EP2432743A1 - Verwendung von alumosilikatgläsern als substratgläser für die photovoltaik - Google Patents
Verwendung von alumosilikatgläsern als substratgläser für die photovoltaikInfo
- Publication number
- EP2432743A1 EP2432743A1 EP10720751A EP10720751A EP2432743A1 EP 2432743 A1 EP2432743 A1 EP 2432743A1 EP 10720751 A EP10720751 A EP 10720751A EP 10720751 A EP10720751 A EP 10720751A EP 2432743 A1 EP2432743 A1 EP 2432743A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- glass
- aluminosilicate glass
- aluminosilicate
- glasses
- mol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000011521 glass Substances 0.000 title claims abstract description 41
- 239000005354 aluminosilicate glass Substances 0.000 title claims abstract description 25
- 239000000758 substrate Substances 0.000 title claims abstract description 11
- 239000000203 mixture Substances 0.000 claims abstract description 12
- 239000003513 alkali Substances 0.000 claims abstract description 9
- 239000002585 base Substances 0.000 claims abstract description 4
- 238000004519 manufacturing process Methods 0.000 claims description 12
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 9
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 8
- 230000009466 transformation Effects 0.000 claims description 8
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 6
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 5
- 239000011707 mineral Substances 0.000 claims description 5
- 239000002893 slag Substances 0.000 claims description 5
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 3
- 238000001311 chemical methods and process Methods 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 238000004056 waste incineration Methods 0.000 claims description 3
- 229910052796 boron Inorganic materials 0.000 abstract description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 abstract description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract 1
- 229910052593 corundum Inorganic materials 0.000 abstract 1
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract 1
- 238000005516 engineering process Methods 0.000 description 8
- 239000010409 thin film Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 235000010755 mineral Nutrition 0.000 description 4
- 238000004064 recycling Methods 0.000 description 4
- 239000005329 float glass Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000005357 flat glass Substances 0.000 description 2
- 239000010922 glass waste Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 239000006060 molten glass Substances 0.000 description 2
- 239000005368 silicate glass Substances 0.000 description 2
- 235000011121 sodium hydroxide Nutrition 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 230000002730 additional effect Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 239000005407 aluminoborosilicate glass Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000013082 photovoltaic technology Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- HUAUNKAZQWMVFY-UHFFFAOYSA-M sodium;oxocalcium;hydroxide Chemical compound [OH-].[Na+].[Ca]=O HUAUNKAZQWMVFY-UHFFFAOYSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000001029 thermal curing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C1/00—Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
- C03C1/002—Use of waste materials, e.g. slags
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/062—Glass compositions containing silica with less than 40% silica by weight
- C03C3/07—Glass compositions containing silica with less than 40% silica by weight containing lead
- C03C3/072—Glass compositions containing silica with less than 40% silica by weight containing lead containing boron
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/102—Glass compositions containing silica with 40% to 90% silica, by weight containing lead
- C03C3/105—Glass compositions containing silica with 40% to 90% silica, by weight containing lead containing aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
Definitions
- the invention relates to the use of aluminosilicate glasses, in particular based on mineral residues as substrate glasses for photovoltaics, in particular for thin-film technology or thin-film cells.
- WO 2008/028599 A1 discloses an aluminoborosilicate glass (aluminosilicate glass) for use as a substrate glass with a low coefficient of thermal expansion, which is also suitable for the deposition of silicon via CVD processes and thus for applications in display and photovoltaic technology ,
- This glass has an oxide-based composition by weight of 75-90% SiO 2 , 2-7% Al 2 O 3 and 8-18% B 2 O 3, and other optional ingredients, and is alkali-free except for impurities.
- This glass is characterized by high costs, on the one hand raw material costs, in particular boron, and high melting costs as well as plant costs, since short tub run times are to be expected.
- ASAHI a flat and substrate glass for electronics with high thermal resistance and a conventional soda lime glass comparable expansion coefficient.
- This glass contains 0.5 to 5 mol% B 2 O 3 , 50 to 75 mol% SiO 2 , 4 to 20 mol% Al 2 O 3 , 0 to 0.8 mol% BaO and 0 to 13 mol -% alkalis R 2 O.
