EP2435682B1 - Elektrisch angesteuerter vergaser - Google Patents

Elektrisch angesteuerter vergaser Download PDF

Info

Publication number
EP2435682B1
EP2435682B1 EP10744862A EP10744862A EP2435682B1 EP 2435682 B1 EP2435682 B1 EP 2435682B1 EP 10744862 A EP10744862 A EP 10744862A EP 10744862 A EP10744862 A EP 10744862A EP 2435682 B1 EP2435682 B1 EP 2435682B1
Authority
EP
European Patent Office
Prior art keywords
fuel
tesla
pumping
unit
carburettor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10744862A
Other languages
English (en)
French (fr)
Other versions
EP2435682A1 (de
Inventor
Christian Kellermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Makita Corp
Original Assignee
Makita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Makita Corp filed Critical Makita Corp
Publication of EP2435682A1 publication Critical patent/EP2435682A1/de
Application granted granted Critical
Publication of EP2435682B1 publication Critical patent/EP2435682B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/16Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for metering continuous fuel flow to injectors or means for varying fuel pressure upstream of continuously or intermittently operated injectors
    • F02M69/18Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for metering continuous fuel flow to injectors or means for varying fuel pressure upstream of continuously or intermittently operated injectors the means being metering valves throttling fuel passages to injectors or by-pass valves throttling overflow passages, the metering valves being actuated by a device responsive to the engine working parameters, e.g. engine load, speed, temperature or quantity of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D3/00Controlling low-pressure fuel injection, i.e. where the fuel-air mixture containing fuel thus injected will be substantially compressed by the compression stroke of the engine, by means other than controlling only an injection pump
    • F02D3/04Controlling fuel-injection and carburation, e.g. of alternative systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M17/00Carburettors having pertinent characteristics not provided for in, or of interest apart from, the apparatus of preceding main groups F02M1/00 - F02M15/00
    • F02M17/38Controlling of carburettors, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/04Feeding by means of driven pumps
    • F02M37/046Arrangements for driving diaphragm-type pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/12Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps having other positive-displacement pumping elements, e.g. rotary
    • F02M59/14Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps having other positive-displacement pumping elements, e.g. rotary of elastic-wall type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/46Valves
    • F02M59/462Delivery valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/46Valves
    • F02M59/464Inlet valves of the check valve type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/30Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for facilitating the starting-up or idling of engines or by means for enriching fuel charge, e.g. below operational temperatures or upon high power demand of engines
    • F02M69/36Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for facilitating the starting-up or idling of engines or by means for enriching fuel charge, e.g. below operational temperatures or upon high power demand of engines having an enrichment mechanism modifying fuel flow to injectors, e.g. by acting on the fuel metering device or on the valves throttling fuel passages to injection nozzles or overflow passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M7/00Carburettors with means for influencing, e.g. enriching or keeping constant, fuel/air ratio of charge under varying conditions
    • F02M7/10Other installations, without moving parts, for influencing fuel/air ratio, e.g. electrical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M71/00Combinations of carburettors and low-pressure fuel-injection apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2024Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit the control switching a load after time-on and time-off pulses
    • F02D2041/2027Control of the current by pulse width modulation or duty cycle control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio

