EP2258949B1 - Procédé de détermination de valeurs caractéristiques, notamment de valeurs, notamment de paramètres, d'un agrégat de pompe centrifuge entraîné par moteur électrique intégré dans une installation - Google Patents

Procédé de détermination de valeurs caractéristiques, notamment de valeurs, notamment de paramètres, d'un agrégat de pompe centrifuge entraîné par moteur électrique intégré dans une installation Download PDF

Info

Publication number
EP2258949B1
EP2258949B1 EP09007299.2A EP09007299A EP2258949B1 EP 2258949 B1 EP2258949 B1 EP 2258949B1 EP 09007299 A EP09007299 A EP 09007299A EP 2258949 B1 EP2258949 B1 EP 2258949B1
Authority
EP
European Patent Office
Prior art keywords
pump
parameters
determined
pressure
delivery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09007299.2A
Other languages
German (de)
English (en)
Other versions
EP2258949A1 (fr
Inventor
Carsten Skovmose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grundfos Management AS
Original Assignee
Grundfos Management AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP09007299.2A priority Critical patent/EP2258949B1/fr
Application filed by Grundfos Management AS filed Critical Grundfos Management AS
Priority to PL09007299T priority patent/PL2258949T3/pl
Priority to JP2012513492A priority patent/JP5746155B2/ja
Priority to CN201080024716.5A priority patent/CN102459912B/zh
Priority to US13/375,530 priority patent/US8949045B2/en
Priority to PCT/EP2010/003211 priority patent/WO2010139416A1/fr
Priority to EA201171344A priority patent/EA022673B1/ru
Publication of EP2258949A1 publication Critical patent/EP2258949A1/fr
Application granted granted Critical
Publication of EP2258949B1 publication Critical patent/EP2258949B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0088Testing machines

