EP2433010B1 - Procede et dispositif de determination d'un point de fonctionnement d'une machine de travail - Google Patents

Procede et dispositif de determination d'un point de fonctionnement d'une machine de travail Download PDF

Info

Publication number
EP2433010B1
EP2433010B1 EP10717116.7A EP10717116A EP2433010B1 EP 2433010 B1 EP2433010 B1 EP 2433010B1 EP 10717116 A EP10717116 A EP 10717116A EP 2433010 B1 EP2433010 B1 EP 2433010B1
Authority
EP
European Patent Office
Prior art keywords
rotational speed
operating point
pump
determined
work machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10717116.7A
Other languages
German (de)
English (en)
Other versions
EP2433010A1 (fr
Inventor
Christoph Emde
Stefan Laue
Marjan Silovic
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KSB AG
Original Assignee
KSB AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KSB AG filed Critical KSB AG
Priority to SI201031081T priority Critical patent/SI2433010T1/sl
Priority to PL10717116T priority patent/PL2433010T3/pl
Publication of EP2433010A1 publication Critical patent/EP2433010A1/fr
Application granted granted Critical
Publication of EP2433010B1 publication Critical patent/EP2433010B1/fr
Priority to HRP20151394TT priority patent/HRP20151394T1/hr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0088Testing machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0094Indicators of rotational movement