Definitions

  • the present invention relates to an electrically controlled carburetor for gasoline engines with a venturi for sucking fuel from a fuel line opening into the air duct, which is connected to a fuel chamber and between the fuel chamber and the mouth in the venturi a fuel nozzle for adjusting a due to negative pressure in the venturi comprising fuel quantity sucked from the fuel chamber.
  • Such a carburetor is for example from the DE 102 16 084 A1 known.
  • This task tries the DE 102 16 084 A1 to be solved in that the fuel nozzle is provided with a variable flow cross-section.
  • a piezoelectric actuator is proposed. Because of a short travel of such piezoelectric actuators, however, a translation element is needed, which makes the construction of such a carburetor consuming. In addition, the use of a translation element leads to a higher degree of inaccuracy and higher susceptibility.
  • the DE 102 42 816 A1 describes an electromagnetic valve in which flow channels are fluidly separated by current flow in a coil from one another by an anchor plate. With the anchor plate as the only moving part only small forces for opening and closing the valve are necessary.
  • the object of the present invention is to provide a flexibly adaptable carburettor for gasoline engines, in particular for engine working devices, which overcomes the above-mentioned drawbacks of the prior art and has a simple, robust construction which allows constant long-term behavior.
  • the invention includes the technical teaching that at least two Tesla diodes are inserted in series with the fuel nozzle, between which a chamber (hereinafter referred to as "pumping chamber”) is located with a pump unit.
  • the invention takes advantage of the property of Tesla diodes to have a higher flow resistance in a direction hereinafter referred to as the "reverse direction” than a direction opposite to the reverse direction, hereinafter referred to as the "forward direction”.
  • the ratio of the pressure loss in both directions is expressed by the so-called “diodicity”, which is a dimensionless number. Because of this asymmetric property, such a component is also referred to as a fluidic diode analogous to the diodes in electrical engineering.
  • the asymmetry of the flow resistance of a Tesla diode results from a loop-like arrangement of flow channels, wherein in the forward direction a liquid flowing through the Tesla diode fluid flows predominantly through straight channels, in the reverse direction, however, at least one curved channel must be traversed, whereby the flow resistance is increased.
  • a backwater arises in at least one area in which a curved and a straight channel coincide, a backwater, which in turn increases the flow resistance in the reverse direction.
  • a first Tesla diode Seen from the pumping chamber, a first Tesla diode is connected in the reverse direction, a second Tesla diode in the forward direction. Because of the lower flow resistance in the second Tesla diode, fluid from the chamber flows either completely or at least for the most part through the second Tesla diode.
  • the pump unit moves in a pumping process in the opposite direction, so that a negative pressure arises in the chamber, fluid is sucked from the fuel line. Since the first Tesla diode in the forward direction is now present with regard to flowing into the pumping chamber, fuel flows either completely or at least for the most part through the first Tesla diode.
  • a simply constructed pumping device is achieved.
  • This acts as a regulating unit, which efficiently and flexibly adapts the flow of fuel in the fuel line from the fuel nozzle to the mouth in the air funnel.
  • a flexibly adaptable carburetor is achieved, which can respond to external influences, such as tilting or pivoting of an engine working device, or internal influences, such as the lambda value in the exhaust gas, quickly and at the same time simple design.
  • Tesla diodes Since there are neither mechanically movable nor electrical components in the Tesla diodes, they have an extremely low susceptibility. They have no wearing parts and therefore retain a constant long-term behavior without wear. In addition, since there are no moving parts in the Tesla diodes, they have no leakage problems. If, in addition, a simply constructed pumping unit is used, the entire regulating unit and thus the erfindungsgemäBe carburetor high robustness and low susceptibility while maintaining constant long-term behavior. In addition, due to the lack of an opening threshold, a Tesla diode can be easily operated in the kHz range.
  • the Tesla diodes are introduced in the direction of flow from the fuel nozzle to the venturi in the reverse direction.
  • the regulating unit pumps in the opposite direction to the fuel flow from the fuel nozzle to the mouth in the air funnel and thus has the function of a throttle unit. If the regulating unit fails, more fuel in the fuel line is delivered to the venturi than during operation of the regulating unit, i. the fuel-air mixture that is produced in the carburetor then gets fatter. Therefore, it is advantageous to adjust the fuel nozzle so that would be generated without the regulator in the vent a too rich fuel-air mixture.
  • the regulating unit empties the mixture to the desired mixing ratio. In case of failure of the regulating unit, the fuel-air mixture is then too fat instead of too lean, which does not damage the engine.
  • the two Tesla diodes are arranged in the forward direction, thus supporting in operation the flow from the fuel nozzle to the mouth.
  • the pumping unit is a membrane element.
  • This has a membrane which forms a portion of an inner wall of the pumping chamber. Periodic movement of the membrane periodically generates a volume change in the pumping chamber and thus periodically a pressure change in the pumping chamber.
  • the membrane is moved, for example, electromechanically or via a piezoelectric element.
  • Such membrane elements are robust elements that have low susceptibility and long life. Because of the very low weight of the membrane, it can be moved at very high frequencies.
  • the piston takes over the task to reduce the volume in the pumping chamber periodically or increase.
  • the pump unit is controlled in a voltage-modulated manner. This has the advantage that you can work with digital signals.
  • the modulation allows a stepless adjustment of the pump unit and thus a stepless regulation of the fuel flow in the fuel line.
  • the pump unit is controlled in pulse width modulation. This modulation is particularly easy to handle, with a simple control to effect a stepless adjustment of the pumping unit.
  • the pump unit may be regulated by a control which evaluates measured values of an exhaust gas lambda probe.
  • the generated exhaust gas mixture is analyzed by a sensor and leads via the control to an adjustment correction for the amount of fuel to be supplied to the air funnel.
  • a number of other measured values can be supplied to the control, which activates the pump unit and thus adjusts the amount of fuel to be supplied to the air funnel.
  • the Tesla diodes with gasoline fuel have a Diodiztician between 1.1 and 3, in particular between 1.3 and 2.
  • the diodes of the Tesla diodes can be influenced as desired or required by the geometric design of the Tesla diodes in their manufacture.
  • radii of curvature, angles and cross-sectional areas of the tracks of a Tesla diode are suitable for influencing the diodesicity.
  • the geometric design of the Tesla diodes is advantageously suitable to adjust the delivery characteristic of the regulating device targeted.
  • the Tesla diodes are designed accordingly or appropriate Tesla diodes are used for the regulating unit.
  • Tesla diodes are designed so that the Reynolds number in the Tesla diodes is well below the critical Reynolds number of 2300.
  • “Clear” here is a Reynolds number of less than 2000, in particular less than 1200, preferably less than 500 to understand. This has the advantage that the fuel flows through the Tesla diodes with a laminar flow. This results in a good-natured behavior of the Tesla diodes, where "good-natured” is understood to mean a continuous property profile which does not show abrupt changes in the flow resistance of the Tesla diodes as a function of the flow velocity. This supports a stepless regulation of the fuel flow.
  • the advantageous Reynolds numbers can be achieved preferably by a small size of the Tesla diodes, with an advantageous cross section of the channels in the Tesla diode between 0.05 mm 2 and 1 mm 2 , in particular between 0.1 mm 2 and 0.5 mm 2 ,
  • the chamber and / or the Tesla diodes are formed as a depression of a plate.
  • This plate may for example be a metal plate.
  • Tesla diodes by embossing by means of micro-embossing dies. This method allows a precise and cost-effective production.
  • a cover-like completion of the chamber and / or the Tesla diodes is advantageously formed by a further plate which closes cavities of the chamber and / or the Tesla diodes from above.
  • This construction of two plates has the advantage that already by two easy to manufacture plates, a substantial part of the regulating unit is present. Two plates can be easily integrated into a conventional carburettor housing. Thus, the present invention also has the advantage that existing manufacturing processes for conventional carburetor only need to be changed slightly or even existing carburetor can be retrofitted.
  • the carburettor has a fuel line 2, which extends from a fuel chamber (not shown) via a fuel nozzle 3 to a venturi 4, where it exits at an orifice 5.
  • a first Tesla diode 6 and a second Tesla diode 7 are introduced in the fuel line 2. Both Tesla diodes 6, 7 are arranged in the reverse direction in this embodiment, which is in Fig. 1 represented by the corresponding orientation of the switching symbol.
  • a below called “pumping chamber” chamber 8 is arranged, which is in fluid communication with the Tesla diodes 6, 7 via the fuel line 2.
  • a membrane element 9 as a pump unit, which has a membrane 10 which is movable via an actuating element 11.
  • actuating element 11 is a piezoelectric element in this embodiment.
  • the membrane 10 may be electromagnetically driven.
  • the tesla diodes 6, 7, the pumping chamber 8 and the pumping unit 9 together form a regulating unit 30.
  • an overpressure and underpressure are periodically generated in the pumping chamber by an up and down movement (represented by a double arrow 12).
  • the dashed line represents the diaphragm 10 in the presence of a negative pressure, the solid line in the presence of an overpressure.
  • the periodic volume change in conjunction with the diodes of the Tesla diodes 6, 7 to a pumping action of the regulating unit 30. This pumping action is opposed to the flow 31 in the fuel line 2, whereby the regulating unit 30 acts as a throttle unit in this embodiment.
  • the diodeicity of both Tesla diodes is 1.5.
  • the membrane element 9 is operated in a pulse-width-modulated manner, so that a change in the pumping action of the membrane element 9 is possible simply and effectively using a digital control.
  • the oscillation frequency of the diaphragm 10 can be changed by changing an applied voltage frequency.
  • Fig. 2 shows a representation of the first Tesla diode 6.
  • a first recess 19 can be seen, with the fuel line from the fuel nozzle comes, is connected (not shown).
  • the pumping chamber 8 can be seen, which lies in the reverse direction behind the Tesla diode 6.
  • the fuel line 2 between the first recess 19 and the Tesla diode 6 and between the Tesla diode 6 and the pumping chamber 8 is in this embodiment directly in the tracks 20, 21 of the Tesla diode over.
  • the curved track 20 and the straight track 21 are formed and open into each other so that when flow of the Tesla diode 6 in the reverse direction (in the drawing from left to right) due to the geometric conditions and the resulting flow conditions, a high flow resistance results.
  • the first recess 19, pump chamber 8, fuel line 2 and curved track 20, and straight track 21 of the throttle unit 30 are introduced into a metal plate by embossing by means of a micro-embossing die.
  • the width of the webs 20, 21 is about 600 microns.
  • the first recess 19, pumping chamber 8, fuel line 2 and curved, and first and second Tesla diode 6, 7 of the regulating unit 30 are introduced into a first metal plate 22 by spark erosion.
  • the diameter of the pumping chamber 8 is in this case about 3 mm, the dimensions of the other elements of the regulating unit 30 behave with respect to the pumping chamber 8 approximately as in the Fig. 3 shown.
  • the first and second Tesla diodes 6, 7 are formed substantially parallel to each other. They are connected to each other via the pumping chamber 8. This results in a U-shaped course, which has a space-saving design of the regulating unit 30 result.
  • a first recess 19 is inserted into the metal plate, at a free end of the second Tesla diode 7, a second recess 23 is introduced, which penetrates the first metal plate 22.
  • a second metal plate 24 which forms a cover of the tracks 20, 21 of the Tesla diodes 6, 7 and the fuel line 2.
  • a hole 25 is inserted, which forms a connection to the first recess 19 of the first metal plate 22.
  • the regulating unit 30 is externally connected to a Fuel line 2 connected.
  • the second metal plate 24 further has an opening 26 which extends the pumping chamber 8 upwards.
  • the membrane element 9 is used, wherein the membrane element 9 in this embodiment has an electrical connector 27, via which the membrane element 9 is easily and reversibly connected to a corresponding mating connector, for example, to a high frequency source.
  • the second recess 23 is connected via the fuel line 2 to the mouth 5 in the venturi 4 (see correspondingly Fig. 1 ).
  • Fig. 5 shows a perspective view of a third embodiment in which the regulating unit 30 of the second embodiment ( 3 and 4 ) is integrated in a conventional housing 28 of a carburetor 1. Except for a slight increase in the thickness of the carburetor 1 through the first metal plate 22 and the second metal plate 24, only the pump element 9, which in this embodiment is a piston element, can be seen from the outside. Otherwise, the same supply lines and connections as in a conventional carburetor can be seen, which need not be described here in detail.
  • the design and arrangement of the Tesla diodes can be varied over a wide range.
  • a plurality of Tesla diodes can be arranged in series or in parallel to cause some effects on desired delivery characteristics of the regulating unit.
  • a plurality of curved tracks in a Tesla diode can be arranged one behind the other.
  • the throttle unit cause the leaning of the fuel-air mixture in normal operation, whereas the Anfettisme, for example, as a choke temporarily performs a targeted enrichment.

