EP2434873A2 - Verfahren und vorrichtung zur konservierung von zellkernen - Google Patents

Verfahren und vorrichtung zur konservierung von zellkernen

Info

Publication number
EP2434873A2
EP2434873A2 EP10721965A EP10721965A EP2434873A2 EP 2434873 A2 EP2434873 A2 EP 2434873A2 EP 10721965 A EP10721965 A EP 10721965A EP 10721965 A EP10721965 A EP 10721965A EP 2434873 A2 EP2434873 A2 EP 2434873A2
Authority
EP
European Patent Office
Prior art keywords
cell
cell nuclei
nuclei
dehydration
biological cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP10721965A
Other languages
English (en)
French (fr)
Other versions
EP2434873B1 (de
Inventor
Günter R. FUHR
Heiko Zimmermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP2434873A2 publication Critical patent/EP2434873A2/de
Application granted granted Critical
Publication of EP2434873B1 publication Critical patent/EP2434873B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • A01N1/0205Chemical aspects
    • A01N1/021Preservation or perfusion media, liquids, solids or gases used in the preservation of cells, tissue, organs or bodily fluids
    • A01N1/0221Freeze-process protecting agents, i.e. substances protecting cells from effects of the physical process, e.g. cryoprotectants, osmolarity regulators like oncotic agents
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • A01N1/0205Chemical aspects
    • A01N1/021Preservation or perfusion media, liquids, solids or gases used in the preservation of cells, tissue, organs or bodily fluids
    • A01N1/0226Physiologically active agents, i.e. substances affecting physiological processes of cells and tissue to be preserved, e.g. anti-oxidants or nutrients
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • A01N1/0236Mechanical aspects
    • A01N1/0242Apparatuses, i.e. devices used in the process of preservation of living parts, such as pumps, refrigeration devices or any other devices featuring moving parts and/or temperature controlling components
    • A01N1/0252Temperature controlling refrigerating apparatus, i.e. devices used to actively control the temperature of a designated internal volume, e.g. refrigerators, freeze-drying apparatus or liquid nitrogen baths
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • A01N1/0278Physical preservation processes
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • A01N1/0278Physical preservation processes
    • A01N1/0284Temperature processes, i.e. using a designated change in temperature over time

