyl)furan (THMF). In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung umfasst die polymerisierbare Zusammensetzung 2,2'-Hydroxymethyldifurylmethan (HMDM). In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung umfasst die polymerisierbare Zusammensetzung 5-Hydroxymethyl-2-furfurylamin. In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung umfasst die polymerisierbare Zusammensetzung 5-Hydroxymethyl-2-furancarboxaldehyd. In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung umfasst die polymerisierbare Zusammensetzung 5-Methyl-2-furfurylalkohol. In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung umfasst die polymerisierbare Zusammensetzung 5-Hydroxymethyl-α-(methyl)furfurylalkohol. In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung umfasst die polymerisierbare Zusammensetzung 2,2,3,3'-(Hydroxymethyl)difurylmethan. In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung umfasst die polymerisierbare Zusammensetzung 2,2',4,4'-(Hydroxymethyl)difuryimethan.
  • In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung umfasst die polymerisierbare Zusammensetzung 2,5-Bis(hydroxymethyl)furan (BHMF), 2,3,5-Tris(hydroxymethyl)furan (THMF) und/oder 2,2'-Hydroxymethyldifurylmethan (HMDM).
  • In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung umfasst die polymerisierbare Zusammensetzung 2,5-Bis(hydroxymethyl)furan (BHMF), 2,3,5-Tris(hydroxymethyl)furan (THMF), 2,2'-(Hydroxymethyl)dlfurylmethan (HMDM) und/oder Kondensationsprodukte von BHMF, THMF und/oder HMDM.
  • Die Bezeichnung "Kondensationsprodukt", so wie sie hierin verwendet wird, steht für eine Verbindung der Formel (IV)
    Figure imgb0006
    wobei
    • n vorzugsweise zwischen 0 und 5, insbesondere 1, 2, 3 oder 4, ist, t 1 oder 2 ist,
    • s 1 oder 2 ist,
    • w 0 oder 1 ist,
    • z 0 oder 1 ist,
    • R2, R3, R4, Rs, R6, R7, jeweils unabhängig voneinander, Wasserstoff, Methyl, ein Hydroxyalkyl oder ein Hydroxyalkylfurylalkyl sind,
    • R1, R8, jeweils unabhängig voneinander, Methyl, ein Hydroxyalkyl oder ein Hydroxyalkylfurylalkyl sind.
  • Bevorzugt sind R2, R3, R4, R5, R6, R7, jeweils unabhängig voneinander, -H, -CH3, - CH2OH oder -CH2-Furyl-CH2OH (=Hydroxymethylfurylmethyl) und R1 und R8 sind, jeweils unabhängig voneinander, -CH3, -CH2OH oder -CH2-furyl-CH2OH.
  • In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung umfasst die polymerisierbare Zusammensetzung eine Verbindung der Formel (I) oder (II), wobei n, t, s, w, z, X, Y, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, R16, R17, R18, R19, R20, R21 wie zuvor definiert sind und wobei die gestrichelte Linie eine Doppelbindung darstellt, unter der Voraussetzung, dass R17 und R20 keine C1-C20 Alkylgruppe und vorzugsweise nicht Methyl sind, und/oder unter Voraussetzung, dass die Verbindung nicht 2,5 Dimethylfuran, 2,4 Dimethylfuran, 2-Acetyl-5-methylfuran, 2,5 Dimethyl-3-acetylfuran, 2,3,5-Trimethylfuran, 2-Vinyl-3-methylfuran, 2-Methylbenzofuran, Dimethylbenzofuran, Dibenzofuran, 2,3-Dimethyl-5-ethylfuran, 3,4-Dimethyl-5-ethylfuran, 2-Ethyl-2,3-dihydro-5-methylfuran, 2,5-Tetrahydrodimethylfuran, 2-Methyltetrahydrofuran-3-on, 2,5-Dimethyltetrahydrofuran-3-on, 2-Acetyltetrahydrofuran-3-on, 4-Methyl-2-furansäure, 2-(5-Methylfuryl)-methylketon, 4-Methylfurfural, 5-Methylfurfural, 2-Methyl-3-furfural, 3-Methyl-2-furfural, 5-Hydroxymethyl-2-furfural, Bis furfuryl-2-furan oder 2,5-Difurfuryledine-1-cyclopentanon ist.
  • Im Rahmen einer weiteren besonders bevorzugten Variante der vorliegenden Erfindung ist der Rest R17 Wasserstoff.
  • R18 und R19 sind in diesem Zusammenhang, jeweils unabhängig voneinander, günstigerweise Wasserstoff, C1-C20-Alkyl, Carboxyaldehyd, Hydroxyalkyl, Carboxyl, Amino, Nitro, Alkylamino, Aminoalkyl, Alkyloxyalkyl, Alkylaminoalkyl, Alkylcarboxy, Alkenylcarboxy, Furyl, Furylalkyl, Hydroxyalkylfurylalkyl, Alkyloxy, Alkenyloxy, Alkylcarbonylalkenyl, Oxiranyl, Alkenylcarbonyl, Alkylcarbonyloxyalkyl, Alkyloxycarbonylalkenyl, Alkenylcarbonyloxyalkyl, Isocyanat, Isocyanatalkyl, Alkylcarbonyl, Halogencarbonyl, Halogenalkyl, Halogenaryl, Halogenalkenyl, Imino, Thioalkyl, Alkylthioalkyl und/oder Cyano, vorzugsweise Wasserstoff, C1-C20-Alkyl, Carboxyaldehyd, Hydroxyalkyl, Carboxyl, Alkylamino, Aminoalkyl, Alkylaminoalkyl, Alkyloxy, Alkyloxyalkyl, Furylalkyl, Hydroxyalkylfurylalkyl, Alkenyloxy, Alkylcarbonylalkenyl, Alkenylcarbonyl, Alkylcarbonaloxyalkyl, Alkyloxycarbonylalkenyl, Alkenylcarbonyloxyalkyl, Alkylcarboxy, Alkenylcarboxy und/oder Alkylcarbonyl, besonders bevorzugt Wasserstoff, C1-C10-Alkyl, Carboxyaldehyd, Hydroxyalkyl, Alkylamino, Aminoalkyl, Alkylaminoalkyl, Alkyloxy, Alkyloxyalkyl, Furylalkyl, Hydroxyalkylfurylalkyl, Carboxyl, Alkenyloxy, Alkylcarboxy, Alkenylcarboxy, Alkylcarbonyl, und/oder Alkylencarbonyl, insbesondere Wasserstoff, C1-C10-Alkyl, Carboxyaldehyd, Hydroxyalkyl, Aminoalkyl, Alkylaminoalkyl, Alkyloxyalkyl, Furylalkyl, Hydroxyalkylfurylalkyl und/oder Carboxyl, sind, wobei jede Gruppe mit C1-C20-Alkyl, C2-C20-Alkenyl, C2-C20-Alkinyl, C5-C24-Aryl, Hydroxyl, Carboxyl, Nitro, Amino, Furyl, Furylalkyl, Alkylfuryl, Hydroxyalkylfurylalkyl, Isocyanat, Formyl, Halogencarbonyl, Thiol und/oder Alkylthio substituiert sein kann. Ganz besonders bevorzugt sind R18 und R19, jeweils unabhängig voneinander, Wasserstoff, C1-C2 Alkyl, Carboxaldehyd, Hydroxyalkyl, Carboxyl, Aminoalkyl, Alkylaminoalkyl, Hydroxyalkylfurylalkyl, Alkoxyalkyl, Oxiranyl und/oder Isocyanat, Insbesondere Wasserstoff.