Description

    Technisches Gebiet
  • Die vorliegende Erfindung betrifft einen elektrisch angesteuerten Vergaser für Otto-Motoren mit einem Lufttrichter zum Ansaugen von Kraftstoff aus einer in den Lufttrichter mündenden Brennstoffleitung, die an einer Brennstoffkammer angeschlossen ist und zwischen Brennstoffkammer und Mündung im Lufttrichter eine Brennstoffdüse zur Einstellung einer aufgrund von Unterdruck im Lufttrichter aus der Brennstoffkammer ansaugbaren Kraftstoffmenge aufweist.
  • Stand der Technik
  • Ein derartiger Vergaser ist beispielsweise aus der DE 102 16 084 A1 bekannt.
  • Herkömmliche Vergaser erzeugen ein Kraftstoff-Luft-Gemisch durch Ansaugen von Brennstoff und Mischen mit Luft. Die Menge an Kraftstoff, die dem Lufttrichter zugeführt wird, wird an der Brennstoffdüse in der Brennstoffleitung eingestellt. Durch wachsende Anforderungen insbesondere bei speziellen Kleinmotoren, wie Verbrennungsmotoren für Kettensägen, die ständig geänderten Winkeln zur Horizontalen unterliegen, sowie dem Wunsch nach flexibler Leistungsanpassung ergibt sich das Erfordernis, die Erzeugung von Kraftstoff-Luft-Gemischen bei Otto-Motoren schnell und flexibel zu beeinflussen. Auch bei Motoren für Zweiräder besteht beispielsweise das Ziel einer geringeren Schadstofferzeugung durch flexible Anpassung des Vergasers.
  • Diese Aufgabe versucht die DE 102 16 084 A1 dadurch zu lösen, dass die Brennstoffdüse mit einem veränderbaren Strömungsquerschnitt versehen wird. Zur Änderung des Strömungsquerschnitts wird ein piezoelektrischer Aktuator vorgeschlagen. Wegen eines geringen Stellwegs derartiger piezoelektrischer Aktuatoren ist jedoch ein Übersetzungselement nötig, das den Aufbau eines derartigen Vergasers aufwendig macht. Außerdem führt der Einsatz eines Übersetzungselements zu einer höheren Ungenauigkeit und höherer Anfälligkeit.
  • Die DE 102 42 816 A1 beschreibt ein elektromagnetisches Ventil, bei dem Strömungskanäle bei Stromfluss in einer Spule fluidisch durch eine Ankerplatte voneinander getrennt sind. Mit der Ankerplatte als einziges bewegliches Teil sind nur geringe Kräfte zum Öffnen und Schließen des Ventils nötig.
  • Darstellung der Erfindung: Aufgabe, Lösung, Vorteile
  • Die vorliegende Erfindung hat die Aufgabe, einen flexibel anpassbaren Vergaser für Otto-Motoren, insbesondere für Motorarbeitsgeräte, zu schaffen, der die oben genannte Nachteile des Standes der Technik überwindet und einen einfachen, robusten Aufbau hat, der konstantes Langzeitverhalten ermöglicht.
  • Diese Aufgabe wird ausgehend von einem Vergaser gemäß Anspruch 1 gelöst. Vorteilhafte Aus- und Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.
  • Die Erfindung schließt die technische Lehre ein, dass in Reihenschaltung mit der Brennstoffdüse zumindest zwei Tesla-Dioden eingebracht sind, zwischen denen sich eine Kammer (im Folgenden "Pumpkammer" genannt) mit einer Pumpeinheit befindet.
  • Die Erfindung macht sich die Eigenschaft von Tesla-Dioden zunutze, in einer im folgenden "Sperrrichtung" genannten Richtung einen höheren Durchflusswiderstand zu besitzen als einer der Sperrrichtung entgegengesetzten Richtung, die im folgenden "Durchlassrichtung" genannt wird. Das Verhältnis des Druckverlusts in beiden Richtungen wird mit der sogenannten "Diodizität" ausgedrückt, die eine dimensionslose Zahl ist. Wegen dieser asymmetrischen Eigenschaft wird analog zu den Dioden in der Elektrotechnik ein derartiges Bauteil auch als fluidische Diode bezeichnet.
  • Die Asymmetrie des Strömungswiderstands einer Tesla-Diode resultiert aus einer schleifenartigen Anordnung von Strömungskanälen, wobei in Durchlassrichtung eine durch die Tesla-Diode fließende Flüssigkeit überwiegend durch gerade Kanäle fließt, in Sperrrichtung hingegen zumindest ein gebogener Kanal durchflossen werden muss, wodurch der Strömungswiderstand vergrößert ist. Außerdem entsteht in mindestens einem Bereich, in dem ein gebogener und ein gerader Kanal zusammentreffen, ein Rückstau, der wiederum den Strömungswiderstand in der Sperrrichtung vergrößert. Die genaue Funktionsweise einer Tesla-Diode ist bekannt und soll daher an dieser Stelle nicht weiter diskutiert werden.
  • Wird durch die Pumpeinheit in der zwischen den zwei Tesla-Dioden angeordneten Pumpkammer das Volumen erniedrigt, steigt der Druck darin an. Von der Pumpkammer aus gesehen ist eine erste Tesla-Diode in Sperrrichtung geschaltet, eine zweite Tesla-Diode in Durchlassrichtung. Wegen des geringeren Strömungswiderstands in der zweiten Tesla-Diode fließt Fluid aus der Kammer entweder vollständig oder zumindest zum größeren Teil durch die zweite Tesla-Diode.
  • Bewegt sich die Pumpeinheit in einem Pumpvorgang in die entgegengesetzte Richtung, so dass in der Kammer ein Unterdruck entsteht, wird aus der Brennstoffleitung Fluid angesaugt. Da bezüglich eines Hineinfließens in die Pumpkammer nun die erste Tesla-Diode in Durchlassrichtung vorliegt, fließt Brennstoff entweder vollständig oder zumindest zum größeren Teil durch die erste Tesla-Diode.
  • So wird durch die Anordnung einer Pumpkammer mit einer Pumpeinheit, die zwischen zwei in gleicher Strömungsrichtung angeordneten Tesla-Dioden angeordnet sind, eine einfach aufgebaute Pumpvorrichtung erzielt. Diese wirkt als Reguliereinheit, die die Strömung des Kraftstoffs in der Brennstoffleitung von der Brennstoffdüse zur Mündung im Lufttrichter effizient und flexibel anpasst. Somit wird mit der Erfindung ein flexibel anpassbarer Vergaser erzielt, der auf äußere Einflüsse, wie ein Verkippen oder Schwenken eines Motorarbeitsgeräts, oder innere Einflüsse, wie den Lambda-Wert im Abgas, schnell und bei einem gleichzeitig einfachen Aufbau reagieren kann.