Definitions

  • the invention relates to a method for determining an operating point of a working machine and / or an asynchronous motor driving the same, wherein a power recorded by the working machine and / or its delivery rate characterizes an operating point, one or more operating point-dependent measured variables of the working machine are detected by one or more sensors, and the measured values are evaluated and / or stored during operation of the working machine.
  • the invention further relates to a method for monitoring an operating point.
  • the invention further relates to a device for carrying out the method.
  • the operating point of a fluid flow machine in particular a centrifugal pump, on the flow rate-delivery height characteristic or QH characteristic is, in particular by their flow, below also called delivery rate, characterized.
  • QH characteristic the flow rate-delivery height characteristic
  • an operating point of a centrifugal pump is determined by an electrical measurement, wherein from a current and voltage measurement, the output motor power is calculated taking into account the efficiency of the engine.
  • a direct measurement of the flow rate usually requires magnetic-inductive flowmeters.
  • An indirect determination of the flow rate by computational means is associated with additional difficulties.
  • a delivery rate is calculated from the values of a delivery flow-rate characteristic, a QH characteristic in which the delivery height H is plotted against the delivery flow, or a delivery flow-rate characteristic, a QP characteristic in which the output P is above the delivery flow Q is derived, this is difficult or even impossible in those cases where there is a flat or not steadily increasing QH characteristic or QP characteristic. If the delivery rate is to be determined with measured pressures from the Q-H characteristic curve of a centrifugal pump, then the Q-H characteristic curve must be unique, ie exactly one Q value can be assigned to each H value.
  • the measurement of the electrical power consumption of a motor-pump unit is associated in practice with some effort.
  • the active power measurement takes place in a control cabinet, takes up space there, in particular for the measurement of the motor current through current transformers, and requires an assembly effort, which must be provided by a qualified electrician.
  • the power and / or torque of the induction motor is determined by counting the pulses of the motor shaft within a so-called gate time determined by one or more periods of the synchronous speed.
  • the "Kloss equation" is used to determine the power and / or torque.
  • the method requires several input variables, including the synchronous speed, which is determined from electrical measurements. In addition, the results must be corrected as a function of the operating temperature of the engine, which requires a prior metrological determination and storage of required correction factors per engine type. This arrangement is elaborately designed. In industrial practice, this method has proved to be unsuitable. Particularly disadvantageous, as in a conventional measurement of the active power consumption of an asynchronous motor by active power meters and current transformers, the installation of such an arrangement by an electrician is absolutely necessary.
  • DE 10 2006 049 440 A1 is a method for detecting an operating condition of a pump, in particular a centrifugal or positive displacement pump, known in a pump system.
  • the method and its device serve, in comparison to a stored normal state, a detection of a faulty operating state of a pump, pump system and hydraulic system.
  • a pressure sensor records the temporal pressure profile in the pumped medium.
  • a calculated parameter characterizes the pulsation of the pressure and / or flow profile in a calculation time interval. By comparing the calculated characteristic value with at least one predetermined characteristic value or with one of these limited characteristic value range, the predetermined characteristic value or the limited characteristic value range corresponding to an operating state of interest of the pump, the operating state is determined and output.
  • the speed of the pump is determined from the pressure sensor signal and provided to the vibration sensor. The reasons are not revealed. Neither the speed information nor any other quantities provide a statement about in which operating point on a QH or QP characteristic and / or at which recorded power the pump is operated. With this method, only deviations from previously determined and stored reference values are displayed.
  • the DE 196 18 462 A1 discloses another method and apparatus for determining an extrinsic performance parameter of an energy converting device, such as volume or mass flow through a motor driven centrifugal pump, which continuously determines an operating state dependent intrinsic quantity.
  • the invention has for its object to provide a method and an apparatus available through which a little expensive and reliable determination and if necessary, monitoring of the current operating point of a working machine and / or of an asynchronous motor driving it is possible.
  • the operating point is determined without the use of electrical measurements of the driving induction motor, that from a mechanical measurement pressure, differential pressure, force, vibration, structure-borne noise or airborne sound, by means of a signal analysis, in particular a frequency analysis, one to the rotary sound the machine linearly proportional frequency is determined, from which the rotational speed of the drive machine is determined and from the slip-dependent speed-torque dependence of the asynchronous motor, the operating point is determined.
  • the operating point is determined according to the invention without the use of electrical measured variables. Instead, a frequency which is linearly proportional to the rotary sound of the working machine is determined from the signal curve of a measured mechanical measured variable, in particular the rotary sound frequency of the working machine.
  • a frequency which is linearly proportional to the rotary sound of the working machine is determined from the signal curve of a measured mechanical measured variable, in particular the rotary sound frequency of the working machine.
  • mechanical parameters are pressure, in particular the pressure on the pressure side of a centrifugal pump, differential pressure, in particular the differential pressure between the suction and pressure side of a centrifugal pump, force, vibration, structure-borne noise or airborne sound, in particular one or caused by a centrifugal pump, or the like suitable.
  • the operating point of the working machine can be determined from a single, non-electrical measured variable. By dispensing with electrical parameters, the method according to the invention for determining the operating point is comparatively inexpensive and can be carried out with the simplest installation effort.
  • Necessary parameters for determining the speed-torque characteristic curve of the motor are derived from the nameplate data of an asynchronous motor.
  • the rated torque M N results from the quotient of the rated power of the asynchronous motor P 2N and the rated speed n N :
  • nM characteristic of the asynchronous motor shown.
  • M N M N ⁇ n - n 0 n N - n 0
  • the determination of the power absorbed by the work machine is made from the previously determined input speed, hereinafter also called shaft speed, and the speed-torque curve, the nM characteristic of the motor.
  • An advantageous embodiment provides for a pump, in particular a centrifugal pump, as a working machine, the determination of the flow rate from the drive speed before.
  • the rotary sound frequency is determined by means of signal analysis, in particular frequency analysis, for example by means of a fast Fourier transformation (FFT) or an autocorrelation. From this, the drive speed is determined.
  • FFT fast Fourier transformation
  • the flow rate of the pump from the determined from the drive speed recorded power or shaft power is determined. From the input speed or shaft speed, the shaft power of the pump is first determined as described above with the aid of the known n-M characteristic curve or an n-P characteristic curve derived therefrom according to formula (7). In a subsequent step, the flow rate Q of the pump is determined from the shaft power by means of a stored Q-P characteristic curve.
  • the delivery rate of the pump may be determined from parameters of the engine describing a speed-torque characteristic of the engine, as well as from parameters of the pump describing a capacity-power characteristic and the input speed.
  • a QP characteristic curve can be described, for example, in the form of a parameter table with a plurality of interpolation points ( indexes _1 to _i ).
  • the method uses such a pre-stored table to determine the flow rate from the shaft power: Flow rate Q Q _1 Q _2 Q _3 ... Q _i Shaft power P 2 P 2_1 P 2_2 P 2_3 ... P 2_i
  • the table can contain interpolation points for the respective speed, so that a direct flow rate determination from the determined speed is possible.
  • quotient values P 2 / H can be stored: Flow rate Q Q _1 Q _2 Q _3 ... Q _i Shaft power P 2 P 2_1 P 2_2 P 2_3 ... P 2_i Delivery height H H _1 H _2 H _3 ... H _i Quotient P 2 / H P 2_1 / H _1 P 2_2 / H _2 P 2_2 / H _2 ... P 2_i / H _i
  • a characteristic curve for determining the flow rate from the load-dependent speed change can be determined even without knowledge of QP and QH characteristic.
  • the respective operating speed can be determined and stored. This results in the following generally represented parameter table: Flow rate Q Q _1 Q _2 Q _3 ... Q _i Speed n n _1 n _2 n _3 ... n _i
  • the speed-torque dependence of the asynchronous motor is also used.
  • the invention uses the knowledge that this causes an evaluable speed change over the flow rate range. With such a characteristic, which is usually not documented for a pump, the delivery rate of the centrifugal pump can be determined directly from the speed.
  • the drive speed or shaft speed for determining the operating point of the pump, in particular the centrifugal pump, from measured values of one or more pressure sensors is determined.
  • the pressure sensors for the dynamic measurement of pressures, in particular of pulsating pressures are suitable.
  • the operating point of the pump, in particular centrifugal pump, characterized by the shaft power and / or delivery rate is thus determined solely from measured values of one or more pressure sensors.
  • One or more pressure sensors are used on a centrifugal pump to detect the suction and / or discharge pressure of a centrifugal pump.
  • Pressure sensors although designed to measure static pressures, are also usually suitable for the dynamic measurement of pressures.
  • the input speed for determining the operating point of the driven machine and / or the asynchronous motor driving the same is determined from measured values of one or more structure-borne sound and / or airborne sound sensors.