- the object is achieved by using an aluminosilicate glass as the substrate glass for the photovoltaic, which is boron-free or boron-poor and in which, based on the oxide base of the glass composition in mol%, the Al 2 O 3 content is greater than that Alkali content R 2 O.
- the aluminosilicate glasses according to the invention have a transformation temperature of 580 0 C -850 0 C, preferably between 600 0 C -720 0 C.
- the total alkali content of the aluminosilicate glasses according to the invention is 0.1-20 mol%, preferably 3-9 mol%.
- the Al 2 O 3 content of the alkali metal aluminosilicate glasses according to the invention is greater than 10 mol% and is at most 30 mol%.
- substrate glasses having the following composition in% by weight based on oxide are used:
- the glasses according to the invention can be obtained wholly or partly from mineral residues, eg. As from the residues of waste incineration plants, filter dusts, slags of metal production, in which case an additional effect can be seen that the energy content can be used as the molten liquid slags of well 1,300 0 C can be added.
- aluminosilicate glasses are used, which, based on the oxide base of the glass composition in mol%, have an aluminum content which is above the alkali content.
- Alumoalkali-silicate glasses with a high transformation temperature in the range from 680 0 C to 710 0 C and a low alkali content of R 2 O 3-5 mol% based on the oxide basis.
- the properties of the aluminosilicate glasses according to the invention provide considerable possibilities for optimizing their processes.
- increased sputtering rates can be achieved with a higher electrical yield of the modules.
- further cost savings can be realized in the field of glass production.
- the melting costs will increase, but since the raw materials can be obtained from industrial residues, not only the raw material costs are completely eliminated, even disposal costs can be recorded as an active contribution.
- these glasses will always have a higher iron content, they are referred to as black glasses.
- a very cost-effective recycling path can be built especially for the thin-film technology, since the modules can be completely recycled and melted as glass material, especially since even problematic semiconductor materials can be installed without risk in the glass matrix in the production of the substrate glasses.
- Tab. 2 Selected properties of further samples [expansion coefficient 0, transformation temperature Tg, density p and liquidus temperature T L , q ]
- Embodiment 2 is a diagrammatic representation of Embodiment 1:
- the application of the CIS thin-film technology is limited due to the Transformationstenn- temperature of the float glass used at present to about 550 0 C with the sputtering of the semiconductor materials, thus, certain crystal sizes and thus electrical efficiencies result.
- This process temperatures can be with the inventive use of alumosilicate to 700 0 C and, depending on glass composition, even increase it, thus completely new process facility, and a process window yield.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Compositions (AREA)
Abstract
Verwendung eines Alumosilikatglases als Substratglas für die Photovoltaik mit einer Glaszusammensetzung, die Bor-frei oder Bor-arm ist und bei der - bezogen auf die Oxidbasis der Glaszusammensetzung in Mol-% - der Al2O3-Gehalt größer ist als der Alkaligehalt R2O.
Description
Verwendung von Alumosilikatgläsern als Substratgläser für die Photovoltaik
Die Erfindung betrifft die Verwendung von Alumosilikatgläsern, insbesondere auf Basis von mineralischen Reststoffen als Substratgläser für die Photovoltaik, insbesondere für die Dünnschichttechnologie bzw. Dünnschichtzellen.
Eine entscheidende Bedeutung für die Photovoltaikindustrie besitzt die Frage der Öko- nomie, da mit einem verbesserten Preis-Leistungsverhältnis die Durchsetzungs- und
Durchdringungsgeschwindigkeit dieser neuen Technologie definiert wird. Hierbei spielen sowohl die Herstellungskosten als auch die Ausbeuten eine wesentliche Rolle. An beiden
Problemen kann von Seiten des Werkstoffs Glas eine wesentliche Unterstützung geleistet werden. In bisherigen Projekten (Glasing; Herstellung und Heiß-Kantenveredelung für die energieeffiziente Herstellung von Flachglas für die Solarindustrie) wird daran gearbeitet, die durchschnittlichen Herstellungskosten für einen Quadratmeter Glas auf insgesamt ein
Drittel zu reduzieren. Hierzu werden verschiedene Ansätze kombiniert:
Herstellung von deutlich dünnerem, thermisch gehärteten Glas, Ersatz der Floatglastechnologie durch modifizierte Walzglastechnologie sowie Kombination der Formgebung, der Glaskonfektionierung und Kantenbearbeitung im Zustand oberhalb der Transformationstemperatur und die sich daran direkt anschließende Oberflächenveredelung und kombi-
nierte thermische Härtung mit erheblichen Herstellungs- und Logistikkosteneinsparungen. Werden heute im Dünnschichtbereich der PV-lndustrie noch bis zu über 15 % der Kosten durch das veredelte Glas definiert, so wird dies bei einer Modulpreissenkung auf ein Drittel, um Netzparität in wenigen Jahren zu erreichen, auf über 50 % Glaskostenanteil ansteigen bei unveränderter heutiger Technologie.
