EP2944821B1 - Procédé de réglage de la vitesse de rotation à énergie optimisée d'un groupe motopompe - Google Patents

Procédé de réglage de la vitesse de rotation à énergie optimisée d'un groupe motopompe Download PDF

Info

Publication number
EP2944821B1
EP2944821B1 EP15001441.3A EP15001441A EP2944821B1 EP 2944821 B1 EP2944821 B1 EP 2944821B1 EP 15001441 A EP15001441 A EP 15001441A EP 2944821 B1 EP2944821 B1 EP 2944821B1
Authority
EP
European Patent Office
Prior art keywords
rotational speed
pump
opt
characteristic curve
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15001441.3A
Other languages
German (de)
English (en)
Other versions
EP2944821A1 (fr
Inventor
Martin Schwarz
Alexander Fricke
Klaus Neymeyr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wilo SE
Original Assignee
Wilo SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wilo SE filed Critical Wilo SE
Priority to PL15001441T priority Critical patent/PL2944821T3/pl
Publication of EP2944821A1 publication Critical patent/EP2944821A1/fr
Application granted granted Critical
Publication of EP2944821B1 publication Critical patent/EP2944821B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0066Control, e.g. regulation, of pumps, pumping installations or systems by changing the speed, e.g. of the driving engine

Definitions

  • the present invention relates to a method for energy-optimal operation of an open pump system for liquid transport, with at least one speed-controllable pump unit that conveys the liquid from a container.
  • the invention relates to a method for the energy-optimized operation of a wastewater from a pump sump of a pumping station which conveys a speed-controllable pump unit.
  • Pump sumps form intermediate collectors into which the wastewater flows through one or more inlets.
  • the inlet or the inlets are sewers of the sewage disposal. Depending on the size of this pump sump, it can hold one or more pumps that pump the wastewater from the pump sump via a pressure line into a geodetically higher drain line.
  • This drain line can also be a sewer of the sewer network and lead, for example, to a next intermediate collector or to a sewage treatment plant.
  • the pump units in such wastewater pumping stations are nowadays predominantly operated unregulated or by means of two-point control, in which the pump is only switched on and off cyclically or as required.
  • the activation and deactivation takes place depending on the level in the pump sump, for example controlled by a float. Frequent on-off changes, however, lead to increased wear on the pump units and to increased energy consumption.
  • pump stations are also known whose pump units have frequency converters for speed control, so that the pump can be regulated as required.
  • Such a wastewater pumping station is, for example, from the German patent application DE 10 2013 007 026.0 known.
  • the US application US 2013/0164146 A1 describes a method for the energy-optimal operation of a wastewater from a pumping sump of a pumping station that supports and regulates the speed, in which a system identification is first carried out during operation of the system and then an energy optimization phase.
  • the energy optimization is always based on the current system status.
  • the energy optimization is carried out by calculating an energy efficiency optimization characteristic in which a volume flow-specific energy consumption is determined.
  • the WO 2005/088134 A1 describes a method for regulating a pumping station, in which the speed of the pump is chosen in terms of energy optimally with regard to the level in the pump sump. However, this only applies to the current time. With regard to a future course of operations, the in WO 2005/088134 A1 operating mode shown is not energetically optimal.
  • a method for the energy-optimal operation of an open pump system for liquid transport is proposed, with at least one speed-controllable pump unit, which conveys the liquid from a container, whereby, depending on at least one system characteristic curve specified by the manufacturer, by evaluating a mathematical function, the flow rate to be conveyed requires the flow rate to be conveyed assigns volume flow-specific energy consumption of the pump unit, the speed is calculated at which the volume flow-specific energy consumption is minimal, and the pump unit is operated with this calculated speed as the optimal speed.
  • the pump unit is therefore always operated at the speed that leads to minimal energy consumption, at least insofar as there is no unusual operating situation that requires a different operating setting.
  • the method is applicable to all open pump systems, i.e. pump systems that do not pump in a closed circuit.
  • the method according to the invention is suitable for the operation of a wastewater from a pump sump of a pumping station which conveys and regulates the speed of the pump.
  • Another application is, for example, the operation of a borehole pump that pumps groundwater from a borehole.
  • the container for the liquid can be any open or closed, natural or artificial site holding the liquid, in particular a pump sump, a borehole, a well, a basin, a tank, a cistern, a reservoir, a lake, or a collector.
  • FIG. 1 shows a wastewater pumping station 1 comprising a pump sump 3 with an inlet 4 and an outlet 5 and a pump unit 2 arranged in this pump sump 3, which is driven by an electric motor and its speed can be regulated.
  • the pump unit 2 consists of a pump unit 2a and an electric motor 2b driving it. It pumps the wastewater located in the pump sump 3 into the geodetically higher outlet 5 via a pressure line 6. From there, the wastewater flows on to a next pumping station, a receiving waterway or directly to a water treatment system.
  • a volume flow sensor can be arranged in the inlet 4 and measures the amount of water flowing in via the inlet 4 into the pump sump 3 per unit of time over a progressing period of time. However, it is also possible to calculate the inflow values from the level changes and the delivery flow Q of the pump unit 2. In this case, the volume flow sensor is not required.
  • a volume flow sensor 9 is provided on the pressure side of the pump assembly 2 in order to measure the flow rate Q of the pump assembly 2.
  • the volume flow sensor 9 can alternatively also be arranged at another location, in particular in the pressure line 6 or the outlet 5. It is also possible to calculate the flow rate values. In this case, the volume flow sensor 9 is also not required.
  • a current level h is represented by line 7.
  • the speed control of the pump unit 2 is carried out by pump electronics in the form of an evaluation and control unit 8, which is connected via a control line to the pump unit 2, in particular its electric motor 2b, and as here preferably also via corresponding measuring lines to the volume flow sensor 9 and / or the Level sensor 11 can be connected.
  • the pump electronics 8 contrary to the representation in Figure 1 can also be formed by an evaluation unit on the one hand and a structurally separate control unit on the other. These units can also be spatially separated from one another.
  • the pump electronics 8 have arithmetic electronics to carry out numerical calculations, and preferably also measurement electronics to process measured values.
  • the speed control of the pump assembly 2 is carried out in a manner known per se by controlling a frequency converter which supplies the electric motor 2b with a voltage of a suitable level and frequency required to achieve a desired speed.
  • the frequency converter can be structurally arranged directly on the electric motor 2b or can also be part of the removed evaluation and control unit 8, or a further separate power electronics outside the pump sump 3.