  • the structure-borne noise and / or airborne sound sensors can be arranged on the working machine and / or on the asynchronous motor driving the same.
  • the sensors can also be arranged in the environment of the working machine. In any case, from signals of the sensors which detect mechanical measured variables, a frequency which is linearly proportional to the rotary sound of the working machine is detected, from which the rotational speed of the working machine is determined. And from this, the operating point is determined using the speed-torque dependence of the asynchronous motor.
  • a determined operating point can be monitored according to the invention as to whether it is within or outside a predetermined permissible range. On the basis of an operating point which is outside a predetermined range, a faulty operating state, in particular over or underload, of the working machine and / or of the asynchronous motor is detected.
  • a centrifugal pump By monitoring or evaluating the power consumption of a centrifugal pump, it is possible, for example, to conclude operation at partial load or optimum operation. Using of structure-borne noise or airborne sound as a measured variable, a dry run of the centrifugal pump can be detected. Experiments have shown that the detection according to the invention of an overload of an asynchronous motor works reliably and robustly.
  • Increased power consumption compared to a documented and parameterized power consumption may indicate overload of the pump or motor.
  • the cause of a supposedly increased power consumption can also be a supply-side undervoltage, which leads to increased slip.
  • the diagnosis of overload for the unit, consisting of pump and motor nevertheless true, since under low voltage and thus increased slip, the power consumption of the motor is increased.
  • This influence is significant when the mains voltage is outside the tolerances and, for example, is more than 10% below the rated voltage.
  • the device is a data memory for technological data of the working machine and / or has this driving asynchronous motor and determined from a mechanical measurement pressure, differential pressure, force, vibration, structure-borne noise or airborne sound by means of a signal analysis, in particular a frequency analysis, a linearly proportional to the rotational sound of the working machine frequency, therefrom determines the rotational speed of the drive machine and from there using the slip Speed-torque dependence of the asynchronous motor the operating point of non-electrical quantities, without the use of electrical Measured variables of the driving asynchronous motor, determined and possibly monitored.
  • parameters that describe the speed-torque dependence of the asynchronous motor, and / or other technological data of the working machine arrangement may be stored. These may be accessed during operation of the work machine to determine the operating point. A detection of electrical measurements by the device is not necessary. The device can determine the operating point of the working machine from a single measuring signal, for example a pressure sensor signal.
  • a pump in particular a centrifugal pump, as a working machine, it is provided that the determination of a flow rate of the pump from the drive speed. At the pump only mechanical parameters are recorded. From the determined rotary sound frequency, the drive or shaft speed of the pump is determined.
  • the device may be arranged on the pump, on the drive motor or in its environment and / or be designed integrated with the pump or its drive motor.
  • the device can determine the delivery rate of the pump, in particular centrifugal pump, from the power or shaft power determined from the drive speed or shaft speed.
  • the device the flow rate of the pump, in particular centrifugal pump, from parameters of the engine, which describe a speed-torque curve of the engine, as well as parameters of the pump, which describe a flow rate-power characteristic, and the drive speed or shaft speed determined.
  • the device determines the delivery rate of the pump, in particular centrifugal pump, directly from a characteristic curve which represents the load-dependent speed change over the delivery rate of the pump.
  • a characteristic curve which represents the load-dependent speed change over the delivery rate of the pump.
  • Such a characteristic can be determined by test runs and stored in the data memory so that it can be called up during the operation of the centrifugal pump.
  • the speed-torque dependence of the asynchronous motor is used, which leads to a speed change over the flow range. From this, the operating point characterized by the power absorbed by the working machine and / or its delivery rate can be determined particularly easily.
  • the device has at least one connection for a pressure sensor and from measured values of a connected pressure sensor the drive speed or shaft speed for determining the operating point of the working machine determined.
  • Pressure sensors for detecting static pressures are also able to detect dynamic pressure fluctuations.
  • Such pressure sensors are already attached to many pumps, in particular to detect their final pressure.
  • Conventional devices for detecting signals from pressure sensors by means of analog inputs usually allow the use of filtered, ie damped in the dynamics measured values.
  • To detect the dynamic pressure signal component of interest according to the invention such inputs are too slow and insensitive. Highly dynamic inputs of measuring devices capable of detecting signal components in frequency ranges of a few kilohertz are usually not robust enough in industrial practice and are also expensive.
  • the device according to the invention differs from the mentioned industrially common, in that it allows detection of the pulsating portion of a pressure signal with high dynamics. This ensures accurate determination of the frequency of the pulsating pressure component in a frequency range of interest.
  • the device has an input for signal components up to about 500 Hz, with a cutoff frequency for an input filter is correspondingly higher.
  • the frequency range of interest for a particular pump is a small section of the entire measured frequency range limited by lower and upper rotary sound frequencies f D_min and f D_max .
  • An evaluation can thus be carried out selectively and accurately.
  • n Max n 0 be accepted.
  • the device according to the invention therefore has a signal processing unit which performs an accurate determination of the rotary sound frequency, preferably with an accuracy of 1/10 hertz or of a few 1/100 hertz. This is achieved by means of a very high sampling frequency and / or by a correspondingly long sampling interval.
  • the amplitude of the pulsating pressure component is relatively low.
  • the amplitude of the pulsating signal component is less than 1% of the pressure.
  • the device triggers the measurement range of the pressure signal correspondingly high, so that the pressure pulsation despite the low amplitude after analog-to-digital conversion is perfectly evaluated, ie determines the rotational frequency can be.
  • the inventive Device thus enables a reliable operating point determination of a pump.
  • the device can have at least one connection for a structure-borne sound and / or airborne sound sensor and determine the drive speed for determining the operating point of the work machine and / or of the asynchronous motor driving it from measured values of a connected structure-borne sound and / or airborne sound sensor.
  • the device For detecting operating point-dependent sound measurements, the device is expediently connectable to a microphone or has an integrated microphone.
  • the device is a telephone, in particular a mobile telephone, for detecting the operating noise of the working machine and for operating point determination and / or monitoring.
  • a device uses the method according to the invention.
  • a program sequence can be stored in a data memory of the device, which can be processed by a processing unit located in the device.
  • the device can also spatially separate from the machine determine its operating point and monitor if necessary. It is provided that the device uses telecommunications means, in particular a telephone or mobile telephone and a telecommunications network, to perform the operating point determination and / or monitoring at a location other than the operating location of the working machine.
  • the telecommunication means serve as signal acquisition and / or transmission means.
  • a mobile telephone can detect structure-borne noise and / or airborne sound signals of a work machine by means of a built-in microphone and transmit it via telecommunications network to a device for operating point determination and / or monitoring spatially separate from the work machine.
  • the invention can be used with advantage in a centrifugal pump arrangement comprising at least one centrifugal pump with a shaft and an asynchronous motor driving the shaft and with one or more sensors for detecting operating point-dependent measured variables.
  • the device may be arranged on the centrifugal pump and / or integrated into the centrifugal pump and / or the asynchronous motor. An arrangement in the vicinity of the centrifugal pump arrangement or a spatially separate arrangement is provided.
  • the FIG. 1 a shows a delivery flow-rate characteristic 2, a so-called QH characteristic, a centrifugal pump. From a measured between the pressure and suction side of the centrifugal pump pressure difference can be determined according to the prior art, a delivery height H of the pump and the operating point of the centrifugal pump via the delivery flow-height characteristic curve 2 can be determined. However, such an operating point determination is insufficient in a range of smaller flow rates, in which the flow rate-conveying height characteristic curve 2 is ambiguous or unstable. Such an unstable characteristic has the effect that, given certain measured pressure differences to a specific delivery height H, two delivery flow rates 3, 4 exist. Thus, it can not be concluded clearly on a flow Q (H) of the centrifugal pump.
  • Fig. 1b shows a flow rate-power curve 10, a so-called QP characteristic, a centrifugal pump.
  • the flow rate-power curve 10 shown here is unique, so that with the information about the power consumption of the pump a statement regarding the flow rate Q (P) of the pump and thus over the operating point is possible.
  • the measurement of the electrical power consumption of a centrifugal pump assembly is associated in practice with some effort, because this takes place in a cabinet and requires an assembly effort, which is to be made by a skilled electrician.
  • Both QH characteristic 2 and QP characteristic 10 are typically documented for a particular centrifugal pump.
  • Fig. 2 shows a general schematic representation of a method 21 according to the invention, in which the operating point of a work machine and / or driving this asynchronous motor is determined without the use of electrical measurements of the driving induction motor.