Die WO 2008/028599 A1 (Schott) offenbart ein Aluminoborosilikatglas (Alumosboratglä- ser) zur Verwendung als Substratglas mit einem niedrigen thermischen Ausdehnungskoeffizienten, das sich auch für die Abscheidung von Silizium über CVD-Prozesse und damit für Anwendungen in der Display- und Photovoltaiktechnologie eignet. Dieses Glas weist eine Zusammensetzung in Gew.% auf Oxidbasis mit 75 - 90 % SiO2 , 2 - 7 % AI2O3 und 8 - 18 % B2O3 sowie weitere fakultative Bestandteile auf und ist bis auf Verunreinigungen alkalifrei. Dieses Glas ist durch hohe Kosten gekennzeichnet, zum einen Rohstoffkosten, insbesondere Bor, und hohe Schmelzkosten sowie Anlagenkosten, da mit kurzen Wannenlaufzeiten zu rechnen ist.
Die DE 699 02 839 T2 (ASAHI) beschreibt ein Flach- und Substratglas für die Elektronik mit hoher thermischer Beständigkeit und einem gewöhnlichen Natronkalkglas vergleichbaren Ausdehnungskoeffizienten. Dieses Glas enthält 0,5 - 5 Mol-% B2O3, 50 - 75 Mol-% SiO2, 4 - 20 Mol-% AI2O3, 0 - 0,8 Mol-% BaO und 0 - 13 Mol-% Alkalien R2O.
Es ist deshalb Aufgabe der Erfindung, Substratgläser für die Photovoltaik anzugeben, die maßgeblich aus mineralischen Reststoffen herstellbar sind und auch die Wiederverwertung verbrauchter Dünnschichtsolarzellenmodule erlauben.
Erfindungsgemäß wird die Aufgabe durch die Verwendung eines Alumosilikatglases als Substratglas für die Photovoltaik gelöst, das Bor-frei oder Bor-arm ist und bei dem, bezogen auf die Oxidbasis der Glaszusammensetzung in Mol-%, der AI2O3Gehalt größer ist als der Alkaligehalt R2O.
Die erfindungsgemäßen Alumosilikatgläser haben eine Transformationstemperatur von 580 0C -850 0C, vorzugsweise zwischen 600 0C -720 0C.
Der Gesamtalkaliengehalt der erfindungsgemäßen Alumosilikatgläser beträgt 0,1 - 20 Mol-%, vorzugsweise 3 - 9 Mol-%. Der AI2O3 - Gehalt der erfindungsgemäßen Alkalialu- mosilikatgläser ist größer 10 Mol-% und beträgt maximal 30 Mol-%.
Nach einer vorteilhaften Ausgestaltung der Erfindung werden Substratgläser mit folgender Zusammensetzung (in Gew.-% auf Oxidbasis) verwendet:
SiO2 30 - 80
AI2O3 10 - 30
B2O3 0 - 0,5
Fe2O3 0 - 10
BaO 0 - 0,5
CaO 10 - 20
MgO 0 - 5
MnO 0 - 1
P2O5 0 - 1
TiO2 0 - 2
R2O 3 - 9.
Die erfindungsgemäßen Gläser können ganz oder teilweise aus mineralischen Reststof- fen gewonnen werden, z. B. aus den Rückständen von Müllverbrennungsanlagen, Filterstäuben, Schlacken der Metallherstellung, wobei hier ein zusätzlicher Effekt darin gesehen werden kann, dass auch der Energieinhalt verwendet werden kann, da dem Schmelzprozess flüssige Schlacken von gut 1.300 0C zugefügt werden können.