  • the method according to the invention is based on the basic idea that a pump unit requires an energy ⁇ E in order to deliver a certain volume ⁇ V out of the pump sump 3. From this knowledge, a volume flow-specific energy consumption P Q (Q) can be determined, which describes the ratio of the power P ( Q ) consumed to the flow rate Q.
  • the volume flow-specific energy consumption is a measure for evaluating energy efficiency and for making maximum use of the
  • FIG. 2 The basic sequence of the method according to a first variant is in Figure 2 illustrated and explained below.
  • the optimal flow rate Q opt is first calculated and then that speed n (Q opt , h) is calculated which is required for the pump unit 2 to deliver the optimal flow rate Q opt .
  • the optimal speed can be calculated directly, ie in one step.
  • Figure 3 shows a global procedure for both variants, which is described in more detail below.
  • the procedure after Figure 2 starts with a measurement of the level h in step 20.
  • the measurement of the time-varying current level h (t) is not absolutely necessary.
  • the system characteristic curve H A (Q, h) can be used to calculate the optimal speed n opt take into account a constant level h of the container 3, for example an average level H or an upper level limit h o .
  • the level is given in the equations with h, below which either the time-variable current level h (t) or one of the constant level mentioned above H , h o is to be understood.
  • the flow Q opt is then first sought for which the specific energy P Q ( Q ) is minimal, step 22.
  • the combination from system and pump unit 2 is expressed by blocks 30, 32, 34 and 36, which provide the mathematical relationship to determine the volume flow-specific energy P Q ( Q ) for a specific flow.
  • the search for the minimum of the volume flow-specific energy P Q ( Q ) can be carried out using any mathematical method according to the prior art.
  • Q is varied, that is to say the specific energy P Q ( Q ) for a large number of different flow rates Q i is calculated between a minimum and a maximum flow rate, and the minimum P Q, min is then sought from the results obtained, the flow rate being then that , which has led to this minimum, is the optimal flow rate Q opt .
  • the speed n (Q opt , h) is calculated that is required for the pump unit 2 to deliver the optimal flow rate, step 24.
  • This optimal speed n (Q opt , h) is then at the pump unit 2 set, step 26, or the pump unit 2 is operated as far as possible at this energy-efficient speed n (Q opt , h).
  • exception conditions can be checked in step 28, which can lead to the result that a speed other than the calculated optimal speed n (Q opt , h) makes sense for the current system state.
  • an exceptional condition is that the inflow exceeds the flow or a certain maximum level or upper level limit value h o is reached in the pump sump 3. This can then be a trigger for the fact that instead of the optimal speed n (Q opt , h) the maximum speed of the pump unit 2 is set in order to prevent overflow.
  • one or more conditions are consequently checked in order to identify certain situations and / or operating states which may make a speed different from the optimal speed n (Q opt , h) necessary. However, this test is not necessary to carry out the invention.
  • the pump characteristic map H P (Q, n) and the power consumption characteristic map P (Q, n) of the pump unit 2 to be examined are used to determine the volume flow-specific energy consumption P Q (Q) as well as at least one system characteristic curve H A (Q, h), the latter also called pipe network characteristic curve.
  • the pump map H P (Q, n) describes the relationship between the delivery flow Q delivered by the pump assembly 2 at a certain pressure difference ⁇ p between the suction side and the delivery side of the pump 2a, which is expressed in a corresponding delivery head H, at a certain speed n
  • ⁇ p pressure difference between the suction side and the delivery side of the pump 2a
  • n a pump characteristic curve
  • the pump characteristic curve H P (Q, n) can also be viewed as a large number of individual pump characteristic curves H P, n (Q).
  • the graphical representation of this relationship is usually done in the so-called HQ diagram.
  • the coefficients a 0 , a 1 and a 2 are constants.
  • the power consumption map P (Q, n) can also be set up, which can be viewed as consisting of a large number of power curves P n (Q), each of which corresponds to a specific speed n Describe the relationship between the flow rate Q and the power consumption P.
  • the coefficients b 0 , b 1 , b 2 and b 3 are also constants.
  • the pump map H P (Q, n) and the performance map P (Q, n) are measured by the pump manufacturer for a large number of different speeds, in particular for nominal speed n 0, and are provided as measured values or in graphical representations. If necessary, the pump and performance characteristics are also given directly by the pump manufacturer in a mathematical representation in the manner of a function according to equation 2 or 3. If this is not done, polynomials according to equations 2 or 3 with the corresponding coefficients for describing the pump characteristic curve or characteristic curves or performance characteristic curve can be obtained from the specified measured values or curve representations by interpolation or approximation in a manner known per se in the prior art. characteristics can be found.
  • system map H A (Q, h), which describes the hydraulic relationship between the volume flow Q and the delivery head H of the pump system 1.
  • the system map H A (Q, h) is known by the operator of the pump station due to the dimensioning of the inlet and outlet 4, 5 and the pressure line 6; in the end just to enable the pump manufacturer to select and offer a suitable pump unit.
  • a system characteristic curve H A (Q, h) is always used below, although if the variable current water level h (t) is taken into account, it is actually a characteristic diagram.
  • d 0 is the distance between the highest point in the connected pressure pipeline 6 and the pump sump bottom, so that the geodetic height H geo is given by d 0 - h .
  • At least one system characteristic curve H A (Q, h) is known, that is, it is specified by the manufacturer.
  • this is expediently the system characteristic curve for this constant water level. It is therefore not necessary to identify the system during operation of the pump set, ie no determination of the system characteristic. Rather, this gives the possibility of predicting to a customer how high the energy savings through operation at the optimum speed are, even before the pump system 1 is started up, in particular in the project planning phase.
  • the pump characteristic map Hp (Q, n) and the power consumption characteristic map P (Q, n) are preferably also specified by the manufacturer, so that here too no measurement-related determinations are necessary in the operation of the pump unit.
  • the pump characteristics and power consumption characteristics are not only for specific ones discrete speeds but required for all speeds. The same is necessary in order to determine what speed n the pump unit 2 needs to deliver a specific flow rate Q. This means that the entire pump map and power consumption map of the pump unit must be known. As already stated, the pump manufacturer can carry out a complete measurement and specification of the respective map as measured values or as polynomials.