  • R20 ist In diesem Zusammenhang günstigerweise Wasserstoff, C1-C20-Alkyl, Carboxyaldehyd, Hydroxyalkyl, Carboxyl, Amino, Nitro, Alkylamino, Aminoalkyl, Alkyloxyalkyl, Alkylaminoalkyl, Alkylcarboxy, Alkenylcarboxy, Furyl, Furylalkyl, Hydroxyalkylfurylalkyl, Alkyloxy, Alkenyloxy, Alkylcarbonylalkenyl, Oxiranyl, Alkenylcarbonyl, Alkylcarbonyloxyalkyl, Alkyloxycarbonylalkenyl, Alkenylcarbonyloxyalkyl, Isocyanat, Isocyanatalkyl, Alkylcarbonyl, Halogencarbonyl, Halogenalkyl, Halogenaryl, Halogenalkenyl, Imino, Thioalkyl, Alkylthioalkyl und/oder Cyano, vorzugsweise Wasserstoff, C1-C20-Alkyl, Carboxyaldehyd, Hydroxyalkyl, Carboxyl, Alkylamino, Aminoalkyl, Alkylaminoalkyl, Alkyloxy, Alkyloxyalkyl, Furylalkyl, Hydroxyalkylfurylalkyl, Alkenyloxy, Alkylcarbonylalkenyl, Alkenylcarbonyl, Alkylcarbonaloxyalkyl, Alkyloxycarbonylalkenyl, Alkenylcarbonyloxyalkyl, Alkylcarboxy, Alkenylcarboxy und/oder Alkylcarbonyl, besonders bevorzugt Wasserstoff, C1-C10-Alkyl, Carboxyaldehyd, Hydroxyalkyl, Alkylamino, Aminoalkyl, Alkylaminoalkyl, Alkyloxy, Alkyloxyalkyl, Furylalkyl, Hydroxyalkylfurylalkyl, Carboxyl, Alkenyloxy, Alkylcarboxy, Alkenylcarboxy, Alkylcarbonyl, und/oder Alkylencarbonyl, insbesondere Wasserstoff, C1-C10-Alkyl, Carboxyaldehyd, Hydroxyalkyl, Aminoalkyl, Alkylaminoalkyl, Alkyloxyalkyl, Furylalkyl, Hydroxyalkylfurylalkyl und/oder Carboxyl, sind, wobei jede Gruppe mit C1-C20-Alkyl, C2-C20-Alkenyl, C2-C20-Alkinyl, C5-C24-Aryl, Hydroxyl, Carboxyl, Nitro, Amino, Furyl, Furylalkyl, Alkylfuryl, Hydroxyalkylfurylalkyl, Isocyanat, Formyl, Halogencarbonyl, Thiol und/oder Alkylthio substituiert sein kann. Ganz besonders bevorzugt ist R20 C1-C2 Alkyl, Carboxaldehyd, Hydroxyalkyl, Carboxyl, Aminoalkyl, Alkylaminoalkyl, Hydroxyalkylfurylalkyl, Alkoxyalkyl, Oxiranyl oder Isocyanat, insbesondere Hydroxyalkyl, vor allem CH2OH.
  • Die gestrichelte Linie stellt in diesem Zusammenhang vorzugsweise eine Doppelbindung dar.
  • Im Rahmen einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung enthält die polymerisierbare Zusammensetzung, bezogen auf das Gesamtgewicht der polymerisierbaren Komponenten, mindestens 50,0 Gew.-%, vorzugsweise mindestens 60,0 Gew.-%, bevorzugt mindestens 75,0 Gew.-%, besonders bevorzugt mindestens 90,0 Gew.-%, zweckmäßigerweise mindestens 95,0 Gew.-%, insbesondere 100,0 Gew.-%, Furfurylalkohol, das zweckmäßigerweise aus landwirtschaftlichen Produkten, insbesondere aus Bagasse, Maisstroh oder anderen landwirtschaftlichen Rohstoffen, gewonnen wird.
  • Bevorzugte Comonomere umfassen in diesem Zusammenhang Verbindungen der Formel (I) oder (II), bei welchen R17 nicht Wasserstoff ist, insbesondere die vorstehend bereits genannten Verbindungen. Weitere bevorzugte Comonomere schließen Furfural, Formaldehyd, Ketone sowie Phenole ein.
  • Der Anteil der Comonomere, bezogen auf das Gesamtgewicht der polymerisierbaren Komponenten, ist jedoch vorzugsweise höchstens 50,0 Gew.-%, günstigerweise höchstens 40,0 Gew.-%, bevorzugt höchstens 25,0 Gew.-%, besonders bevorzugt höchstens 10,0 Gew.-%, zweckmäßigerweise höchstens 5,0 Gew.-%. Im Rahmen einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung umfasst die polymerisierbare Zusammensetzung keine Comonomere und enthält nur Furfurylalkohol.
  • Die Mengen an Verbindungen der Formel und Verbindungen der Formel (I) und/oder (II) können grundsätzlich frei gewählt werden. Vorzugsweise umfasst die polymerisierbare Zusammensetzung jedoch, bezogen auf ihr Gesamtgewicht,
    • mehr als 70,0 Gew.-%, bevorzugt mehr als 80,0 Gew.-%, insbesondere mehr als 90,0 Gew.-%, eine oder mehrere Verbindungen der Formel (II),
    • 0 bis 30,0 Gew.-%, bevorzugt 0 bis 20,0 Gew.-%, insbesondere 0 bis 10,0 Gew.-%, eine oder mehrere Verbindungen der Formel (I),
    • ggf. 0 bis 40,0 Gew.-%, bevorzugt 0 bis 30,0 Gew.-%, Kondensationsprodukte davon.
  • Gemäß einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung umfasst die polymerisierbare Zusammensetzung, bezogen auf ihr Gesamtgewicht,
    • bis zu 70,0 Gew.-%, bevorzugt bis zu 55,0 Cew.-%, insbesondere bis zu 25,0 Gew.-%, 2,5-Bis(hydroxymethyl)furan (BHMF),
    • bis zu 20,0 Gew.-%, bevorzugt bis zu 15,0 Gew.-%, insbesondere bis zu 5,0 Gew.-%, 2,3,5-Tris(hydroxymethyl)furan (THMF),
    • bis zu 10,0 Gew.-%, bevorzugt bis zu 5,0 Gew.-%, insbesondere bis zu 1,0 Gew.-%, 2,2'-Hydroxymethyldifurylmethan (HMDM).
  • Die Zusammensetzung kann weiterhin ggf. bis zu 40,0 Gew.-%, bevorzugt bis zu 30,0 Gew.-%, Kondensationsprodukte von BHMF, THMF und/oder HMDM enthalten.
  • Gemäß einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung umfasst die polymerisierbare Zusammensetzung, bezogen auf ihr Gesamtgewicht,
    • bis zu 60,0 Gew.-%, bevorzugt bis zu 30,0 Gew.-%, einer Verbindung der Formel (I) und/oder (II), wobei n kleiner gleich 5 ist, und