Definitions

  • the invention relates to a method for the preservation of cell nuclei of biological cells, in particular for the cryopreservation of cell nuclei, and optionally other cell components, such as cell organelles and / or cytoplasm, or of cored out biological cells.
  • the invention further relates to a device which is configured for carrying out such a method and in particular for the preservation of cell nuclei of biological cells and optionally of further cell constituents or of cored out biological cells.
  • the invention also relates to a method for the regeneration or recovery of biological cells. Applications of the invention are particularly in the preservation and storage of biological materials.
  • the cryopreservation of biological materials is a technique that has been established for decades and has numerous applications in medicine, biology, biotechnology, agriculture, food industry and environmental technology (see, for example, US Pat US 2002/0177119 Al).
  • biological cells can be stored in the frozen state for long periods of time, such as years or decades, and regain their full vitality after thawing, limited vitality rates have resulted in practice.
  • the rate of vitality ie the proportion of cells capable of thawing, depends on the biological species and the cell type and can be less than 1% (eg in insect eggs, oocytes of mammals, fish or reptiles) or up to 95% or more (eg in mammalian fat cells ren).
  • a number of cell types are unsuitable for conventional cryopreservation as they do not freeze and revitalize. In animal cells this is especially true for oocytes, while plant cells often can not be kept alive because of the vacuum oils in the cells. Problems arise in particular for the protection of species, since for most species a cryopreservation of sperm is possible, but not of oocytes.
  • Z. He et al. (“Fertility and Sterility" Vol. 79, 2003, p. 347 ff.) Describe the cryopreservation of nuclear material from oocytes, wherein polar bodies and pronuclei are isolated, converted into groups in a zona pellucida and frozen therein. This method is limited to the cryopreservation of oocyte nuclear material and is detrimental due to complex preparation of the cell material.
  • a further known problem of conventional cryopreservation is the dependence of the vitality rate on the conditions during freezing and later thawing of the cells.
  • Since the vitality rate decreases with increasing cell stress there has hitherto been the trend, in particular during freezing, to carry out as few partial steps as possible in the shortest possible time. It has been proposed to prevent the formation of ice crystals in the cell material by virtually instantaneous freezing (vitrification) and thus to minimize cell stress.
  • attempts to increase the vitality rate that have hitherto been carried out in practice were only specifically applicable to certain cell types or specimen types, but generally not with the desired reproducibility.
  • cryoprotectant influences the structure of ice formation inside and outside the cells.
  • a disadvantage is that the cryoprotectants used hitherto can adversely affect the cells and the rate of vitality, since they are added in non-physiologically high concentrations (eg 5 to 40%).
  • Another disadvantage of the conventional cryoprotectants is that they have a limited ability to penetrate cell membranes (limited membrane reactivity). Since it is essential for the effectiveness of cryoprotectants in conventional cryopreservation that they can passively diffuse into the cells (for example DMSO), substances with limited membrane permeability are hitherto unsuitable as cryoprotectants.
  • cryoprotectants for the cryopreservation of biological cells through their cell membrane in order to dehydrate the cells and to freeze the cells in the dehydrated state.
  • this method is subject to limitations because the delivery of the cryoprotectants must be so gentle that the cells are viable again after thawing, and a high concentration of cryoprotectant is required, tolerated by only a few cell types.
  • a cryo-treatment of nucleic acid molecules using cryoprotectants is described in WO 00/27361 A1.
  • cryocon- serving temperature When freezing, a cryocon- serving temperature is to be achieved as quickly as possible in which no changes occur inside and outside the cells, so that the cells can be obtained without damage. Since at temperatures above -130 ° C recrystallizations of microscopic ice domains can take place, the freezing and storage of samples in the conventional cryopreservation to achieve a high vitality rate at temperatures below -140 0 C, for example at -19 ⁇ ° C ( Temperature of the liquid nitrogen) or at -145 ° C to -160 0 C in the cool gas phase (vapor of the liquid nitrogen).
  • the object of the invention is to provide an improved method for the cryopreservation of biological materials, which overcomes the limitations of conventional cryopreservation methods and which is characterized in particular by an increased proportion of vital cells obtainable after cryopreservation.
  • the method should be executable with high reliability and reproducibility even with small sample quantities and for cell types which are unsuitable for conventional cryopreservation.
  • the object of the invention is also to provide an improved device for the cryopreservation of biological materials, with which disadvantages of conventional devices for cryopreservation are avoided.
  • the invention is based on the general technical teaching of initially subjecting a biological cell (or biological cells) to a preparation in which the cell membrane of the biological cell is invasively acted upon.
  • the preparation is interrupted, the cell membrane, whereby damage to the cytoplasm of the cell can occur.
  • the interruption changes the cell membrane in such a way that the cell loses its vitality.
  • the disruption of the cell membrane includes, for example, perforation, disruption or degradation.
  • this facilitates the targeted provision of predetermined physical and / or chemical conditions in the immediate vicinity of the cell nucleus.
  • nucleus during cryopreservation is not subject to any changes that would limit the biological function of the nucleus after its thawing.
  • the nucleus After thawing, the nucleus can be placed in a pitted cell to form a vital cell.
  • vital cells can be recovered (regenerated or recovered), which is particularly advantageous for cell types that could not or could only be cryopreserved with the conventional technique.
  • the cryopreservation method of the invention is further characterized by dehydration of the nucleus.
  • Dehydration generally involves a reduction in the amount of water in the nucleus.
  • dehydrogenation suppresses or completely eliminates the problem of ice nucleation in the cell nucleus which occurs during conventional cryopreservation, since the reduced formation of water in the cell nucleus hinders crystal formation during freezing. This procedure would result in destruction of the cytoplasm in an intact cell.
  • the dehydrogenation of the nucleus can already take place during the preparation of the biological cell or, alternatively, be provided after the preparation.
  • the preparation and dehydrogenation steps are carried out at an intermediate storage of the biological material, which is preferably carried out at a higher temperature than the subsequent permanent storage under the preservation conditions.
  • the cryocondensation process according to the invention is characterized by the setting of preservation conditions under which the cell nucleus can be stored permanently.
  • the setting of preservation conditions includes setting a preservation temperature in a temperature range in which recrystallizations do not occur in the cell nuclei or their environment, so that they can be stored permanently while maintaining their ability to form cell nuclei of living cells. Since the cell nuclei contain a reduced proportion of water as a result of the dehydrogenation or are completely free of water, cryopreservation avoids any unwanted crystal formation in the core material.
  • the cell nucleus remains unchanged, so that it has retained its vitality after cryopreservation, in particular after thawing to room temperature.
  • the invention is based in particular on the following considerations and experimental results of the inventors. Studies have shown that ice nuclei are formed in cell nuclei of biological cells that have undergone conventional cryopreservation. Although in conventional cryopreservation, a water transport from the interior of the cells takes place in their environment, so far the nucleus has not been involved in this water transport. Since cell nuclei are enveloped by a double membrane (nuclear membrane), cell nuclei can only be dehydrated by pores in the nuclear membrane.
  • Cell nuclei are therefore characterized by an osmotic inertia, as a result of which the cell nuclei can not be involved in conventional cryopreservation in the transport of water to the outside.
  • the cytoplasm is osmotic to the cell nucleus upstream of the external solution. This increases the inertia and thus shifts the core drainage.
  • the preparation step the viability of the cell as a whole is abandoned in order to be able to set physical and / or chemical conditions in the immediate environment of the cell nucleus, ie on the outside of the nuclear membrane. that in the dehydration step, a water transport from the interior of the cell nucleus takes place in its environment.
  • the cryopreservation method of the present invention is not limited to a particular cell type.
  • the invention may, for. B. with animal or human cells, especially oocytes, nerve cells, muscle cells or immune cells, such as lymphocytes, macrophages or stem cells, can be realized without being limited to these cell types.
  • cells are provided which contain a fully formed nucleus (no precursors of nuclear material).
  • An important advantage of the invention is that new substance groups can be used as cryoprotectant or dehydrogenation substance, which are unsuitable for conventional methods for cryopreservation because of their limited membrane reactivity.
  • substances which are not membrane-permeable and are excessively dehydrating and damaging to the cytoplasm. Because of the lack of vitality of the cell to be preserved z.
  • organic antifreeze proteins AFP, Antifreeze proteins
  • AFP organic antifreeze proteins
  • polypeptides of group AFPL from fish of the polar region eg winter flounder or arctic cod
  • AFP of types I to IV as contained in insects, amphibians or algae, or glycoproteins (AFGP), in which Cryopreservation according to the invention can be used as cryoprotective or dehydrating substance.
  • the biological state of the cell nuclei and thus their biological function ability to form cell nuclei of living cells, in particular to contain complete and undamaged genetic material, is maintained during the cryopreservation and the thawing.
  • This functionality is also referred to here as the vitality of the cell nuclei.
  • For the recovery of living cells can be provided by methods of the invention preferably an introduction of cell nuclei in host cells and their cultivation by methods known per se, the z.
  • the above-mentioned object is achieved by the general technical teaching of providing a cryopreservation device which has a preparation device configured to carry out the above-mentioned preparation step and a dehydrating device with which cell nuclei can be subjected to the abovementioned dehydration. Furthermore, the cryopreservation device according to the invention has a preserving device with which the cell nuclei can be converted into a cryopreserved state.
  • the invention is not limited to the dehydration and preservation of cell nuclei.
  • further cell constituents in particular cell membranes, cytoplasm, cell organelles and / or parts thereof, are subjected to dehydrogenation and subsequently to cryopreservation. These steps are separate from the treatment of cell nuclei.
  • the physical and / or chemical conditions for the cryopreservation can thus be optimized for the individual cell constituents while preserving the biological function of the respective cell constituents. This is especially important preferably intended to dehydrate the cell components isolated from each other and preserve.
  • the cryopreservation device is equipped with a plurality of dehydrating devices and a plurality of preserving devices which are each configured for the dehydration or cryopreservation of specific cell components.
  • the further cell constituents may be used in the regeneration or recovery of vital cells by combining with the thawed cell nuclei.
  • a cooling of the biological cells is provided.
  • the cooling takes place with a set cooling rate such that the cell membrane is destroyed.
  • the sample is preferably free of cryoprotectants.
  • the preparation and the subsequent setting of the Kryokonserv ists petition can be performed with a single cooling device whose temperature profile is controllable.
  • the preparation comprises a mechanical destruction of the cell membranes, for example by centrifugation or electrical permeation.
  • cooling of the samples prior to dehydration of the cell nuclei is advantageously avoided.
  • a chemical destruction of the cell membranes may be provided, for example using enzymes or detergents. Also in this case, a cooling before the dehydration of the cell nuclei is advantageously avoided.
  • a fourth variant involves osmotic destruction of cell membranes.
  • the biological cells are exposed to an environment of reduced osmotic pressure.
  • the biological cells are placed in water, preferably distilled water, so that the cells swell and the cell membranes rupture (burst).
  • water preferably distilled water
  • osmotic pressure water penetrates into the cell, where it forms ice domains in the cytoplasm in the vicinity of the nucleus, which withdraw water from the nucleus during the dehydration phase.
  • the preparation in the preparation not only an interruption of the cell membrane, but a disorder, for example damage, fragmentation, at least of parts of the cytoplasm of the biological cells in the vicinity of the cell nuclei.
  • this can improve the effect of the preparation and simplify the adjustment of physical and / or chemical dehydrogenation conditions for the cell nuclei.
  • the preparation comprises a combination of thermal and mechanical action on the biological cells. It can be provided according to the invention a crushing of biological cell material containing the biological cells in the frozen state. The crushing can be done, for example, using ultrasound. The inventors have discovered that the exposure of ultrasound to frozen cell material results in damage to cell membranes and cytoplasm, while preserving cell nuclei and optionally other cell components, such as cell organelles, particularly mitochondria.
  • the cell nuclei can be arranged in a medium devoid of cell constituents, in which the physical and / or chemical conditions of the dehydration can be set. Furthermore, an encapsulation of the cell nuclei in an encapsulating substance, such as, for example, alginate, may be provided. This provides additional protection of the cell nuclei.
  • the dehydrogenation used according to the invention comprises the setting of a dehydrogenation point. temperature in the environment of cell nuclei.
  • the dehydration temperature is selected such that water in the vicinity of the cell nuclei freezes and forms ice crystals, whereby the freezing point is so slightly below that in the ice crystals recrystallization takes place.
  • the dehydrogenation temperature in the range below 0 0 C, preferably below -5 0 C is selected.
  • the dehydrogenation temperature is preferably in the range above -130 0 C, z. B. above -80 0 C, more preferably above -4O 0 C.
  • the setting of the dehydration temperature may include a variation of the temperature around the cell nuclei.
  • a dehydrogenation temperature cycle can be set, in the course of which the dehydrogenation temperature in the temperature range mentioned is increased and decreased several times. This stimulates the recrystallization around the cell nuclei.
  • it promotes dehydration of the cell nuclei.
  • the dehydrogenation temperature cycle one or more temperature increase (s) to above the melting point of the frozen sample, in particular above 0 ° C include.
  • the dehydrogenation temperature cycle includes phases in which the environment of the cell nuclei is completely thawed.
  • the osmotic pressure on the cell nuclei can be increased and the water transport into the environment enhanced. Furthermore, advantageously during the dew phases a mass transfer in the environment of the cell nuclei can be provided.
  • the temperature of the sample is temporarily increased so that the environment of the cell nuclei is liquid. In this state, a substance can be added to the environment of the cell nuclei, with which the dehydration is promoted. This process can be assisted by the addition of substances that lower the freezing point, such as high molecular weight substances, especially dextran or electrolytes.
  • a dehydrogenating substance which causes the dehydrogenation of the cell nuclei is arranged in the vicinity of the cell nuclei.
  • the dehydration with a dehydrating substance may advantageously be carried out at room temperature.
  • dehydrating substances various substance groups are available which comprise alcohols, proteins, sugars, electrolytes and / or polymers and are each characterized by the formation of an osmotic potential with respect to the interior of the cell nuclei.
  • the concentration of the dehydrating substance may vary depending on the actual process conditions, e.g. B. by tests or by using known osmotic parameters of the substances (tabular values) can be selected.
  • a stabilizing substance is provided in the vicinity of the cell nuclei, which penetrates through the nuclear membrane into the cell nuclei and displaces it into this water.
  • Any substance which has higher thermodynamic stability in the molecular environment inside the cell nuclei than outside the cell nuclei and as the water in the cell nuclei can be used as the stabilizing substance.