Definitions

  • centrifugal pumps are typically used in the form of centrifugal pump units, consisting of the actual pump and a mechanically connected electric drive motor.
  • centrifugal pump unit To operate the centrifugal pump unit on the one hand energetically favorable, on the other hand optimally adapted to the purpose, it already counts today in centrifugal pump units of small design to the state of the art to equip them with a speed controller, typically an electronic frequency converter.
  • a speed controller typically an electronic frequency converter.
  • Such centrifugal pump units with speed controller are used in systems, be it for example in heating systems, in Kaykalienhebeanlagen, in wastewater systems, in plants for the promotion of groundwater from a well, to name just a few typical applications.
  • centrifugal pump units to provide within the pump housing, a pressure sensor, typically a differential pressure sensor which detects the pressure generated by the pump between the suction and discharge side, so the delivery height.
  • electrical quantities of the motor such as the power consumption of the motor and the frequency with which the speed controller feeds the motor, are detected.
  • the method according to the invention serves to determine characteristic values, that is to say of parameters of an electric motor-driven centrifugal pump assembly with speed controller integrated in a system. These characteristic values are determined on the basis of electrical variables of the motor and / or the speed controller on the one hand and the pressure generated by the pump on the other hand. For this purpose, at least two different operating points of the pump are approached one after the other, wherein the flow rates in the approached operating points are determined on the system side and the characteristic values are thus determined.
  • both the hydraulic operating variables of the pump and also further functions can then be detected or controlled only by using electrical variables of the motor or the speed controller and the pressure generated by the pump. It is provided according to the invention that at least two operating points are approached to set the characteristic values at least with an accuracy that allows meaningful conclusions in later operation. It is understood that when starting from only two operating points, the characteristic values can not necessarily be determined unambiguously. Therefore, according to the invention, at least three, four or nine, thirteen or even more operating points are preferably approached to a sufficient number of characteristic values with sufficient accuracy, in order to be able to largely dispense later on the acquisition of flow rates even on the system side. It is understood that with increasing number of operating points, not only the accuracy of the determined characteristic values, in particular parameters, increases, but also the accuracy of the flow rates to be determined on the system side.
  • An electromotive-driven centrifugal pump unit in the sense of the invention is an electric motor with a centrifugal pump driven therefrom, which typically has a common shaft.
  • a speed controller typically a frequency converter, which can vary the electrical energy added to the motor at least in terms of frequency, but typically also in terms of voltage in a wide range.
  • the electrical variables of the motor which are to be detected, inter alia, namely the power consumption and the frequency, can possibly be replaced by corresponding variables of the speed controller. These variables are usually available on the speed controller, so they need not be detected by separate sensors.
  • the pressure generated by the pump can by a differential pressure sensor on the pump, but also by other suitable pressure transducer elsewhere, z. B. be measured at a distance from the pressure outlet of the pump.
  • any involvement of a centrifugal pump unit to understand, for example, a sewage lifting system, a system in which promotes a centrifugal pump unit as a submersible pump from a well, a system in which promotes a centrifugal pump unit in a surge tank, wastewater systems with several centrifugal pump units and the like ,
  • the characteristic values to be determined are parameters which are part of a function following the model laws of motor and / or pump or also functions which are preferably formed in parameter-linear form.
  • the latter makes it possible to determine concrete values on the basis of concrete operating points in a simple manner, without further differential consideration. Since this function or functions follow the model laws of the engine and / or pump, only a few operating points result in a practically usable result when starting up.
  • a function determining the delivery rate which has at least one first term with a hydraulic and / or electrical performance-dependent variable and a second term with a hydraulic and / or electrical performance-dependent variable, which are each multiplicatively linked to one of the parameters.
  • Specifying such a function as a function of the delivery rate is particularly favorable since the delivery rate in the approached operating points is determined on the installation side and can therefore be used directly for determining the characteristic values.
  • a function determining the flow rate of the above-mentioned type is particularly advantageous if the flow rate, for example in wastewater treatment plants, can not be detected accurately but, for example, only averaged over time. For then this comparatively uncertain value stands on one side of the equation.