    • bis zu 40,0 Gew.-%, bevorzugt bis zu 60,0 Gew.-%, Kondensationsprodukte davon.
  • Im Rahmen der vorliegenden Erfindung umfasst die polymerisierbare Zusammensetzung vorzugsweise disubstituierte, trisubstituierte oder polysubstituierte Furanverbindungen oder eine Mischung davon. Weiterhin kann sie ein Lösungsmittel, einen Katalysator (Initiator), Kupplungsmittel, Füllstoffe, Flammschutzmittel, Öl (Wachs) und/oder ein Tensid enthalten.
  • In einer bevorzugten Ausführungsform der vorliegenden Erfindung werden die Verbindungen der vorliegenden Zusammensetzung in einem Lösungsmittel verdünnt. Die Konzentration der Verbindungen in dem Lösungsmittel liegt vorzugsweise zwischen 5,0 und 95,0 Gew.-%, bevorzugt zwischen 10,0 Gew.-% und 80,0 Gew.-%, bezogen auf das Gesamtgewicht der Lösung. Beispiele bevorzugter Lösungsmittel umfassen Wasser, Alkohole, insbesondere Ethanol und Methanol, Dioxan, N,N Dimethylformamid, Aceton, Ethylenglykol und Glycerin.
  • Gemäß einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung ist das Lösungsmittel Wasser. Die Furanverbindungen der vorliegenden Erfindung sind vorzugsweise in Wasser löslich. In einer weiteren bevorzugten Ausführungsform sind die Furanverbindungen der vorliegenden Erfindung in der Gegenwart von einem Katalysator in Wasser löslich. Der Ausdruck "wasserlöslich", so wie er hierin verwendet wird, bezieht sich auf die Menge, die nach Stehenlassen für 48 h in Wasser bei Raumtemperatur löslich ist, wenn 5,0 g Furanverbindungen zu 95,0 g entionisiertem Wasser gegeben werden. Die Prozentzahl der Wasserlöslichkeit kann durch die Formel berechnet werden: % Wasserlöslichkeit =100 x (5,0 g Furanverbindungen - Gewicht des wasserunlöslichen Rests) / (5,0 g Furanverbindungen).
  • In der vorliegenden Erfindung können die Furanverbindungen in der Gegenwart oder in der Abwesenheit von Katalysatoren umgesetzt werden. Die polymerisierbare Zusammensetzung kann daher einen Katalysator enthalten. Bevorzugte Katalysatoren schließen Metallsalze, Ammoniumsalze, organische Säuren, Anhydride, anorganische Säuren sowie Mischungen hiervon ein. Bevorzugte Metallsalze umfassen Metallhalogenide, insbesondere Magnesiumchlorid, Aluminiumchlorid und Zinkchlorid, Metallsulfate, insbesondere Magnesiumsulfat und Aluminiumsulfat, Metallnitrate, insbesondere Magnesiumnitrat, Aluminiumnitrat und Zinknitrat, Metallphosphate sowie Mischungen hiervon. Bevorzugte Ammoniumsalze umfassen Ammoniumchlorid, Ammoniumsulfat, Ammoniumphosphat, Ammoniumcarbonat, Ammoniumbicarbonat, Ammoniumaxalat, Ammoniumcitrat, Ammoniumnitrat, Ammoniumfumarat, Ammoniumlevulinat sowie Mischungen hiervon. Bevorzugte organische oder anorganische Säuren umfassen Ameisensäure, Essigsäure, Propionsäure, Buttersäure, Pentansäure, Hexansäure, Oxalsäure, Maleinsäure, Maleinsäureanhydrid, Adipinsäure, Zitronensäure, Furoesäure, Benzoesäure, Phthalsäureanhydrid, para-Totuolsulfonsäure, Salzsäure, Schwefelsäure, Salpetersäure, Phosphorsäure, Borsäure, Kieselsäure, Benzoylperoxid sowie Mischungen hiervon.
  • Abhängig vom Katalysator und der Aushärtetemperatur und den gewünschten Eigenschaften umfasst die Zusammensetzung vorzugsweise bis zu 20 Gew.%
  • (oder mehr), bevorzugt im Bereich von 1,0 Gew.-% bis 15,0 Gew.-%, besonders bevorzugt im Bereich von 8,0 Gew.-% bis 10,0 Gew.% , günstigerweise im Bereich von 5,0 Gew.% bis 8,0 Gew.% , insbesondere 5,0 Gew.%, Katalysator, jeweils bezogen auf die Gesamtmenge der (getrockneten) Furanverbindungen in der Zusammensetzung.
  • In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung werden die Furanverbindungen, insbesondere 2,5-Bis(hydroxymethyl)furan (BHMF), 2,3,5-Tris(hydroxymethyl)furan (THMF), 2,2'-(Hydroxymethyl)difurylmethan, (HMDM), Kondensationsprodukte davon, 2,2',3,3'-(Hydroxymethyl)difurylmethan, 2,2',4, 4'-(Hydroxymethyl)difurylmethan, durch Hydroxymethylierung von Furfurylalkohol mit einer Formaldehydquelle, insbesondere mit Formaldehyd, Paraformaldehyd oder Trioxan, erhalten.
  • Die Bildung des Furanharzes erfolgt vorzugsweise säurekatalysiert gemäß der allgemeinen Reaktionsgleichung
    Figure imgb0007
    wobei nur die Polykondensation von Furfurylalkohol dargestellt wurde und eventuelle Comonomere der Übersichtlichkeit halber nicht berücksichtigt wurden.
  • Die Vernetzung des Furanharzes erfolgt vorzugsweise primär durch Kondensation einer endständigen Methylolgruppe in einem Oligomer oder Polymer mit einer Methylengruppe einer anderen Kette; vorzugsweise wiederum unter Säurekatalyse:
    Figure imgb0008
  • Auch in diesem Zusammenhang werden eventuelle Comonomere oder Substituenten der Übersichtlichkeit halber nicht dargestellt.
  • Weiterhin ist auch eine Vernetzung durch eine Addition einer endständigen Methylolgruppe in einem Oligomer oder Polymer an eine Doppelbindung einer anderen Kette möglich, wenn auch im Rahmen der vorliegenden Erfindung weniger bevorzugt.