  • various substance groups are available, which in particular comprise alginates, nanoparticles, matrices, cellulose, polymers and / or gels.
  • the concentration of the stabilizing substance can also be selected depending on the specific process conditions.
  • the dehydration takes place while in the vicinity of the cell nuclei cell constituents (in particular cell membrane, cytoplasm) of the cells are arranged, advantages for the combination of the preparation and dehydrogenation steps and their execution in a combined preparation and dehydration device.
  • At least one cryoprotectant may be present around the cell nuclei.
  • the cryoprotectant is delivered and dosed so that it acts solely to protect the nucleus.
  • cryoprotectant is added to a medium in the vicinity of the cells at a level of less than 5 vol%, preferably less than 3 vol%, e.g. 1 vol.% Or less.
  • the supply of the cryoprotectant can in physiological tem- peratures, especially above 10 0 C and / or below 38 0 C, take place.
  • the inventive setting of preservation conditions for the cell nuclei preferably comprises the setting of a storage temperature at which a recrystallization of
  • Ice domains is suppressed or excluded. It is preferably a storage temperature below -80 0 C, more preferably below -130 0 C set.
  • a storage temperature below -80 0 C, more preferably below -130 0 C set.
  • the storage temperature advantageously coincides with the usual end temperatures of the conventional cryopreservation, so that prepared and dehydrated cell nuclei can be taken up together with conventionally processed cell material in a common preserving device.
  • the cell nuclei can be subjected to compaction or single deposition.
  • compaction a concentration of cell nuclei occurs.
  • the cell nuclei are arranged for cryopreservation with an increased volume density.
  • the effectiveness of the storage can be increased.
  • individual storage cell nuclei are separated and stored separately. In this case, advantages arise from the ability to thaw individual nuclei of a sample and feed it to another application.
  • a particular feature of the invention is the use of substances which promote enlargement and recrystalization of ice domains in the environment of cell nuclei, as cryoprotectants.
  • cryoprotectants according to the invention are distinguished by the fact that they are not nuclear-membrane-like and do not reduce the size of ice domains in the vicinity of the nucleus. Further properties of the cryoprotectants according to the invention are that they are osmotically active and / or cause segregation of the liquid environment of the core into ice crystals and concentrated substances. In conventional cryopreservation processes, such substances as, for example, alcohols, proteins, sugars, electrolytes, polyanions, polycations, polymers, oils or gels are not suitable as cryoprotectants, since in the conventional processes the ice domains should be kept as small and stable as possible. The use of said substances as cryoprotectants thus constitutes an independent subject of the invention.
  • FIG. 1 shows a schematic illustration of method steps which are provided in preferred embodiments of the method according to the invention
  • FIGS. 2 to 4 schematic illustrations of three embodiments of the cryopreservation of cell nuclei according to the invention
  • Figures 5 and 6 are schematic illustrations of the dehydration and permanent storage of cell nuclei according to the invention
  • FIG. 7 shows a schematic illustration of the generation of vital cells using a nuclear transfer method
  • FIG. 8 shows a schematic illustration of an embodiment of the cryopreservation device according to the invention.
  • a biological cell 1 comprises as cell components in general the cell membrane 2, the nucleus 3, the cytoplasm 4 and cell organelles 5, such as mitochondria, endoplasmic reticulum or the Golgi apparatus. In conventional cryopreservation whole cells are gently frozen. In contrast, in the method according to the invention, as illustrated schematically in FIG. 1, biological cells 1 are treated in such a way that the cell membrane 2 is interrupted and thus the cell 1 is destroyed.
  • the cell components 2, 3, 4 and 5 can be separated from one another by isolation methods known per se.
  • the nucleus 3 but optionally also the cell membrane 2, the cytoplasm 4, cell organelles 5 and / or parts of them are subjected to dehydration and cryopreservation.
  • the cell 1 is processed according to one of the variants explained below.
  • the nucleus 3 is dehydrated in an environment of components of the destroyed cell in the schematically shown dehydration device 20, and then conserved in the preservation device 30.
  • the cell organelles 5, pitted cells (comprising the cell membrane 2 and the cytoplasm 4 without the nucleus) and / or parts of the cytoplasm 4, optionally with cell organelles 5 or parts thereof, are subjected to dehydration and subsequent preservation.
  • mitochondria can be treated as cell nuclei, with dehydration provided and the interior of the mitochondria remaining free of cryoprotectants.
  • the biological sample which is subjected to the method according to the invention comprises a multiplicity of biological cells 1, so that cell nuclei 3 in the
  • cryopreservation of the cell nuclei are explained below with reference to three process options. These include at least one treatment of the cell nuclei in situ, that is to say in the cells and / or in the cell assembly (FIG. 2), secondly a treatment of the cell nuclei after their isolation from the cells and / or their separation from the cell assembly (FIG. and third, the treatment of cell nuclei within the cells with a subsequent separation of the cell nuclei from the cells (FIG. 4). It is emphasized that the implementation of the invention is not limited to these schemes, but may include further process steps. Other process steps may include physical and / or chemical treatments, such as temperature increases or decreases, mechanical processing, or changes in ambient media. Furthermore, the treatment of the other cell components such as the treatment of cell nuclei can be done.
  • FIG. 2A first shows the provision of a sample which contains the cells 1 with the cell membranes 2 and the cell nuclei 3.
  • the cells 1 are isolated and suspended in a suspension solution or as cell composition 6 (tissue or tissue part) in a culture medium.
  • the provision of the cells 1 is performed at a first temperature Ti above the freezing point of the sample, in particular above the freezing point of water (0 0 C).
  • the first temperature Ti is chosen so that neither the cells 1 nor their surrounding medium (suspension solution and / or culture medium) are frozen. In this state, a dehydration and / or stabilizing substance can be added to the cells 1 or the cell composition 6.
  • the cells preferably comprise animal or human cells, in particular oocytes, nerve cells, muscle cells or immune cells, such as lymphocytes, macrophages or stem cells. len.
  • the cells 1 comprise muscle or nerve cells in a physiological culture solution.
  • a sample volume of 1 to 100 ⁇ l with about 10 to 10,000 cells is provided.
  • the preparation and dehydrogenation steps according to the invention take place at a second temperature T 2 (intermediate storage temperature) below the freezing point of the sample, in particular below the freezing point of water (FIG. 2B).
  • T 2 intermediate storage temperature
  • the cells 1 are frozen with the cell nuclei 3 and the surrounding medium 7.
  • the destruction of the cell membranes 2 is brought about by the fact that in the temperature range mentioned in the environment of the cells 1 ice crystals grow and are rearranged, wherein a permeation of the cell membranes takes place.
  • the cell nuclei 3 are protected by the surrounding cytoplasm, so that the nuclear membranes of the cell nuclei 3 are not disturbed but remain intact.
  • the destruction of the cell membranes 2 and the disruption of the structure of the cytoplasm of the cells 1 enable water to be transported from the cell nuclei 3 into their environment.
  • the dehydration thus takes place simultaneously with the preparation.
  • a stabilizing substance e.g.
  • an anionic or cationic polyelectrolyte eg, pectins, alginates, polysaccharides, polyacrylic acid, polyethylenimine, polyvinylamine, polyvinylpyridine, biopolymers (such as DNA), dextran or sugar from the surrounding medium 7 diffuse into the cell nuclei 3 to replace built-in water there. The replaced water exits into the vicinity of the cell nuclei 3.
  • T 2 It can be a fixed set second temperature T 2 are selected.
  • temperature programs can be executed with increasing and decreasing temperatures in the mentioned interval. It may be provided to temporarily thaw at least the surrounding medium 7 (temperature in particular above the freezing point of water) in order to add or remove hydrogenation and / or stabilizing substances to the surrounding medium 7.
  • the duration of the preparation and dehydrogenation steps at the second temperature T 2 depends on the selected temperature and / or the selected temperature profile as well as on sample properties, such as, for example, the sample size and the number of cell nuclei 3.
  • the duration of the preparation and dehydration steps is at least half an hour, but may also be at least 1 hour, 5 hours, 24 hours or more, for example 2 days or more or even months to years.
  • the preparation and dehydrogenation steps at the second temperature T 2 thus represent an intermediate storage in which the environment of the cell nuclei 3 changes dynamically, in particular by recrystallization, in order to bring about the dehydration of the cell nuclei 1.
  • a third temperature T 3 (storage temperature) is set, which is selected below -8O 0 C, preferably below -13O 0 C. At these temperatures, any recrystallization processes in the vicinity of the cell nuclei 3 are prevented so that the cell nuclei 3 and their constituents Ie, especially DNA components no longer change. During storage at the third temperature T 3 , the residues of the biological cells 1 in the vicinity of the cell nuclei 3 still exist.
  • cell membranes 2 are highly permeated or completely destroyed, and the cytoplasmic structure is greatly altered (for example, demixed or mixed with ice domains) or completely destroyed (cytoplasm functions as a "sacrificial layer").
  • FIG. 2D schematically illustrates the recovery of cell nuclei 3 after cryopreservation.
  • the cell nuclei 3 are heated to a fourth temperature T 4 and thawed.
  • the fourth temperature T 4 is preferably chosen above -5 ° C, more preferably above 0 0 C. Also during the transition from the third temperature T 3 to the fourth temperature T 4 , temperature changes with increasing and decreasing temperatures can be provided in order to subject the cell nuclei 3 to rehydration.
  • the cells 1 are provided with the cell nuclei 3 at a first temperature Ti above the freezing point of the sample, in particular above 0 ° C. (FIG. 3A) and a separation of the cell nuclei 1 of FIG subjected to the remaining cell components.
  • the separation comprises methods known per se, such as centrifugation in a density gradient, whereby the cell membranes 2 are destroyed and the cell nuclei 3 are isolated. In a fraction, the cell nuclei 3 are compressed.
  • a sample having a volume of, for example, 1 to 10 ⁇ l with 1 to 1000 cell nuclei 3 is present.
  • the freezing medium 8 is a physiological solution containing substances, such as electrolytes, serum, glucose or proteins, which promote the freezing of the cell nuclei 3.
  • the freezing medium 8 may contain conventional cryoprotectants.
  • the feeding into the freezing medium takes place at a second temperature T 2 , which is selected above the freezing point of the freezing medium 8.
  • the suspension of the cell nuclei 3 in the freezing medium 8 is cooled to a third temperature T 3 (intermediate storage, FIG. 3C).
  • the third temperature T 3 is in the range of -5 ° C to -8O 0 C, preferably selected at -20 0 C, wherein as in the embodiment of Figure 2 temporary temperature changes can be provided in this temperature interval. Furthermore, thawing phases can be provided in which the temperature above the freezing point of the freezing medium 8 is selected.
  • a recrystallization in the vicinity of the cell nuclei 3 a dehydration of the interiors of the cell nuclei 3 and optionally a diffusion of stabilizing substances into the cell nuclei 3.
  • the duration of the intermediate storage as mentioned above to Figure 2 , depending on the temperature program and / or characteristics of the
  • Sample be selected.
  • the ice formation can be induced by vibration or by the application of ultrasound at certain times.
  • a removal of water from the frozen or temporarily thawed freezing medium can be provided.
  • sublimation may be provided in a reduced pressure environment, for example in a vacuum.
  • the storage takes place at the storage temperature T 4 , which is selected, for example, below -13O 0 C ( Figure 3D).
  • a higher storage temperature T 4 for example in the range of -80 0 C to -130 0 C can be adjusted in particular, if previously from the freezing medium 6 water, z. B. by sublimation was removed.
  • FIG. 3E illustrates the recovery of the cell nuclei 3 by heating to the elevated temperature T 5 above the freezing point of the freezing medium 8.
  • FIG. 4 illustrates the embodiment of the invention in which the preparation and dehydrogenation are carried out on the cell nuclei 3 under in situ conditions and subsequently a separation of the cell nuclei 3 from the remaining cell material takes place.
  • preparation and dehydration are performed as described above with reference to Figure 2 ( Figures 4A, 4B).
  • T 2 which is selected, for example, in the range of -20 0 C to -196 ° C, takes place a mechanical treatment of the frozen sample, for example, by the action of ultrasound or by the mechanical comminution by tools or other vibrations.
  • the cell nuclei 3 can be separated from the other cell components.
  • a further dehydration of the cell nuclei is performed subsequently at the third temperature T 3, which is selected in the range of 0 0 C to -8O 0 C, 1.
  • the third temperature T 3 of, for example, dehydration agents and / or stabilizing agents can be added to the freezing medium 8 or be removed from this water.
  • the partial images C and D of FIG. 4 illustrate the permanent storage of the dehydrated cell nuclei and their subsequent recovery (see FIGS. 2, 3).
  • FIG. 5 schematically illustrates the conditions at the beginning of the intermediate storage.
  • a single cell nucleus 3 which is surrounded by a nuclear membrane 3.1 (double membrane), is arranged in the freezing medium 8.
  • the water fractions 3.2 can be in the liquid state or already in the frozen state.
  • outside the cell nucleus 3 there are also water components 8.1 in the freezing medium 8, which may be in the liquid (dissolved) or frozen state.
  • FIG. 6 shows the situation after several months of intermediate storage.
  • the water portions 3.2 inside or outside the nucleus are almost or completely removed, while the water portions 8.1 have grown in the freezing medium 8.
  • stabilizing substances may be diffused into the interior of the cell nucleus 3.
  • FIG. 6 shows the essential difference of the invention over conventional methods such that in the
  • FIG. 7 illustrates schematically, using the example of oocytes of the mouse, how a vital, viable cell 1.1 is generated from a cell nucleus 3 which has been subjected to the preservation method according to the invention.
  • a mouse 9 fresh egg cells 1.2 are obtained, which are gutted by a method known per se.
  • the conserved cell nucleus 3 is removed from the preservation device 30 and introduced into the cored out cell 1.3 using a nuclear transfer method which is also known per se.
  • the obtained cell 1.1 is then subjected to a cultivation process, including an increase and a growth of cells, under Unlike the method shown, it can be provided that the thawed cell nucleus is not transferred into fresh oocytes, but thawed, enucleated oocytes.
  • FIG. 8 schematically shows a cryopreservation device 100 with a preparation device 10, a dehydration device 20 and a preservation device 30.
  • the preparation and dehydration devices 10, 20 can be formed by a common component (see dashed frame).
  • the preparation and dehydration devices 10, 20 each contain a controllable cooling device 11, 21, a sample receptacle 12, 22 and a conduit device 13, 23, with which substances can be supplied to the sample or removed therefrom.
  • the preservation device 30 is constructed as known from conventional cryopreservation. It includes, for example, a cryotank for receiving liquid nitrogen, the sample being stored with the frozen cell nuclei in liquid nitrogen or in the vapor of liquid nitrogen.
  • cryopreservation device 100 shown in Fig. 8 is to be modified to provide a plurality of dehydrating devices 20 and a plurality of preserving devices 30 for treating different cell components, respectively.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Dentistry (AREA)
  • Environmental Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Biophysics (AREA)
  • Physiology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Ein Verfahren zur Kryokonservierung von biologischem Material, das biologische Zellen (1) mit Zellmembranen (2), Zellkernen (3), Zytoplasma (4) und Zellorganellen (5) enthält, umfasst die Schritte Präparation der biologischen Zellen (1) derart, dass die Zellmembranen (2) unterbrochen werden, Dehydrierung der Zellkerne (3), und Einstellung von Konservierungsbedingungen, unter denen die Zellkerne (3) einen kryokonservierten Zustand aufweisen. Des Weiteren können die Zellmembranen (2), Zytoplasma (4), Zellorganellen (5) und/oder Teile von diesen der Dehydrierung und der Kryokonservierung unterzogen werden. Es werden auch die Verwendung von Alkoholen, Proteinen, Zucker, Elektrolyten, Polyanionen, Polykationen, Polymeren, Ölen oder Gelen als Kryoprotektiva und eine Vorrichtung zur Kryokonservierung von Zellkernen (3) biologischer Zellen (1) beschrieben.