  • Da in den Tesla-Dioden weder mechanisch bewegliche noch elektrische Bauteile vorliegen, besitzen diese eine extrem niedrige Anfälligkeit. Sie besitzen keine Verschleißteile und behalten daher ein konstantes Langzeitverhalten ohne Verschleiß. Da keine beweglichen Teile in den Tesla-Dioden vorliegen, haben sie darüber hinaus keine Dichtigkeitsprobleme. Wird des Weiteren eine einfach aufgebaute Pumpeinheit verwendet, besitzt die gesamte Reguliereinheit und damit der erfindungsgemäBe Vergaser eine hohe Robustheit und geringe Anfälligkeit bei gleichzeitig konstantem Langzeitverhalten. Wegen des Fehlens einer Öffnungsschwelle kann eine Tesla-Diode darüber hinaus problemlos im kHz-Bereich betrieben werden.
  • Von besonderem Vorteil ist, wenn die Tesla-Dioden in der Strömungsrichtung von der Brennstoffdüse zum Lufttrichter hin gesehen in Sperrrichtung eingebracht sind. In diesem Fall pumpt die Reguliereinheit in entgegengesetzter Richtung zum Brennstofffluss von der Brennstoffdüse zur Mündung im Lufttrichter und besitzt so die Funktion einer Drosseleinheit. Fällt die Reguliereinheit aus, wird mehr Kraftstoff in der Brennstoffleitung zum Lufttrichter hin gefördert als während des Betriebs der Reguliereinheit, d.h. das Kraftstoff-Luft-Gemisch, das im Vergaser erzeugt wird, wird dann fetter. Daher ist es vorteilhaft, die Brennstoffdüse so einzustellen, dass ohne die Reguliereinheit im Lufttrichter eine zu fette Kraftstoff-Luft-Mischung erzeugt werden würde. Im normalen Betrieb des erfindungsgemäßen Vergasers magert die Reguliereinheit die Mischung auf das gewünschte Mischverhältnis ab. Bei einem Ausfall der Reguliereinheit ist das Kraftstoff-Luft-Gemisch dann zu fett statt zu mager, was den Motor nicht schädigt.
  • Es kann aber auch vorteilhaft sein, ein mageres Kraftstoff-Luft-Gemisch durch die Reguliereinheit anzufetten. In diesem Fall werden die beiden Tesla-Dioden in Durchlassrichtung angeordnet und unterstützen so im Betrieb die Strömung von der Brennstoffdüse zur Mündung.
  • In einer bevorzugten Ausführungsform ist die Pumpeinheit ein Membranelement. Dieses besitzt eine Membran, die einen Teilbereich einer Innenwand der Pumpkammer bildet. Durch periodische Bewegung der Membran wird periodisch eine Volumenänderung in der Pumpkammer und damit periodisch eine Druckänderung in der Pumpkammer erzeugt. Die Membran wird beispielsweise elektromechanisch oder über ein Piezoelement bewegt. Derartige Membranelemente sind robuste Elemente, die eine geringe Anfälligkeit und hohe Lebensdauer besitzen. Wegen des sehr geringen Gewichts der Membran kann diese mit sehr hohen Frequenzen bewegt werden.
  • Alternativ kann es von Vorteil sein, eine Pumpeinheit einzusetzen, die einen Pumpkolben besitzt. In diesem Fall übernimmt der Kolben die Aufgabe, das Volumen in der Pumpkammer periodisch zu verringern bzw. zu erhöhen.
  • Vorteilhafterweise ist die Pumpeinheit spannungsmoduliert angesteuert. Dies hat den Vorteil, dass mit digitalen Signalen gearbeitet werden kann. Die Modulation ermöglicht eine stufenlose Verstellung der Pumpeinheit und somit eine stufenlose Regulierung des Kraftstoffflusses in der Brennstoffleitung.
  • Von besonderem Vorteil ist, wenn die Pumpeinheit pulsweitenmoduliert angesteuert ist. Diese Modulation ist besonders leicht zu handhaben, um mit einer einfachen Steuerung eine stufenlose Verstellung der Pumpeinheit zu bewirken.
  • Weiterhin kann es vorteilhaft sein, dass die Pumpeinheit von einer Regelung geregelt wird, die Messwerte von einer Abgas-Lambdasonde auswertet. Das erzeugte Abgasgemisch wird von einem Sensor analysiert und führt über die Regelung zu einer Einstellungskorrektur für die dem Lufttrichter zuzuführende Kraftstoffmenge.
  • Vorteilhafterweise kann aber auch stattdessen oder zusätzlich eine Reihe anderer Messwerte an die Regelung geliefert werden, die die Pumpeinheit ansteuert und somit die dem Lufttrichter zuzuführende Kraftstoffmenge einstellt.
  • Bevorzugt besitzen die Tesla-Dioden mit Ottokraftstoff als Brennstoff eine Diodizität zwischen 1,1 und 3, insbesondere zwischen 1,3 und 2.
  • Die Diodizität der Tesla-Dioden lässt sich je nach Wunsch oder Bedarf durch die geometrische Ausbildung der Tesla-Dioden bei deren Herstellung beeinflussen. So sind Krümmungsradien, Winkel und Querschnittsflächen der Bahnen einer Tesla-Diode geeignet, die Diodizität zu beeinflussen. Auch ist die geometrische Ausbildung der Tesla-Dioden vorteilhaft geeignet, die Förderkennlinie der Reguliervorrichtung gezielt einzustellen. Je nachdem, wie Fördermenge, Förderdruck, Abhängigkeit von der Frequenz der Pumpeinheit und ähnliche Parameter der Reguliervorrichtung gewünscht oder erforderlich sind, sind die Tesla-Dioden entsprechend ausgebildet bzw. werden entsprechende Tesla-Dioden für die Reguliereinheit eingesetzt.
  • . Es ist von Vorteil, wenn die Tesla-Dioden so ausgebildet sind, dass die Reynoldszahl in den Tesla-Dioden deutlich unter der kritischen Reynoldszahl von 2300 liegt. Mit "deutlich" ist hier eine Reynoldszahl von unter 2000, insbesondere unter 1200, bevorzugt unter 500 zu verstehen. Dies hat den Vorteil, dass der Kraftstoff mit einer laminaren Strömung durch die Tesla-Dioden strömt. Dies hat ein gutmütiges Verhalten der Tesla-Dioden zur Folge, wobei unter "gutmütig" ein kontinuierliches Eigenschaftsprofil zu verstehen ist, das keine sprunghaften Änderungen des Strömungswiderstands der Tesla-Dioden in Abhängigkeit von der Fließgeschwindigkeit aufweist. Dies unterstützt eine stufenlose Regulierung des Kraftstoffstroms.