  • Geeignete Säuren für die Katalyse der Polymerisation und/oder der Vernetzung schließen anorganische und organische Säuren, insbesondere organische Säuren, ein. Starke Säuren, insbesondere Toluolsulfonsäure, Xylolsulfonsäure, Benzolsulfonsäure, Salzsäure und Schwefelsäure, werden in diesem Zusammenhang besonders bevorzugt. Dabei hat sich eine Mischung aus Toluolsulfonsäure und Benzolsulfonsäure ganz besonders bewährt.
  • Im Rahmen einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung wird eine schwache Säure, insbesondere Phosphorsäure, verwendet, die vorzugsweise eine längere Topfzeit bedingt und vorzugsweise eine Aushärtung des Harzes bei einer Temperatur im Bereich von 100°C bis 200°C erfordert.
  • Die Säuremenge kann in diesem Zusammenhang prinzipiell frei gewählt werden. Sie liegt vorzugsweise im Bereich von 1,0 bis 45,0 Gew.-%, bevorzugt im Bereich von 10,0 Gew.% bis 40,0 Gew.%, insbesondere im Bereich von 15,0 Gew.% bis 35,0 Gew.%, jeweils bezogen auf das Gesamtgewicht aus Furanharz-Monomeren und Oligomeren sowie Säurekatalysator.
  • Im Rahmen der vorliegenden Erfindung besonders geeignete Furanharze zeigen einen Peak im DSC-Diagramm (DSC = Differential Scanning Calorimetry) im Bereich von 120°C bis 160°C, bevorzugt im Bereich von 130°C bis 146°C, insbesondere im Bereich von 131°C bis 139°C. Die DSC-Messung erfolgt dabei vorzugsweise mit einer Heizrate von 5°C/Minute.
  • Für weitere Details zu Furanharzen und ihre Herstellung wird auf die Fachliteratur, insbesondere auf Römpp-Lexikon Chemie; Herausgeber: Jürgen Falbe, Manfred Regitz; bearbeitet von Eckard Amelingmeier; Stuttgart, New York; Thieme; 10. Auflage - 1997; Band 2 Cm-G, Stichwort "Furan-Harze" sowie Ullmann's Encyclopedia of lndustrial Chemistry, Fifth Edition on CD-ROM, 1997, Stichwort "Furan and derivatives - Furfurylalcohol" und die dort angegebenen Fundstellen, verwiesen.
  • Die Restfeuchte der erfindungsgemäßen Biokompositplatte, bezogen auf ihr Gesamtgewicht, ist kleiner 8,0 Gew.%, bevorzugt kleiner 7,0 Gew.-%, besonders bevorzugt kleiner 6,0 Gew.-&, insbesondere kleiner 5,0 Gew.-%. Sie wird vorzugsweise in Anlehnung an die Norm EN 20287 nach 24 h Trocknung im Trockenschrank bei 105°C, bevorzugt nach 48 h Trocknung im Trockenschrank bei 105°C, ermittelt
  • Der Gewichtsanteil des Biopolymers, bezogen auf das Gesamtgewicht der Biokompositplatte, beträgt im Rahmen der vorliegenden Erfindung mindestens 20,0 Gew.-% und liegt zweckmäßigerweise im Bereich von 20,0 Gew.-% bis 45,0 Gew.-%, vorzugsweise im Bereich von 25,0 Gew.-% bis 40,0 Gew.-%, mehr bevorzugt im Bereich von 28,0 Gew.-% bis 36,0 Gew.-% und noch mehr bevorzugt im Bereich von 30,0 Gew.-% bis 34,0 Gew.-%.
  • Das Gewichtsverhältnis von Naturfasern zu Biopolymer ist erfindungsgemäß vorzugsweise im Bereich von 5:1 bis 1:5, insbesondere im Bereich von 4:1 bis 1:1.
  • Die Herstellung der erfindungsgemäßen Blokompositplatte kann auf an sich bekannte Weise erfolgen.
  • Die erfindungsgemäße Biokompositplatte wird vorzugsweise dadurch erhalten, dass man einen Aufbau herstellt, der die Papierbögen, bevorzugt Recyclingpapierbögen, ggf. den Dekorpapierbogen, bevorzugt ein Recyclingpapierbogen, und ein geeignetes Bindemittelsystem enthält, diesen Aufbau vorzugsweise zwischen spezielle Pressplatten einbringt, verpresst und das Bindemittelsystem dabei aushärtet
  • Besonders bewährt hat sich dabei eine Vorgehensweise, bei welcher man
    1. a) mindestens zwei Papierbögen mit einer Zusammensetzung imprägniert, die mindestens eine Verbindung der Formel (I) und/oder der Formel (II) oder ein Präpolymer hiervon umfasst,
    2. b) die Bögen aus Schritt a. übereinander legt und unter Druckerhöhung und Temperaturerhöhung flächig miteinander verpresst,
    wobei in Schritt b. vorzugsweise eine Polymerisation und/oder Vernetzung der polymerisierbaren Zusammensetzung erfolgt.
  • Obwohl im Rahmen der vorliegenden Beschreibung von "dem" Dekorpapierbogen die Rede ist, versteht der Fachmann, dass, je nach gewünschter Beschaffenheit der Biokompositplatte, auch mehrere Dekorpapierbögen verwendet werden können.
  • Zum Herstellen des Aufbaus werden einzelne Bögen, bevorzugt sämtliche Bögen, der verschiedenen Schichten vorzugsweise mit einem geeigneten Bindemittel imprägniert.
  • Gemäß einer bevorzugten Ausführungsform umfasst der Aufbau mehrere Papierbögen, vorzugsweise zwei bis 200 Papierbögen, insbesondere Kraftpapierbögen. Auf dem obersten Paplerbogen ist vorzugsweise ein Dekorpapierbogen angeordnet.
  • Gemäß einer weiteren bevorzugten Ausführungsform ist der auf dem obersten Papierbogen aufgebrachte Dekorpapierbogen ein Prepreg aus Dekorpapier und einem geeigneten Bindemittel.
  • Gemäß einer weiteren bevorzugten Ausführungsform sind die im Aufbau vorhandenen Papierbögen vorzugsweise mit einer Zusammensetzung Imprägniert, die, bezogen auf das Gesamtgewicht der polymerisierbaren Komponenten, mindestens 50,0 Gew.% mindestens einer Verbindung der Formel (I) und/oder der Formel (II), insbesondere Furturylalkohol, und/oder Furanharz-Präpolymere auf Basis von Verbindungen der Formel (I) und/oder der Formel (II), insbesondere Furfurylalkohol, sowie vorzugsweise mindestens einen sauren Katalysator enthält. Vorzugsweise handelt es sich dabei um ein wärmehärtendes Harz, welches vorzugsweise bei Temperaturen im Bereich von 70°C bis 200°C, zweckmäßigerweise im Bereich von 100°C bis 180°C, insbesondere im Bereich von 140°C bis 160°C, aushärtet.