Description

Verfahren und Vorrichtung zur Konservierung von Zellkernen
Die Erfindung betrifft ein Verfahren zur Konservierung von Zellkernen biologischer Zellen, insbesondere zur Kryokonservierung von Zellkernen, und gegebenenfalls von weiteren Zellbestandteilen, wie zum Beispiel Zellorganellen und/oder Zy- toplasma, oder von entkernten biologischen Zellen. Die Erfin- düng betrifft des Weiteren eine Vorrichtung, die zur Durchführung eines derartigen Verfahrens und insbesondere zur Konservierung von Zellkernen biologischer Zellen und gegebenenfalls von weiteren Zellbestandteilen oder von entkernten biologischen Zellen konfiguriert ist. Die Erfindung betrifft auch ein Verfahren zur Regeneration oder Wiedergewinnung biologischer Zellen. Anwendungen der Erfindung ergeben sich insbesondere bei der Haltbarmachung und Lagerung von biologischen Materialien.
Die Kryokonservierung von biologischen Materialien, insbesondere von Gewebe, Zellgruppen, Zellen oder Zellbestandteilen, ist eine seit Jahrzehnten etablierte Technik mit zahlreichen Anwendungen in der Medizin, Biologie, Biotechnologie, Landwirtschaft, Lebensmittelindustrie und Umwelttechnik (siehe z. B. US 3 648 475 A und US 2002/0177119 Al) . Obwohl biologische Zellen über lange Zeiträume, zum Beispiel Jahre oder Jahrzehnte, im gefrorenen Zustand gelagert werden und nach dem Auftauen ihre volle Vitalität zurückerlangen können, haben sich in der Praxis beschränkte Vitalitätsraten ergeben. Die Vitalitätsrate, d. h. der Anteil der nach dem Auftauen lebensfähigen Zellen, ist von der biologischen Art und vom Zelltyp abhängig und kann weniger als 1 % (z.B. bei Insekteneiern, Oozyten von Säugetieren, Fischen oder Reptilien) oder bis zu 95 % oder darüber (z.B. bei Fettzellen von Säugetie- ren) betragen. Eine Reihe von Zelltypen sind für die herkömmliche Kryokonservierung ungeeignet, da sie sich nicht einfrieren und revitalisieren lassen. Bei Tierzellen gilt dies besonders für Oozyten, während Pflanzenzellen wegen der Vaku- ölen in den Zellen häufig nicht lebenserhaltend eingefroren werden können. Probleme ergeben sich insbesondere für den Artenschutz, da für die meisten Arten eine Kryokonservierung von Spermien möglich ist, nicht jedoch von Oozyten. Z. He et al. ("Fertility and Sterility" Bd. 79, 2003, S. 347 ff.) be- schreiben die Kryokonservierung von Kernmaterial aus Oozyten, wobei Polkörper und Pronuklei isoliert, in Gruppen in eine Zona pellucida umgesetzt und in dieser eingefroren werden. Dieses Verfahren ist auf die Kryokonservierung von Kernmaterial aus Oozyten beschränkt und aufgrund einer komplexen Prä- paration des Zellmaterials nachteilig.
Zur Kompensation von Verlusten durch Zellen, die nach dem Auftauen nicht mehr lebensfähig sind, werden in der Praxis möglichst viele Zellen einer zu konservierenden Probe, z.B. Millionen Zellen oder mehr, eingefroren. Mit der steigenden Zellzahl wächst jedoch die Größe der Kryoprobe und damit der Aufwand bei der Kryokonservierung und der Platzbedarf bei der Lagerung. Von Nachteil ist auch, dass bei speziellen Konservierungsaufgaben, wie zum Beispiel bei der Kryokonservierung von adulten Stammzellen oder von lebenswichtigen Eizellen oder Fusionsprodukten, wie zum Beispiel Hybridoma-Zellen, nur geringe Zellzahlen zur Verfügung stehen.
Ein weiteres, aus der Praxis bekanntes Problem der herkömmli- chen Kryokonservierung besteht in der Abhängigkeit der Vitalitätsrate von den Bedingungen beim Einfrieren und späteren Auftauen der Zellen. Je mehr Teilschritte beim Einfrieren oder Auftauen durchlaufen werden und/oder je mehr Kryoschutz- mittel verwendet werden, desto größer ist der Stress für die Zellen bei der Kryokonservierung. Da die Vitalitätsrate mit wachsendem Zellstress sinkt, besteht bisher der Trend, insbesondere beim Einfrieren möglichst wenig Teilschritte in möglichst kurzer Zeit auszuführen. So wurde vorgeschlagen, durch praktisch instantanes Einfrieren (Vitrifizierung) die Bildung von Eiskristallen im Zellmaterial zu unterbinden und damit den Zellstress zu minimieren. Von Nachteil ist jedoch, dass bisher in der Praxis erfolgte Ansätze zur Erhöhung der Vitalitätsrate nur spezifisch für bestimmte Zelltypen oder Pro- benarten erfolgreich, allgemein jedoch nicht mit der gewünschten Reproduzierbarkeit anwendbar waren.
Es wurde ferner vorgeschlagen, die Bildung von Eiskristallen zu unterdrücken, indem der Probe mindestens ein Kryoschutz- mittel (Kryoprotektivum) , wie zum Beispiel DMSO, Glyzerin, oder Trehalose zugegeben wird. Das Kryoprotektivum beein- flusst die Struktur der Eisbildung innerhalb und außerhalb der Zellen. Von Nachteil ist jedoch, dass die bisher verwendeten Kryoprotektiva die Zellen und die Vitalitätsrate nachteilig beeinflussen können, da sie in unphysiologisch hohen Konzentrationen (z. B. 5 bis 40%) zugegeben werden. Ein weiterer Nachteil der herkömmlichen Kryoprotektiva besteht darin, dass diese eine beschränkte Fähigkeit haben, Zellmembranen zu durchdringen (beschränkte Membrangängig- keit) . Da es für die Wirksamkeit von Kryoprotektiva bei der herkömmlichen Kryokonservierung wesentlich ist, dass diese passiv in die Zellen diffundieren können (zum Beispiel DMSO), sind bisher Substanzen mit beschränkter Membrangängigkeit als Kryoprotektiva ungeeignet.
Beispielsweise ist aus US 2005/0277107 Al bekannt, zur Kryokonservierung biologischer Zellen durch deren Zellmembran Kryoprotektiva zuzuführen, um die Zellen zu dehydrieren, und die Zellen im dehydrierten Zustand einzufrieren. Die Anwen- dung dieses Verfahrens in der Praxis unterliegt Beschränkungen, da die Zufuhr der Kryoprotektiva so schonend erfolgen muss, dass die Zellen nach dem Auftauen wieder lebensfähig sind, und eine hohe Konzentration es Kryoprotektivums erfor- derlich ist, die nur von wenigen Zelltypen toleriert wird. Eine Kryobehandlung von Nukleinsäure-Molekülen unter Verwendung von Kryoprotektiva wird in WO 00/27361 Al beschrieben.
Beim Einfrieren soll bisher möglichst schnell eine Kryokon- servierungstemperatur erreicht werden, bei der keine Veränderungen innerhalb und außerhalb der Zellen auftreten, so dass die Zellen ohne Beschädigung erhalten werden können. Da bei Temperaturen oberhalb von -130°C noch Umkristallisierungen mikroskopischer Eisdomänen stattfinden können, erfolgen das Einfrieren und die Lagerung von Proben bei der herkömmlichen Kryokonservierung zur Erzielung einer hohen Vitalitätsrate bei Temperaturen unterhalb von -1400C, zum Beispiel bei -19β°C (Temperatur des flüssigen Stickstoffs) oder bei -145°C bis -1600C in der kühlen Gasphase (Dampf des flüssigen Stick- Stoffs) .
Die Aufgabe der Erfindung ist es, ein verbessertes Verfahren zur Kryokonservierung von biologischen Materialien bereitzustellen, mit dem Beschränkungen herkömmlicher Kryokonservie- rungsverfahren überwunden werden und das sich insbesondere durch einen erhöhten Anteil von vitalen Zellen auszeichnet, die nach der Kryokonservierung gewinnbar sind. Das Verfahren soll insbesondere mit hoher Zuverlässigkeit und Reproduzierbarkeit selbst mit kleinen Probenmengen und für Zelltypen, die für die herkömmliche Kryokonservierung ungeeignet sind, ausführbar sein. Die Aufgabe der Erfindung ist es auch, eine verbesserte Vorrichtung zur Kryokonservierung von biologischen Materialien bereitzustellen, mit der Nachteile herkömmlicher Vorrichtungen zur Kryokonservierung vermieden werden. Diese Aufgaben werden mit Verfahren bzw. Vorrichtungen zur Kryokonservierung mit den Merkmalen der unabhängigen Ansprüche gelöst. Vorteilhafte Ausführungsformen und Anwendungen der Erfindung ergeben sich aus den Merkmalen der abhängigen Ansprüche .
Verfahrensbezogen basiert die Erfindung auf der allgemeinen technischen Lehre, eine biologische Zelle (oder biologische Zellen) zunächst einer Präparation zu unterziehen, bei der auf die Zellmembran der biologischen Zelle invasiv eingewirkt wird. Abweichend von herkömmlichen Techniken, die auf eine Erhaltung der Zelle gerichtet sind, wird mit der Präparation die Zellmembran unterbrochen, wobei eine Beschädigung des Zy- toplasmas der Zelle auftreten kann. Durch die Unterbrechung wird die Zellmembran derart verändert, dass die Zelle ihre Vitalität verliert. Die Unterbrechung der Zellmembran umfasst zum Beispiel eine Perforation, eine Zertrennung oder einen Abbau (Zerstörung). Vorteilhafterweise wird damit die geziel- te Bereitstellung vorbestimmter physikalischer und/oder chemischer Bedingungen in der unmittelbaren Umgebung des Zellkerns erleichtert. Es werden derartige Bedingungen bereitgestellt, dass der Zellkern während der Kryokonservierung keinen Veränderungen ausgesetzt ist, welche die biologische Funktion des Zellkerns nach dessen Auftauen einschränken würden. Nach dem Auftauen kann der Zellkern in eine entkernte Zelle eingebracht werden, um eine vitale Zelle zu bilden. Somit können nach der Kryokonservierung vitale Zellen gewonnen (regeneriert oder wiedergewonnen) werden, was besonders für Zelltypen von Vorteil ist, die mit der herkömmlichen Technik nicht oder nur beschränkt kryokonserviert werden konnten.
Das erfindungsgemäße Kryokonservierungsverfahren zeichnet sich des Weiteren durch eine Dehydrierung des Zellkerns aus. Vorzugsweise wird ausschließlich der Zellkern dehydriert. Die Dehydrierung umfasst allgemein eine Verringerung des Wasseranteils im Zellkern. Vorteilhafterweise wird mit der Dehydrierung das bei der herkömmlichen Kryokonservierung auftre- tende Problem der Eiskristallbildung im Zellkern unterdrückt oder vollständig vermieden, da durch den verminderten Wasseranteil im Zellkern die Kristallbildung beim Einfrieren behindert ist. Diese Prozedur würde in einer intakten Zelle zur Zerstörung des Zytoplasmas führen. Die Dehydrierung des ZeIl- kerns kann bereits während der Präparation der biologischen Zelle erfolgen oder alternativ nach der Präparation vorgesehen sein. Die Präparations- und Dehydrierungsschritte werden bei einer Zwischenlagerung des biologischen Materials ausgeführt, welche vorzugsweise bei einer höheren Temperatur als die anschließende dauerhafte Lagerung unter den Konservierungsbedingungen erfolgt.
Des Weiteren zeichnet sich das erfindungsgemäße Kryokonser- vierungsverfahren durch die Einstellung von Konservierungsbe- dingungen aus, unter denen der Zellkern dauerhaft lagerfähig sind. Die Einstellung der Konservierungsbedingungen umfasst insbesondere die Einstellung einer Konservierungstemperatur in einem Temperaturbereich, in dem keine Umkristallisierungen in den Zellkernen oder deren Umgebung auftreten, so dass sie dauerhaft unter Erhaltung ihrer Fähigkeit, Zellkerne lebender Zellen zu bilden, gelagert werden können. Da die Zellkerne durch die Dehydrierung einen im Vergleich zum natürlichen Zustand verminderten Wasseranteil enthalten oder vollständig wasserfrei sind, wird bei der Kryokonservierung jegliche un- erwünschte Kristallbildung im Kernmaterial vermieden. Der
Zellkern bleibt unverändert, so dass er nach der Kryokonservierung, insbesondere nach dem Auftauen auf Raumtemperatur seine Vitalität erhalten hat. Die Erfindung basiert insbesondere auf den folgenden Überlegungen und experimentellen Ergebnissen der Erfinder. Untersuchungen haben ergeben, dass in Zellkernen biologischer Zellen, die der herkömmlichen Kryokonservierung unterzogen wur- den, Eisdomänen gebildet werden. Obwohl bei der herkömmlichen Kryokonservierung ein Wassertransport aus dem Inneren der Zellen in deren Umgebung erfolgt, wurde bisher der Zellkern an diesem Wassertransport nicht beteiligt. Da Zellkerne durch eine Doppelmembran (Kernmembran) eingehüllt sind, können Zellkerne nur durch Poren in der Kernmembran entwässert werden. Zellkerne zeichnen sich daher durch eine osmotische Trägheit aus, aufgrund derer die Zellkerne bei der herkömmlichen Kryokonservierung nicht am Wassertransport nach außen beteiligt werden können. Hinzu kommt, dass das Zytoplasma os- motisch dem Zellkern gegenüber der Außenlösung vorgeschaltet ist. Dadurch wird die Trägheit verstärkt und somit die Kernentwässerung verschoben. Im Gegensatz zu dieser von den Erfindern festgestellten Charakteristik der herkömmlichen Verfahren wird mit dem Präparationsschritt die Lebensfähigkeit der Zelle als Gesamtheit aufgegeben, um in der unmittelbaren Umgebung des Zellkerns, d.h. auf der Außenseite der Kernmembran gezielt physikalische und/oder chemische Bedingungen so einstellen zu können, dass beim Dehydrierungsschritt ein Wassertransport aus dem Inneren des Zellkerns in dessen Umgebung erfolgt.