  • a rotational frequency f D is determined in a step 23 from the measured variable by means of a signal analysis, in particular frequency analysis, a frequency which is linearly proportional to the rotary sound of the working machine.
  • the speed n of the drive machine is determined in a next step 24.
  • the power consumed by the work machine, here designated P 2 , and / or its delivery Q is determined.
  • the slip-related speed-torque dependency of the asynchronous motor driving the working machine is used for this purpose.
  • the operating point determined in this way is available in step 29 for further processing and / or display.
  • the Fig. 3 shows a schematic, compared to Fig. 2 more detailed representation of the method steps of a method 21 for determining an operating point. Shown is a method 21 for determining a delivery flow or a flow rate Q from a measured pressure pulsation or a measured structure-borne noise or airborne sound via a stored engine model and a pump characteristic.
  • the parameters necessary for carrying out the individual method steps can be stored or stored in a data memory 30 and are available for carrying out the individual method steps.
  • the required motor parameters delivered rated or rated power P 2N and rated speed n N , and the optional motor parameters line frequency f, pole pair p or synchronous speed n 0 thereby form a motor model, which is suitably stored in a first part 31 of the data memory 30.
  • the synchronous speed n is 0 may also consist of mains frequency f and pole pair number p to be determined or of the nominal rotational speed n N and to this next largest theoretically possible synchronous speed (for example, 3600 min -1 to 3000 min -1, 1800 min -1, 1500 min -1 , 1200 min -1 , 1000 min -1 , 900 min -1 , 750 min -1 , 600 min -1 or 500 min -1 ).
  • the overturning moment M k of the motor can be stored.
  • a minimum speed n min and a maximum speed n max can be stored.
  • a flow rate-power characteristic, a QP characteristic, a centrifugal pump is stored.
  • the power delivered by the motor P 2 corresponds to the shaft power of the pump.
  • the delivery rate Q can be determined. From the measured variable and its signal pulsation, the operating point of the working machine, here a centrifugal pump, is determined by the method without the measurement of electrical measured variables.
  • Fig. 4a is shown in dependence of a time t, a signal curve of a pressure p (t), which was measured at the outlet of a centrifugal pump during operation of the centrifugal pump. It can be seen that the pressure moves at about the same, constant level.
  • Fig. 4b shows this pressure curve p (t) in a detailed view. It can be seen that pressure pulsations are present in the signal course of p (t). According to the invention, it has been recognized that these pressure pulsations can be detected by commercially available pressure sensors for measuring a static pressure. Such pressure sensors are already attached to many pumps, in particular to detect their final pressure. Such a pressure sensor detects a pulsating portion of the pressure signal. The frequency of the pulsating pressure component, the rotational sound frequency f D , results from the reciprocal of the period T. The method according to the invention determines the frequency of the pulsating pressure component in a frequency range of interest.
  • the frequency range is predetermined by the limits of lower and upper rotary sound frequency f D_min and f D_max .
  • f d_min n min ⁇ z
  • f d_max n Max ⁇ z
  • an accurate determination of the rotational frequency is preferably carried out with an accuracy of one tenth of a hertz or even a few hundredths of a hertz. This is achieved either by means of a very high sampling frequency and / or by a correspondingly long sampling interval.
  • the rotary sound frequency f D is determined by means of signal analysis, in particular frequency analysis, for example by a fast Fourier transformation (FFT) or an autocorrelation analysis. From the rotary sound frequency f D , as already explained, the drive speed n of the centrifugal pump or of the drive motor driving it can be determined.
  • FFT fast Fourier transformation
  • Fig. 5a shows a speed-torque characteristic M (n), hereinafter also called nM characteristic of an asynchronous motor.
  • M (n) the torque M is plotted against the speed n of the asynchronous motor.
  • This characteristic curve which is known per se for an asynchronous motor, shows the rated or nominal operating point of an asynchronous motor at a point (M N, n N ) at nominal torque M N and rated speed n N , circled here.
  • the torque of the asynchronous motor is equal to 0.
  • the motor parameters required for calculating the characteristic curve M (n) or P 2 (n) can be derived from nameplate data of an asynchronous motor. It is of particular advantage, if solely from the nameplate data rated power P 2N and rated speed n N, the course of the nP characteristic is determined. From these two parameters, usually on each asynchronous motor on its nameplate apparent parameters can be derived from the synchronous speed n 0 .
  • the tilting moment M k is usually known from the manufacturer or can be roughly set to a suitable multiple, for example, three times the nominal torque.
  • the tilting speed n k can be calculated according to formula (5).
  • M n M N ⁇ n - n 0 n N - n 0
  • the flow rate Q can be determined in a method step 26.
  • Fig. 7 shows a schematic representation of an alternative, inventive method 21 using a load-dependent speed-flow characteristic or nQ characteristic.
  • n load-dependent speed-flow characteristic
  • the number of blades z and a load-dependent speed-flow characteristic n (Q) given by several (i) support values (n _1 ; Q _1 ), (n _2 ; Q _2 ), ... (n _i ; Q _i ) stored.
  • n _i load-dependent speed-flow characteristic
  • the respective operating speed can be determined and stored for a plurality of operating points with a known flow rate, including, for example, Q 0 , Q max .
  • a detection 22 of a measured variable and the process steps 23 and 24 the input speed n of the machine is determined.
  • the in Fig. 7 The method will now be shown in a step 27 with the aid of the supporting values (n _1; Q _1); determined, ...
  • Fig. 9 shows a combined method for the determination of Q, which performs an operating point determination, both from the head H and from the power P 2 .
  • the pressure pulsation of the pressure-side pressure p 2 is used to determine the shaft power P 2 and the flow rate Q.
  • the procedure again contains those already in Fig. 3 described process steps 23, 24 and 25.
  • a data memory 30 are in turn the already in Fig. 3 stored parameters and the QP characteristic.
  • the delivery flow / delivery head characteristic, the QH characteristic, the centrifugal pump is stored.
  • the support table for the QP characteristic is supplemented by corresponding head heights H _1 , H _2 ... H _i .
  • the flow rate is determined by a combined process from the flow rate-delivery height characteristic curve and the delivery flow rate performance curve of the centrifugal pump.
  • the required delivery height H is calculated in a method step 15 from end pressure p 2 and suction pressure p 1 .
  • Fig. 10 shows a centrifugal pump assembly 50, in which a centrifugal pump 51 is connected via a shaft 53 with an asynchronous motor 52 which drives the centrifugal pump 51.
  • the asynchronous motor 52 is fed by a mains supply line 54.
  • the asynchronous motor 52 has a nameplate 55 with characteristic characteristics of the asynchronous motor 52.
  • a pressure sensor 57 for measuring the pressure-side pressure or discharge pressure of the centrifugal pump 51 is arranged at a discharge port 56 of the centrifugal pump 51.
  • the pressure sensor 57 is connected via a line 58 to a device 61 according to the invention.
  • the device 61 according to the invention evaluates the measuring signals of the pressure sensor 57 and determines the operating point of the working machine 51.
  • the characteristic plate data nominal power P 2N and the nominal rotational speed n N are sufficient as characteristic parameters of the asynchronous motor. All other motor parameters can be derived or calculated from this.
  • the device 61 has a suitable for detecting the pressure signals terminal or signal input 62. It has proved to be expedient to interpret the signal input 62 for signal components up to 500 Hz. Such an input is less expensive than a high dynamic input capable of detecting signals in the frequency range of several kilohertz, and offers the possibility of sufficiently fast and sensitive signal detection. Furthermore, the device 61 has a signal processing unit 64 which determines the rotational sound frequency f D with sufficient accuracy.
  • the signal processing unit 64 is capable of determining the rotational sound frequency with an accuracy of one tenth of a hertz or a few hundredths of a hertz. It has a high sampling frequency and / or correspondingly long sampling intervals.
  • the running in the device 61 process is controlled and coordinated by a computing unit 65.
  • the device 61 has a display and / or operating unit 66.
  • a further pressure sensor connection not shown here, may be provided, which serves for example for detecting a pump suction pressure.
  • the device further, not shown signal inputs and / or a serial bus interface, for example, for reading or reading parameters, have.
  • Fig. 11 shows a centrifugal pump assembly consisting of centrifugal pump 51 and asynchronous motor 52, and an apparatus for operating point determination in the form of a Mobile phones 71.
  • the mobile telephone 71 has an integrated microphone 72.
  • the mobile phone 71 uses the inventive method in this embodiment.
  • a corresponding program sequence can be stored in a data memory of the mobile telephone 71, not shown here, which is processed by a computer unit (not shown here) located in the mobile telephone.
  • the device can also, as in Fig. 12 represented spatially separated from a work machine determine its operating point.
  • Fig. 12 is the same centrifugal pump arrangement as in Fig. 11 consisting of centrifugal pump 51 and asynchronous motor 52, shown.
  • a mobile phone 71 with integrated microphone 72 detects at a marked by dashed line location 78 of the centrifugal pump 51 and the induction motor 52, the operating noise of the work machine 51.
  • the mobile phone 71 detects the airborne sound signals of the working machine 51.
  • a device 61 for operating point determination is spatially separated from the working machine 51, at a location 79 where the operating point determination is performed.
  • the device 61 uses telecommunications means, which serve as signal transmission means to perform the operating point determination spatially separated from the working machine 51.
  • the airborne sound signals of the centrifugal pump 51 detected by the mobile telephone 71 are transmitted or transmitted by means of telecommunication network 77 to the device 61.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Claims (20)