  • Der im Aufbau ggf. vorhandene Dekorpapierbogen ist vorzugsweise ebenfalls mit einer Zusammensetzung imprägniert, die, bezogen auf das Gesamtgewicht der polymerisierbaren Komponenten, mindestens 50,0 Gew.% mindestens einer Verbindung der Formel (I) und/oder der Formel (II), insbesondere Furfurylalkohol, und/oder Furanharz-Präpolymere auf Basis von Verbindungen der Formel (I) und/oder der Formel (II), insbesondere Furfurylalkohol, sowie vorzugsweise einen sauren Katalysator enthält. Vorzugsweise handelt es sich dabei um ein wärmehärtendes Harz, welches vorzugsweise bei Temperaturen im Bereich von 70°C bis 200°C, zweckmäßigerweise im Bereich von 100°C bis 180°C, insbesondere im Bereich von 140°C bis 160°C, aushärtet.
  • Der Bindemittelgehalt des imprägnierten Dekorbogens hängt unter anderem von dem Motiv des Dekorbogens ab. Bei unifarbenen Dekoren liegt der Bindemittelgehalt des imprägnierten Dekorbogens vorzugsweise im Bereich von 35,0 Gew.-% bis 65,0 Gew.-%, mehr bevorzugt im Bereich von 42,0 Gew.-% bis 60,0 Gew.-% und noch mehr bevorzugt im Bereich von 48,0 Gew.-% bis 55,0 Gew.-%. Bei mehrfarbigen, durch Muster erzeugten oder anderweitig bedruckten Dekormotiven liegt der Bindemittelgehalt des imprägnierten Dekorbogens vorzugsweise im Bereich von 35,0 Gew.% bis 65,0 Gew.-%, mehr bevorzugt im Bereich von 37,0 Gew.% bis 50,0 Gew.% und noch mehr bevorzugt im Bereich von 40,0 Gew.% bis 45,0 Gew.%.
  • Ein erfindungsgemäß präparierter Aufbau wird anschließend vorzugsweise zwischen zwei Pressplatten eingebracht und verpresst, die vorzugsweise matt, glatt oder strukturiert sind.
  • Die Verpressung des Aufbaus erfolgt bevorzugt bei einer Temperatur im Bereich von 70°C bis 200°C, besonders bevorzugt im Bereich 120°C bis 160°C, insbesondere im Bereich von 130°C bis 160°C, und bevorzugt bei erhöhtem Druck von vorzugsweise wenigstens 4 N/mm2, vorzugsweise wenigstens 5 N/mm2 und besonders bevorzugt wenigstens 7 N/mm2. Die Presszeit liegt vorzugsweise im Bereich von 40 Minuten bis 90 Minuten, besonders bevorzugt im Bereich von 50 Minuten bis 80 Minuten.
  • Die gleichzeitige Anwendung von Wärme und hohem Druck ermöglicht das Fließen und anschließende Aushärten der Bindemittel.
  • Das nach dem Verpressen des Aufbaus und dem Aushärten der Harze erhaltene Produkt wird schließlich als Biokompositplatte bezeichnet.
  • Die fertige Biokompositplatte weist, je nach gewähltem Aufbau, unterschiedliche Dicken auf. Übliche Dicken liegen im Bereich von 0,5 mm bis 2 mm, vorzugsweise im Bereich von 0,6 mm bis 1,5 mm und besonders bevorzugt im Bereich von 0,8 mm bis 1,2 mm. Es ist allerdings auch möglich, Biokompositplatten mit weitaus größeren Dicken, wie beispielsweise im Bereich von 2 mm bis 40 mm, vorzugsweise im Bereich von 2 mm bis 30 mm und besonders bevorzugt im Bereich von 2 mm bis 20 mm, herzustellen.
  • Die Dicke der Dekorschicht, sofern vorhanden, liegt vorzugsweise im Bereich von 65 µm bis 200 µm, besonders bevorzugt im Bereich von 80 µm bis 150 µm. Die Dicke der Kemschicht liegt gemäß einer ersten bevorzugten Ausführungsform der vorliegenden Erfindung im Bereich von 250 µm bis 1800 µm, besonders bevorzugt im Bereich von 500 µm bis 1500 µm. Im Rahmen einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung liegt die Dicke der Kernschicht Im Bereich von 1,7 mm bis 39,7 mm, bevorzugt im Bereich von 1,7 mm bis 29,7 mm, besonders bevorzugt im Bereich von 1,7 mm bis 19,7 mm.
  • Das Endgewicht der erfindungsgemäßen Biokompositplatte ist von mehreren Faktoren, wie zum Beispiel der Dicke der Biokompositplatte, dem Gewicht der eingesetzten Komponenten und der Anzahl der verwendeten Bögen, abhängig. Gemäß einer ersten bevorzugten Ausführungsform der vorliegenden Erfindung liegt das Gewicht der Biokompositplatte im Bereich von 1,0 kg/m2 bis 1,6 kg/m2 Oberfläche der Biokompositplatte, besonders bevorzugt im Bereich von 1,3 kg/m2 bis 1,5 kg/m2, zum Beispiel bei 1,4 kg/m2. Gemäß einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung liegt das Gewicht der Biokompositplatte im Bereich von 2,8 kg/m2 bis 56,0 kg/m2 Oberfläche der Biokompositplatte, besonders bevorzugt im Bereich von 2,8 kg/m2 bis 42 kg/m2, insbesondere im Bereich von 2,8 kg/m2 bis 28 kg/m2.
  • Die erfindungsgemäße Biokompositplatte wird aufgrund Ihrer hervorragenden Eigenschaften insbesondere für Wandverkleidungen, Arbeitsflächen, Ladeneinrichtungen, Regale, Theken und/oder Möbel eingesetzt. Weiterhin ist auch ihre Verwendung für Bodenbeläge vorteilhaft.
  • Dementsprechend betrifft die Erfindung unter einem weiteren Aspekt ein Paneel, das einen Träger und eine auf dem Träger haftende erfindungsgemäße Biokompositplatte umfasst. Vorzugsweise handelt es sich bei dem Paneel um eine Wandverkleidung. Ferner kann das Paneel aber auch eine andere Platte, wie zum Beispiel eine Tischplatte oder eine Möbelplatte, sein.