  • the parameters can then be determined with comparatively high accuracy by repeated starting and also the same operating point, since the accuracy of the applied delivery quantity also increases as the number of approached operating points and detected values increases. This applies in particular on the basis of the parameter-linear equations described below.
  • q is the delivery rate of the pump
  • p is the delivery pressure of the pump, that is, for example, the differential pressure between suction and pressure side
  • ⁇ r the rotational speed of the pump
  • T the drive torque of the pump
  • ⁇ 1 to ⁇ 3 the parameters of the sub-pump model to be determined
  • the sub-pump model according to equation (b), which is q ⁇ 0 1 ⁇ r + ⁇ 1 p ⁇ r + ⁇ 2 T ⁇ r + ⁇ 3 ⁇ r be used, compared to the above-described sub-pump model by the term ⁇ 0 1 ⁇ r is extended.
  • This term is intended to compensate for an affinity error that can arise when the pressure p is determined at a distance from the pump, that is to say that it is measured differently than the pressure actually generated by the pump.
  • p represents the delivery pressure of the pump
  • ⁇ r the rotational speed of the pump
  • T the driving torque of the pump
  • ⁇ 0 to ⁇ 8 represent the parameters of the sub-pump model to be determined.
  • This frequency value ⁇ e is available in the speed controller and therefore does not need to be determined.
  • the same applies to the determination of the drive torque T of the pump. This can be easily determined by determining that from the quotient of the electric power P e received by the motor and the frequency ⁇ e the power supply of the motor or the rotational speed of the pump ⁇ r is formed. T P e ⁇ e
  • the electric power P e picked up by the motor is also available on the speed controller since voltage and current are constantly detected there.
  • the method according to the invention at least estimatedly requires the resulting delivery rate q of the pump.
  • the pump unit when used in a pressure-balanced container, typically a well shaft or the like, it will be determined, at least approximately, by detecting the change over time of the liquid level in the shaft from which the pump is pumping, on the one hand with the pump switched off to detect the inlet, and on the other hand with the pump switched on in the respective operating point.
  • the knowledge of the shaft geometry, ie in particular the size of the shaft cross-section, if necessary, depending on the level height, if the shaft is formed, for example, tapered to assign the height difference of the liquid level corresponding amount of liquid can.
  • the detection of the liquid level can be done in a simple manner by a pressure measurement, so for example by a pressure sensor in the pump, which detects the static pressure when the pump is switched off.
  • the level can also be detected mechanically or the delivery rate of the pump can be detected directly, if this is advantageous.
  • the parameters can be determined by conventional methods, as is well-known in the calculation of the inflow of boreholes per se.
  • the method according to the invention is formed for applications in which the pump unit conveys into an expansion tank by determining the flow rates at the approached operating points on the basis of the change with time of the pressure in the expansion tank of the plant into which the pump is conveying, taking into account the time change of the tank pressure once when turned on and the other time with the pump off, each over a predetermined period of time.
  • the delivery rate can be determined during later operation of the pump, without a flow monitor or a sensor to use for this. It can therefore be advantageous only on the basis of the electrical characteristics such. Power consumption and frequency of the engine and a pressure measurement, the flow rate can be determined. If necessary, other plant sizes can also be determined, for example, the amount of liquid flowing into the well or the system.
  • this can also be used to monitor the function of the pump unit by the characteristic values, in particular the parameters are determined again at a time interval and compared with the previously determined. If these values agree with a given tolerance, it can be assumed that the function of the pump set is unchanged. However, if these deviate significantly or significantly from those determined previously, a functional impairment of the pump is to be determined, for example due to the leakage of a seal, due to the increased friction in the event of a defect in a bearing or the like.
  • the method according to the invention is preferably carried out automatically with the aid of a corresponding control, which can be part of the digital control of a frequency converter, for example, by automatically determining and processing the characteristic values.
  • the pump unit is first operated in an identification mode in which it automatically approaches several hydraulic operating points to determine the characteristic values, in particular parameters and subsequently placed in an operating mode in which the previously determined characteristic values for determining the operating size of the system, in particular the flow rate of the pump unit can be used. If the characteristic values have to be determined again after a certain time to monitor the pump set, the pump set is put back in the identification mode and these values are again determined and then compared with the pre-determined or the originally determined.