Die herkömmlichen Verfahren zur Kryokonservierung mit einer schonenden Behandlung der Zellen zur Erhaltung von deren Vitalität werden erfindungsgemäß durch die invasive Präparation mit einer Beschädigung der Zellmembran mit der anschließenden gezielten Dehydrierung des Zellkerns ersetzt. Mit dem Präparationsschritt kann die nachteilige Wirkung der osmotischen Trägheit des Zellkerns kompensiert werden. Mit der erfindungsgemäßen Kernentwässerung werden Eisdomänen im Kern und deren nachteilige Auswirkungen während der Lagerung im kryo- konservierten Zustand vermieden.
Das erfindungsgemäße Verfahren zur Kryokonservierung ist nicht auf einen bestimmten Zelltyp beschränkt. Die Erfindung kann z. B. mit tierischen oder menschlichen Zellen, insbesondere Eizellen, Nervenzellen, Muskelzellen oder Immunzellen, wie Lymphozyten, Makrophagen oder Stammzellen, realisiert werden, ohne auf diese Zelltypen beschränkt zu sein. Vorzugs- weise sind Zellen vorgesehen, die einen vollständig ausgebildeten Zellkern enthalten (keine Vorstufen von Kernmaterial) .
Ein wichtiger Vorteil der Erfindung besteht darin, dass neue Substanzgruppen als Kryoprotektivum oder Dehydrierungssub- stanz verwendet werden können, die für herkömmliche Verfahren zur Kryokonservierung wegen ihrer beschränkten Membrangängig- keit ungeeignet sind. Es können insbesondere Substanzen als Kryoprotektivum verwendet werden, die nicht membrangängig sind und für das Zytoplasma zu stark dehydrierend und schädi- gend sind. Wegen des Verzichts auf die Vitalität der zu konservierenden Zelle können z. B. organische Frostschutzproteine (AFP, Antifreeze-Proteine) , wie z. B. Polypeptide der Gruppe AFPl aus Fischen der Polarregion (z. B. Winterflunder oder arktischer Dorsch) , oder AFP der Typen I bis IV, wie sie in Insekten, Amphibien oder Algen enthalten sind, oder GIy- coproteine (AFGP) , bei der erfindungsgemäßen Kryokonservierung als Kryoprotektivum oder Dehydrierungssubstanz verwendet werden .
Mit dem erfindungsgemäßen Verfahren wird der biologische Zustand der Zellkerne und somit ihre biologische Funktionsfähigkeit, Zellkerne lebender Zellen zu bilden, insbesondere vollständiges und unbeschädigtes genetisches Material zu enthalten, während der Kryokonservierung und dem Auftauen erhal- ten. Diese Funktionsfähigkeit wird hier auch als Vitalität der Zellkerne bezeichnet. Zur Gewinnung lebender Zellen kann nach dem erfindungsgemäßen Verfahren vorzugsweise ein Einführung der Zellkerne in Wirtzellen und deren Kultivierung nach an sich bekannten Verfahren vorgesehen sein, die z. B. von K. H. S. Campell et al. („Nature" Bd. 380, 1996, S. 64 - 66), A. Baguisi et al. („Nature Biotechnology" Bd. 17, 1999, S. 456 - 461), R. Briggs et al. ("Proceedings of the National Academy of Sciences of the United States of America" Bd. 38, 1952, S. 455-463) und P. Chesne et al. („Nature Biotechnology" Bd. 20, 2002, S. 366 - 369) beschrieben sind.
Vorrichtungsbezogen wird die oben genannte Aufgabe durch die allgemeine technische Lehre gelöst, eine Kryokonservierungs- Vorrichtung bereitzustellen, die eine Präparationseinrichtung, die zur Ausführung des oben genannten Präparationsschrittes konfiguriert ist, und eine Dehydrierungseinrichtung aufweist, mit der Zellkerne der oben genannten Dehydrierung unterzogen werden können. Des Weiteren weist die erfindungs- gemäße Kryokonservierungs-Vorrichtung eine Konservierungseinrichtung auf, mit der die Zellkerne in einen kryokonservier- ten Zustand überführbar sind.
Die Erfindung ist nicht auf die Dehydrierung und Konservie- rung von Zellkernen beschränkt. Gemäß einer bevorzugten Ausführungsform der Erfindung werden weitere Zellbestandteile, insbesondere Zellmembranen, Zytoplasma, Zellorganellen und/oder Teile von diesen der Dehydrierung und anschließend der Kryokonservierung unterzogen. Diese Schritte erfolgen ge- trennt von der Behandlung der Zellkerne. Vorteilhafterweise können damit für die einzelnen Zellbestandteile die physikalischen und/oder chemischen Bedingungen für die Kryokonservierung unter Erhaltung der biologischen Funktion der jeweiligen Zellbestandteile optimiert werden. So ist besonders be- vorzugt vorgesehen, die Zellbestandteile voneinander isoliert zu dehydrieren und zu konservieren. Für diese Ausführungsform der Erfindung ist die erfindungsgemäße Kryokonservierung- Vorrichtung mit mehreren Dehydrierungseinrichtungen und meh- reren Konservierungseinrichtungen ausgestattet, die jeweils für die Dehydrierung beziehungsweise Kryokonservierung bestimmter Zellbestandteile konfiguriert sind. Vorteilhafterweise können die weiteren Zellbestandteile bei der Regeneration oder Wiedergewinnung vitaler Zellen verwendet werden, indem sie mit den aufgetauten Zellkernen kombiniert werden.
Mit dem erfindungsgemäßen Präparationsschritt ist eine Schädigung oder Zerstörung wesentlicher Komponenten (insbesondere Zellmembran, Struktur des Zytoplasmas) der biologischen ZeI- len vorgesehen. Die Zellmembran wird so verändert, dass die Vitalität der Zelle verloren geht. Die Komponenten der Kernumgebung werden der besseren Erhaltung der Funktionsfähigkeit der Zellkerne geopfert (Verwendung als Opferschicht) . Vorteilhafterweise bestehen verschiedene Varianten, die Präpara- tion auszuführen.
Gemäß einer ersten Variante ist eine Abkühlung der biologischen Zellen vorgesehen. Die Abkühlung erfolgt mit einer derart eingestellten Kühlrate, dass die Zellmembran zerstört wird. Dabei ist die Probe vorzugsweise frei von Kryoprotekti- va. Vorteilhafterweise können in diesem Fall die Präparation und die spätere Einstellung der Kryokonservierungsbedingungen mit einer einzigen Kühleinrichtung ausgeführt werden, deren Temperaturverlauf steuerbar ist.
Gemäß einer zweiten Variante umfasst die Präparation eine mechanische Zerstörung der Zellmembranen, zum Beispiel durch eine Zentrifugation oder eine elektrische Permeation. In die- sem Fall wird vorteilhafterweise eine Abkühlung der Proben vor der Dehydrierung der Zellkerne vermieden.
Gemäß einer dritten Variante kann eine chemische Zerstörung der Zellmembranen (Lysieren) , zum Beispiel unter Verwendung von Enzymen oder Detergenzien vorgesehen sein. Auch in diesem Fall wird vorteilhafterweise eine Abkühlung vor der Dehydrierung der Zellkerne vermieden.
Eine vierte Variante umfasst eine osmotische Zerstörung der Zellmembranen. Hierzu werden die biologischen Zellen einer Umgebung verminderten osmotischen Drucks ausgesetzt. Beispielsweise werden die biologischen Zellen in Wasser, vorzugsweise destilliertem Wasser, angeordnet, so dass die ZeI- len anschwellen und die Zellmembranen reißen (platzen) . Durch die Wirkung des osmotischen Drucks dringt Wasser in die Zelle ein, wo es im Zytoplasma in der Umgebung des Zellkerns Eisdomänen bildet, die während der Dehydrierungsphase dem Zellkern Wasser entziehen.
Erfindungsgemäß kann vorgesehen sein, dass mindestens zwei der genannten Varianten kombiniert, insbesondere gleichzeitig oder aufeinanderfolgend ausgeführt werden.
Gemäß einer vorteilhaften Ausführungsform der Erfindung erfolgt bei der Präparation nicht nur eine Unterbrechung der Zellmembran, sondern eine Störung, zum Beispiel Beschädigung, Zerteilung, mindestens von Teilen des Zytoplasmas der biologischen Zellen in der Umgebung der Zellkerne. Vorteilhafter- weise kann damit die Wirkung der Präparation verbessert und die Einstellung physikalischer und/oder chemischer Dehydrierungsbedingungen für die Zellkerne vereinfacht werden. Gemäß einer weiteren, bevorzugten Ausführungsform der Erfindung umfasst die Präparation eine Kombination aus thermischer und mechanischer Einwirkung auf die biologischen Zellen. Es kann erfindungsgemäß eine Zerkleinerung von biologischem Zellmaterial, das die biologischen Zellen enthält, im gefrorenen Zustand vorgesehen sein. Die Zerkleinerung kann beispielsweise unter Verwendung von Ultraschall erfolgen. Die Erfinder haben festgestellt, dass bei der Einwirkung von Ultraschall auf gefrorenes Zellmaterial eine Beschädigung von Zellmembranen und Zytoplasma erzielt wird, während Zellkerne und optional weitere Zellbestandteile, wie zum Beispiel Zellorganellen, insbesondere Mitochondrien, erhalten bleiben.
Wenn gemäß einer weiteren Modifizierung der Erfindung eine Trennung der Zellkerne von anderen Bestandteilen der biologischen Zellen, insbesondere von den Zellmembranen und dem Zytoplasma vorgesehen ist, können sich Vorteile für die gezielte Dehydrierung der Zellkerne ergeben. Die Zellkerne können in einem von Zellbestandteilen freien Medium angeordnet wer- den, in dem die physikalischen und/oder chemischen Bedingungen der Dehydrierung einstellbar sind. Des weiteren kann eine Einhüllung der Zellkerne in eine Verkapselungssubstanz, wie zum Beispiel aus Alginat, vorgesehen seien. Damit wird ein zusätzlicher Schutz der Zellkerne bewirkt.
Die Erfinder haben festgestellt, dass verschiedene Verfahren zur Dehydrierung der Zellkerne verfügbar sind. Welches dieser Verfahren, die einzeln oder in Kombination, gleichzeitig oder aufeinanderfolgend, ausführbar sind, angewendet wird, kann in Abhängigkeit von der konkreten Konservierungsaufgabe, insbesondere in Abhängigkeit von den Zelltypen gewählt werden.
Gemäß einer ersten Variante umfasst die erfindungsgemäß angewendete Dehydrierung die Einstellung einer Dehydrierungstem- peratur in der Umgebung der Zellkerne. Die Dehydrierungstemperatur ist so gewählt, dass Wasser in der Umgebung der Zellkerne gefriert und Eiskristalle bildet, wobei der Gefrierpunkt so geringfügig unterschritten wird, dass in den Eis- kristallen eine Umkristallisierung erfolgt. Vorzugsweise wird die Dehydrierungstemperatur im Bereich unterhalb von 00C, vorzugsweise unterhalb von -5 0C gewählt. Des Weiteren wird die Dehydrierungstemperatur vorzugsweise im Bereich oberhalb von -130 0C, z. B. oberhalb von -800C, besonders bevorzugt oberhalb von -4O0C gewählt. Bisher wurde dieser Temperaturbereich für Konservierungsverfahren nicht in Betracht gezogen, da davon ausgegangen wurde, dass für eine Lebenderhaltung von Zellmaterial tiefere Temperaturen notwendig seien. Die Umkristallisierung von Eisdomänen in der Umgebung der Zellkerne bedeutet die Bildung mikroskopischer Bereiche flüssigen Wassers oder sich verändernder Eiskristalle, welche einen osmotischen Druck auf das in den Zellkernen befindliche Wasser ausüben. Im Ergebnis wird Wasser aus den Zellkernen durch deren Kernmembran in die Umgebung der Zellkerne transportiert. Große Eiskristalle wachsen dann auf Kosten kleinerer Eiskristalle. Dieses Phänomen wird auch als "migratorisches Wachstum" bezeichnet. Der genannte Temperaturbereich hat ferner den Vorteil, dass die Kryokonservierungs-Vorrichtung kostengünstig, insbesondere mit einer Peltier-Kühlung erfolgen kann.
Die Einstellung der Dehydrierungstemperatur kann eine Variation der Temperatur in der Umgebung der Zellkerne einschließen. Vorteilhafterweise kann ein Dehydrierungstemperaturzyk- lus eingestellt werden, in dessen zeitlichen Verlauf die Dehydrierungstemperatur im genannten Temperaturbereich mehrfach vergrößert und verringert wird. Damit wird die Umkristallisa- tion in der Umgebung der Zellkerne stimuliert. Vorteilhafterweise wird damit die Dehydrierung der Zellkerne gefördert. Alternativ oder zusätzlich kann der Dehydrierungstemperaturzyklus eine oder mehrere Temperaturerhöhung (en) bis oberhalb des Schmelzpunkts der gefrorenen Probe, insbesondere oberhalb von O0C umfassen. In diesem Fall enthält der Dehydrierungstemperaturzyklus Phasen, in denen die Umgebung der Zellkerne vollständig aufgetaut ist. Während der Tauphasen des Dehydrierungstemperaturzyklus kann der osmotische Druck auf die Zellkerne erhöht und der Wassertransport in die Umgebung ver- stärkt werden. Des Weiteren kann vorteilhafterweise während der Tauphasen ein Stoffaustausch in der Umgebung der Zellkerne vorgesehen sein. In diesem Fall wird im Dehydrierungstemperaturzyklus die Temperatur der Probe zeitweilig erhöht, so dass die Umgebung der Zellkerne flüssig ist. In diesem Zu- stand kann der Umgebung der Zellkerne eine Substanz zugesetzt werden, mit der die Dehydrierung gefördert wird. Dieser Pro- zess kann durch die Zugabe von Substanzen unterstützt werden, die den Gefrierpunkt erniedrigen, wie zum Beispiel hochmolekulare Substanzen, insbesondere Dextran oder Elektrolyte.