  • Bevorzugte Träger sind Spanplatten, Sperrholz, Trägerplatten (gegebenenfalls mit Schichtstoff beschichtet), hochverdichtete Faserplatten, mitteldichte Faserplatten, Hartfaserplatten, Tischlerplatten, Furnisrplatten, Massivholz, Waben, Schaumstoffe, Metallplatten, Bleche, mineralische Träger, Natur- und Kunststein, Fliesen und Gipskartonplatten. Die Träger können mit einem geeigneten Bindemittel beschichtet oder unbeschichtet sein. Bevorzugt kommen jedoch wiederum Biopolymere als Bindemittel zum Einsatz.
  • Die Biokompositplatte kann sowohl auf flüssigkeitsaufnehmende (saugfähige) Träger, wie zum Beispiel unbeschichtete Spanplatten und unbeschichtetes Holz, als auch auf nicht flüssigkeitsaufnehmende (nicht saugfähige) Träger, wie zum Beispiel Metalle, Keramik, Glas, beschichtete Hölzer, beschichtete Spanplatten usw. aufgebracht werden.
  • Verfahren und Mittel zum festen Verbinden von Biokompositplatte und Träger sind aus dem Stand der Technik bekannt. Beispielsweise kann das feste Verbinden von Blokompositplatte und Träger durch Verkleben oder mit Hilfe von aus dem Stand der Technik bekannten Verbindungselementen erfolgen.
  • Das Paneel kann zudem weitere aus dem Stand der Technik bekannte Funktionsmaterialien aufweisen. Beispielhaft seien Materialien zum Flammschutz, zur Abschirmung von Strahlung, zur Schalldämpfung, zur Stabilisierung und zur Fsuchtigkeitssperre genannt.
  • Die Dicke des Paneels ist nicht weiter eingeschränkt. Sie liegt vorzugsweise im Bereich von 7 mm bis 40 mm, besonders bevorzugt im Bereich von 12 mm bis 30 mm und ganz besonders bevorzugt im Bereich von 18 mm bis 28 mm. Die Dicke der in dem Paneel vorhandenen Biokompositplatte kann, wie vorstehend beschrieben, vorzugsweise im Bereich von 0,5 mm bis 2 mm, besonders bevorzugt im Bereich von 0,6 mm bis 1,5 mm und ganz besonders bevorzugt im Bereich von 0,8 mm bis 1,2 mm liegen. Die Dicke des Trägers liegt vorzugsweise im Bereich von 5 mm bis 38 mm, besonders bevorzugt im Bereich von 10 mm bis 28 mm, ganz besonders bevorzugt im Bereich von 16 mm bis 25 mm.
  • Das Endgewicht des Paneels ist nicht besonders eingeschränkt. Es liegt vorzugsweise im Bereich von 8 kg/m2 bis 25 kg/m2 Oberfläche des Paneels, besonders bevorzugt im Bereich von 10 kg/m2 bis 21 kg/m2 und ganz besonders bevorzugt im Bereich von 12 kg/m2 bis 18 kg/m2.
  • Die vorliegende Erfindung wird anhand der folgenden Beispiele erläutert, die jedoch nicht als einschränkend zu verstehen sind:
  • Ausführungsbeispiel 1
  • Ein aus Kraftzellstoff bestehendes Recyclingpapier mit einem Flächengewicht von nominell 210 g/m2 wurde mit 52% einer etwa 60-65 %-igen Furfurylalkohol-Polymer-Lösung (= Furan-Harz) (incl. Härter, Netz- und Trennmittel) getränkt. Das überschüssige Harz wurde an der Oberfläche zwischen zwei polierten Stahlwalzen entfernt. Das imprägnierte Papier wurde 2 h bei Raumtemperatur antrocknen gelassen und anschließend für 2 Minuten bei 130 °C in einem Umlufttrockenschrank getrocknet, um ein vorimprägniertes Recyclingpapier zu erhalten.
  • Herstellung einer erfindungsgemäßen Biokompositplatte
  • Zur Herstellung einer erfindungsgemäßen Biokompositplatte wurde zunächst ein für das Verpressen mit zwei Pressblechen geeigneter Aufbau hergestellt. Dazu wurden auf 10 Bögen Recyclingpapier, die mit dem Furanharz imprägniert wurden zusammengelegt. Auf den obersten Papierbogen wurde jeweils ein Releasebogen angeordnet. Ein derartiger Aufbau ist in Schema 1 dargestellt.
    Figure imgb0009
  • Der derart präparierter Aufbau wurde zwischen zwei Pressblechen als Strukturgeber bei einem Druck von 10 N/mm2 und einer Maximaltemperatur von 145°C für 25 min verpresst und anschließend auf Raumtemperatur abgekühlt.
  • Ausführungsbeispiel 2
  • Das In Ausführungsbeispiel 1 hergestellte vorimprägnierte Recyclingpapier wurde zur Herstellung einer erfindungsgemäßen Biokompositplatte verwendet, wobei nun 23 Bögen Recyclingpapier, die mit dem Furanharz imprägniert wurden, miteinander verpresst wurden.
  • Ausführungsbeispiel 3
  • Das in Ausführungsbeispiel 1 hergesteltte vorimprägnierte Recyclingpapier wurde zur Herstellung einer erfindungsgemäßen Biokompositplatte verwendet, wobei nun 28 Bögen Recyclingpapier, die mit dem Furanharz imprägniert wurden, miteinander verpresst wurden.
  • Ausführungsbeispiel 4
  • Das in Ausführungsbeispiel 1 hergestellte vorimprägnierte Recyclingpapier wurde zur Herstellung einer erfindungsgemäßen Biokompositplatte verwendet, wobei nun 48 Bögen Recyclingpapier, die mit dem Furanharz imprägniert wurden miteinander verpresst.
  • Ergebnisse
  • Die in den Ausführungsbeispielen erhaltenen Biokompositplatten wurden auf ihre Festigkeiten untersucht. Die Bestimmung der Dichte erfolgte nach EN ISO 1183-1.
  • Die mechanischen Festigkeiten wurden gemäß EN ISO 178 in einem Drelpunkt-Biegeversuch ermittelt. Die erhaltenen Werte sind in Tabelle 1 dargestellt: Tabelle 1: Prüfergebnisse
    Beispiel Plattendicke in mm Biegefestigkeit in N/mm2
    längs / quer
    E-Modul in N/mm2
    längs / quer
    Dichte in g/cm3
    1 2,22 182,2 / 126,5 15424 / 9346 1,46
    2 4,84 145,8 / 116,8 13272 / 9683 1,45
    3 5,90 147,4 / 122,7 10491 / 7581 1,46
    4 10,37 178,3 / 146,0 11666 / 7895 1,46