  • the pump characteristic map H P (Q, n) and power consumption map P (Q, n) can alternatively be described mathematically, for example, in that only the pump characteristic curve H P, n0 (Q) for the nominal speed n 0 and only the power consumption characteristic curve P n0 (Q) for nominal speed n 0 and the affinity laws (H ⁇ n 2 ; P ⁇ n 3 ) are used.
  • the use of the affinity laws therefore has the advantage that only one pump characteristic H P, n0 (Q) and one power consumption characteristic P n0 (Q), namely preferably at nominal speed n 0 , need to be known in order to cover the entire pump characteristic map H P (Q, n ) or power consumption map P (Q, n).
  • a parameter c 0 means that the efficiency remains constant despite the decreasing speed n. If there are measured values for different speeds, the parameter c can be determined in such a way that the resulting map optimally matches the measurement data. Alternatively, all measuring points can be interpolated and a power consumption map can be generated.
  • n Q H : n 0 2nd a 0 - a 1 Q + 4th a 0 d 0 - H + d 1 Q + d 2nd - a 2nd Q 2nd + a 1 2nd Q 2nd .
  • the power consumption P (Q, n) for any flow rate Q and a specific speed n is calculated according to equation 7.
  • the general speed n can be replaced by the speed n (Q, h) that is currently required to achieve a certain flow rate Q at a certain fill level h.
  • Figure 4 shows a graphical representation of the specific energy consumption as a function of the flow rate Q and the water level h for an exemplary pump unit 2 and an exemplary system characteristic. It becomes clear that the specific energy consumption for each water level h has a minimum approximately in the range between 1/3 and 1/2 of the maximum flow rate.
  • the energetically optimal flow rate Q opt is calculated by minimizing the specific energy consumption P Q (Q, h) above the flow rate Q for a specific, in particular the measured level h (t).
  • Q opt : argmin Q P Q Q , H t .
  • the flow rate Q opt is calculated for which the energy consumption (P Q (Q opt , h)) is minimal, see step 22 in Figure 2 .
  • the associated speed n (Q opt , h), ie the optimum speed that is required to promote the optimal flow rate Q opt is determined using equation 9a, see step 24 in Figure 1 . This speed n (Q opt , h) is then set on the pump unit 2.
  • the first variant of the method described therefore provides that the optimum delivery flow Q opt is first determined, preferably according to equation 13, and then that speed n (Q opt , h) is calculated, preferably according to equation 9a, which is set in the pump unit 2 must be so that it promotes the desired optimal flow rate Q opt .
  • the optimal speed n opt is calculated directly from the minimization of the volume flow-specific energy consumption by minimizing this via the speed n.
  • This has the advantage that the optimal flow rate does not have to be calculated first. However, this presupposes that the function describing the volume flow-specific energy consumption is not dependent on the flow rate Q. Derivation of a corresponding The calculation rule is given below. Only those aspects of the second variant of the method that differ from the first variant are explained. Otherwise, the above explanations for the first variant also apply to the second variant.
  • the power consumption P (Q, n) for any flow rate Q and a specific speed n is calculated according to equation 7.
  • the general flow rate Q can be replaced by Q (n, h). This is precisely the flow rate that is set at a certain fill level h and the speed n.
  • the volume flow-specific energy consumption P Q (n, h) results from the fact that the level-dependent power consumption P, ( n, h ) relates to the flow rate Q, ie is divided by it.
  • P Q n H : P ⁇ n H Q n H .
  • n opt is then calculated by minimizing the specific energy consumption P Q (n, h) over the speed for a specific, in particular the measured level h (t).
  • n opt : argmin n P Q n , H t .
  • the pump unit 2 When operating the speed-controllable pump assembly 2 in an energy-efficient manner, care should be taken to ensure that the optimum flow rate Q opt is not undercut, since the specific energy consumption rises sharply at lower speeds. As long and as often as possible, the pump unit 2 should be operated at the optimum speed n opt or n (Q opt , h). This should usefully at least be the case if the inflow Q in the value of the optimal discharge flow rate Q opt not exceed, ie less water in the sump 3 in runs as a pumped out.
  • the pump map H P (Q, n), the power consumption map P (Q, n) and the system characteristic curve H A (Q, h) are stored in the pump electronics 8 assigned to the pump unit 2.
  • the pump unit (2) can then automatically calculate and set the optimal speed.
  • the pump unit 2 is preferably operated in operating intervals 10, the calculated optimum speed being set for an operating interval on the pump unit 2.
  • Such an operating interval 10 is in Figure 5 to see, the curves of the flow rate Q (solid line) and the inlet Qin (dashed line) shows.
  • the optimal speed n opt , n (Q opt , h) can in principle be calculated at any time. However, if the pump set is operated at operating intervals, the optimal speed determined will of course only be set at the next operating interval. In particular, however, the calculation can take place both before and during an operating interval.
  • the pump unit 2 is suitably switched on when a predetermined upper level limit value h o is reached or exceeded, and switched off when a predetermined lower level limit value h u is reached or undershot. This corresponds to a two-point control of the pump unit 2. For the period of this operating interval, the pump unit 2 is ideally operated at the calculated optimal speed n opt , n (Q opt , h).
  • the upper level limit value h o can be, for example, between 75% and 85% of a maximum level h max .
  • the lower level limit value h u can be, for example, the minimum level h min or between 25% and 35% of the maximum level h max .
  • the water level in the pump sump 3 is kept as high as possible.
  • the geodetic height H geo and thus the friction losses are reduced.
  • the lower level limit value h u is chosen to be comparatively high, for example between 40% and 60% of the maximum level h max .
  • the pump unit 2 is operated so that the level h in the pump sump 3 is kept between 40% and 85%, preferably between 50% and 75%.
  • the pump unit 2 is switched on when or after reaching the upper level limit value h o , the pumping continues until the lower level limit value h u is reached. The pump unit 2 is then switched off again and only switched on again when the upper level limit value h o has been reached. Operation in the manner of a hysteresis is hereby realized.
  • FIG 3 illustrates this process. Analogous to Figure 2 the level in the pump sump 3 is measured in step 20 and then the optimum speed n opt , n (Q opt , h) is calculated as above using one of the variants 1 or 2, step 24. The level h is then evaluated. If it reaches or exceeds the upper limit value h o , see step 21, the pump unit 2 is switched on and operated with this calculated speed n opt , n (Q opt , h), step 26. The pump sump 3 is thereby increasingly emptied, provided the inlet is less than the flow rate. The level h then drops below the upper level limit value h o , so that the condition in step 21 is no longer fulfilled. The pump unit 2 is normally operated until the water level h has dropped below the lower limit level h u . This is checked in step 23. If this condition is met, the pump unit 2 is switched off again, step 27.
  • the pump unit 2 can be operated constantly at the optimal speed.