Weiter sind Reste aus dem Glasrecycling, Natronlauge aus chemischen Prozessen und zerkleinerte, wieder aufzubereitende ganze Photovoltaikmodule einsetzbar. Auch ist es möglich, komplette Module oder Modulteile als Quelle mineralischer Reststoffe der Glasschmelze zuzuführen. Möglich ist es auch, nichttransparente Alumosilikatgläser zu verwenden. Damit können auch Restgläser oder Restglasabfälle verwendet werden, die färbende Oxidanteile enthalten. Erfindungsgemäß werden Alumosilikatgläser verwendet, die, bezogen auf die Oxidbasis der Glaszusammensetzung in Mol-%, einen Aluminiumgehalt besitzen, der über dem Alkaliengehalt liegt. Durch die damit definierten 4er- und 6erKoordination des Sauerstoffs zum Aluminium werden zusammen mit der festen Einbindung der Alkalien Eigenschaften definiert, die die Halbleitertechnologie im Dünnschichtbereich der Photovoltaik substantiell beeinflussen können. Hierzu gehören die deutlich reduzierte Alkalienmobilität und die möglichen erheblich erhöhten Transformationstemperaturen (z. B. 696 0C gegenüber 560 0C von üblichem Floatglas im Vergleich zu Kalk-Natron-Silikatglas).
- A -
Besonders bevorzugt verwendet werden Alumoalkali-Silikatgläser mit einer hohen Trans- formationstemperatur im Bereich von 680 0C bis 710 0C und einem niedrigen Alkaligehalt R2O von 3-5 Mol-% bezogen auf die Oxidbasis.
Für die PV-Dünnschichtindustrie ergeben die Eigenschaften der erfindungsgemäßen Alumosilikatgläser erhebliche Optimierungsmöglichkeiten für ihre Prozesse. So lassen sich bei den nun möglichen höheren Prozesstemperaturen erhöhte Sputterraten mit einer höheren elektrischen Ausbeute der Module realisieren. Erreicht wird eine erhöhte Produktivität in Kombination mit höheren Wirkungsgraden. Auch lassen sich darüber hinaus noch weitere Kosteneinsparungen im Bereich der Glasherstellung realisieren. Zwar werden die Schmelzkosten ansteigen, da aber die Rohstoffe aus industriellen Reststoffen gewonnen werden können, fallen nicht nur die Rohstoffkosten komplett weg, es können sogar noch Entsorgungskosten als aktiver Beitrag eingespielt werden.
Da diese Gläser immer einen höheren Eisengehalt haben werden, werden sie als Schwarzgläser bezeichnet. Zur Kostenoptimierung kann darüber hinaus gerade für die Dünnschichttechnologie ein sehr kostengünstiger Recyclingpfad aufgebaut werden, da die Module komplett als Glasmaterial wiederverwertet und eingeschmolzen werden können, zumal sich auch problematische Halbleitermaterialien risikolos in die Glasmatrix bei der Herstellung der Substratgläser einbauen lassen. Auch die Möglichkeit, teilweise flüssige Schlacken mit Temperaturen bis 1.300 0C der Glasschmelze im Prozess zuzu- führen, senkt die sehr hohen Energiekosten, die im Flachglasbereich bis zu 30 % der Gesamtkosten betragen können.
Die Erfindung wird nachfolgend anhand mehrerer Ausführungsbeispiele näher beschrieben.
Ausführungsbeispiel 1 :
Aus Restglasabfällen, z. B. aus den Rückständen von Müllverbrennungsanlagen, Filterstäuben, Schlacken der Metallherstellung, Reste aus dem Glasrecycling, Natronlauge aus chemischen Prozessen und zerkleinerte wieder aufzubereitende ganze Photovol- taikmodule wurden in einem Kanthaloofen bei 1.500 0C Gläser mit den in Tab. 1 aufgeführten Zusammensetzung geschmolzen. Tab. 2 zeigt ausgewählte Eigenschaften (Aus- dehnungskoeffizient a, Transformationstemperatur Tg, Dichte p und Liquidustemperatur TLιq) weiterer Proben.