  1. Procédé de détermination d'un point de fonctionnement d'une machine de travail et/ou d'un moteur asynchrone entraînant celle-ci, pour lequel une puissance absorbée par la machine de travail et/ou le débit de celle-ci caractérise un point de fonctionnement, une ou plusieurs valeurs de mesure de la machine de travail, dépendant du point de fonctionnement, sont saisies par un ou plusieurs capteurs et les valeurs de mesure sont évaluées et/ou mémorisées pendant un fonctionnement de la machine de travail
    caractérisé en ce que
    le point de fonctionnement est déterminé sans l'utilisation des valeurs de mesure électriques du moteur asynchrone entraînant, en ce qu'à partir d'une valeur de mesure mécanique, pression, pression différentielle, force, vibrations, bruit structural ou bruit aérien, au moyen d'une analyse de signaux, en particulier d'une analyse de fréquence, on détermine une fréquence linéairement proportionnelle au son de rotation de la machine de travail, pour lequel la vitesse de rotation (n) de la machine de travail est déterminée à partir de celle-ci et le point de fonctionnement est déterminé à partir de la fonction Vitesse de rotation-Couple du moteur asynchrone (52), conditionnée par le glissement.
  2. Procédé selon la revendication 1 caractérisé en ce que la puissance absorbée (P2) de la machine de travail est déterminée par les phases suivantes :
    - détermination de la courbe Vitesse de rotation-Couple (M(n)) du moteur (52), en particulier par les paramètres du moteur préalablement définis : puissance assignée (P2N) et vitesse de rotation assignée (nN), le cas échéant vitesse de rotation synchrone (n0), couple de décrochage (Mk), vitesse de rotation au décrochage (nk) ou glissement au décrochage (Sk).
    - détermination de la puissance absorbée (P2) ou du couple (M) du moteur (52) à partir de la vitesse d'entraînement déterminée (n) et de la courbe Vitesse de rotation-Couple (M(n)) du moteur (52).
  3. Procédé selon la revendication 1 ou 2 caractérisé en ce que pour une pompe, en particulier pour une pompe centrifuge (51), en tant que machine de travail, la détermination d'un débit (Q) de la pompe a lieu à partir de sa vitesse d'entraînement (n).
  4. Procédé selon la revendication 3 caractérisé en ce que le débit (Q) de la pompe est déterminé à partir de la puissance absorbée (P2) définie à partir de la vitesse d'entraînement (n).
  5. Procédé selon la revendication 3 ou 4 caractérisé en ce que le débit (Q) de la pompe est déterminé à partir des paramètres du moteur (52) qui décrivent une courbe Vitesse de rotation-Couple (M(n)) du moteur (52) ainsi qu'à partir des paramètres de la pompe qui décrivent une courbe Débit-Puissance (10) et de la vitesse d'entraînement (n).
  6. Procédé selon la revendication 3 caractérisé en ce que le débit (Q) de la pompe centrifuge (51) est déterminé à partir d'une courbe qui représente la variation de vitesse sur le débit (Q) de la pompe, en fonction de la charge.
  7. Procédé selon l'une quelconque des revendications 3 à 6 caractérisé en ce que la vitesse d'entraînement (n) pour la détermination du point de fonctionnement de la pompe, en particulier de la pompe centrifuge (51),est déterminée à partir des valeurs de mesure d'un ou plusieurs capteurs de pression (57).
  8. Procédé selon l'une quelconque des revendications 1 à 7 caractérisé en ce que la vitesse d'entraînement (n) pour la détermination du point de fonctionnement de la machine de travail et/ou du moteur asynchrone (52) entraînant celle-ci, est déterminée à partir de valeurs de mesure d'un ou plusieurs capteurs de bruit structural et/ou bruit aérien.
  9. Procédé pour la surveillance du point de fonctionnement d'une machine de travail et/ou d'un moteur asynchrone entraînant celle-ci selon l'une quelconque des revendications 1 à 8 caractérisé en ce qu'à l'aide d'un point de fonctionnement se trouvant à l'extérieur d'une zone préalablement définie, on peut identifier un état de fonctionnement défectueux, en particulier en tant que surcharge ou sous-charge, de la machine de travail et/ou du moteur asynchrone (52).
  10. Dispositif pour la détermination et/ou la surveillance d'un point de fonctionnement d'une machine de travail et/ou d'un moteur asynchrone entraînant celle-ci, pour lequel la puissance absorbée par la machine de travail et/ou le débit de celle-ci caractérise un point de fonctionnement avec une ou plusieurs entrées pour la saisie de valeurs de mesure dépendant du point de fonctionnement, caractérisé en ce que le dispositif (61) comporte une mémoire de données (30, 33) pour les données technologiques de la machine de travail et/ou du moteur asynchrone qui entraîne celle-ci et à partir d'une valeur de mesure mécanique, pression, pression différentielle, force, vibrations, son structural ou son aérien, au moyen d'une analyse de signaux,
    en particulier d'une analyse de fréquence, détermine une fréquence linéairement proportionnelle au son de rotation de la machine de travail et détermine à partir de celle-ci la vitesse de rotation (n) de la machine de travail et détermine et le cas échéant surveille à partir de la fonction Vitesse de rotation-Couple conditionnée par le glissement du moteur asynchrone (52), le point de fonctionnement à partir de valeurs de mesure non électriques.
  11. Dispositif selon la revendication 10 caractérisé en ce que la puissance absorbée de la machine de travail est déterminée par les phases suivantes :
    - détermination de la courbe Vitesse de rotation-Couple (M(n)) du moteur (52), en particulier par les paramètres du moteur préalablement définis : puissance assignée (P2N) et vitesse de rotation assignée (nN), le cas échéant vitesse de rotation synchrone (n0), couple de décrochage (Mk), vitesse de rotation au décrochage (nk) ou glissement au décrochage (Sk).
    - détermination de la puissance absorbée (P2) ou du couple (M) du moteur (52) à partir de la vitesse d'entraînement (n) et de la courbe Vitesse de rotation-Couple (M(n)) du moteur (52).
  12. Dispositif selon la revendication 10 ou 11 caractérisé en ce que la machine de travail est une pompe, en particulier une pompe centrifuge (51) et la détermination du point de fonctionnement contient la détermination d'un débit (Q) de la pompe à partir de la vitesse d'entraînement (n).
  13. Dispositif selon la revendication 12 caractérisé en ce que le dispositif (61) détermine le débit (Q) de la pompe, en particulier de la pompe centrifuge (51), à partir de la puissance absorbée (P2) définie à partir de la vitesse d'entraînement (n).
  14. Dispositif selon la revendication 12 ou 13 caractérisé en ce que le dispositif (61) détermine le débit (Q) de la pompe, en particulier de la pompe centrifuge (51) à partir des paramètres du moteur (52), qui décrivent une courbe Vitesse de rotation-Couple (M(n)) du moteur (52) ainsi qu'à partir des paramètres de la pompe qui décrivent une courbe Débit-Puissance (10) et de la vitesse d'entraînement (n).
  15. Dispositif selon la revendication 12 caractérisé en ce que le dispositif (61) détermine le débit (Q) de la pompe, en particulier de la pompe centrifuge (51) à partir d'une courbe qui représente la variation de vitesse sur le débit (Q) de la pompe, en fonction de la charge.
  16. Dispositif selon l'une quelconque des revendications 10 à 15 caractérisé en ce que le dispositif (61) comporte au moins une entrée de signaux (62) pour un capteur de pression (57) et détermine la vitesse d'entraînement (n) à des fins de déterminer le point de fonctionnement de la machine de travail à partir des valeurs de mesure d'un capteur de pression (57) connecté.
  17. Dispositif selon l'une quelconque des revendications 10 à 15 caractérisé en ce que le dispositif (61) comporte au moins une entrée de signaux pour un capteur de bruit structural et/ou de bruit aérien et détermine la vitesse d'entraînement (n) à des fins de déterminer le point de fonctionnement de la machine de travail et/ou du moteur asynchrone (52) entraînant celle-ci, à partir de valeurs de mesure d'un capteur de bruit structural et/ou de bruit aérien connecté.
  18. Dispositif selon l'une quelconque des revendications 10 à 15 ou 17 caractérisé en ce que le dispositif destiné à la saisie des valeurs de mesure en fonction du point de fonctionnement peut être relié à un microphone (72) ou comporte un microphone (72) intégré.
  19. Dispositif selon la revendication 18 caractérisé en ce que le dispositif est un téléphone, en particulier un téléphone mobile (71), destiné à la saisie des bruits de fonctionnement de la machine de travail et à la détermination et/ou surveillance du point de fonctionnement.
  20. Dispositif selon la revendication 18 caractérisé en ce que le dispositif (61) utilise des moyens de télécommunication, en particulier un téléphone ou téléphone mobile (71) et un réseau de télécommunication (77) pour effectuer la détermination et/ou surveillance du point de fonctionnement dans un autre endroit (79) que le lieu de fonctionnement (78) de la machine de travail.
EP10717116.7A 2009-05-20 2010-04-27 Procede et dispositif de determination d'un point de fonctionnement d'une machine de travail Active EP2433010B1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SI201031081T SI2433010T1 (sl) 2009-05-20 2010-04-27 Postopek in naprava za določitev obratovalne točke delovnega stroja
PL10717116T PL2433010T3 (pl) 2009-05-20 2010-04-27 Sposób i urządzenie do określania punktu znamionowego pracy maszyny roboczej
HRP20151394TT HRP20151394T1 (hr) 2009-05-20 2015-12-21 Metoda i uređaj za određivanje radne točke nekog radnog stroja