  • Die vorteilhaften Reynoldszahlen lassen sich bevorzugt durch eine geringe Größe der Tesla-Dioden erzielen, mit einem vorteilhaften Querschnitt der Kanäle in der Tesla-Diode zwischen 0,05 mm2 und 1 mm2, insbesondere zwischen 0,1 mm2 und 0,5mm2.
  • Vorteilhafterweise sind die Kammer und/oder die Tesla-Dioden als Vertiefung einer Platte ausgebildet. Diese Platte kann beispielsweise eine Metallplatte sein. Dies hat den Vorteil, dass die Kammer und/oder die Tesla-Dioden mit herkömmlichen Oberflächenbearbeitungsverfahren herstellbar sind. Dies können vorteilhafterweise Verfahren wie Funkenerosion, Lasern, Ätzen, aber auch Fräsen sein. Ob eine eher filigranere Bearbeitungsmethode, wie Ätzen, oder eher eine grobe Bearbeitungsmethode, wie Fräsen, in Frage kommt, richtet sich hauptsächlich nach der Größe des Vergasers.
  • Besonders vorteilhaft ist die Herstellung der Tesla-Dioden durch Prägen mittels Mikroprägematrizen. Dieses Verfahren ermöglicht eine präzise und dabei kostengünstige Herstellung.
  • Ein deckelartiger Abschluss der Kammer und/oder der Tesla-Dioden ist vorteilhafterweise durch eine weitere Platte ausgebildet, die Hohlräume der Kammer und/oder der Tesla-Dioden von oben verschließt.
  • Dieser Aufbau aus zwei Platten hat den Vorteil, dass bereits durch zwei einfach herzustellende Platten ein wesentlicher Teil der Reguliereinheit vorliegt. Zwei Platten lassen sich sehr einfach in ein herkömmliches Vergasergehäuse integrieren. Somit hat die vorliegende Erfindung auch den Vorteil, dass bestehende Fertigungsprozesse für herkömmliche Vergaser nur geringfügig geändert werden müssen oder sogar bestehende Vergaser nachgerüstet werden können.
  • Kurze Beschreibung der Zeichnungen
  • Weitere vorteilhafte Aus- und Weiterbildungen des erfindungsgemäßen Vergasers werden im Folgenden anhand von Ausführungsbeispielen in Verbindung mit den Zeichnungen näher erläutert. Dabei zeigen in rein schematischer Darstellung:
    • Fig. 1 ein Schaltbild eines erfindungsgemäßen Vergasers,
    • Fig. 2 ein Makrofoto einer Tesla-Diode,
    • Fig. 3 eine perspektivische Explosionsansicht einer Reguliereinheit des erfindungsgemäßen Vergasers,
    • Fig. 4 eine perspektivische Ansicht der Reguliereinheit aus Fig. 3 im zusammengebauten Zustand, und
    • Fig. 5 eine perspektivische schematische Ansicht eines ursprünglich herkömmlichen Vergasers mit eingebauter Reguliereinheit gemäß Figuren 3 und 4.
    Bester Weg zur Ausführung der Erfindung
  • Fig. 1 zeigt schematisch das Schaltbild eines erfindungsgemäßen Vergasers 1. Der Vergaser besitzt eine Brennstoffleitung 2, die von einer Brennstoffkammer (nicht dargestellt) über eine Brennstoffdüse 3 zu einem Lufttrichter 4 verläuft, wo sie an einer Mündung 5 austritt. In die Brennstoffleitung 2 sind eine erste Tesla-Diode 6 und eine zweite Tesla-Diode 7 eingebracht. Beide Tesla-Dioden 6, 7 sind in diesem Ausführungsbeispiel in Sperrrichtung angeordnet, was in Fig. 1 durch die entsprechende Ausrichtung des Schaltsymbols dargestellt ist. Zwischen den Tesla-Dioden 6, 7 ist eine im Folgenden "Pumpkammer" genannte Kammer 8 angeordnet, die über die Brennstoffleitung 2 mit den Tesla-Dioden 6, 7 in fluidischer Verbindung steht. Mit der Pumpkammer 8 in Wirkverbindung steht ein Membranelement 9 als Pumpeinheit, das eine Membran 10 aufweist, die über ein Stellelement 11 bewegbar ist. Das in Fig. 1 schematisch als Federelement dargestellte Stellelement 11 ist in diesem Ausführungsbeispiel ein Piezoelement. Alternativ kann die Membran 10 elektromagnetisch angesteuert sein. Die Tesla-Dioden 6, 7, die Pumpkammer 8 und die Pumpeinheit 9 bilden zusammen eine Reguliereinheit 30.
  • Wird der Lufttrichter 4 von Luft durchströmt, was in Fig. 1 mit einem Pfeil 15 dargestellt ist, bildet sich an einer Verengung 16 des Lufttrichters 4 als Venturi-Düse ein Unterdruck ΔP, wodurch in der Brennstoffleitung 2 befindlicher Kraftstoff über die Mündung 5 in den Lufttrichter 4 gesaugt wird, wie schematisch durch Pfeil 17 dargestellt. Über ein Stellglied 18 an der Brennstoffdüse 3 lässt sich der Kraftstofffluss (in Fig. 1 durch Pfeil 31 dargestellt) von der Regelkammer zur Mündung 5 einstellen. Dabei ist die Brennstoffdüse 3 so eingestellt, dass das im Lufttrichter 4 entstehende Kraftstoff-Luft-Gemisch, das dem Motor (nicht dargestellt) zugeführt wird, für einen normalen Betrieb des Motors zu fett ist.
  • Durch eine periodische Ansteuerung des Membranelements 9 wird in der Pumpkammer durch eine Auf- und Abbewegung (dargestellt durch einen Doppelpfeil 12) periodisch ein Über- und Unterdruck erzeugt. Die gestrichelte Linie stellt die Membran 10 bei Vorliegen eines Unterdrucks dar, die durchgezogene Linie bei Vorliegen eines Überdrucks. Die periodische Volumenänderung führt in Verbindung mit der Diodizität der Tesla-Dioden 6, 7 zu einer Pumpwirkung der Reguliereinheit 30. Diese Pumpwirkung ist der Strömung 31 in der Brennstoffleitung 2 entgegengesetzt, wodurch die Reguliereinheit 30 in diesem Ausführungsbeispiel als Drosseleinheit wirkt. In diesem Ausführungsbeispiel beträgt die Diodizität beider Tesla-Dioden 1,5.
  • Das Membranelement 9 ist pulsweitenmoduliert betrieben, so dass unter Verwendung einer digitalen Ansteuerung eine Änderung der Pumpwirkung des Membranelements 9 einfach und effektiv möglich ist. Im einfachsten Fall lässt sich durch Änderung einer angelegten Spannungsfrequenz die Schwingungsfrequenz der Membran 10 ändern.