  • the optimum speed can be recalculated and set again and again during operation in order to take into account the current fill level h.
  • the pump unit 2 is not operated at a fixed speed.
  • the operating speed is adapted to the fill level 7 in the pump sump 3, that is to say the optimum speed n opt , n (Q opt , h) is set for the respective fill level 7.
  • This can also take place in particular if the upper limit level h o has already been undershot, ie the condition in step 21 is no longer met, but the lower limit level h u has not yet been reached, ie the condition in step 23 has not yet been reached either is. This is in Figure 3 not shown.
  • the two-point control is performed only then, and in particular only as long as the inflow Q opt than the calculated optimal flow rate Q in smaller, since the level of otherwise continues to increase and the pump sump 3 may overflow under certain circumstances.
  • a higher speed than the optimal speed n opt , n (Q opt , h) can be set, for example the maximum speed n max or such a speed at which a predetermined level is realized, preferably the upper level limit h o .
  • the level h in the pump sump 3 reaches or exceeds a maximum level h max . This can be the subject of the review in step 25 of Figure 3 be. If this is the case, delivery can be carried out at a higher speed than the optimum speed, for example at a maximum speed, see step 29.
  • the inflow Q in is not greater than the current delivery flow or the level exceeds the maximum value h max during an operating interval 10 not, the process is continued from the beginning, step 20.
  • the system characteristic H A (Q, h) of the pump system ie the coefficients d 0 , d 1 , d 2 , can change according to equations 4 and 5, for example due to deposits that lead to a higher flow resistance.
  • the system characteristic curve H A (Q, h) is absolutely necessary for the calculation of the optimal delivery flow Q opt or the optimal speed n opt , n (Q opt , h), it can be redetermined during operation, or the coefficients d 0 , d 1 , d 2 can be adjusted.
  • the flow rate Q can be measured, for example, by means of the volume flow sensor 9.
  • a number of at least three different speeds n i is driven within a certain period of time.
  • This period can include one or more operating intervals 10, preferably three operating intervals 10.
  • the period can be, for example, 24 hours.
  • the different speeds n i are repeated at intervals, in particular regularly, preferably once a day, in order to monitor the system characteristic H A (Q, h) virtually continuously or to detect a change in the system characteristic (e.g. deposits, clogging). Furthermore, it is advantageous if each speed n i is repeated a certain number of times, for example, is started twice each time, in order to compensate for measurement errors or calculation errors.
  • the pump unit 2 can be operated at three different speeds n i during six operating intervals 10, ie in each case one operating interval 10 with a fixed speed n and two operating intervals 10 with the same speed.
  • n i the system characteristic curve H A (Q, h)
  • a flow rate Q ⁇ and a level ⁇ can be used as the mean value of the flow rates Q or the water levels h of the corresponding one Operating interval 10 are determined.
  • the level can be determined by measuring the level h by means of sensor 11 and arithmetic averaging.
  • the flow rate can also be determined by measuring the flow rate using sensor 9 and calculating the mean value.
  • the delivery head ⁇ can then be determined for one of the speeds n i used, for example according to equation 6.
  • the calculation of the delivery head ⁇ can also be based on equation 9a used in equation 6 using the water level ⁇ take place. The speed n i is then not required.
  • the distance d 0 between the pump sump floor 3 and the geodetically highest point of the pressure line 6 can then also be determined.
  • n Based on the current power consumption characteristic map P (Q, n) can, following a new determination of the current system characteristic field H A (Q, h) the specific energy consumption P Q (Q, n) and opt n the energetically optimum speed, n (Q opt, h) be calculated. This is preferably done between two operating intervals 10 for a specific level h, for example for the upper level limit h o or for a large number of different levels h. The calculated speed n opt , n (Q opt , h) is then used for the next operating interval 10.
  • sliding value triples ( Q ⁇ i , ⁇ i , ⁇ i ) can be used. This means that although the number of value triples remains the same, an old value triplet ( Q ⁇ 1 , ⁇ 1 , ⁇ 1 ), in particular the one determined first in time, is discarded and a new value triple ( Q ⁇ m ⁇ n , ⁇ m ⁇ n , ⁇ m ⁇ n ) is added, in particular added at the back. For this purpose, after the end of the operating interval 10, a further delivery flow Q ⁇ m ⁇ n and level ⁇ m ⁇ n and the delivery head ⁇ m ⁇ n can be determined, averaged over the operating interval 10.
  • a new optimal speed n opt , n (Q opt , h) can then be calculated and used for the next operating interval 10. The process then starts all over again.
  • the pump system can be monitored by repeatedly determining the system characteristic curve H A (Q, h) and the new coefficients d 0 , d 1 , d 2 during operation of the system , are compared with the original coefficients.
  • a deviation in particular an increasing deviation or a deviation by a certain amount, indicates a deterioration in the condition of the system, for example a deposit in the pressure line.
  • the redefinition of the system characteristic curve H A (Q, h) can also be a correction of the power consumption characteristic map P (Q, n), ie, a new determination of the coefficients b 0, b 1, b 2, and carried out in Equation 3 b. 3
  • P power consumption characteristic map
  • ie a new determination of the coefficients b 0, b 1, b 2, and carried out in Equation 3 b. 3
  • the electrical power consumption P i and the speed n i can be measured or determined mathematically from electrical variables of the frequency converter.
  • the flow rate Q can also be measured.
  • the power consumption map P (Q, n) can be newly approximated from these values Q i , P i and n i , preferably using the mathematical methods of the compensation calculation.
  • the Parameter c can be determined from equation 8.
  • the performance map P (Q, n) is thereby better mapped and the specific energy is also calculated more precisely.
  • the system characteristic curve H A (Q, h) and / or the power consumption characteristic map P (Q, n) can preferably be redetermined between two operating intervals 10 of the pump unit 2. In this case, operating points from the last operating interval can be used which have been approached as part of the regulation or specifically for later redetermination of the system map H A (Q, h) and / or the power consumption map P (Q, n).
  • step 28 Figure 2
  • the following measures are useful, for example: If the inflow Q in the delivery flow Q opt exceeds the optimum speed n opt , n (Q opt , h), it is advantageous to adjust the speed just so that the water level h does not increase any further. This means that the delivery flow Q to be pumped out of the pump sump 3 must correspond exactly to the inflow Q in .
  • the pump assembly 2 can preferably be operated at regular intervals, for example every 3 hours, at nominal speed n 0 . This leads to the pressure line 6 and the subsequent outlet 5 being flushed out. Alternatively, such a flushing can take place when the recalculation of the system characteristic diagram shows that the pipeline resistance has increased, in particular has increased by a certain amount.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)