Gemäß einer zweiten Variante der erfindungsgemäß angewendeten Dehydrierung wird in der Umgebung der Zellkerne eine Dehydrierungssubstanz angeordnet, welche die Dehydrierung der Zellkerne bewirkt. Die Dehydrierung mit einer Dehydrierungs- Substanz kann vorteilhafterweise bei Raumtemperatur ausgeführt werden. Als Dehydrierungssubstanzen stehen verschiedene Substanzgruppen zur Verfügung, die Alkohole, Proteine, Zucker, Elektrolyte und/oder Polymere umfassen und sich jeweils durch die Bildung eines osmotischen Potentials gegenüber dem Inneren der Zellkerne auszeichnen. Die Konzentration der Dehydrierungssubstanz kann in Abhängigkeit von den konkreten Verfahrensbedingungen z. B. durch Tests oder durch Verwendung von bekannten osmotischen Parametern der Substanzen (Tabellenwerte) gewählt werden. Gemäß einer dritten Variante der erfindungsgemäß angewendeten Dehydrierung wird in der Umgebung der Zellkerne eine Stabilisierungssubstanz bereitgestellt, die durch die Kernmembran in die Zellkerne eindringt und in diesen Wasser verdrängt. Als Stabilisierungssubstanz ist jede Substanz verwendbar, die in der molekularen Umgebung im Inneren der Zellkerne eine höhere thermodynamische Stabilität als außerhalb der Zellkerne und als das Wasser in den Zellkernen aufweist. Vorteilhafterweise stehen verschiedene Substanzgruppen zur Verfügung, die insbesondere Alginate, Nanopartikel, Matrizen, Zellulose, Polymere und/oder Gele umfassen. Auch die Konzentration der Stabilisierungssubstanz kann in Abhängigkeit von den konkreten Verfahrensbedingungen gewählt werden.
Wenn gemäß einer weiteren vorteilhaften Ausführungsform der Erfindung die Dehydrierung erfolgt, während in der Umgebung der Zellkerne noch die Zellbestandteile (insbesondere Zellmembran, Zytoplasma) der Zellen angeordnet sind, können sich Vorteile für die Kombination der Präparations- und Dehydrierungsschritte und deren Ausführung in einer kombinierten Präparations- und Dehydrierungseinrichtung ergeben. Alternativ kann erfindungsgemäß vorgesehen sein, die Dehydrierung auszuführen, nachdem die Zellkerne von den übrigen Zellbestandtei- len getrennt wurden. In diesem Fall ergeben sich Vorteile für die besonders effektive Einstellung der Dehydrierungsbedingungen.
Gemäß einer weiteren vorteilhaften Variante der Erfindung ka- nn während der Präparation und/oder der Dehydrierung in der
Umgebung der Zellkerne mindestens ein Kryoprotektivum vorhanden sein. Im Unterschied zu herkömmlichen Techniken wird das Kryoprotektivum so zugeführt und dosiert, dass es ausschließlich für einen Schutz des Zellkerns wirkt. Beispielsweise wird einem Medium in der Umgebung der Zellen Kryoprotektivum mit einem Anteil von weniger als 5 vol.-%, vorzugsweise weniger als 3 vol.-%, z. B. 1 vol.-% oder weniger bereitgestellt. Die Zufuhr des Kryoprotektivums kann bei physiologischen Tem- peraturen, insbesondere oberhalb von 100C und/oder unterhalb von 38 0C, erfolgen.
Die erfindungsgemäße Einstellung von Konservierungsbedingungen für die Zellkerne umfasst vorzugsweise die Einstellung einer Lagertemperatur, bei der eine Umkristallisierung von
Eisdomänen unterdrückt oder ausgeschlossen ist. Es wird vorzugsweise eine Lagertemperatur unterhalb von -800C, besonders bevorzugt unterhalb von -1300C eingestellt. Vorteilhafterweise wird damit ein eventueller Schaden durch mikroskopische Restdomänen von Wasser in den Zellkernen ausgeschlossen. Des Weiteren stimmt die Lagertemperatur vorteilhafterweise mit üblichen Endtemperaturen der herkömmlichen Kryokonservierung überein, so dass erfindungsgemäß präparierte und dehydrierte Zellkerne gemeinsam mit herkömmlich bearbeitetem Zellmaterial in einer gemeinsamen Konservierungseinrichtung aufgenommen werden können.
Gemäß weiteren Modifizierungen des erfindungsgemäßen Verfahrens können die Zellkerne einer Verdichtung oder einer Ein- zelablage unterzogen werden. Im Fall der Verdichtung erfolgt eine Konzentration der Zellkerne. Die Zellkerne sind für die Kryokonservierung mit einer erhöhten Raumdichte angeordnet. Vorteilhafterweise kann damit die Effektivität der Lagerung erhöht werden. Bei der alternativ vorgesehenen Einzelablage werden die Zellkerne vereinzelt und voneinander getrennt gelagert. In diesem Fall ergeben sich Vorteile aus der Möglichkeit, einzelne Zellkerne einer Probe aufzutauen und einer weiteren Anwendung zuzuführen. Ein besonderes Merkmal der Erfindung besteht in der Verwendung von Substanzen, welche eine Vergrößerung und Umkristal- lisation von Eisdomänen in der Umgebung von Zellkernen fördern, als Kryoprotektiva . Die erfindungsgemäßen Kryoprotekti- va zeichnen sich dadurch aus, dass sie nicht kernmembrangän- gig sind und in der Umgebung des Kerns die Größe von Eisdomänen nicht verringern. Weitere Eigenschaften der erfindungsgemäßen Kryoprotektiva bestehen darin, dass sie osmotisch wirksam sind und/oder eine Entmischung der flüssigen Umgebung des Kerns in Eiskristalle und aufkonzentrierte Substanzen bewirken. Bei herkömmlichen Kryokonservierungsverfahren sind derartige Substanzen, wie zum Beispiel Alkohole, Proteine, Zucker, Elektrolyte, Polyanionen, Polykationen, Polymere, Öle oder Gele gerade nicht als Kryoprotektiva geeignet, da bei den herkömmlichen Verfahren die Eisdomänen möglichst klein und stabil gehalten werden sollen. Die Verwendung der genannten Substanzen als Kryoprotektiva stellt damit einen unabhängigen Gegenstand der Erfindung dar.
Weitere Einzelheiten und Vorteile der Erfindung werden im Folgenden unter Bezug auf die beigefügten Zeichnungen beschrieben. Es zeigen:
Figur 1: eine schematische Illustration von Verfah- rensschritten, die bei bevorzugten Ausführungsformen des erfindungsgemäßen Verfahrens vorgesehen sind;
Figuren 2 bis 4 : schematische Illustrationen von drei Ausfüh- rungsformen der erfindungsgemäßen Kryokonservierung von Zellkernen; Figuren 5 und 6: schematische Illustrationen der Dehydrierung und der dauerhaften Lagerung von Zellkernen gemäß der Erfindung;
Figur 7: eine schematische Illustration der Erzeugung vitaler Zellen unter Verwendung eines Kerntransfer-Verfahrens; und
Figur 8: eine schematische Illustrationen einer Aus- führungsform der erfindungsgemäßen Kryokon- servierungs-Vorrichtung.
Eine biologische Zelle 1 umfasst als Zellbestandteile allgemein die Zellmembran 2, den Zellkern 3, das Zytoplasma 4 und Zellorganellen 5, wie zum Beispiel Mitochondrien, endoplasmatisches Retikulum oder den Golgi-Apparat . Bei der herkömmlichen Kryokonservierung werden ganze Zellen schonend eingefroren. Dazu im Gegensatz werden bei dem erfindungsgemäßen Verfahren, wie in Figur 1 schematisch illustriert ist, biologi- sehe Zellen 1 so behandelt, dass die Zellmembran 2 unterbrochen und damit die Zelle 1 zerstört wird. Die Zellbestandteile 2, 3, 4 und 5 können mit an sich bekannten Isolationsverfahren voneinander getrennt werden. Von den Zellbestandteilen werden mindestens der Zellkern 3, optional jedoch auch die Zellmembran 2, das Zytoplasma 4, Zellorganellen 5 und/oder Teile von diesen der Dehydrierung und Kryokonservierung unterzogen .
Im Präparationsschritt wird die Zelle 1 gemäß einer der unten erläuterten Varianten bearbeitet. Anschließend wird der Zellkern 3 in einer Umgebung von Bestandteilen der zerstörten Zelle in der schematisch gezeigten Dehydrierungseinrichtung 20 dehydriert und anschließend in der Konservierungseinrichtung 30 konserviert. Optional können die Zellorganellen 5, entkernte Zellen (umfassend die Zellmembran 2 und das Zyto- plasma 4 ohne den Zellkern) und/oder Teile des Zytoplasmas 4, gegebenenfalls mit Zellorganellen 5 oder Teilen von diesen der Dehydrierung und folgenden Konservierung unterzogen wer- den. Dabei können gezielt Verfahrensbedingungen eingestellt werden, die spezifisch an die jeweiligen Zellbestandteile an- gepasst sind. Beispielsweise können Mitochondrien wie Zellkerne behandelt werden, wobei eine Dehydrierung vorgesehen ist und das Innere der Mitochondrien frei von Kryoprotektiva bleibt. Bei der Kryokonservierung von endoplasmatischem Retikulum oder Golgi-Apparat hingegen ist der Zusatz von Stabilisierungssubstanzen, wie z. B. Alginat oder Polyelektrolyten vorgesehen, insbesondere um diese besonders empfindlichen Zellbestandteile zu stabilisieren. Zellmembranen können in einer wässrigen Lösung verdichtet werden, um bei der Konservierung eine kompakte Packung zu erhalten.
Typischerweise umfasst die biologische Probe, welche dem erfindungsgemäßen Verfahren unterzogen wird, eine Vielzahl bio- logischer Zellen 1, so dass gleichzeitig Zellkerne 3 in der
Umgebung von Zellbestandteilen dehydriert und konserviert und andere Zellbestandteile isoliert dehydriert und konserviert werden. Dabei ist es vorteilhafterweise möglich, dass gleiche Zellbestandteile von verschiedenen Zellen gemeinsam einfroren werden.
Bevorzugte Ausführungsformen der erfindungsgemäßen Kryokonservierung der Zellkerne werden im Folgenden unter Bezug auf drei Verfahrensmöglichkeiten erläutert. Diese umfassen ers- tens eine Behandlung der Zellkerne in situ, das heißt in den Zellen und/oder im Zellverband (Figur 2), zweitens eine Behandlung der Zellkerne nach deren Isolation aus den Zellen und/oder deren Trennung aus dem Zellverband (Figur 3) und drittens die Behandlung der Zellkerne innerhalb der Zellen mit einer anschließenden Trennung der Zellkerne von den Zellen (Figur 4) . Es wird betont, dass die Umsetzung der Erfindung nicht auf diese Schemata beschränkt ist, sondern weitere Verfahrensschritte einschließen kann. Weitere Verfahrens- schritte können physikalische und/oder chemische Behandlungen, wie zum Beispiel Temperaturerhöhungen oder -Verringerungen, mechanische Bearbeitungen oder Wechsel von Umgebungsmedien umfassen. Des Weiteren kann die Behandlung der anderen Zellbestandteile wie die Behandlung der Zellkerne erfolgen.
Die Erfindung wird insbesondere unter Bezug auf Einzelheiten der Präparations- und Dehydrierungsschritte erläutert. Weitere Einzelheiten, zum Beispiel der dauerhaften Konservierung, werden nicht erläutert, da diese an sich von herkömmlichen Kryokonservierungsverfahren bekannt sind.
Für die in situ Kryokonservierung von Zellkernen zeigt Figur 2A zunächst die Bereitstellung einer Probe, welche die Zellen 1 mit den Zellmembranen 2 und den Zellkernen 3 enthält. Die Zellen 1 liegen vereinzelt und in einer Suspensionslösung suspendiert oder als Zellzusammensetzung 6 (Gewebe oder Gewebeteil) in einem Kultivierungsmedium vor. Die Bereitstellung der Zellen 1 erfolgt bei einer ersten Temperatur Ti oberhalb des Gefrierpunkts der Probe, insbesondere oberhalb des Ge- frierpunkts von Wasser (0 0C). Die erste Temperatur Ti ist so gewählt, dass weder die Zellen 1 noch deren Umgebungsmedium (Suspensionslösung und/oder Kultivierungsmedium) gefroren sind. In diesem Zustand kann den Zellen 1 oder der Zellzusammensetzung 6 eine Dehydrierungs- und/oder Stabilisierungssub- stanz zugesetzt werden.
Die Zellen umfassen vorzugsweise tierische oder menschliche Zellen, insbesondere Eizellen, Nervenzellen, Muskelzellen oder Immunzellen, wie Lymphozyten, Makrophagen oder Stammzel- len. In einer konkreten Ausführungsform umfassen die Zellen 1 zum Beispiel Muskel- oder Nerven-Zellen in einer physiologischen Kultivierungslösung. Es wird beispielsweise ein Probenvolumen von 1 bis 100 μl mit etwa 10 bis 10000 Zellen bereit- gestellt.