  • Fig. 2 zeigt eine Darstellung der ersten Tesla-Diode 6. Links ist eine erste Ausnehmung 19 zu sehen, die mit der Brennstoffleitung, die von der Brennstoffdüse kommt, verbunden ist (nicht dargestellt). Rechts ist die Pumpkammer 8 zu erkennen, die in Sperrrichtung hinter der Tesla-Diode 6 liegt. Die Brennstoffleitung 2 zwischen der ersten Ausnehmung 19 und der Tesla-Diode 6 sowie zwischen der Tesla-Diode 6 und der Pumpkammer 8 geht in diesem Ausführungsbeispiel unmittelbar in die Bahnen 20, 21 der Tesla-Diode über. Die gekrümmte Bahn 20 und die gerade Bahn 21 sind so ausgebildet und münden so ineinander, dass sich bei Durchfluss der Tesla-Diode 6 in Sperrrichtung (in der Zeichnung von links nach rechts) aufgrund der geometrischen Verhältnisse und der sich daraus ergebenden Strömungsverhältnisse ein hoher Strömungswiderstand ergibt.
  • In diesem Beispiel sind erste Ausnehmung 19, Pumpkammer 8, Brennstoffleitung 2 und gekrümmte Bahn 20, sowie gerade Bahn 21 der Drosseleinheit 30 in eine Metallplatte durch Prägen mittels einer Mikroprägematrize eingebracht. Die Breite der Bahnen 20, 21 beträgt dabei ca. 600 µm.
  • In einem zweiten Ausführungsbeispiel (Fig. 3-5) sind die erste Ausnehmung 19, Pumpkammer 8, Brennstoffleitung 2 und gekrümmte, sowie erste und zweite Tesla-Diode 6, 7 der Reguliereinheit 30 in eine erste Metallplatte 22 durch Funkenerosion eingebracht. Der Durchmesser der Pumpkammer 8 beträgt in diesem Fall etwa 3 mm, die Dimensionen der anderen Elemente der Reguliereinheit 30 verhalten sich bezüglich der Pumpkammer 8 annähernd wie in der Fig. 3 dargestellt. In der ersten Metallplatte 22 sind die erste und zweite Tesla-Diode 6, 7 im Wesentlichen parallel zu einander ausgebildet. Sie sind über die Pumpkammer 8 miteinander verbunden. Dadurch ergibt sich ein U-förmiger Verlauf, der eine platzsparende Ausbildung der Reguliereinheit 30 zur Folge hat. An einem freien Ende der ersten Tesla-Diode 6 ist eine erste Ausnehmung 19 in die Metallplatte eingebracht, an einem freien Ende der zweiten Tesla-Diode 7 ist eine zweite Ausnehmung 23 eingebracht, die die erste Metallplatte 22 durchdringt. Mit der ersten Metallplatte 22 verschraubbar ist eine zweite Metallplatte 24, die einen Deckel der Bahnen 20, 21 der Tesla-Dioden 6, 7 und der Brennstoffleitung 2 bildet. In die zweite Metallplatte 24 ist ein Loch 25 eingebracht, das eine Verbindung zur ersten Ausnehmung 19 der ersten Metallplatte 22 bildet. Somit ist die Reguliereinheit 30 von außen an eine Brennstoffleitung 2 anschließbar. Die zweite Metallplatte 24 weist des Weiteren eine Öffnung 26 auf, die die Pumpkammer 8 nach oben verlängert. In die Öffnung 26 ist das Membranelement 9 eingesetzt, wobei das Membranelement 9 in diesem Ausführungsbeispiel eine elektrische Steckverbindung 27 aufweist, über die das Membranelement 9 leicht und reversibel mit einem entsprechenden Gegenstecker beispielsweise an eine Hochfrequenzquelle anschließbar ist.
  • Die zweite Ausnehmung 23 ist über die Brennstoffleitung 2 mit der Mündung 5 im Lufttrichter 4 verbunden (siehe entsprechend Fig. 1).
  • Fig. 5 zeigt eine perspektivische Darstellung eines dritten Ausführungsbeispiels, bei dem die Reguliereinheit 30 des zweiten Ausführungsbeispiels (Fig. 3 und 4) in ein herkömmliches Gehäuse 28 eines Vergasers 1 integriert ist. Außer einer geringfügigen Erhöhung der Dicke des Vergasers 1 durch die erste Metallplatte 22 und die zweite Metallplatte 24 ist von außen lediglich das Pumpelement 9, das in diesem Ausführungsbeispiel ein Kolbenelement ist, zu erkennen. Ansonsten sind die gleichen Zuleitungen und Anschlüsse wie bei einem herkömmlichen Vergaser erkennbar, die hier nicht näher zu beschrieben werden brauchen.
  • Die in der vorstehenden Beschreibung, den Ansprüchen und der Zeichnung offenbarten Merkmale können sowohl einzeln als auch in beliebiger Kombination, wie in den beigefügten Ansprüchen beansprucht, für die Verwirklichung der Erfindung in ihren verschiedenen Ausgestaltungen von Bedeutung sein. Insbesondere ist die Ausbildung und Anordnung der Tesla-Dioden über weite Bereiche variierbar. So kann eine Mehrzahl von Tesla-Dioden in Reihe oder parallel angeordnet werden, um gewisse Effekte bezüglich gewünschter Förderkennlinien der Reguliereinheit zu bewirken. Dazu können auch mehrere gekrümmte Bahnen in einer Tesla-Diode hintereinander angeordnet sein. Auch kann es im Rahmen der Erfindung vorteilhaft sein, mehrere Reguliereinheiten vorzusehen, wovon zumindest eine erste eine Drosselfunktion ausübt und zumindest eine zweite eine Anfetteinheit darstellt. Dabei kann die Drosseleinheit die Abmagerung des Kraftstoff-Luft-Gemisches im normalen Betrieb bewirken, wohingegen die Anfetteinheit z.B. als Choke zeitweise eine gezielte Anfettung vornimmt.
  • BEZUGSZEICHENLISTE
  • 1
    Vergaser
    2
    Brennstoffleitung
    3
    Brennstoffdüse
    4
    Lufttrichter
    5
    Mündung
    6
    erste Tesla-Diode
    7
    zweite Tesla-Diode
    8
    Pumpkammer
    9
    Pumpeinheit
    10
    Membran
    11
    Stellelement
    12
    Doppelpfeil (für periodische Membranbewegung)
    15
    Pfeil (für Luftströmung)
    16
    Verengung
    17
    Pfeil
    18
    Stellglied
    19
    erste Ausnehmung
    20
    gekrümmte Bahn
    21
    gerade Bahn
    22
    erste Platte
    23
    zweite Ausnehmung
    24
    zweite Platte
    25
    Durchgangsloch
    26
    Öffnung
    27
    elektrische Steckverbindung
    28
    Gehäuse
    30
    Reguliereinheit
    31
    Strömungsrichtung