Claims (17)

  1. Procédé d'exploitation optimisée énergétiquement d'un système de pompage ouvert (1) pour le transport de liquides, avec au moins une unité de pompage (2) à vitesse variable transportant le liquide d'un contenant (3), sachant que, en fonction d'au moins une courbe de réseau (HA(Q,h)) et par évaluation d'une fonction mathématique (Éq. 12a, 12b) attribuant à un flux de transport à transporter (Q) la consommation d'énergie requise spécifique au flux volumique (PQ(Q, h), PQ(n, h)) de l'unité de pompage (2), calcule la vitesse de rotation (nopt, n(Qopt,h)), pour laquelle la consommation d'énergie spécifique au flux volumique (PQ(Qopt, h), PQ(n, h)) est minimale, et l'unité de pompage (2) est entraînée à cette vitesse de rotation (nopt, n(Qopt, h)) optimale calculée, caractérisé en ce que la courbe de réseau (HA(Q,h)) est prédéterminée par le fabricant et que le diagramme caractéristique de pompe (HP(Q, n)), le diagramme caractéristique de puissance absorbée (P(Q, n)) et la courbe de réseau (HA(Q, h)) sont enregistrés dans un circuit électronique de pompe (8) attribué à une unité de pompage (2) et que l'unité de pompage (2) calcule et règle de façon autonome la vitesse de rotation optimale, sachant que le diagramme caractéristique de pompe (HP(Q, n)) et le diagramme caractéristique de puissance absorbée (P(Q, n)) de l'unité de pompage (2) à analyser ainsi que la courbe de réseau (HA(Q, h)) sont utilisés pour la détermination de la consommation d'énergie spécifique au flux volumique (PQ (Q)).
  2. Procédé selon la revendication 1, caractérisé en ce que la vitesse de rotation optimale (nopt) est directement calculée à partir de la minimisation de la consommation d'énergie spécifique au flux volumique (PQ(n, h)) à l'aide de la vitesse de rotation (n).
  3. Procédé selon la revendication 1, caractérisé en ce que la vitesse de rotation optimale (n(Qopt, h))) est calculé à partir de la minimisation de la consommation d'énergie spécifique au flux volumique (PQ(Qopt, h)) à l'aide du flux de transport (Q), dans lequel est tout d'abord calculé le flux de transport (Qopt) pour lequel la consommation d'énergie spécifique au flux volumique (PQ(Qopt, h)) est minimale, puis la vitesse de rotation (n(Qopt, h)) requise pour transporter le flux de transport (Qopt) calculé, et que l'unité de pompage (2) est entraînée à cette vitesse de rotation optimale (nopt, n(Qopt)) calculée.
  4. Procédé selon une des revendications précédentes, caractérisé en ce que la fonction mathématique (Éq. 12a, 12b) est réalisée en utilisant une fonction (Éq. 5, 6, 7) prédéterminée par le fabricant exprimant le diagramme caractéristique de pompe (HP(Q, n)), le diagramme caractéristique de puissance absorbée (P(Q, n)) ainsi qu'au moins une courbe de réseau (HA(Q, h)) de la station de pompage (1), sachant que le diagramme caractéristique de pompe (HP (Q, n)) est exprimé par la courbe de pompe (HP,n0(Q)) pour une vitesse nominale (n0) et en utilisant une loi d'affinité et que le diagramme caractéristique de puissance absorbée (P(Q, n)) est exprimé par la courbe caractéristique de puissance absorbée (Pn0(Q)) pour une vitesse nominale (n0) et en utilisant une loi d'affinité.
  5. Procédé selon la revendication 4, caractérisé en ce que le diagramme caractéristique de pompe (HP (Q, n)) est exprimé par l'équation H P , n Q n = n n 0 2 H P , n 0 n 0 n Q
    Figure imgb0041
    sachant que HP,n est la hauteur manométrique, Q le flux de transport, n la vitesse de rotation, n0 la vitesse de rotation nominale et HP,n0 la courbe de pompe pour la vitesse de rotation nominale.
  6. Procédé selon la revendication 4 ou 5, caractérisé en ce que la courbe de pompe (HP,n0(Q)) pour la vitesse de rotation nominale (n0) est exprimée par l'équation H P , n 0 Q = a 0 + a 1 Q + a 2 Q 2
    Figure imgb0042
    sachant que HP,n0 est la hauteur manométrique, Q le flux de transport et a0, a1 et a2 des constantes.
  7. Procédé selon l'une des revendications 4 à 6, caractérisé en ce que le diagramme caractéristique de puissance absorbée (P (Q, n)) est exprimé par l'équation P n Q n = n n 0 3 P n 0 n 0 n Q η ges n
    Figure imgb0043
    sachant que Pn est la puissance absorbée, Q le flux de transport, n la vitesse de rotation, no la vitesse de rotation nominale, ηges un rendement global et Pn0 la courbe caractéristique de puissance absorbée pour la vitesse de rotation.
  8. Procédé selon la revendication 4 à 7, caractérisé en ce que la courbe caractéristique de puissance absorbée (HP,n0(Q)) pour la vitesse de rotation nominale (n0) est exprimée par l'équation P n 0 Q = b 0 + b 1 Q + b 2 Q 2 + b 3 Q 3
    Figure imgb0044
    sachant que HP,n0 est la puissance absorbée, Q le flux de transport et b0, b1, b2 et b3 des constantes.
  9. procédé selon la revendication 7 ou 8, caractérisé en ce que le rendement global ηges prend en compte une réduction du rendement de l'unité de pompage (2) lorsque la vitesse de rotation (n) diminue sous la forme f η n = c n n 0 2 2 n n 0 + 1 + 1
    Figure imgb0045
    sachant que fη est un facteur variant en fonction de la vitesse de rotation (n), n la vitesse de rotation, n0 la vitesse de rotation nominale et c une constante non négative.
  10. Procédé selon l'une des revendications 3 à 9, caractérisé en ce que le calcul de la vitesse de rotation optimale (n(Qopt,h)) résulte de l'égalisation d'une fonction mathématique (Éq. 6) exprimant une courbe de pompe HP,n(Q, n) du diagramme caractéristique de pompe (HP(Q, n)) et de la courbe de réseau (HA(Q, h)).