  • the pump unit is identified in an identification mode 1, that is, the characteristic sizes of the pump set determined by at least two, but preferably a variety of operating points is approached, in each of the operating points, the electrical power of the engine, the speed of the motor or simplifies the frequency of the supply voltage of the motor and the pump delivered by the delivery pressure is determined.
  • the quantity delivered in each case is determined on the plant side.
  • identification mode 1 the parameters are also determined, then the pump unit runs in the operating mode 2 to return to the identification mode 1 after a predetermined time (eg one hour or one week), where the parameters are determined again.
  • a predetermined time eg one hour or one week
  • a comparison of the now determined parameters with the previously determined parameters allows an assessment in the simplest form of the function of the pump up to the detection of a change in efficiency, as they are based on Fig. 8 is shown. For the latter, the parameter acquisition of equations (a) and (c) or (b) and (c) is required, whereas for pure function monitoring the parameter detection of equations (a) and (b) or (c) is sufficient.
  • a plant is shown, as it is given for example for the promotion of waste water from a shaft.
  • the shaft 3 in Fig. 2 is, as usual in systems of this type, designed as an upwardly open vessel.
  • the liquid level 4 moves in the inlet of liquid q in upward and with the pump switched on according to the flow rate q pump down.
  • the pump delivers at the pressure p, which is the differential pressure between suction and discharge side.
  • the feed into the shaft 3 is not constant, it is averaged over a time interval ⁇ t ( q in ) as quasi-constant.
  • From the change in the liquid level 4 and on the basis of the shaft cross-section 3 then results in an inflow and with decreasing liquid level 4, when the pump is pumping, a flow rate q out . Since even during the time when the pump is pumping, liquid in the shaft 3 runs, q in so quasi constant, resulting from the sum of the discharge amount q out and q in the flow rate of the pump.
  • FIG. 3 shows the level heights in shaft 3 as a function of time t.
  • first measuring interval 6 is multiplied in the time in which the pump is switched off, the liquid level changing detected 6 over time ⁇ t and with the shaft cross-section A (h). This results in an inflow amount q in per unit of time flowing into the shaft 3.
  • the pump is turned on and runs at a first operating point until the liquid level 4 again has the original given at the beginning of the interval 6 level. From this, the flow rate q pump of the pump can then be determined.
  • Fig. 3 clarifies, in the method used there, the inflow into the shaft during the entire time to determine when the pump is turned off.
  • Fig. 4 illustrated method in which the intervals 10 and 11, are divided into partial time sections ⁇ t 1 to ⁇ t 9, wherein the time intervals ⁇ t can be chosen arbitrarily or randomly, so that there is a certain statistical distribution.
  • a system is shown in which the pump unit is designed as a well pump 12, which in a wellbore 13 is arranged.
  • the borehole pump 12 conveys the water collecting in the borehole 13 to the surface.
  • Z w is the current water level in the shaft 3, ie the liquid level.
  • Z g represents the groundwater level, ie the water level which would be reached if not pumped out and Z f the filter inlet pressure, ie the water level required to penetrate the filter typically formed by sand around the well shaft.
  • Fig. 6 The plant shown promotes the pump 14 in an expansion tank 15, ie in a closed container 15 which is at least partially filled with a compressible gas which is more or less compressed depending on the level, ie, that the pressure within the expansion tank 15 is variable. Since the flow rate here is both outflowing (p out ) and inflowing (pin) depending on the pressure within the container 15, to determine the flow rate of the pump, the equation (g) is to be used, which determines the flow rate as a function of the pressure p out in Expansion tank or at the end of the discharge line and the pressure change ⁇ p out and a constant K e of the expansion tank considered. Again, it is appropriate, as based on Fig.
  • the time interval 16 For example, while the pump is turned off, and the time interval 17 while the pump is turned on, to divide into a plurality of time intervals ⁇ t 1 to ⁇ t 9 and to detect the pressure changes ⁇ p out resulting in these time intervals, to thereby to improve the accuracy of the result.
  • the Fig. 8 shows by way of example two curves, which are formed by means of the sub-pump models (b) and (c) and which represent the efficiency of the pump ⁇ above the delivery rate.
  • the curve 18 has been detected at the beginning of the operation, whereas the curve 19 after a considerable period of operation, so after one or several times has been switched to the operating mode, z. After five months.
  • the efficiency of the pump set has fallen almost over the entire pump delivery range. This can be z. B. indicate a leak within the pump, in which a partial flow is shorted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Claims (13)