Claims (15)

  1. Biokompositplatte, umfassend
    a) mindestens eine Naturfaser und
    b) mindestens ein duroplastisches Biopolymer,
    dadurch gekennzeichnet, dass
    o die Biokompositplatte eine Restfeuchte, bezogen auf ihr Gesamtgewicht, kleiner 8,0 Gew.-% aufweist,
    o die Biokompositplatte mindestens zwei Bögen Papier umfasst,
    o das Biopolymer ein Furanharz einschließt, das durch Polymerisation einer Zusammensetzung erhältlich ist, die eine Verbindung der Formel (I) und/oder der Formel (II) enthält
    Figure imgb0010
    Figure imgb0011
    wobei
    • n eine ganze Zahl zwischen 0 und 20 ist,
    • t und s, jeweils unabhängig voneinander, eine ganze Zahl zwischen 1 und 20 sind,
    • w und z, jeweils unabhängig voneinander, 0 oder 1 sind,
    • X und Y, jeweils unabhängig voneinander, O, S oder N-R21 sind,
    • R1 R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, R16 R18, R19 und R21, jeweils unabhängig voneinander, Wasserstoff, C1C20-Alkyl, C2-C20-Alkenyl, C2-C20-Alkinyl, C5-C24-Aryl, C5-C12-Heteroaryl, Carboxyaldehyd, Hydroxyl, Hydroxyalkyl, Carboxyl, Amino, Nitro, Formyl, Alkylamino, Aminoalkyl, Alkylaminoalkyl, Furyl, Furylalkyl, Hydroxyalkylfurylalkyl, Alkyloxy, Alkyloxyalkyl, Alkenyloxy, Alkylcarbonylalkenyl, Oxiranyl, Alkylcarbonaloxyalkyl, Alkyloxycarbonylalkenyl, Alkenylcarbonyloxyalkl, Isocyanat, Isocyanatalkyl, Alkylcarboxy, Alkenylcarboxy, Alkylcarbonyl, Alkenylcarbonyl, Halogencarbonyl, Halogenalkyl, Halogenaryl, Halogenalkenyl, Imino, Thiol, Alkylthio, Thioalkyl, Alkylthioalkyl, Cyano, Alkylsulfonyl und/oder eine Sulfonsäuregruppe sind, wobei jede Gruppe mit C1-C20-Alkyl, C2-C20-Alkenyl, C2-C20-Alkinyl, C5-C24-Aryl, Hydroxyl, Carboxyl, Nitro, Amino, Furyl, Furylalkyl, Alkylfuryl, Hydroxyalkylfurylalkyl, Isocyanat, Formyl, Halogencarbonyl, Thiol und/oder Alkylthio substituiert sein kann,
    • R17 Wasserstoff, C1-C20-Alkyl, C2-C20-Alkenyl, C2-C20-Alkinyl, C5-C24-Aryl, C5-C12-Heteroaryl, Carboxyaldehyd, Hydroxyl, Hydroxyalkyl, Carboxyl, Amino, Nitro, Formyl, Alkylamino, Aminoalkyl, Alkylaminoalkyl, Furyl, Furylalkyl, Hydroxyalkylfurylalkyl, Alkyloxy, Alkyloxyalkyl, Alkenyloxy, Alkylcarbonylalkenyl, Oxiranyl, Alkylcarbonyloxyalkyl, Alkyloxycarbonylalkenyl, Alkenylcarbonyloxyalkyl, Isocyanat, lsocyanatalkyl, Alkylcarboxy, Alkenylcarboxy, Alkylcarbonyl, Alkenylcarbonyl, Halogencarbonyl, Halogenalkyl, Halogenaryl, Halogenalkenyl, lmino, Thiol, Alkylthio, Thioalkyl, Alkylthioalkyl, Cyano, Alkylsulfonyl und/oder eine Sulfonsäuregruppe ist, wobei jede Gruppe mit C1-C20-Alkyl, C2-C20Alkenyl, C2-C20-Alkinyl, C5-C24-Aryl, Hydroxyl, Carboxyl, Nitro, Amino, Furyl, Furylalkyl, Alkylfuryl, Hydroxyalkylfurylalkyl, Isocyanat, Formyl, Halogencarbonyl, Thiol und/oder Alkylthio substituiert sein kann,
    • R20 C1-C20-Alkyl, C2-C20-Alkenyl, C2-C20-Alkinyl, C5-C24-Aryl, C5-C12-Heteroaryl, Carboxyaldehyd, Hydroxyl, Hydroxyalkyl, Carboxyl, Amino, Nitro, Formyl, Alkylamino, Aminoalkyl, Alkylaminoalkyl, Furyl, Furylalkyl, Hydroxyalkylfurylalkyl, Alkyloxy, Alkyloxyalkyl, Alkenyloxy, Alkylcarbonylalkenyl, Oxiranyl, Alkylcarbonyloxyalkyl, Alkyloxycarbonylalkenyl, Alkenylcarbonyloxyalkyl, Isocyanat, Isocyanatalkyl, Alkylcarboxy, Alkenylcarboxy, Alkylcarbonyl, Alkenylcarbonyl, Halogencarbonyl, Halogenalkyl, Halogenaryl, Halogenalkenyl, Imino, Thiol, Alkylthio, Thioalkyl, Alkylthioalkyl, Cyano, Alkylsulfonyl und/oder eine Sulfonsäuregruppe ist, wobei jede Gruppe mit C1-C20-Alkyl, C2-C20-Alkenyl, C2C20-Alkinyl, C6-C24-Aryl, Hydroxyl, Carboxyl, Nitro, Amino, Furyl, Furylalkyl, Alkylfuryl, Hydroxyalkylfurylalkyl, Isocyanat, Formyl, Halogencarbonyl, Thiol und/oder Alkylthio substituiert sein kann, und
    • wobei die gestrichelte Linie eine optionale Doppelbindung darstellt, und
    o der Gewichtsanteil des Biopolymers, bezogen auf das Gesamtgewicht der Biokompositplatte, mindestens 20,0 Gew;% beträgt.
  2. Biokompositplatte nach Anspruch 1, dadurch gekennzeichnet, dass die Biokompositplatte eine Restfeuchte, bezogen auf ihr Gesamtgewicht, kleiner 5,0 Gew.-% aufweist.
  3. Biokompositplatte nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Naturfaser, bezogen auf ihr Gesamtgewicht, mehr als 50,0 Gew.-% Cellulosefasern umfasst.
  4. Biokompositplatte nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Rest R17 Wasserstoff ist.
  5. Biokompositplatte nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass R20 C1-C2 Alkyl, Carboxaldehyd, Hydroxyalkyl, Carboxyl, Aminoalkyl, Alkylaminoalkyl, Hydroxyalkylfurylalkyl, Alkoxyalkyl, Oxiranyl oder Isocyanat, insbesondere Hydroxyalkyl, vor allem CH2OH, ist und die gestrichelte Linie eine Doppelbindung darstellt.
  6. Biokompositplatte nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die polymerisierbare Zusammensetzung, bezogen auf das Gesamtgewicht der polymerisierbaren Komponenten, mindestens 60,0 Gew.% Furfurylalkohol enthält.
  7. Biokompositplatte nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die polymerisierbare Zusammensetzung, bezogen auf ihr Gesamtgewicht,
    - mehr als 70,0 Gew.% eine oder mehrere Verbindungen der Formel (II),
    - 0 bis 30,0 Gew.-% eine oder mehrere Verbindungen der Formel (I),
    - ggf. 0 bis 40,0 Gew.-% Kondensationsprodukte davon,
    umfasst.
  8. Biokompositplatte nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Gewichtsanteil des Biopolymers, bezogen auf das Gesamtgewicht der Biokompositplatte, im Bereich von 20,0 Gew.-% bis 45,0 Gew.-% liegt.
  9. Biokompositplatte nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Gewichtsverhältnis von Naturfasern zu Biopolymer im Bereich von 5:1 bis 1:5 liegt.
  10. Verfahren zur Herstellung einer Biokompositplatte nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass man
    a) mindestens zwei Papierbögen mit einer Zusammensetzung imprägniert, die mindestens eine Verbindung der Formel (I) und/oder der Formel (II) oder ein Präpolymer hiervon umfasst,
    b) die Bögen aus Schritt a. übereinander legt und unter Druckerhöhung und Temperaturerhöhung flächig miteinander verpresst.
  11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass man die Verbindung der Formel (I) oder der Formel (II) in Schritt b. polymerisiert und/oder vernetzt.
  12. Verfahren nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass man Papierbögen mit einem Rohpapierflächengewicht im Bereich von 150 g/m2 bis 250 g/m2 einsetzt.
  13. Verfahren nach Anspruch 10, 11 oder 12, dadurch gekennzeichnet, dass man recycelte Papierbögen einsetzt.
  14. Verwendung einer Biokompositplatte nach mindestens einem der Ansprüche 1 bis 9 für Wandverkleidungen, Arbeitsflächen, Ladeneinrichtungen, Regale, Theken, Möbel oder Bodenbeläge.
  15. Paneel, das einen Träger und eine auf dem Träger haftende Biokompositplatte nach mindestens einem der Ansprüche 1 bis 9 umfasst,
EP20100012677 2010-10-01 2010-10-01 Biokompositplatte Withdrawn EP2436711A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20100012677 EP2436711A1 (de) 2010-10-01 2010-10-01 Biokompositplatte
EP20110775907 EP2621979B1 (de) 2010-10-01 2011-10-04 Biokompositplatte
RU2013119961/05A RU2586699C2 (ru) 2010-10-01 2011-10-04 Биокомпозиционная плита
PCT/EP2011/004921 WO2012041521A1 (de) 2010-10-01 2011-10-04 Biokomposiplatte
US13/825,878 US20130295399A1 (en) 2010-10-01 2011-10-04 Biocomposite panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20100012677 EP2436711A1 (de) 2010-10-01 2010-10-01 Biokompositplatte