  11. Procédé selon l'une des revendications 3 à 10, caractérisé en ce que la vitesse de rotation optimale (n(Qopt,h)) est exprimée par l'équation n Q h : = n 0 2 a 0 a 1 Q + 4 a 0 d 0 h + d 1 Q + d 2 a 2 Q 2 + a 1 2 Q 2
    Figure imgb0046
    sachant que
    n est la vitesse de rotation,
    Q un flux de transport à atteindre, et plus particulièrement le flux de transport calculé (Qopt),
    h un niveau,
    n0 la vitesse de rotation nominale,
    a0 la hauteur manométrique H pour Q = 0 pour la vitesse de rotation nominale,
    a1 une constante pondérant une partie du flux volumique linéaire de la courbe de pompe pour la vitesse de rotation nominale
    a2 une constante pondérant une partie du flux volumique au carré de la courbe de pompe pour la vitesse de rotation nominale
    d0 la distance entre le fond du contenant et la position la plus haute de la conduite de pression 6,
    d1 une constante pondérant une partie du flux volumique linéaire de la courbe de réseau
    d2 une constante pondérant une partie du flux volumique au carré de la courbe de réseau.
  12. Procédé selon l'une des revendications 1 ou 3 à 11, caractérisé en ce que la fonction mathématique (Éq. 12a) pour la consommation d'énergie spécifique au flux volumique (PQ(Q, h)) est composée des équations P Q Q h : = P n Q , n Q h Q
    Figure imgb0047
    et P n Q , n Q h = n Q h n 0 3 P n 0 n 0 n Q h Q η ges n ,
    Figure imgb0048
    sachant que
    Q est le flux de transport à atteindre,
    h un niveau,
    n0 la vitesse de rotation nominale,
    ηges un rendement global de l'unité de pompage (2) dans le système de pompe (1),
    n est la vitesse de rotation résultat de l'égalisation de la fonction mathématique (Éq. 6) exprimant une courbe de pompe HP,n(Q, n) du diagramme caractéristique de pompe HP(Q, n) et de la courbe de réseau (HA(Q, h)) pour un certain flux de transport et un certain niveau, et
    Pn0 la courbe caractéristique de puissance absorbée pour la vitesse de rotation nominale.
  13. Procédé selon l'une des revendications 2 ou 4 à 11, caractérisé en ce que la fonction mathématique (Éq. 12b) pour la consommation d'énergie spécifique au flux volumique (PQ(n, h)) est composée des équations P Q n h : = P n Q n h , n Q n h
    Figure imgb0049
    et P n Q n h , n = n n 0 3 P n 0 n 0 n Q n h η ges n ,
    Figure imgb0050
    sachant que
    Q est le flux de transport résultat de l'égalisation de la fonction mathématique (Éq. 6) exprimant une courbe de pompe HP,n(Q, n) du diagramme caractéristique de pompe HP(Q, n) et de la courbe de réseau (Éq. 5) pour une certaine vitesse de rotation et un certain niveau, et
    h un niveau,
    no la vitesse de rotation nominale,
    ηges un rendement global de l'unité de pompage (2) dans le système de pompe (1),
    n une vitesse de rotation quelconque, et
    Pn0 la courbe caractéristique de puissance absorbée pour la vitesse de rotation nominale.
  14. Procédé selon la revendication 13, caractérisé en ce que le flux de transport (Q(n, h)) pour une certaine vitesse de rotation (n) et un certain niveau (h) est exprimé par l'équation Q n h : = 1 2 n 0 d 2 a 2 a 1 n d 1 n 0 + n 0 2 d 1 2 + 4 a 2 d 2 d 0 h 2 nn 0 a 1 d 1 + n 2 a 1 2 + 4 a 0 d 2 a 2
    Figure imgb0051
    sachant que
    n est la vitesse de rotation,
    Q le flux de transport calculé,
    h un niveau,
    n0 la vitesse de rotation nominale,
    a0 la hauteur manométrique H pour Q = 0 pour la vitesse de rotation nominale,
    a1 une constante pondérant une partie du flux volumique linéaire de la courbe de pompe pour la vitesse de rotation nominale
    a2 une constante pondérant une partie du flux volumique au carré de la courbe de pompe pour la vitesse de rotation nominale
    d0 la distance entre le fond du contenant et la position la plus haute de la conduite de pression 6,
    d1 une constante pondérant une partie du flux volumique linéaire de la courbe de réseau
    d2 une constante pondérant une partie du flux volumique au carré de la courbe de réseau.
  15. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'unité de pompage (2) fonctionne par intervalles de service (10) avec la vitesse de rotation optimale (nopt, n(Qopt, h)), sachant qu'elle est allumée, lorsque le niveau atteint ou dépasse un niveau seuil supérieur prédéterminé (ho) arrêtée lorsqu'il atteint ou passe en-dessous d'un niveau seuil inférieur prédéterminé (hu).
  16. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'unité de pompage (2) redétermine, lorsqu'elle fonction, la courbe de réseau (HA(Q, h)) et/ou le diagramme caractéristique de puissance absorbée (Pn(Q, n)).
  17. Procédé selon l'une des revendications précédentes, caractérisé en ce que la courbe de réseau (HA(Q, h)) prend en compte un niveau (h) du contenant (3), sachant que ce niveau (h) est le niveau actuel variant en fonction du temps (h(t)), un niveau moyen ou un niveau seuil supérieur (ho).
EP15001441.3A 2014-05-13 2015-05-13 Procédé de réglage de la vitesse de rotation à énergie optimisée d'un groupe motopompe Active EP2944821B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL15001441T PL2944821T3 (pl) 2014-05-13 2015-05-13 Sposób zoptymalizowanej energetycznie regulacji prędkości obrotowej agregatu pompowego