  1. Procédé de détermination de paramètres d'un groupe motopompe centrifuge à variateur de vitesse, entraîné par moteur électrique et intégré dans une installation, à l'aide de grandeurs électriques du moteur et/ou du variateur de vitesse et de la pression générée par la pompe (14), dans lequel au moins deux points de fonctionnement différents de la pompe (14) sont atteints successivement, les débits de refoulement aux points de fonctionnement atteints étant déterminés côté installation et les paramètres étant ainsi définis, caractérisé
    - en ce que les débits aux points de fonctionnement atteints sont déterminés à l'aide de la variation dans le temps du niveau de fluide dans au moins un trou d'alésage (13) qui forme partie de l'installation et depuis lequel la pompe (14) transporte le fluide, et ce par comparaison de la variation du niveau de fluide et de la quantité d'admission ou de sortie qui en résulte lorsque la pompe (14) est hors circuit et en circuit, ou
    - en ce que les débits de refoulement aux points de fonctionnement atteints sont déterminés à l'aide de la variation dans le temps du niveau de fluide (4) dans un puits (3) de l'installation, depuis lequel la pompe (14) transporte le fluide, et ce en prenant en compte la variation dans le temps du niveau de fluide lorsque la pompe (14) est hors circuit et en circuit, ainsi que la géométrie du puits, ou
    - en ce que les débits de refoulement aux points de fonctionnement atteints sont déterminés à l'aide de la variation dans le temps de la pression dans un réservoir d'expansion (15) de l'installation, vers lequel la pompe (14) transporte le fluide, et ce en prenant en compte la variation dans le temps de la pression du réservoir lorsque la pompe (14) est hors circuit et en circuit.
  2. Procédé selon la revendication 1, caractérisé en ce que les paramètres font partie d'une fonction, de préférence de forme paramétrique linéaire, obéissant aux lois type du moteur et/ou de la pompe.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce qu'une fonction définissant le débit de refoulement comporte au moins un premier terme contenant une grandeur hydraulique et/ou électrique dépendante de la puissance et un second terme contenant une grandeur hydraulique et/ou électrique dépendante de la puissance, lesquelles sont respectivement combinées de manière multiplicative avec l'un des paramètres.
  4. Procédé selon l'une des revendications précédentes, caractérisé en ce que les paramètres forment une partie d'au moins une partie d'un modèle de pompe et sont combinés comme suit : q = γ 1 p ω r + γ 2 T ω r + γ 3 ω r
    Figure imgb0028
    où :
    q débit de la pompe,
    p pression de refoulement de la pompe,
    ωr vitesse de rotation de la pompe,
    T couple d'entraînement de la pompe, et
    γ1 à γ3 paramètres du modèle de pompe partiel.
  5. Procédé selon l'une des revendications précédentes, caractérisé en ce que les paramètres forment une partie d'au moins une partie d'un modèle de pompe et sont combinés comme suit : q = γ 0 1 ω r + γ 1 p ω r + γ 2 T ω r + γ 3 ω r
    Figure imgb0029
    où :
    q débit de la pompe,
    p ression de refoulement de la pompe,
    ωr vitesse de rotation de la pompe,
    T couple d'entraînement de la pompe, et
    γ0 à γ3 paramètres du modèle de pompe partiel.
  6. Procédé selon l'une des revendications précédentes, caractérisé en ce que les paramètres forment une partie, de préférence, d'un autre modèle de pompe et sont combinés comme suit : p 2 = θ 0 + θ 1 p + θ 2 T + θ 3 pT + θ 4 T 2 + θ 5 ω r 2 + θ 6 p ω r 2 + θ 7 T ω r 2 + θ 8 ω r 4
    Figure imgb0030
    où :
    p pression de refoulement de la pompe,
    ωr vitesse de rotation de la pompe,
    T couple de rotation d'entraînement de la pompe, et
    θ0 à θ8 paramètres du modèle de pompe partiel.
  7. Procédé selon la revendication 4, 5 ou 6, caractérisé en ce que l'on pose les équations : ω r = ω e
    Figure imgb0031
    und T = P e ω e
    Figure imgb0032
    gesetzt wird,
    ωe est la fréquence de l'alimentation en tension du moteur et
    P e est la puissance électrique absorbée par le moteur.