Tab. 1 : Chemische Zusammensetzung der Proben in Masse %
Oxide/Probe 1 2 3 4 5
SiO2 52,36 44,41 41 ,22 38,16 34,85
AI2O3 13,95 15,15 15,67 16,46 16,07
Fe2O3 2,34 5,00 6,81 8,20 8,00
FeO 5,54 4,81 2,41 0,52 0,11
TiO2 1 ,14 1 ,29 1 ,38 1 ,21 1 ,10
CaO 14,61 17,88 16,63 15,44 14,09
MgO 2,11 2,63 2,37 2,34 2,15
K2O 0,91 1 ,11 0,99 0,92 0,87
Na2O 4,90 5,06 9,90 14,74 20,21
MnO 0,78 0,98 0,90 0,84 0,78
P2O5 0,14 0,19 0,25 0,13 0,13
SO3 n.n.b n.n.b, 0,022 0,065 0,093
CdO 0,33 0,30 0,22 0,09 0,03
PbO 0,45 0,43 0,41 0,37 0,33
Cr2O3 0,47 0,64 0,46 0,64 0,82
Summe 100,03 99,89 99,64 100,12 99,63
Tg 696 674
Tab. 2: Ausgewählte Eigenschaften weiterer Proben [Ausdehnungskoeffizient 0, Trans- formationstemperatur Tg, Dichte p und Liquidustemperatur TL,q]
Ma. %
SiO2 AI2O3 CaO MgO Fe2O3 Alkaα Tg P τLιq lien 10"bK 0C g/crn^ 0C Glas
1 46 21 23 2 2 6 7,02 696 2,74 1232
2 61 10 18 3 3 5 7,07 662 2,65 1230
3 44 23 22 2 2 7 7,12 688 2,74 1192
4 49 15 19 7 5 5 6,91 674 2,78 1236
5 45 16 18 9 6 6 7,14 662 2,83 1257
6 46 19 15 3 10 7 7,22 655 2,82 1220
7 53 15 17 8 2 5 7,19 677 2,72 1249
Ausführungsbeispiel 2:
Die Anwendung der CIS-Dünnschichttechnologie ist auf Grund der Transformationstenn- peratur des verwendeten Floatglases gegenwärtig auf etwa 550 0C mit dem Sputtern der Halbleitermaterialien begrenzt, wobei sich damit auch bestimmte Kristallgrößen und damit elektrische Wirkungsgrade ergeben.
Diese Prozesstemperaturen lassen sich mit der erfindungsgemäßen Verwendung der Alumosilikatgläser auf 700 0C und, je nach Glaszusammensetzung, sogar darüber erhöhen, womit sich völlig neue Prozessmöglichkeiten und Prozessfenster ergeben.
Claims
1. Verwendung eines Alumosilikatglases als Substratglas für die Photovoltaik, gekennzeichnet durch eine Glaszusammensetzung, die Bor-frei oder Bor-arm ist und bei der - bezogen auf die Oxidbasis der Glaszusammensetzung in Mol-% - der AI2O3 - Gehalt größer ist als der Alkaligehalt R2O.
2. Verwendung eines Alumosilikatglases nach Anspruch 1 , dadurch gekennzeichnet, dass das Alumosilikatglas eine Transformationstemperatur von 580 0C - 850 0C aufweist.
3. Verwendung eines Alumosilikatglases nach Anspruch 2, dadurch gekennzeichnet, dass das Alumosilikatglas eine Transformationstemperatur von 600 0C - 720 0C aufweist.
4. Verwendung eines Alumosilikatglases nach Anspruch 1 , dadurch gekennzeichnet, dass der Alkaliengehalt R2O 0,1 - 20 Mol"'% betragt.
5. Verwendung eines Alumosilikatglases nach Anspruch 1 oder 4, dadurch gekennzeichnet, dass der Alkaliengehalt 3 - 9 Mol-% betragt.