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014006828.5A DE102014006828A1 (de) 2014-05-13 2014-05-13 Verfahren zur energieoptimalen Drehzahlregelung eines Pumpenaggregats

Publications (2)

Publication Number Publication Date
EP2944821A1 EP2944821A1 (fr) 2015-11-18
EP2944821B1 true EP2944821B1 (fr) 2020-07-01

Family

ID=53189560

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15001441.3A Active EP2944821B1 (fr) 2014-05-13 2015-05-13 Procédé de réglage de la vitesse de rotation à énergie optimisée d'un groupe motopompe

Country Status (4)

Country Link
EP (1) EP2944821B1 (fr)
DE (1) DE102014006828A1 (fr)
DK (1) DK2944821T3 (fr)
PL (1) PL2944821T3 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2769325C2 (ru) * 2017-03-10 2022-03-30 Ксб Се & Ко. Кгаа Способ регулирования частоты вращения центробежного насоса

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3048305B1 (fr) * 2015-01-20 2019-08-21 Magnussen EMSR-Technik GmbH Réduction de la consommation d'énergie d'une pompe à eau à vitesse variable en tenant compte de la charge instantannée du système
CN108916015A (zh) * 2018-08-30 2018-11-30 赛莱默(中国)有限公司 水泵节能控制系统
EP3896286A1 (fr) * 2020-04-14 2021-10-20 Primetals Technologies Germany GmbH Fonctionnement d'une pompe d'un dispositif de refroidissement sans l'utilisation d'un champ caractéristique multidimensionnel mesuré
CN111915088B (zh) * 2020-08-07 2024-05-28 青岛洪锦智慧能源技术有限公司 一种降低泵组能耗的优化控制方法
CN112817228B (zh) * 2020-12-30 2022-10-18 中国长江电力股份有限公司 基于变频压力维持设备的液压维持系统及自适应控制方法
LU502112B1 (de) 2022-05-18 2023-12-01 Wilo Se Verfahren zur Bestimmung der statischen Förderhöhe
CN116771655B (zh) * 2023-04-01 2024-02-13 东莞市爱迪机电科技有限公司 水泵的智能控制系统及智能控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6185946B1 (en) * 1999-05-07 2001-02-13 Thomas B. Hartman System for sequencing chillers in a loop cooling plant and other systems that employ all variable-speed units
US20080288115A1 (en) * 2007-05-14 2008-11-20 Flowserve Management Company Intelligent pump system
US20100312400A1 (en) * 2007-10-23 2010-12-09 Niels Peder Ledgard Steffensen Method and pump management system for optimizing the energy consumption in a running fluid transporting pipe system with pumps
US20130108473A1 (en) * 2011-11-02 2013-05-02 Abb Oy Method and controller for operating a pump system
US20140030113A1 (en) * 2012-07-26 2014-01-30 Assaf Pines Method and System for Determining a Pump Setpoint

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19742799B4 (de) * 1997-09-27 2006-10-05 Ksb Ag Automatische Anpassung des Stellbereiches eines Druckregelkreises in Mehrpumpenanlagen
DE10151032A1 (de) * 2001-10-16 2003-04-30 Siemens Ag Verfahren zur Optimierung des Betriebs mehrerer Verdichteraggregate einer Erdgasverdichtungsstation
FI118486B (fi) 2004-03-16 2007-11-30 Abb Oy Menetelmä pumppuaseman ohjaamiseksi ja taajuusmuuttaja pumppuaseman sähkökäyttöä varten
DE102005006410A1 (de) * 2005-02-11 2006-08-17 Siemens Ag Verfahren zur Optimierung des Betriebs mehrerer Verdichteraggregate und Vorrichtung hierzu
DE102010055841A1 (de) * 2010-12-23 2012-06-28 Wilo Se Verfahren zum Betrieb eines Doppelpumpen- oder Multipumpenaggregates
DE102011079732B4 (de) * 2011-07-25 2018-12-27 Siemens Aktiengesellschaft Verfahren und Vorrichtung zum Steuern bzw. Regeln eines Fluidförderers zum Fördern eines Fluides innerhalb einer Fluidleitung
DE102011119299A1 (de) * 2011-11-24 2013-05-29 Robert Bosch Gmbh Verfahren zum Betreiben einerdrehzahlvariablen Verstellpumpe
DK2610693T3 (en) * 2011-12-27 2015-02-02 Abb Oy Process and apparatus for optimizing energy efficiency of pump system
DE102013007026A1 (de) 2013-04-24 2014-10-30 Wilo Se Verfahren zum optimierten Betreiben einer Pumpstation, insbesondere für Abwasser