  8. Procédé selon l'une des revendications précédentes, caractérisé en ce que la quantité d'admission vers le trou d'alésage est déterminée en utilisant les équations suivantes : Δ z m Δ t = η 0 + η 1 z m + η 2 z m 2 + + η k z m k
    Figure imgb0033
    q in = A w η 0 + η 1 z m + η 2 z m 2 + + η k z m k
    Figure imgb0034
    où:
    Zm niveau de fluide dans le trou d'alésage,
    Δt intervalle de temps,
    Δzm variation du niveau de fluide pendant un intervalle de temps Δt,
    qin admission calculée dans le trou d'alésage,
    Aw section transversale du trou d'alésage, et
    η0 .... nk paramètres d'un modèle mathématique reproduisant l'admission dans le trou d'alésage.
  9. Procédé selon l'une des revendications précédentes, caractérisé en ce que le débit de refoulement de la pompe est déterminé en utilisant l'équation suivante : q out q pump = K e p out 2 p out t K e p out 2 Δ p out Δ t
    Figure imgb0035
    qout débit sortant de l'installation ;
    q pump débit de refoulement de la pompe,
    p out pression dans le réservoir d'expansion,
    Δt intervalle de temps,
    Δp out variation de pression dans le réservoir d'expansion pendant l'intervalle de temps Δt, et
    Ke constante du réservoir d'expansion.
  10. Procédé selon l'une des revendications précédentes, caractérisé en ce que la partie du modèle de pompe selon la revendication 4 ou 5 est utilisée pour déterminer le débit de refoulement de la pompe pendant le fonctionnement.
  11. Procédé selon l'une des revendications précédentes, caractérisé en ce que les paramètres sont de nouveau déterminés après un intervalle de temps et comparés avec ceux précédemment déterminés afin de surveiller le fonctionnement du groupe motopompe.
  12. Procédé selon l'une des revendications précédentes, caractérisé en ce que la puissance hydraulique de la pompe est déterminée à l'aide du modèle de pompe selon la revendication 4 ou 5 et la revendication 6, procédé dans lequel celle-ci est de nouveau déterminée après un intervalle de temps et est comparée avec celle précédemment déterminée afin de surveiller le rendement du groupe motopompe.
  13. Procédé selon l'une des revendications précédentes, caractérisé en ce que les paramètres sont détectés de préférence automatiquement dans un mode d'identification et en ce que les valeurs caractéristiques précédemment déterminées sont ensuite utilisées dans un mode de fonctionnement pour déterminer des grandeurs de fonctionnement de l'installation, en particulier du groupe motopompe.
EP09007299.2A 2009-06-02 2009-06-02 Procédé de détermination de valeurs caractéristiques, notamment de valeurs, notamment de paramètres, d'un agrégat de pompe centrifuge entraîné par moteur électrique intégré dans une installation Active EP2258949B1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PL09007299T PL2258949T3 (pl) 2009-06-02 2009-06-02 Sposób ustalania wartości charakterystycznych, zwłaszcza wartości, zwłaszcza parametrów, zintegrowanego z instalacją, napędzanego silnikiem elektrycznym agregatu pompy odśrodkowej
EP09007299.2A EP2258949B1 (fr) 2009-06-02 2009-06-02 Procédé de détermination de valeurs caractéristiques, notamment de valeurs, notamment de paramètres, d'un agrégat de pompe centrifuge entraîné par moteur électrique intégré dans une installation
CN201080024716.5A CN102459912B (zh) 2009-06-02 2010-05-26 确定设备中电机驱动的离心泵机组的特征值、特别是参数的方法
US13/375,530 US8949045B2 (en) 2009-06-02 2010-05-26 Method for determining characteristic values, particularly of parameters, of a centrifugal pump aggregate driven by an electric motor and integrated in a system
JP2012513492A JP5746155B2 (ja) 2009-06-02 2010-05-26 設備に組み込まれた電動モータ駆動式の遠心ポンプ装置の特性値、特にパラメータを決定する方法
PCT/EP2010/003211 WO2010139416A1 (fr) 2009-06-02 2010-05-26 Procédé pour déterminer des valeurs caractéristiques, en particulier des paramètres d'un ensemble pompe centrifuge entraîné par moteur électrique qui est intégré dans un dispositif
EA201171344A EA022673B1 (ru) 2009-06-02 2010-05-26 Способ определения характеристических значений, в частности параметров, встроенного в установку центробежного насосного агрегата, приводимого в действие при помощи электродвигателя