Publications (1)

Publication Number Publication Date
EP2436711A1 true EP2436711A1 (de) 2012-04-04

Family

ID=43857613

Family Applications (2)

Application Number Title Priority Date Filing Date
EP20100012677 Withdrawn EP2436711A1 (de) 2010-10-01 2010-10-01 Biokompositplatte
EP20110775907 Active EP2621979B1 (de) 2010-10-01 2011-10-04 Biokompositplatte

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP20110775907 Active EP2621979B1 (de) 2010-10-01 2011-10-04 Biokompositplatte

Country Status (4)

Country Link
US (1) US20130295399A1 (de)
EP (2) EP2436711A1 (de)
RU (1) RU2586699C2 (de)
WO (1) WO2012041521A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9925728B2 (en) 2014-01-08 2018-03-27 The Boeing Company Method of making fire resistant sustainable aircraft interior panels

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9964532B2 (en) 2013-01-15 2018-05-08 Ndsu Research Foundation Biodegradable soil sensor, system and method
CN108290368A (zh) * 2015-09-17 2018-07-17 罗伯特·维洛兹·赫雷斯 承载复合面板、材料、产品及其制造和使用方法
WO2018128596A1 (en) * 2017-01-03 2018-07-12 Dreamzen Inc Articles including beneficial objects dispersed in horsehair and methods of manufacture
EP3395854A1 (de) 2017-04-26 2018-10-31 Bio Bond ApS Harze aus erneuerbaren quellen und aus diesen harzen hergestellte strukturen
FR3075093B1 (fr) * 2017-12-18 2019-12-20 Saint-Gobain Glass France Article comprenant un revetement fonctionnel et une couche de protection temporaire en resine polyfuranique
WO2021007171A1 (en) * 2019-07-08 2021-01-14 Ndsu Research Foundation Novel bio-based diols from sustainable raw materials, uses thereof to make diglycidyl ethers, and their coatings
US20210131039A1 (en) * 2019-11-05 2021-05-06 Fiberlean Technologies Limited Binder composition and method comprising microfibrillated cellulose and recycled cellulosic materials
DE102022125427A1 (de) 2022-09-30 2024-04-04 Westfiber Gmbh Getreidekomposit-Artikel, insbesondere Haferkomposit-Artikel, entsprechende Verwendungen, Verfahren und Kit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2404840A (en) * 1943-05-06 1946-07-30 Harvel Res Corp Resins made with lignin and heat reactive condensation products and methods for preparing the same
GB629408A (en) * 1945-07-09 1949-09-20 Quaker Oats Co Improvements in or relating to methods of preparing an artificial, thermosetting resin and the improved resin resulting therefrom
US2601497A (en) * 1950-01-14 1952-06-24 Quaker Oats Co Furfuryl alcohol resins
US3455860A (en) * 1966-11-16 1969-07-15 Far Best Corp Water soluble furans

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU455020A1 (ru) * 1972-08-31 1974-12-30 Производственное Объединение Синтетических, Отделочный И Изоляционных Строительных Материалов "Стройпластмасс" Способ получени бумажно-слоистого пластика
US4046937A (en) * 1974-10-10 1977-09-06 Westinghouse Electric Corporation Melamine-aldehyde resin and postformable laminate made therefrom
JP3067435B2 (ja) * 1992-12-24 2000-07-17 キヤノン株式会社 画像読取用光電変換装置及び該装置を有する画像処理装置
RU2087502C1 (ru) * 1993-03-19 1997-08-20 Анатолий Алексеевич Багаев Состав для изготовления древесно-волокнистых плит
US7037865B1 (en) * 2000-08-08 2006-05-02 Moldite, Inc. Composite materials
ATE318207T1 (de) * 2000-12-29 2006-03-15 Lg Chemical Ltd Feuerfeste komposit-panele und diese verwendende dekorative feuerfeste komposit-panele
DE10132749A1 (de) * 2001-07-03 2003-01-30 Fraunhofer Ges Forschung Faserverstärkter Werkstoff auf der Basis duroplastischer Polymere
US20030148069A1 (en) * 2002-02-07 2003-08-07 Krebs Robert R. Compound formable decorative laminate
BE1016754A6 (nl) * 2005-09-02 2007-06-05 Raemdonck Joris Van Werkwijze voor de bereiding van natuurvezelversterkte thermohardende of thermoplastische polymeer composieten en hun veelzijdige toepassingen als constructiemateriaal.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2404840A (en) * 1943-05-06 1946-07-30 Harvel Res Corp Resins made with lignin and heat reactive condensation products and methods for preparing the same
GB629408A (en) * 1945-07-09 1949-09-20 Quaker Oats Co Improvements in or relating to methods of preparing an artificial, thermosetting resin and the improved resin resulting therefrom
US2601497A (en) * 1950-01-14 1952-06-24 Quaker Oats Co Furfuryl alcohol resins
US3455860A (en) * 1966-11-16 1969-07-15 Far Best Corp Water soluble furans

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Römpp-Lexikon Chemie"
"Ullmann's Encyclopedia of Industrial Chemistry", 1997
STICHWORT: "Furan-Harze"

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9925728B2 (en) 2014-01-08 2018-03-27 The Boeing Company Method of making fire resistant sustainable aircraft interior panels

Also Published As

Publication number Publication date
RU2013119961A (ru) 2014-11-20
EP2621979A1 (de) 2013-08-07
US20130295399A1 (en) 2013-11-07
RU2586699C2 (ru) 2016-06-10
WO2012041521A1 (de) 2012-04-05
EP2621979B1 (de) 2015-05-06

Similar Documents

Publication Publication Date Title
EP2621979B1 (de) Biokompositplatte
AT390396B (de) Verfahren zum herstellen eines gegebenenfalls plattenfoermigen kunstharz-hochdruckformkoerpers sowie vorprodukt zum einsatz bei einem solchen verfahren
DE202013012649U1 (de) Verwendung von niedermolekularem Lignin zusammen mit Lignin zur Erzeugung einer Phenol-Formaldehyd-Bindemittelzusammensetzung
EP3205496B1 (de) Verbundplatte aus holzwerkstoff mit einer mittellage aus sperrholz
EP3366713A1 (de) Verfahren zur herstellung von holzverbundwerkstoffen sowie durch das verfahren erhältliche holzverbundwerkstoffe
DE2748578A1 (de) Verfahren zur herstellung einer cellulosefasern enthaltenden platte und die dabei erhaltene faserplatte
EP1780243B1 (de) Bindemittelzusammensetzung für Holzwerkstoffe
AT407507B (de) Holzspanplatte mit hoher biegefestigkeit und hohem biege-e-modul
EP0800543B1 (de) Modifizierte melaminharze und deren verwendung zur herstellung von post-forming-laminaten
DE2149970C3 (de) Verfahren zur Herstellung eines modifizierten Aminoplasten und seine Verwendung
DE3321928C2 (de)
DE2443645A1 (de) Modifizierter aminoplast, verfahren zu seiner herstellung und seine verwendung
EP3098072B1 (de) Verfahren zur herstellung von laminaten
DE2600887C3 (de) Modifizierungsmittel für Phenolharze
DE737953C (de) Verfahren zur Herstellung von Lederersatzstoffen
AT269461B (de) Verfahren zur Herstellung wetterfester, mehrschichtiger Spanplatten
DE1248842B (de) Klebstoff zur Herstellung von Schichtholzprodukten
CH558240A (de) Verbundplatte und verfahren zu deren herstellung.
DE1569427A1 (de) Dekorationsschichtstoff und Verfahren zu seiner Herstellung
EP2746438B1 (de) Aminoplastharzfilm
AT340151B (de) Verfahren zum herstellen beschichteter holzwerkstoffe oder schichtstoffe
DE2408441C3 (de) Verfahren zur Herstellung von Iigninharz
EP2407513A1 (de) Wässrige modifizierte Harnstoffharzmischung, Verfahren zu deren Herstellung und deren Verwendung zum Tränken von saugfähigem Trägermaterial, sowie unter Verwendung der Harnstoffharzmischung hergestelltes Verbundmaterial
CH438713A (de) Zum Aufbau von Schichtpressstoffen geeignete Trägerbahnen
DE2331293A1 (de) Verfahren zur herstellung von formkoerpern aus cellulose- und/oder lignocellulosehaltigem spanmaterial mit verbesserter qualitaet der oberflaechen und der mechanischen eigenschaften

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20121005