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009022107A DE102009022107A1 (de) 2009-05-20 2009-05-20 Verfahren und Vorrichtung zur Betriebspunktbestimmung einer Arbeitsmaschine
PCT/EP2010/055621 WO2010133425A1 (fr) 2009-05-20 2010-04-27 Procédé et dispositif de détermination d'un point de fonctionnement d'une machine de travail

Publications (2)

Publication Number Publication Date
EP2433010A1 EP2433010A1 (fr) 2012-03-28
EP2433010B1 true EP2433010B1 (fr) 2015-09-23

Family

ID=42286674

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10717116.7A Active EP2433010B1 (fr) 2009-05-20 2010-04-27 Procede et dispositif de determination d'un point de fonctionnement d'une machine de travail

Country Status (15)

Country Link
US (1) US8763464B2 (fr)
EP (1) EP2433010B1 (fr)
JP (1) JP5868846B2 (fr)
CN (1) CN102439318B (fr)
BR (1) BRPI1007672B1 (fr)
DE (1) DE102009022107A1 (fr)
DK (1) DK2433010T3 (fr)
ES (1) ES2556236T3 (fr)
HR (1) HRP20151394T1 (fr)
HU (1) HUE028262T2 (fr)
PL (1) PL2433010T3 (fr)
PT (1) PT2433010E (fr)
RU (1) RU2536656C2 (fr)
SI (1) SI2433010T1 (fr)
WO (1) WO2010133425A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019034426A2 (fr) 2017-08-15 2019-02-21 KSB SE & Co. KGaA Procédé de protection contre la cavitation en cas de cyberattaques et unité pour mettre en oeuvre ce procédé
WO2019096545A1 (fr) 2017-11-15 2019-05-23 KSB SE & Co. KGaA Procédé et dispositif de protection contre des cyberattaques de groupes motopompes
WO2022038026A1 (fr) 2020-08-18 2022-02-24 KSB SE & Co. KGaA Procédé de détermination d'une vitesse synchrone