Anschließend erfolgen die erfindungsgemäßen Präparations- und Dehydrierungsschritte bei einer zweiten Temperatur T2 (Zwischenlagerungstemperatur) unterhalb des Gefrierpunkts der Probe, insbesondere unterhalb des Gefrierpunkts von Wasser (Figur 2B). Bei der zweiten Temperatur T2 sind die Zellen 1 mit den Zellkernen 3 und das Umgebungsmedium 7 gefroren. Bei der Abkühlung der Probe in den Temperaturbereich von -50C bis -8O0C, zum Beispiel etwa -200C werden die Zellmembranen 2 zerstört. Die Zerstörung der Zellmembranen 2 wird dadurch bewirkt, dass im genannten Temperaturbereich in der Umgebung der Zellen 1 Eiskristalle wachsen und umgeordnet werden, wobei eine Permeation der Zellmembranen erfolgt. Gleichzeitig sind die Zellkerne 3 durch das umgebende Zytoplasma ge- schützt, so dass die Kernmembranen der Zellkerne 3 nicht gestört, sondern erhalten bleiben.
Bei der zweiten Temperatur T2 wird durch die Zerstörung der Zellmembranen 2 und die Störung der Struktur des Zytoplasmas der Zellen 1 ermöglicht, dass Wasser aus den Zellkernen 3 in deren Umgebung transportiert wird. Die Dehydrierung erfolgt somit gleichzeitig mit der Präparation. Des Weiteren kann als eine Stabilisierungssubstanz, z. B. ein Elektrolyt, das z.B. K+, Cl", Na+, und/oder Ca2+-Ionen enthält; ein anionisches o- der kationisches Polyelektrolyt, z.B. Pektine, Alginate, Polysaccharide, Polyacrylsäure, Polyethylenimin, Polyvinylamin, Polyvinylpyridin, Biopolymere (wie DNA) ; Dextran oder Zucker aus dem Umgebungsmedium 7 in die Zellkerne 3 diffundieren, um dort eingebautes Wasser zu ersetzen. Das ersetzte Wasser tritt in die Umgebung der Zellkerne 3 aus.
Es kann eine fest eingestellte zweite Temperatur T2 gewählt werden. Alternativ können Temperaturprogramme mit steigenden und fallenden Temperaturen im genannten Intervall ausgeführt werden. Es kann vorgesehen sein, zumindest das Umgebungsmedium 7 zeitweilig aufzutauen (Temperatur insbesondere oberhalb des Gefrierpunkts von Wasser) , um dem Umgebungsmedium 7 De- hydrierungs- und/oder Stabilisierungssubstanzen zuzusetzen oder zu entfernen.
Die Dauer der Präparations- und Dehydrierungsschritte bei der zweiten Temperatur T2 hängt von der gewählten Temperatur und/oder dem gewählten Temperaturverlauf sowie von Probeneigenschaften, wie zum Beispiel der Probengröße und der Zahl der Zellkerne 3 ab. Die Dauer der Präparations- und Dehydrierungsschritte beträgt mindestens eine halbe Stunde, kann aber auch mindestens 1 Stunde, 5 Stunden, 24 Stunden oder mehr, zum Beispiel 2 Tage oder mehr oder sogar Monate bis zu Jahre betragen. Generell stellen die Präparations- und Dehydrierungsschritte bei der zweiten Temperatur T2 somit eine Zwischenlagerung dar, bei der sich die Umgebung der Zellkerne 3 insbesondere durch Umkristallisierungen dynamisch verändert, um die Dehydrierung der Zellkerne 1 zu bewirken.
Anschließend erfolgt die Einstellung von Konservierungsbedingungen, unter denen die Zellkerne 3 dauerhaft einen unveränderlichen, kryokonservierten Zustand aufweisen (Figur 2C). Hierzu wird eine dritte Temperatur T3 (Lagertemperatur) eingestellt, die unterhalb von -8O0C, vorzugsweise unterhalb von -13O0C gewählt ist. Bei diesen Temperaturen sind jegliche Um- kristallisierungsprozesse in der Umgebung der Zellkerne 3 unterbunden, so dass sich die Zellkerne 3 und ihre Bestandtei- Ie, insbesondere DNA-Komponenten nicht mehr verändern. Während der Lagerung bei der dritten Temperatur T3 existieren die Reste der biologischen Zellen 1 in der Umgebung der Zellkerne 3 noch. Im Unterschied zur herkömmlichen Kryokonservie- rung vitaler Zellen sind die Zellmembranen 2 jedoch stark permeiert oder vollständig zerstört und die Zytoplasmastruk- tur stark verändert (zum Beispiel entmischt oder mit Eisdomänen versetzt) oder vollständig zerstört (Funktion des Zyto- plasmas als "Opferschicht").
Figur 2D illustriert schematisch die Rückgewinnung der Zellkerne 3 nach der Kryokonservierung. Hierzu werden die Zellkerne 3 auf eine vierte Temperatur T4 erwärmt und aufgetaut. Die vierte Temperatur T4 ist vorzugsweise oberhalb von -5°C, besonders bevorzugt oberhalb von 00C gewählt. Auch beim Übergang von der dritten Temperatur T3 zur vierten Temperatur T4 können Temperaturwechsel mit steigenden und fallenden Temperaturen vorgesehen sein, um die Zellkerne 3 einer Rehydrie- rung zu unterziehen.
Bei der in Figur 3 illustrierten Ausführungsform des erfindungsgemäßen Verfahrens werden die Zellen 1 mit den Zellkernen 3 bei einer ersten Temperatur Ti oberhalb des Gefrierpunkts der Probe, insbesondere oberhalb von 00C, bereitge- stellt (Figur 3A) und einer Trennung der Zellkerne 1 von den übrigen Zellbestandteilen unterzogen. Die Trennung umfasst an sich bekannte Verfahren, wie zum Beispiel eine Zentrifugation in einem Dichtegradienten, wobei die Zellmembranen 2 zerstört und die Zellkerne 3 isoliert werden. In einer Fraktion werden die Zellkerne 3 verdichtet. Im Ergebnis liegt eine Probe mit einem Volumen von zum Beispiel 1 bis 10 μl mit 1 bis 1000 Zellkernen 3 vor. Danach erfolgt die Dehydrierung der Zellkerne 3, indem die isolierten Zellkerne 3 zunächst in ein Einfriermedium 8 eingeführt werden (Figur 3B). Das Einfriermedium 8 ist eine physiologische Lösung, die Substanzen enthält, wie zum Beispiel Elektrolyte, Serum, Glukose oder Proteine, die das Einfrieren der Zellkerne 3 fördern. Zusätzlich kann das Einfriermedium 8 herkömmliche Kryoprotektiva enthalten. Die Zuführung in das Einfriermedium erfolgt bei einer zweiten Temperatur T2, die oberhalb des Gefrierpunkts des Einfriermediums 8 gewählt ist.
Anschließend wird die Suspension der Zellkerne 3 im Einfriermedium 8 auf eine dritte Temperatur T3 abgekühlt (Zwischenlagerung, Figur 3C) . Die dritte Temperatur T3 ist im Bereich von -5°C bis -8O0C, vorzugsweise bei -200C gewählt, wobei wie bei der Ausführungsform gemäß Figur 2 temporäre Temperaturwechsel in diesem Temperaturintervall vorgesehen sein können. Des Weiteren können Auftauphasen vorgesehen sein, bei denen die Temperatur oberhalb des Gefrierpunkts des Einfriermediums 8 gewählt ist. Während der Zwischenlagerung bei der dritten Temperatur T3 erfolgt eine Umkristallisierung in der Umgebung der Zellkerne 3, eine Dehydrierung der Innenräume der Zellkerne 3 und gegebenenfalls eine Diffusion von Stabilisierungssubstanzen in die Zellkerne 3. Hierzu kann die Dauer der Zwischenlagerung, wie oben zu Figur 2 erwähnt, in Abhängig- keit von dem Temperaturprogramm und/oder Eigenschaften der
Probe gewählt sein. Die Eisbildung kann durch eine Vibration oder durch die Applikation von Ultraschall zu bestimmten Zeitpunkten induziert werden. Optional kann während der Zwischenlagerung bei der dritten Temperatur T3 ein Wasserentzug aus dem gefrorenen oder temporär aufgetauten Einfriermedium vorgesehen sein. Im gefrorenen Zustand kann zum Beispiel eine Sublimation in einer Umgebung reduzierten Druckes, zum Beispiel im Vakuum, vorgesehen sein. Anschließend erfolgt die Lagerung bei der Lagertemperatur T4, die zum Beispiel unterhalb von -13O0C gewählt ist (Figur 3D) . Eine höhere Lagertemperatur T4 zum Beispiel im Bereich von -800C bis -1300C kann insbesondere eingestellt werden, wenn vorher aus dem Einfriermedium 6 Wasser, z. B. durch Sublimation, entfernt wurde. Schließlich illustriert Figur 3E die Rückgewinnung der Zellkerne 3 durch eine Erwärmung auf die erhöhte Temperatur T5 oberhalb des Gefrierpunkts des Einfriermediums 8.
Figur 4 illustriert die Ausführungsform der Erfindung, bei der die Präparation und Dehydrierung an den Zellkernen 3 unter in situ-Bedingungen ausgeführt werden und anschließend eine Trennung der Zellkerne 3 vom übrigen Zellmaterial er- folgt. Zunächst erfolgen die Präparation und Dehydrierung, wie dies oben unter Bezug auf Figur 2 beschrieben wurde (Figuren 4A, 4B) . Bei der zweiten Temperatur T2, die zum Beispiel im Bereich von -200C bis -196°C gewählt ist, erfolgt eine mechanische Behandlung der gefrorenen Probe, zum Bei- spiel durch die Einwirkung von Ultraschall oder durch die mechanische Zerkleinerung durch Werkzeuge oder andere Vibrationen. Dabei können die Zellkerne 3 von den übrigen Zellkomponenten getrennt werden. Anschließend erfolgt bei der dritten Temperatur T3, die im Bereich von 00C bis -8O0C gewählt ist, eine weitere Dehydrierung der Zellkerne 1. Bei der dritten Temperatur T3 können zum Beispiel Dehydrierungssubstanzen und/oder Stabilisierungssubstanzen dem Einfriermedium 8 zugesetzt oder aus diesem Wasser entfernt werden. Schließlich illustrieren die Teilbilder C und D von Figur 4 die dauerhafte Lagerung der dehydrierten Zellkerne und deren spätere Rückgewinnung (siehe Figuren 2, 3) .
Die Figuren 5 und 6 illustrieren schematisch die Vorgänge, welche bei der erfindungsgemäßen Dehydrierung der Zellkerne bei der Zwischenlagerungstemperatur ablaufen. In Figur 5 sind die Bedingungen zu Beginn der Zwischenlagerung schematisch illustriert. Es ist ein einzelner Zellkern 3 gezeigt, der von einer Kernmembran 3.1 (Doppelmembran) umgeben in dem Ein- friermedium 8 angeordnet ist. Im Inneren des Zellkerns 3 befinden sich Wasseranteile 3.2, Chromatin 3.3 und DNA 3.4 (im Histon-adhärierten Zustand). Die Wasseranteile 3.2 können im flüssigen Zustand oder bereits im gefrorenen Zustand sein. Außerhalb des Zellkerns 3 befinden sich ebenfalls Wasseran- teile 8.1 im Einfriermedium 8, die im flüssigen (gelösten) oder gefrorenen Zustand sein können.
Figur 6 zeigt die Situation nach einer mehrmonatigen Zwischenlagerung. Im Ergebnis der Dehydrierung des Zellkerns 3 sind die Wasseranteile 3.2 im Inneren des Zellkerns nahezu oder vollständig entfernt, während die Wasseranteile 8.1 im Einfriermedium 8 gewachsen sind. Gleichzeitig können Stabilisierungssubstanzen in das Innere des Zellkerns 3 diffundiert sein. Figur 6 zeigt den wesentlichen Unterschied der Erfin- düng gegenüber herkömmlichen Verfahren derart, dass in der
Umgebung der Zellkerne 3 das Wachstum von großen, das Innere der Zellkerne 3 dehydrierenden Eisdomänen 8.1 induziert wird.
Figur 7 illustriert schematisch am Beispiel von Eizellen der Maus, wie aus einem Zellkern 3, der dem erfindungsgemäßen Konservierungsverfahren unterzogen wurde, eine vitale, lebensfähige Zelle 1.1 erzeugt wird. Von einer Maus 9 werden frische Eizellen 1.2 gewonnen, die mit einem an sich bekannten Verfahren entkernt werden. Der konservierte Zellkern 3 wird der Konservierungseinrichtung 30 entnommen und mit einem ebenfalls an sich bekannten Kerntransfer-Verfahren in die entkernte Zelle 1.3 eingeführt. Die dabei gewonnene Zelle 1.1 wird anschließend einem Kultivierungsverfahren, einschließlich einer Vermehrung und einem Wachstum von Zellen, unterzo- gen. Abweichend von dem gezeigten Verfahren kann vorgesehen sein, dass der aufgetaute Zellkern nicht in frische Eizellen, sondern aufgetaute, entkernte Eizellen transferiert wird.
Figur 8 zeigt schematisch eine Kryokonservierungs-Vorrichtung 100 mit einer Präparationseinrichtung 10, einer Dehydrierungseinrichtung 20 und einer Konservierungseinrichtung 30. Die Präparations- und Dehydrierungseinrichtungen 10, 20 können durch eine gemeinsame Komponente gebildet werden (siehe gestrichelter Rahmen) . Die Präparations- und Dehydrierungseinrichtungen 10, 20 enthalten jeweils eine steuerbare Kühleinrichtung 11, 21, eine Probenaufnahme 12, 22 und eine Leitungseinrichtung 13, 23, mit der Substanzen zur Probe zugeführt oder von dieser abgeführt werden können. Die Konservie- rungseinrichtung 30 ist aufgebaut, wie dies von der herkömmlichen Kryokonservierung bekannt ist. Sie umfasst zum Beispiel einen Kryotank zur Aufnahme von flüssigem Stickstoff, wobei die Probe mit den gefrorenen Zellkernen im flüssigen Stickstoff oder im Dampf des flüssigen Stickstoffs gelagert werden.
Wenn mehrere Zellbestandteile voneinander isoliert dehydriert und eingefroren werden, ist die in Figur 8 gezeigte Kryokon- servierungsvorrichtung 100 so zu modifizieren, dass mehrere Dehydrierungseinrichtungen 20 und mehrere Konservierungseinrichtungen 30 zur Behandlung jeweils verschiedener Zellbestandteile vorgesehen sind.
Die in der vorstehenden Beschreibung, den Zeichnungen und den Ansprüchen offenbarten Merkmale der Erfindung können sowohl einzeln als auch in Kombination für die Verwirklichung der Erfindung in ihren verschiedenen Ausgestaltungen von Bedeutung sein.