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP09007299.2A EP2258949B1 (fr) 2009-06-02 2009-06-02 Procédé de détermination de valeurs caractéristiques, notamment de valeurs, notamment de paramètres, d'un agrégat de pompe centrifuge entraîné par moteur électrique intégré dans une installation

Publications (2)

Publication Number Publication Date
EP2258949A1 EP2258949A1 (fr) 2010-12-08
EP2258949B1 true EP2258949B1 (fr) 2017-01-18

Family

ID=41136932

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09007299.2A Active EP2258949B1 (fr) 2009-06-02 2009-06-02 Procédé de détermination de valeurs caractéristiques, notamment de valeurs, notamment de paramètres, d'un agrégat de pompe centrifuge entraîné par moteur électrique intégré dans une installation

Country Status (7)

Country Link
US (1) US8949045B2 (fr)
EP (1) EP2258949B1 (fr)
JP (1) JP5746155B2 (fr)
CN (1) CN102459912B (fr)
EA (1) EA022673B1 (fr)
PL (1) PL2258949T3 (fr)
WO (1) WO2010139416A1 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE537872C2 (sv) 2011-12-22 2015-11-03 Xylem Ip Holdings Llc Metod för styrning av ett pumparrangemang
JP2014202144A (ja) * 2013-04-05 2014-10-27 新日本造機株式会社 遠心ポンプの診断方法
CN103575339B (zh) * 2013-10-31 2016-08-17 无锡溥汇机械科技有限公司 流量测量方法及流量控制方法
DE102014004336A1 (de) * 2014-03-26 2015-10-01 Wilo Se Verfahren zur Bestimmung des hydraulischen Arbeitspunktes eines Pumpenaggregats
EP3187735B1 (fr) 2015-12-29 2019-11-06 Grundfos Holding A/S Système de pompe ainsi qu'un procédé permettant de déterminer l'écoulement dans un système de pompe
CN110651171B (zh) * 2017-03-03 2021-08-27 迈德技术实验室公司 容积式实时流引擎
USD880670S1 (en) 2018-02-28 2020-04-07 S. C. Johnson & Son, Inc. Overcap
USD872245S1 (en) 2018-02-28 2020-01-07 S. C. Johnson & Son, Inc. Dispenser
USD872847S1 (en) 2018-02-28 2020-01-14 S. C. Johnson & Son, Inc. Dispenser
USD881365S1 (en) 2018-02-28 2020-04-14 S. C. Johnson & Son, Inc. Dispenser
USD853548S1 (en) 2018-05-07 2019-07-09 S. C. Johnson & Son, Inc. Dispenser
USD852938S1 (en) 2018-05-07 2019-07-02 S. C. Johnson & Son, Inc. Dispenser
EP3712736A1 (fr) * 2019-03-22 2020-09-23 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Méthode de détection d'anomalies dans une installation de traitement des eaux mettant en oeuvre un appareil d'injection d'oxygène dans un bassin d'épuration
CN111551848B (zh) * 2019-12-30 2022-09-02 瑞声科技(新加坡)有限公司 马达体验失真指标的测试方法、电子设备及存储介质

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4484861A (en) * 1982-02-22 1984-11-27 Conoco Inc. Method and apparatus for process control of vertical movement of slurried particulates
JPS59178320A (ja) * 1983-03-29 1984-10-09 Toshiba Corp 原子炉水位計測装置
US4669308A (en) * 1985-04-09 1987-06-02 Jorritsma Johannes N Method and apparatus for determining liquid flow rates
FI80933C (fi) * 1988-06-08 1990-08-10 Sarlin Ab Oy E Oevervakningsfoerfarande foer avlopps- pumpstation samt oevervakningsanordning foer foerverkligande av foerfarandet.
GB9011084D0 (en) * 1990-05-17 1990-07-04 Ag Patents Ltd Volume measurement
JPH0449679U (fr) * 1990-08-30 1992-04-27
US5497664A (en) * 1994-11-14 1996-03-12 Jorritsma; Johannes N. Method and apparatus for calculating flow rates through a pumping station
DE19507698A1 (de) * 1995-03-04 1996-09-05 Klein Schanzlin & Becker Ag Entnahmemeßverfahren
EP1072795A4 (fr) * 1998-04-03 2006-10-18 Ebara Corp Systeme de diagnostic destine a un mecanisme a fluide
JP2003090288A (ja) 1998-04-03 2003-03-28 Ebara Corp 流体機械の診断システム
US6648606B2 (en) * 2002-01-17 2003-11-18 Itt Manufacturing Enterprises, Inc. Centrifugal pump performance degradation detection
US7112037B2 (en) * 2002-12-20 2006-09-26 Itt Manufacturing Enterprises, Inc. Centrifugal pump performance degradation detection
JP2005351221A (ja) * 2004-06-11 2005-12-22 Aimu Denki Kogyo Kk ポンプの吐出し量の制御方法
JP4938304B2 (ja) * 2005-12-22 2012-05-23 株式会社荏原製作所 ポンプの制御方法及び給水装置
JP5137359B2 (ja) * 2006-09-05 2013-02-06 株式会社鶴見製作所 排水ポンプの異常診断方法およびその装置
JP4961276B2 (ja) * 2007-06-19 2012-06-27 株式会社クボタ 排水ポンプ装置及び排水ポンプの運転方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EA022673B1 (ru) 2016-02-29
EP2258949A1 (fr) 2010-12-08
EA201171344A1 (ru) 2012-05-30
JP5746155B2 (ja) 2015-07-08
WO2010139416A1 (fr) 2010-12-09
CN102459912B (zh) 2016-06-29
PL2258949T3 (pl) 2017-08-31
JP2012528973A (ja) 2012-11-15
US8949045B2 (en) 2015-02-03
US20120136590A1 (en) 2012-05-31
CN102459912A (zh) 2012-05-16