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011101599B4 (de) * 2011-05-13 2021-08-05 Sew-Eurodrive Gmbh & Co Kg System zur Bestimmung von Körperschall bei einem Prüfling
ITCO20110069A1 (it) * 2011-12-20 2013-06-21 Nuovo Pignone Spa Disposizione di prova per uno stadio di un compressore centrifugo
EP2618002B1 (fr) * 2012-01-17 2016-05-04 ABB Technology Oy Procédé pour détecter le sens de rotation correct d'un appareil centrifuge et ensemble formant l'appareil centrifuge
KR20130115488A (ko) * 2012-04-12 2013-10-22 엘에스산전 주식회사 이동단말의 인버터상태 알림장치와 모터상태 분석장치
DE102012013774A1 (de) * 2012-07-11 2014-01-16 Wilo Se Kreiselpumpe mit Durchflussmesser
DE102013017828B4 (de) * 2013-10-24 2015-05-13 Fresenius Medical Care Deutschland Gmbh Verfahren und Vorrichtung zur Überwachung einer in einem extrakorporalen Blutkreislauf oder einer in einem Dialysatkreislauf angeordneten Impellerpumpe und Blutbehandlungsvorrichtung
DE102014214033A1 (de) 2014-07-18 2016-01-21 Ksb Aktiengesellschaft Bestimmung des Förderstroms einer Pumpe
WO2015197141A1 (fr) * 2014-10-15 2015-12-30 Grundfos Holding A/S Procédé et système pour détection de défauts dans un ensemble de pompe à l'aide d'un dispositif de communication portable
US9785126B2 (en) * 2014-11-25 2017-10-10 Rockwell Automation Technologies, Inc. Inferred energy usage and multiple levels of energy usage
DE102015215466A1 (de) 2015-08-13 2017-02-16 Ksb Aktiengesellschaft Einstellung des Förderstroms eines Verbrauchers
CN108071626B (zh) * 2016-11-17 2021-03-26 恩格尔机械(上海)有限公司 成型机及其运行方法
EP4365453A3 (fr) * 2016-12-30 2024-07-10 Grundfos Holding A/S Procédé de fonctionnement d'un groupe motopompe à commande électronique
EP3242036B1 (fr) * 2016-12-30 2020-10-28 Grundfos Holding A/S Procédé de détection d'un état d'un groupe motopompe
US10697318B2 (en) * 2017-01-12 2020-06-30 General Electric Company Efficiency maps for tracking component degradation
DE102017111479A1 (de) * 2017-05-24 2018-11-29 Hengst Se Verfahren zum Betreiben eines Zentrifugalabscheiders
DE102017213131A1 (de) 2017-07-31 2019-01-31 Robert Bosch Gmbh Verfahren und Steuergerät zum Steuern eines Aktuators eines Systems sowie derartiges System
DE102018200651A1 (de) * 2018-01-16 2019-07-18 KSB SE & Co. KGaA Verfahren zur Eigendiagnose des mechanischen und/oder hydraulischen Zustandes einer Kreiselpumpe
WO2019147750A2 (fr) * 2018-01-24 2019-08-01 Magnetic Pumping Solutions, Llc Procédé et système de surveillance de l'état de systèmes rotatifs
DE102018104394A1 (de) * 2018-02-27 2019-08-29 Ebm-Papst Mulfingen Gmbh & Co. Kg Arbeitspunktbestimmung
DE102018211869A1 (de) * 2018-07-17 2020-01-23 Ziehl-Abegg Se Verfahren zur Ermittlung einer Fluidförderkenngröße
EP3618266A1 (fr) * 2018-08-28 2020-03-04 Siemens Aktiengesellschaft Détermination de la vitesse de rotation d'un rotor par analyse de vibrations
AT522652A1 (de) * 2019-05-23 2020-12-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Verfahren und Vorrichtung zum Steuern/Regeln eines rotatorischen Antriebs eines Arbeitsaggregates einer Gleisbaumaschine
IT201900009747A1 (it) * 2019-06-21 2020-12-21 Calpeda A Spa Metodo di gestione e controllo di un sistema di pressurizzazione
GB2591100A (en) * 2020-01-14 2021-07-21 Edwards Ltd Vacuum pump monitoring method and apparatus
EP4361582A1 (fr) 2022-10-24 2024-05-01 Wilo Se Procédé d'inspection de l'état d'un groupe motopompe ainsi qu'application logicielle, support de stockage et appareil d'inspection pour la mise en oeuvre du procédé
DE102022128744A1 (de) 2022-10-28 2024-05-08 KSB SE & Co. KGaA Verfahren zum Informationsaustausch zwischen einem externen Empfänger und einer Pumpe
EP4386210A1 (fr) * 2022-12-14 2024-06-19 Schneider Toshiba Inverter Europe SAS Procédé d'identification de l'usure d'une roue à aubes et de l'espace d'anneau d'usure excessif dans des pompes centrifuges
CN116292336B (zh) * 2023-05-12 2023-09-19 安徽明泉水设备有限公司 一种水泵叶片检测方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2946049A1 (de) * 1979-11-15 1981-05-27 Hoechst Ag, 6000 Frankfurt Verfahren zum regeln des durchflusses von kreiselpumpen
JPS63198792A (ja) * 1987-02-13 1988-08-17 Toshiba Corp ポンプ制御装置
DD258467A1 (de) 1987-03-12 1988-07-20 Nahrungsguetermaschinenbau Veb Anordnung zur bestimmung der leistung und/oder des moments an induktionsmotoren
SU1665087A1 (ru) * 1989-04-29 1991-07-23 Ульяновское высшее военно-техническое училище им.Богдана Хмельницкого Насосна установка
DE3927476A1 (de) * 1989-08-19 1991-02-21 Guenther & Co Gmbh & Co Verfahren zur drehmoment- und/oder leistungsueberwachung von antrieben
US5267453A (en) * 1991-06-06 1993-12-07 Guilford Mills, Inc. Loop-type textile fastener fabric and method of producing same
DE4330097A1 (de) * 1993-09-06 1995-03-09 Klein Schanzlin & Becker Ag Kreiselpumpengehäuse mit Fördermengenmeßeinrichtung
DE19618462A1 (de) * 1996-05-08 1997-11-13 Status Pro Maschinenmesstechni Verfahren und Vorrichtung zum Bestimmen eines extrinsischen Leistungsparameters einer energieumwandelnden Vorrichtung
US6260004B1 (en) * 1997-12-31 2001-07-10 Innovation Management Group, Inc. Method and apparatus for diagnosing a pump system
JP2000136790A (ja) * 1998-11-04 2000-05-16 Hitachi Ltd ゲートポンプ装置
DE19858946A1 (de) * 1998-12-09 2000-06-15 Ver Energiewerke Ag Verfahren zur Feststellung von Kavitation an einer mehrstufigen Kreiselpumpe
DE10039917A1 (de) * 2000-08-16 2002-02-28 Ksb Ag Verfahren und Vorrichtung zur Ermittlung der Fördermenge einer Kreiselpumpe
JP3723866B2 (ja) * 2001-02-07 2005-12-07 株式会社日立製作所 インターナルポンプの性能監視方法及び装置
US6536271B1 (en) * 2001-09-13 2003-03-25 Flowserve Management Company Pump with integral flow monitoring
US6648606B2 (en) * 2002-01-17 2003-11-18 Itt Manufacturing Enterprises, Inc. Centrifugal pump performance degradation detection
GB0217494D0 (en) * 2002-07-29 2002-09-04 Boc Group Plc Conditioning monitoring of pumps and pump systems
DE10334817A1 (de) * 2003-07-30 2005-03-10 Bosch Rexroth Ag Vorrichtung und Verfahren zur Fehlererkennung an Pumpen
DE10359726A1 (de) 2003-12-19 2005-07-14 Ksb Aktiengesellschaft Mengenmessung
EP1564411B2 (fr) * 2004-02-11 2015-08-05 Grundfos A/S Procédé de détection des erreurs de fonctionnement d'une unité de pompage
RU2256100C1 (ru) * 2004-08-18 2005-07-10 Гаспарянц Рубен Саргисович Способ диагностирования при работе с перегрузкой электродвигателей магистральных насосов нефтеперекачивающей станции магистрального нефтепровода (нпс мн)
JP2006307682A (ja) * 2005-04-26 2006-11-09 Ebara Densan Ltd ポンプ装置
DE102006049440B4 (de) 2005-10-17 2014-08-21 Ifm Electronic Gmbh Verfahren, Sensor und Diagnosegerät zur Pumpendiagnose
US7693684B2 (en) * 2005-10-17 2010-04-06 I F M Electronic Gmbh Process, sensor and diagnosis device for pump diagnosis
JP4625777B2 (ja) * 2006-02-28 2011-02-02 株式会社東芝 ポンプ健全性評価システム、ポンプ健全性評価装置とその評価方法、評価プログラム
DE102007022348A1 (de) * 2007-05-12 2008-11-13 Ksb Aktiengesellschaft Einrichtung und Verfahren zur Störungsüberwachung
KR101364396B1 (ko) * 2008-11-28 2014-02-17 스미도모쥬기가이고교 가부시키가이샤 하이브리드식 작업기계의 제어방법, 및 하이브리드식 작업기계의 펌프출력 제한방법