Claims (12)

  1. Elektrisch angesteuerter Vergaser (1) für Otto-Motoren mit einem Lufttrichter (4) zum Ansaugen von Kraftstoff aus einer in den Lufttrichter (4) mündenden Brennstoffleitung (2), die an einer Brennstoffkammer angeschlossen ist und zwischen Brennstoffkammer und Mündung (5) im Lufttrichter (4) eine Brennstoffdüse (3) zur Einstellung einer aufgrund von Unterdruck im Lufttrichter (4) aus der Brennstoffkammer ansaugbaren Kraftstoffmenge aufweist, dadurch gekennzeichnet, dass in Reihenschaltung mit der Brennstoffdüse (3) zumindest zwei Tesla-Dioden (6, 7) vorgesehen sind, zwischen denen sich eine Pumpkammer (8) mit einer Pumpeinheit (9) befindet.
  2. Vergaser nach Anspruch 1, dadurch gekennzeichnet, dass die Tesla-Dioden (6, 7) im Verlauf von der Brennstoffdüse (3) zum Lufttrichter (4) in Sperrrichtung eingebracht sind, so dass eine die Tesla-Dioden (6, 7), die Pumpkammer (8) und die Pumpeinheit (9) umfassende Reguliereinheit (30) die Funktion einer Drosseleinheit besitzt.
  3. Vergaser nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Pumpeinheit (9) ein Membranelement ist.
  4. Vergaser nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Pumpeinheit (9) einen Pumpkolben besitzt.
  5. Vergaser nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Pumpeinheit (9) spannungsmoduliert angesteuert ist.
  6. Vergaser nach Anspruch 5, dadurch gekennzeichnet, dass die Pumpeinheit (9) pulsweitenmoduliert angesteuert ist.
  7. Vergaser nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Pumpeinheit (9) auf der Grundlage von Messwerten, wie insbesondere einem Abgas-Lambda-Wert, geregelt ist.
  8. Vergaser nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Tesla-Dioden (6, 7) mit Ottokraftstoff als Kraftstoff eine Diodizität zwischen 1,1 und 3, insbesondere zwischen 1,3 und 2 besitzen.
  9. Vergaser nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Reynoldszahl in den Tesla-Dioden (6, 7) deutlich unter der kritischen Reynolds-Zahl von 2300 liegt.
  10. Vergaser nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Tesla-Dioden (6, 7) und die Pumpkammer (8) in zumindest eine von zwei Platten (22, 24) eingebracht sind und die andere Platte (24, 22) als Deckel dient.
  11. Vergaser nach Anspruch 10, dadurch gekennzeichnet, dass die Tesla-Dioden (6, 7) und die Pumpkammer (8) durch Oberflächenbearbeitung, wie etwas Funkenerosion, Lasern, Fräsen, Ätzen, Prägen, insbesondere mit Mikroprägematrize, eingebracht sind.
  12. Vergaser nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Vergaser zumindest eine erste Reguliereinheit (30) als Drosseleinheit und zumindest eine weitere Reguliereinheit (30) als Anfetteinheit aufweist.
EP10744862A 2009-05-27 2010-05-27 Elektrisch angesteuerter vergaser Not-in-force EP2435682B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE202009007558U DE202009007558U1 (de) 2009-05-27 2009-05-27 Elektrisch angesteuerter Vergaser
PCT/EP2010/003218 WO2010136199A1 (de) 2009-05-27 2010-05-27 Elektrisch angesteuerter vergaser

Publications (2)

Publication Number Publication Date
EP2435682A1 EP2435682A1 (de) 2012-04-04
EP2435682B1 true EP2435682B1 (de) 2013-01-23

Family

ID=42979395

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10744862A Not-in-force EP2435682B1 (de) 2009-05-27 2010-05-27 Elektrisch angesteuerter vergaser

Country Status (6)

Country Link
US (1) US8894043B2 (de)
EP (1) EP2435682B1 (de)
JP (1) JP5531096B2 (de)
CN (1) CN102449289B (de)
DE (1) DE202009007558U1 (de)
WO (1) WO2010136199A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3333397A1 (de) 2016-12-08 2018-06-13 Makita Corporation Steuerung einer fremdgezündeten brennkraftmaschine
EP3333394A1 (de) 2016-12-08 2018-06-13 Makita Corporation Steuerung einer fremdgezündeten brennkraftmaschine
EP3333410A1 (de) 2016-12-08 2018-06-13 Makita Corporation Steuerung einer fremdgezündeten brennkraftmaschine
EP3333412A1 (de) 2016-12-08 2018-06-13 Makita Corporation Steuerung einer fremdgezündeten brennkraftmaschine

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202011051306U1 (de) 2011-09-15 2012-12-17 Makita Corporation Pumpvorrichtung zur steuerbaren Förderung eines Fluids durch eine Fluidleitung
US9903536B2 (en) 2014-08-26 2018-02-27 The Johns Hopkins University Passive diode-like device for fluids
DE102016123788B3 (de) * 2016-12-08 2017-12-07 Makita Corporation Vergaser für einen Verbrennungsmotor eines Arbeitsgerätes sowie Verfahren zum Ansteuern eines Vergasers
DE102016123792A1 (de) * 2016-12-08 2018-06-14 Makita Corporation Vergaser für einen Verbrennungsmotor eines Arbeitsgerätes
DE102016123774B3 (de) 2016-12-08 2018-02-01 Makita Corporation Vergaser für einen Verbrennungsmotor eines Arbeitsgerätes sowie Verfahren zum Regeln eines Kraftstoffdurchflusses in einem Leerlaufbetrieb eines Vergasers
DE202016106835U1 (de) 2016-12-08 2018-03-09 Makita Corporation Vergaser für einen Verbrennungsmotor eines Arbeitsgerätes
DE102016123791B3 (de) * 2016-12-08 2017-12-07 Makita Corporation Vergaser für einen Verbrennungsmotor eines Arbeitsgerätes
DE102016123789A1 (de) 2016-12-08 2018-06-14 Makita Corporation Verfahren zum Bestimmen einer Blasenbildung in einer Pumpkammer eines Vergasers eines Verbrennungsmotors eines Arbeitsgerätes
DE102016123790A1 (de) 2016-12-08 2018-06-14 Makita Corporation Vergaser für einen Verbrennungsmotor eines Arbeitsgerätes
US10309424B1 (en) * 2017-11-20 2019-06-04 Robert Bosch Llc Vehicle fuel pump module including improved jet pump assembly