Similar Documents

Publication Publication Date Title
EP2258949B1 (fr) Procédé de détermination de valeurs caractéristiques, notamment de valeurs, notamment de paramètres, d'un agrégat de pompe centrifuge entraîné par moteur électrique intégré dans une installation
EP1564411B1 (fr) Procédé de détection des erreurs de fonctionnement d'une unité de pompage
EP2039939B1 (fr) Procédé de surveillance d'un dispositif de transformation d'énergie
EP3123033B1 (fr) Procédé de détermination du point de fonctionnement hydraulique d'un groupe motopompe
EP2944821B1 (fr) Procédé de réglage de la vitesse de rotation à énergie optimisée d'un groupe motopompe
EP2696175B1 (fr) Procédé de détection du débit d'une pompe à centrifuge
EP2796724B1 (fr) Fonctionnement optimisé d'une pompe à vitesse variable dans une station de pompage des eaux usées
EP2122177B1 (fr) Groupe motopompe
DE102017004097A1 (de) Verfahren zur Detektion eines abnormalen Betriebszustands eines Pumpenaggregats
DE102011050017A1 (de) Steuermittel zum Ansteuern eines Frequenzumrichters sowie Ansteuerverfahren
EP2831345B1 (fr) Procédé pour actionner un dispositif de pompage
DE102007010768A1 (de) Verfahren für die Optimierung der Ventilstellung und der Pumpendrehzahl in einem Ventilsystem mit PID-Regelung ohne die Verwendung externer Signale
EP3242035B1 (fr) Procédé de fonctionnement d'au moins un groupe motopompe parmi une pluralité de groupes motopompe
DE10157143A1 (de) Wartungsintervallanzeige für Pumpen
DE102014222390A1 (de) Verfahren zum Erstellen eines Kennlinienfelds einer Fluidpumpe, Verwendung eines limitierten Ventils, Verwendung eines Stufenventils und Steuergerät für ein Fluidfördersystem
DE102004004401B4 (de) Verfahren zur Installation und/oder zum Betrieb eines Abwassersammelschachts
DE102014221865B3 (de) Verfahren zum Kalibrieren einer Fluidpumpenanordnung
DE102022116603B4 (de) Verfahren zum Betreiben einer Betonpumpe und Betonpumpe
DE102006041482B3 (de) Verfahren zum Spülen einer Druckrohrleitung und Abwasserfördervorrichtung
DE102022001315A1 (de) Vorrichtung und Verfahren zum Ermitteln eines Zustandes, insbesondere eines Verschleißzustandes, einer Verdrängereinheit
DE102022119147A1 (de) Verfahren zur Bestimmung oder Überwachung des Förderstroms einer Exzenterschneckenpumpe
DE102011109032A1 (de) Verfahren und Vorrichtung zur Ermittlung eines Volumenstroms einer Mediumströmungsanlage
EP3289207A1 (fr) Procédé de de régulation d'un système d'alimentation en carburant
DD227596A3 (de) Anordnung zur steuerung von grundwasserabsenkungsvorgaengen
EP1586776A2 (fr) Appareil de chauffage automobile

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20110608

17Q First examination report despatched

Effective date: 20150227

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160608

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

INTC Intention to grant announced (deleted)
GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

INTG Intention to grant announced

Effective date: 20161213

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 863079

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009013574

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170118

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170518

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170418

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170418

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170518

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009013574

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

26N No opposition filed

Effective date: 20171019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170602

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170602

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170630

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 863079

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009013574

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230620

Year of fee payment: 15

Ref country code: DE

Payment date: 20230620

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230601

Year of fee payment: 15

Ref country code: PL

Payment date: 20230525

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230623

Year of fee payment: 15

Ref country code: GB

Payment date: 20230620

Year of fee payment: 15