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019034426A2 (fr) 2017-08-15 2019-02-21 KSB SE & Co. KGaA Procédé de protection contre la cavitation en cas de cyberattaques et unité pour mettre en oeuvre ce procédé
DE102017214203A1 (de) 2017-08-15 2019-02-21 KSB SE & Co. KGaA Verfahren zum Schutz vor Kavitation bei Cyberangriffen und Einheit zur Durchführung des Verfahrens
US11475129B2 (en) 2017-08-15 2022-10-18 KSB SE & Co. KGaA Method for the protection against cavitation in cyber attacks and unit for carrying out the method
WO2019096545A1 (fr) 2017-11-15 2019-05-23 KSB SE & Co. KGaA Procédé et dispositif de protection contre des cyberattaques de groupes motopompes
US11487262B2 (en) 2017-11-15 2022-11-01 KSB SE & Co. KGaA Method and apparatus for protecting pump units from cyber attacks
WO2022038026A1 (fr) 2020-08-18 2022-02-24 KSB SE & Co. KGaA Procédé de détermination d'une vitesse synchrone
DE102020005050A1 (de) 2020-08-18 2022-02-24 KSB SE & Co. KGaA Verfahren zur Bestimmung einer Synchrondrehzahl

Also Published As

Publication number Publication date
WO2010133425A1 (fr) 2010-11-25
ES2556236T3 (es) 2016-01-14
HRP20151394T1 (hr) 2016-02-12
HUE028262T2 (en) 2016-12-28
RU2011151763A (ru) 2013-07-10
EP2433010A1 (fr) 2012-03-28
CN102439318A (zh) 2012-05-02
US20120111114A1 (en) 2012-05-10
JP2012527563A (ja) 2012-11-08
RU2536656C2 (ru) 2014-12-27
BRPI1007672A2 (pt) 2016-08-02
SI2433010T1 (sl) 2016-01-29
BRPI1007672B1 (pt) 2020-10-27
PL2433010T3 (pl) 2016-03-31
DE102009022107A1 (de) 2010-11-25
CN102439318B (zh) 2015-10-21
PT2433010E (pt) 2016-01-26
JP5868846B2 (ja) 2016-02-24
US8763464B2 (en) 2014-07-01
DK2433010T3 (en) 2015-12-21

Similar Documents

Publication Publication Date Title
EP2433010B1 (fr) Procede et dispositif de determination d'un point de fonctionnement d'une machine de travail
EP1564411B2 (fr) Procédé de détection des erreurs de fonctionnement d'une unité de pompage
DE102018113347A1 (de) Verfahren zur Bestimmung oder Überwachung des Zustandes einer Exzenterschneckenpumpe
EP3169903B1 (fr) Détermination du débit d'une pompe
EP2145112B2 (fr) Dispositif et procédé de surveillance de dysfonctionnements
EP3449132B1 (fr) Procédé de détection d'un état de fonctionnement anormal d'un groupe de pompage
EP3824302A1 (fr) Procédé et système pour évaluer un comportement vibratoire d'un moteur électrique
DE102006049440B4 (de) Verfahren, Sensor und Diagnosegerät zur Pumpendiagnose
EP2696175B1 (fr) Procédé de détection du débit d'une pompe à centrifuge
EP2258949B1 (fr) Procédé de détermination de valeurs caractéristiques, notamment de valeurs, notamment de paramètres, d'un agrégat de pompe centrifuge entraîné par moteur électrique intégré dans une installation
DE112017005650T5 (de) Anomalie-diagnoseeinrichtung für kraftübertragungsmechanismus und anomalie-diagnoseverfahren für kraftübertragungsmechanismus
DE102009038011B4 (de) Verfahren zur automatischen Erfassung und Erkennung von Fehlern an einer Auswuchtmaschine
WO2007131729A1 (fr) Dispositif pour la transmission de valeurs de mesure
EP1719241A1 (fr) Procede pour diagnostiquer des etats de fonctionnement d'une pompe synchrone et dispositif pour realiser ce procede
EP2039939B1 (fr) Procédé de surveillance d'un dispositif de transformation d'énergie
EP3242035B1 (fr) Procédé de fonctionnement d'au moins un groupe motopompe parmi une pluralité de groupes motopompe
DE102015201203B4 (de) Verfahren zur Detektion von Kavitation
EP3263148A1 (fr) Procédé de détermination de paramètres de fonctionnement d'une pompe à sang
WO2016173896A1 (fr) Dispositif de pompe et procédé pour actionner une pompe pour liquides
EP3706308B1 (fr) Dispositif de surveillance continue des vibrations et procédé
EP2500579A1 (fr) Détection de la cavitation et de l'entraînement de gaz dans une pompe électrique centrifuge
DE10242305B4 (de) Verfahren zur Messung der Drehzahl eines Pumpenmotors
LU503203B1 (de) Verfahren zur informationsgewinnung bei einem abwasserpumpenaggregat und/oder einem abwasserpumpensystem
EP2326842A1 (fr) Procédé de détection précoce de dégâts de soupape dans des pompes volumétriques oscillantes et pompes volumétriques oscillantes comportant un système de détection destinées à être employées dans ce procédé
EP3175545A1 (fr) Procédé de commande motrice d'un moteur synchrone à réluctance pour une pompe et pompe avec moteur synchrone à réluctance

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111107

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150508

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 751412

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010010361

Country of ref document: DE

REG Reference to a national code

Ref country code: HR

Ref legal event code: TUEP

Ref document number: P20151394

Country of ref document: HR

Ref country code: DK

Ref legal event code: T3

Effective date: 20151215

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2556236

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20160114

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20151222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151224

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: HR

Ref legal event code: T1PR

Ref document number: P20151394

Country of ref document: HR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20150923

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160123

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 20184

Country of ref document: SK

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010010361

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160624

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E028262

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160427

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010010361

Country of ref document: DE

Owner name: KSB SE & CO. KGAA, DE

Free format text: FORMER OWNER: KSB AKTIENGESELLSCHAFT, 67227 FRANKENTHAL, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20151394

Country of ref document: HR

Payment date: 20190401

Year of fee payment: 10

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 751412

Country of ref document: AT

Kind code of ref document: T

Owner name: KSB SE & CO. KGAA, DE

Effective date: 20190415

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20151394

Country of ref document: HR

Payment date: 20200326

Year of fee payment: 11

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20151394

Country of ref document: HR

Payment date: 20210330

Year of fee payment: 12

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20151394

Country of ref document: HR

Payment date: 20220323

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20220429

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20220425

Year of fee payment: 13

Ref country code: NO

Payment date: 20220428

Year of fee payment: 13

Ref country code: BG

Payment date: 20220429

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20220420

Year of fee payment: 13

Ref country code: BE

Payment date: 20220422

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20230331

Year of fee payment: 14

Ref country code: CZ

Payment date: 20230322

Year of fee payment: 14

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20151394

Country of ref document: HR

Payment date: 20230327

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20230322

Year of fee payment: 14

Ref country code: PT

Payment date: 20230321

Year of fee payment: 14

Ref country code: PL

Payment date: 20230323

Year of fee payment: 14

Ref country code: HR

Payment date: 20230327

Year of fee payment: 14

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230712

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20230324

Year of fee payment: 14

Ref country code: HU

Payment date: 20230331

Year of fee payment: 14

REG Reference to a national code

Ref country code: NO

Ref legal event code: MMEP

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20230501

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230428

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230430

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230501

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240423

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240502

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20240423

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240501

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240503

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240423

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240426

Year of fee payment: 15

Ref country code: FR

Payment date: 20240423

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240418

Year of fee payment: 15