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6185946B1 (en) * 1999-05-07 2001-02-13 Thomas B. Hartman System for sequencing chillers in a loop cooling plant and other systems that employ all variable-speed units
US20080288115A1 (en) * 2007-05-14 2008-11-20 Flowserve Management Company Intelligent pump system
US20100312400A1 (en) * 2007-10-23 2010-12-09 Niels Peder Ledgard Steffensen Method and pump management system for optimizing the energy consumption in a running fluid transporting pipe system with pumps
US20130108473A1 (en) * 2011-11-02 2013-05-02 Abb Oy Method and controller for operating a pump system
US20140030113A1 (en) * 2012-07-26 2014-01-30 Assaf Pines Method and System for Determining a Pump Setpoint

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2769325C2 (ru) * 2017-03-10 2022-03-30 Ксб Се & Ко. Кгаа Способ регулирования частоты вращения центробежного насоса

Also Published As

Publication number Publication date
EP2944821A1 (fr) 2015-11-18
DK2944821T3 (da) 2020-09-07
DE102014006828A1 (de) 2015-11-19
PL2944821T3 (pl) 2020-11-30

Similar Documents

Publication Publication Date Title
EP2944821B1 (fr) Procédé de réglage de la vitesse de rotation à énergie optimisée d'un groupe motopompe
EP2258949B1 (fr) Procédé de détermination de valeurs caractéristiques, notamment de valeurs, notamment de paramètres, d'un agrégat de pompe centrifuge entraîné par moteur électrique intégré dans une installation
EP2796724B1 (fr) Fonctionnement optimisé d'une pompe à vitesse variable dans une station de pompage des eaux usées
EP2573400B1 (fr) Procédé de commande d'une installation de compresseurs
DE102010055841A1 (de) Verfahren zum Betrieb eines Doppelpumpen- oder Multipumpenaggregates
DE19742799B4 (de) Automatische Anpassung des Stellbereiches eines Druckregelkreises in Mehrpumpenanlagen
DE102014004336A1 (de) Verfahren zur Bestimmung des hydraulischen Arbeitspunktes eines Pumpenaggregats
DE102015000373A1 (de) Verfahren zur Reduzierung des Energieverbrauchs einer Förderpumpe, die Wasser aus einem Brunnen in ein Leitungsnetz fördert, sowie Anlage zum Fördern von Wasser aus mindestens einem Brunnen in ein Leitungsnetz
EP2354555A1 (fr) Procédé d'optimisation de l'énergie de pompes
EP2831345B1 (fr) Procédé pour actionner un dispositif de pompage
EP3215742A1 (fr) Procédé et dispositif de fonctionnement d'une pompe
DE102006024717B4 (de) Verfahren zum Betrieb eines Drucklufthebersystems für eine Kleinkläranlage und Drucklufthebersystem
DE102014001413A1 (de) Verfahren zur Bestimmung der Systemkennlinie eines Verteilernetzes
EP3048305B1 (fr) Réduction de la consommation d'énergie d'une pompe à eau à vitesse variable en tenant compte de la charge instantannée du système
DE102015011487A1 (de) Verfahren zur Reduzierung des Energieverbrauchs einer Förderpumpe, die Wasser aus einem Brunnen in ein Leitungsnetz fördert, sowie Anlage zum Fördern von Wasser aus mindestens einem Brunnen in ein Leitungsnetz
EP3267039B1 (fr) Procédé et système de réglage d'une installation de pompage
EP1936205A1 (fr) Procédé destiné au fonctionnement d'un agrégat de pompe centrifuge à vitesse de rotation réglable
WO2021191174A1 (fr) Procédé de transfert de sédiments dans une masse d'eau
EP3895820A1 (fr) Fonctionnement d'un dispositif de réfrigération à une pression de fonctionnement minimale
EP1764159B1 (fr) Dispositif et procédé de revêtement
LU501040B1 (de) Verfahren zur Förderstrom- und/ oder Förderhöhenbestimmung
DE102006041482B3 (de) Verfahren zum Spülen einer Druckrohrleitung und Abwasserfördervorrichtung
EP4279745A1 (fr) Procédé pour déterminer l'élévation statique d'une pompe
DE1784835C (de) Gerat fur optimale Bewirtschaftung von Pumpspeicherbecken, die auf Stauraumen von Laufwässerkraftwerken aufgebaut sind
DE102022001315A1 (de) Vorrichtung und Verfahren zum Ermitteln eines Zustandes, insbesondere eines Verschleißzustandes, einer Verdrängereinheit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20151214

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181214

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200102

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RIN1 Information on inventor provided before grant (corrected)

Inventor name: NEYMEYR, KLAUS

Inventor name: SCHWARZ, MARTIN

Inventor name: FRICKE, ALEXANDER

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1286442

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015012888

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20200901

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201001

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201001

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201102

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201002

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015012888

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

26N No opposition filed

Effective date: 20210406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210513

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210513

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1286442

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230615

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230420

Year of fee payment: 9

Ref country code: FR

Payment date: 20230420

Year of fee payment: 9

Ref country code: DK

Payment date: 20230419

Year of fee payment: 9

Ref country code: DE

Payment date: 20230419

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230419

Year of fee payment: 9

Ref country code: PL

Payment date: 20230420

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230420

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701