Claims

ANSPRUCHE
1. Verfahren zur Kryokonservierung von biologischem Material, das biologische Zellen (1) mit Zellmembranen (2), Zellkernen (3), Zytoplasma (4) und Zellorganellen (5) enthält, mit den Schritten:
- Präparation der biologischen Zellen (1) derart, dass die Zellmembranen (2) unterbrochen werden,
- Dehydrierung der Zellkerne (3), und
- Einstellung von Konservierungsbedingungen, unter denen die Zellkerne (3) einen kryokonservierten Zustand aufweisen.
2. Verfahren gemäß Anspruch 1, bei dem die Präparation der biologischen Zellen (1) eine Unterbrechung der Zellmembran derart umfasst, dass die Vitalität der Zelle verloren geht.
3. Verfahren gemäß Anspruch 1 oder 2, bei dem die Präpara- tion der biologischen Zellen (1) mindestens einen der Schritte umfasst:
- Abkühlung der biologischen Zellen (1),
- mechanische Zerstörung der Zellmembranen (2),
- chemische Zerstörung der Zellmembranen (2), und - osmotische Zerstörung der Zellmembranen (2).
4. Verfahren gemäß einem der vorhergehenden Ansprüche, bei dem die Präparation der biologischen Zellen (1) umfasst:
- Zerstörung von Zytoplasmabestandteilen der biologischen Zellen (1) in der Umgebung der Zellkerne (3) .
5. Verfahren gemäß einem der vorhergehenden Ansprüche, bei dem die Präparation der biologischen Zellen (1) umfasst:
- Zerkleinerung von biologischem Zellmaterial, das die biologischen Zellen (1) enthält, im gefrorenen Zustand.
6. Verfahren gemäß einem der vorhergehenden Ansprüche, bei dem die Präparation der biologischen Zellen (1) umfasst:
- Trennung der Zellkerne (3) von den übrigen Bestandteilen der biologischen Zellen.
7. Verfahren gemäß einem der vorhergehenden Ansprüche, bei dem die Dehydrierung der Zellkerne (3) umfasst:
- Einstellung einer Dehydrierungstemperatur, bei der eine Um- kristallisierung von gefrorenem Wasser in der Umgebung der Zellkerne (3) erfolgt.
8. Verfahren gemäß Anspruch 7, bei dem
- die Dehydrierungstemperatur im Temperaturbereich unterhalb 00C und oberhalb - 800C, insbesondere oberhalb - 400C einge- stellt wird.
9. Verfahren gemäß Anspruch 7 oder 8, bei dem:
- ein Dehydrierungstemperaturzyklus eingestellt wird, in dem mehrfach die Dehydrierungstemperatur verändert und/oder eine erhöhte Temperatur oberhalb des Gefrierpunkts von Wasser eingestellt wird.
10. Verfahren gemäß Anspruch 9, bei dem
- während der Einstellung der erhöhten Temperatur oberhalb des Gefrierpunkts von Wasser ein Stoffaustausch mit der Umgebung des Zellkerne (3) erfolgt.
11. Verfahren gemäß einem der vorhergehenden Ansprüche, bei dem die Dehydrierung der Zellkerne (3) mindestens einen der Schritte umfasst:
- Bereitstellung einer Dehydrierungssubstanz, welche die De- hydrierung der Zellkerne (3) bewirkt, in der Umgebung der
Zellkerne (3),
- Bereitstellung einer Stabilisierungssubstanz, die in die Zellkerne (3) eindringt und in diesen Wasser verdrängt, und
- Sublimieren von Wasser aus der Umgebung der Zellkerne (3) im gefrorenen Zustand unter erniedrigtem Druck.
12. Verfahren gemäß Anspruch 11, bei dem
- die Dehydrierungssubstanz aus der Gruppe von Substanzen gewählt ist, die Alkohole, Proteine, Zucker, Elektrolyte und Polymere umfasst.
13. Verfahren gemäß Anspruch 11 oder 12, bei dem
- die Stabilisierungssubstanz aus der Gruppe gewählt ist, die Alginat, Nanopartikel, Matrizen, Zellulose, Polymere, und Ge- Ie umfasst.
14. Verfahren gemäß einem der vorhergehenden Ansprüche, bei dem
- die Dehydrierung der Zellkerne (3) erfolgt, während sich die Zellkerne (3) in biologischem Zellmaterial befindet, das
Zellbestandteile der biologischen Zellen (1) enthält.
15. Verfahren gemäß einem der Ansprüche 1 bis 13, bei dem
- die Dehydrierung der Zellkerne (3) erfolgt, nachdem die Zellkerne (3) von biologischem Zellmaterial, das die biologischen Zellen (1) enthält, getrennt wurden.
16. Verfahren gemäß einem der vorhergehenden Ansprüche, bei dem die Einstellung der Konservierungsbedingungen umfasst:
- Einstellung einer Lagertemperatur der Zellkerne (3) , die unterhalb - 8O0C, insbesondere unterhalb - 13O0C gewählt ist.
17. Verfahren gemäß einem der vorhergehenden Ansprüche, mit mindestens einem der Schritte:
- Verdichtung der Zellkerne (3), und
- Einzelablage der Zellkerne (3) .
18. Verfahren gemäß einem der vorhergehenden Ansprüche, bei dem:
- mindestens eines von den Zellmembranen (2), Zytoplasma (4), Zellorganellen (5) und Teilen von diesen der Dehydrierung und der Kryokonservierung unterzogen werden.
19. Verfahren gemäß Anspruch 18, bei dem:
- die Zellkerne (3), die Zellmembranen (2), Zytoplasma (4), Zellorganellen (5) und/oder Teile von diesen voneinander ge- trennt und getrennt von den Zellkernen (3) kryokonserviert werden .
20. Verwendung von Alkoholen, Proteinen, Zucker, Elektrolyten, Polyanionen, Polykationen, Polymeren, Ölen oder Gelen als Kryoprotektiva.
21. Vorrichtung (100) zur Kryokonservierung von Zellkernen (3) biologischer Zellen (1), umfassend:
- eine Präparationseinrichtung (10), die zur Präparation der biologischen Zellen (1) derart vorgesehen ist, dass Zellmembranen (2) der biologischen Zellen (1) unterbrochen werden,
- eine Dehydrierungseinrichtung (20), die zur Dehydrierung der Zellkerne (3) vorgesehen ist, und - eine Konservierungseinrichtung (30), die zur Einstellung von Bedingungen vorgesehen ist, unter denen die Zellkerne (3) einen kryokonservierten Zustand aufweisen.
22. Vorrichtung gemäß Anspruch 21, bei der
- mehrere Konservierungseinrichtungen (30) vorgesehen sind, die zur Einstellung von Bedingungen eingerichtet sind, unter denen mindestens eines von den Zellmembranen (2), Zytoplasma
(4), Zellorganellen (5) und Teilen von diesen einen kryokon- servierten Zustand aufweisen.
EP10721965.1A 2009-05-25 2010-05-07 Verfahren und vorrichtung zur konservierung von zellkernen Not-in-force EP2434873B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200910022580 DE102009022580A1 (de) 2009-05-25 2009-05-25 Verfahren und Vorrichtung zur Konservierung von Zellkernen
PCT/EP2010/002816 WO2010136118A2 (de) 2009-05-25 2010-05-07 Verfahren und vorrichtung zur konservierung von zellkernen

Publications (2)

Publication Number Publication Date
EP2434873A2 true EP2434873A2 (de) 2012-04-04
EP2434873B1 EP2434873B1 (de) 2013-07-31

Family

ID=43028322

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10721965.1A Not-in-force EP2434873B1 (de) 2009-05-25 2010-05-07 Verfahren und vorrichtung zur konservierung von zellkernen

Country Status (4)

Country Link
EP (1) EP2434873B1 (de)
DE (1) DE102009022580A1 (de)
ES (1) ES2429144T3 (de)
WO (1) WO2010136118A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014005690A1 (de) * 2012-07-04 2014-01-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Substrateinrichtung, konservierungsgerät und verfahren zur kryokonservierung einer biologischen probe

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014104330A1 (de) 2014-03-27 2015-10-01 Seracell Pharma AG Kassettenhalter, Anordnung und Transportsystem zum Transportieren und Überführen von in Ampullen aufgenommenem, kryokonserviertem Zellmaterial und Verfahren
DE202014101459U1 (de) 2014-03-27 2014-05-07 Seracell Pharma AG Kassettenhalter, Anordnung und Transportsystem zum Transportieren und Überführen von in Ampullen aufgenommenem, kryokonserviertem Zellmaterial
CN108029676A (zh) * 2017-11-28 2018-05-15 陈子江 细胞核质体的冷冻方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3648475A (en) * 1968-12-31 1972-03-14 Georgy Valeryanovich Bakuradze Apparatus for freezing nucleus-containing cells and other biological materials
US6127177A (en) * 1998-09-11 2000-10-03 Massachusetts Institute Of Technology Controlled reversible poration for preservation of biological materials
WO2000018882A1 (en) * 1998-09-25 2000-04-06 Integrated Biosystems Methods and apparatus for lipid membrane disruption
US6251599B1 (en) * 1998-11-06 2001-06-26 Selective Genetics, Inc. Stabilized nucleic acid compositions and methods of preparation and use thereof
US20070026377A1 (en) * 2000-02-10 2007-02-01 The Regents Of The University Of California Methods for preserving nucleated mammalian cells
US6635414B2 (en) * 2001-05-22 2003-10-21 Integrated Biosystems, Inc. Cryopreservation system with controlled dendritic freezing front velocity
AU2003268033A1 (en) * 2002-07-26 2004-02-16 The General Hospital Corporation Systems and methods for cell preservation
WO2008011070A2 (en) * 2006-07-19 2008-01-24 Reprocure, Llc A method of oocyte cryopreservation including piercing the zona pellucida prior to vitrification

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010136118A2 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014005690A1 (de) * 2012-07-04 2014-01-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Substrateinrichtung, konservierungsgerät und verfahren zur kryokonservierung einer biologischen probe
US9781918B2 (en) 2012-07-04 2017-10-10 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Substrate unit, preservation device and method for the cryopreservation of a biological sample

Also Published As

Publication number Publication date
ES2429144T3 (es) 2013-11-13
DE102009022580A1 (de) 2010-12-02
WO2010136118A3 (de) 2012-02-23
WO2010136118A2 (de) 2010-12-02
EP2434873B1 (de) 2013-07-31

Similar Documents

Publication Publication Date Title
DE60107672T2 (de) Mikroinjektion von kälteschutzmitteln zur konservierung von zellen
DE69633854T2 (de) Verfahren und verpackung zur erhaltung und lagerung von kultivierten gewebeäquivalenten bei tieftemperaturen
Bullivant et al. A simple freeze-fracture replication method for electron microscopy
DE60107408T2 (de) Neues aufwärmverfahren für cryokonservierte proben
Vanhecke et al. Close-to-native ultrastructural preservation by high pressure freezing
EP2434873B1 (de) Verfahren und vorrichtung zur konservierung von zellkernen
DE102011115467A1 (de) Vorrichtung und Verfahren zur Druck-Kryokonservierung einer biologischen Probe
EP2823282B1 (de) Formalinfreie fixierungsmittel für histologische färbungen von gewebeproben
EP1910517A2 (de) Verfahren zur isolierung von stammzellen aus kryokonserviertem zahngewebe
Wang et al. Cryopreservation of Musca domestica (Diptera: Muscidae) embryos
WO2006000425A2 (de) Gefrierkonservierung von eiern und embryonen von fischen
Neto et al. Effect of removing seminal plasma using a sperm filter on the viability of refrigerated stallion semen
DE102012021900A1 (de) Verfahren und Konservierungslösung zur Kryokonservierung von Insekten-Sperma
Fleck et al. A brief review of cryobiology with reference to cryo field emission scanning electron microscopy
EP2877828A1 (de) Verfahren und vorrichtung zur hochgeschwindigkeits-temperierung einer probe
Florentine et al. Responses of the weed Parthenium hysterophorus (Asteraceae) to the stem gall-inducing weevil Conotrachelus albocinereus (Coleoptera: Curculionidae)
DE60120658T2 (de) Verfahren zum gefrierkonservieren von oozyten
KR101374478B1 (ko) 세포 블록 제조용 조성물, 키트, 및 이들을 이용한 세포 블록 제조 방법
DE4205386C1 (en) Cryo:preservation and revitalisation of fish eggs, crab larvae etc. - involves treating with e.g. DMSO, freezing and revitalising by warming
EP3359646B1 (de) Polkörperinjektion
WO2009080824A2 (de) Verfahren und arbeitsbesteck zur probenkonservierung und zum zellaufschluss vor der extraktion von nukleinsäuren
DE102021116694B4 (de) Wässrige Lösung zur Zellkonservierung
DE3148551C2 (de)
EP2978838A1 (de) Verfahren und vorrichtung zum herstellen einer zellkultur aus menschlichen oder tierischen zellen
DE10061968A1 (de) Verfahren und Vorrichtung zum Einfrieren von Hornhautgewebe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111216

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWAN

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWAN

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 624069

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010004215

Country of ref document: DE

Effective date: 20130926

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: RITSCHER AND PARTNER AG, CH

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2429144

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20131113

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANG, DE

Free format text: FORMER OWNER: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V., DE

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20130731

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131202

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20140521

Year of fee payment: 5

26N No opposition filed

Effective date: 20140502

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010004215

Country of ref document: DE

Effective date: 20140502

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20140522

Year of fee payment: 5

Ref country code: SE

Payment date: 20140520

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140507

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150507

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20160523

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100507

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140531

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20160523

Year of fee payment: 7

Ref country code: GB

Payment date: 20160523

Year of fee payment: 7

Ref country code: NO

Payment date: 20160520

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20160519

Year of fee payment: 7

Ref country code: FR

Payment date: 20160523

Year of fee payment: 7

Ref country code: IT

Payment date: 20160524

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160704

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010004215

Country of ref document: DE

REG Reference to a national code

Ref country code: NO

Ref legal event code: MMEP

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20170601

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 624069

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170507

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170507

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171201

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170507

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731