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1135431A (en) * 1965-06-10 1968-12-04 Dowty Fuel Syst Ltd Fuel supply system for a jet propulsion engine
US3360940A (en) * 1966-06-20 1968-01-02 Dowty Fuel Syst Ltd Fuel supply system for a jet propulsion engine including reheaters
US3439895A (en) 1967-05-01 1969-04-22 Clemar Mfg Corp Pilot operated valve
US3545421A (en) * 1968-06-20 1970-12-08 Envirotech Corp Engine control system
DE2934816A1 (de) * 1979-08-29 1981-03-19 Fichtel & Sachs Ag, 8720 Schweinfurt Kraftstoffzumesseinrichtung
US4683854A (en) * 1985-02-15 1987-08-04 Teledyne Industries, Inc. Electronic and mechanical fuel supply system
GB2176838A (en) * 1985-06-27 1987-01-07 Herbert George Evans Adding water or other liquid to petrol/air mixture supplied to a petrol engine
SG106067A1 (en) 2002-03-27 2004-09-30 Inst Of High Performance Compu Valveless micropump
DE10216084A1 (de) * 2002-04-11 2003-10-30 Vemac Gmbh & Co Kg Vergaser für Otto-Motor mit einstellbarer Brennstoffdüse
DE10242816B4 (de) * 2002-09-14 2014-02-27 Andreas Stihl Ag & Co Elektromagnetisches Ventil

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3333397A1 (de) 2016-12-08 2018-06-13 Makita Corporation Steuerung einer fremdgezündeten brennkraftmaschine
EP3333394A1 (de) 2016-12-08 2018-06-13 Makita Corporation Steuerung einer fremdgezündeten brennkraftmaschine
EP3333410A1 (de) 2016-12-08 2018-06-13 Makita Corporation Steuerung einer fremdgezündeten brennkraftmaschine
EP3333412A1 (de) 2016-12-08 2018-06-13 Makita Corporation Steuerung einer fremdgezündeten brennkraftmaschine
WO2018105521A1 (en) 2016-12-08 2018-06-14 Makita Corporation Spark ignition combustion engine control
WO2018105522A1 (en) 2016-12-08 2018-06-14 Makita Corporation Spark ignition combustion engine control
WO2018105519A1 (en) 2016-12-08 2018-06-14 Makita Corporation Spark ignition combustion engine control

Also Published As

Publication number Publication date
WO2010136199A1 (de) 2010-12-02
CN102449289B (zh) 2014-11-05
US8894043B2 (en) 2014-11-25
EP2435682A1 (de) 2012-04-04
JP2012528263A (ja) 2012-11-12
CN102449289A (zh) 2012-05-09
US20120074600A1 (en) 2012-03-29
DE202009007558U1 (de) 2010-10-14
JP5531096B2 (ja) 2014-06-25

Similar Documents

Publication Publication Date Title
EP2435682B1 (de) Elektrisch angesteuerter vergaser
DE2147710A1 (de) Brennstoffeinspritzdüse
DE2541098A1 (de) Druckregler fuer ansaugkruemmer von verbrennungsmotoren
DE3118787A1 (de) Einrichtung zur steuerung der abgasrueckfuehrung fuer einen dieselmotor
EP0585527A1 (de) Vorrichtung zum vorübergehenden Einspeisen von im Freiraum einer Tankanlage befindlichen flüchtigen Kraftstoffbestandteilen in das Ansaugrohr einer Verbrennungskraftmaschine
DE2935850A1 (de) Treibstoff-einspritzventil
DE3309435A1 (de) Durchflussmengenregelventil
DE112013000923T5 (de) Kraftstoffeinspritzventil
DE4416693A1 (de) Vergaser
DE3241805C2 (de) Vorrichtung zur Rezirkulationsregelung der Auspuffgase einer Brennkraftmaschine von Kraftfahrzeugen
DE60213349T2 (de) Kraftstoffdosierungsvorrichtung für die Einspritzdüse einer Turbomaschine
DE2550849A1 (de) Verfahren und vorrichtung zum verbessern der leistungscharakteristik einer fahrzeug-brennkraftmaschine
EP3055549B1 (de) Kolben-fluidleitung-anordnung, insbesondere steuerkolben-steuerbohrung-anordnung
DE2622106A1 (de) Kraftstoff-steuerventil
DE3339714A1 (de) Vergaser
DE2627164C3 (de) Regler zur Verwendung in einem Kraftstoffsystem für Brennkraftmaschinen mit Niederdruckeinspritzung
DE2644613C3 (de) Steuerungssystem für das Luft/Kraftstoffverhältnis bei einer Brennkraftmaschine
EP1574701A1 (de) Common-Rail Injektor
DE2815619C2 (de) Abgasrückführungseinrichtung bei einer ein Kraftfahrzeug antreibenden Brennkraftmaschine
DE2939805C2 (de) Steuersystem für die Abgasrückführung bei Dieselmotoren
DE2649099C2 (de) Vergaser für Brennkraftmaschinen
EP1579113A1 (de) Kraftstoffeinspritzventil f r brennkraftmaschinen
DE3627325A1 (de) Elektrische druckumwandlungs-steuervorrichtung
DE112017002016T5 (de) Kraftstoffeinspritzventil
DE2534730B2 (de) Abgasrückführanordnung für eine Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111109

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KELLERMANN, CHRISTIAN

DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: F02M 69/36 20060101ALI20120926BHEP

Ipc: F02M 69/18 20060101ALI20120926BHEP

Ipc: F02M 7/10 20060101ALI20120926BHEP

Ipc: F02M 17/38 20060101ALI20120926BHEP

Ipc: F02D 3/04 20060101AFI20120926BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KELLERMANN, CHRISTIAN

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAKITA CORPORATION

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 595106

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130215

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010002232

Country of ref document: DE

Effective date: 20130328

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130423

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130423

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130504

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130523

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130424

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130523

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: MAKITA CORP.

Effective date: 20130531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

26N No opposition filed

Effective date: 20131024

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010002232

Country of ref document: DE

Effective date: 20131024

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100527

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130527

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 595106

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150527

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180515

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010002232

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191203