6. Verwendung eines Alumosilikatglases nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Alumosilikatglas folgende Zusammensetzung (in Gew.-%) aufweist:
SiO2 30 - 80
AI2O3 10 - 30
B2O3 0-0,5
Fe2O3 0-10
BaG 0-0,5
CaO 10 - 20
MgO 0 - 5
MnO 0-1
P2O5 0 - 1
TiO2 0 - 2
R2O 3 - 9
7. Verwendung eines Alumosilikatglases nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Alumosilikatglas vollständig oder partiell aus mineralischen Reststoffen, insbesondere aus Rückständen von Müllverbrennungsanlagen, Filterstäuben oder Schlacken der Metallherstellung, gewonnen wird.
8. Verwendung eines Alumosilikatglases nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Alumosilikatglas vollständig oder partiell aus recyceltem Glas, Natronlauge aus chemischen Prozessen oder zerkleinerten Photovoltaikmodulen gewonnen wird.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009022575A DE102009022575A1 (de) | 2009-05-18 | 2009-05-18 | Verwendung von Alumosilikatgläsern als Substratgläser für die Photovoltaik |
PCT/EP2010/056667 WO2010133522A1 (de) | 2009-05-18 | 2010-05-14 | Verwendung von alumosilikatgläsern als substratgläser für die photovoltaik |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2432743A1 true EP2432743A1 (de) | 2012-03-28 |
Family
ID=42289757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10720751A Withdrawn EP2432743A1 (de) | 2009-05-18 | 2010-05-14 | Verwendung von alumosilikatgläsern als substratgläser für die photovoltaik |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2432743A1 (de) |
DE (1) | DE102009022575A1 (de) |
WO (1) | WO2010133522A1 (de) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011008138B4 (de) | 2011-01-08 | 2019-06-27 | Technische Universität Bergakademie Freiberg | Thermischer solarer Flachkollektor |
WO2024034546A1 (ja) * | 2022-08-08 | 2024-02-15 | 日本板硝子株式会社 | ガラス組成物、ガラス繊維、ガラスフィラー、ガラス繊維の製造方法、及びガラスフィラーの製造方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1459178A (en) * | 1972-11-21 | 1976-12-22 | Dostal K V | Glass and glass-ceramics and compositions therefor |
US4414013A (en) | 1982-04-26 | 1983-11-08 | Connell David A | Method of making black glass by utilizing incinerated waste glass |
US5854153A (en) * | 1997-01-09 | 1998-12-29 | Corning Incorporated | Glasses for display panels |
US6313052B1 (en) * | 1998-02-27 | 2001-11-06 | Asahi Glass Company Ltd. | Glass for a substrate |
DE69902839T2 (de) | 1998-04-28 | 2003-05-28 | Asahi Glass Co., Ltd. | Flachglas und Substratglas für die Elektronik |
DE19942259C1 (de) * | 1999-09-04 | 2001-05-17 | Schott Glas | Erdalkalialuminoborosilicatglas und dessen Verwendungen |
DE10005088C1 (de) * | 2000-02-04 | 2001-03-15 | Schott Glas | Alkalihaltiges Aluminoborosilicatglas und seine Verwendung |
DE102006042620B4 (de) | 2006-09-04 | 2012-01-26 | Schott Ag | Verwendung eines Aluminoborosilikatglases als Substratglas |
-
2009
- 2009-05-18 DE DE102009022575A patent/DE102009022575A1/de not_active Ceased
-
2010
- 2010-05-14 EP EP10720751A patent/EP2432743A1/de not_active Withdrawn
- 2010-05-14 WO PCT/EP2010/056667 patent/WO2010133522A1/de active Application Filing
Non-Patent Citations (2)
Title |
---|
None * |
See also references of WO2010133522A1 * |
Also Published As
Publication number | Publication date |
---|---|
DE102009022575A1 (de) | 2010-11-25 |
WO2010133522A1 (de) | 2010-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102010009585B4 (de) | Lithium-Aluminosilicatglas mit hohen E-Modul, Verfahren zu dessen Herstellung und Verwendung | |
US5851939A (en) | Alkali-free glass substrate | |
EP2338847B1 (de) | Borfreies Glas | |
DE102015116097B4 (de) | Chemisch beständiges Glas und dessen Verwendung | |
CN101462825B (zh) | 超白浮法玻璃 | |
DE102009038475B4 (de) | Verwendung eines Glases für Glas-Metall-Verbindungen | |
EP2450321B1 (de) | Hochintensive glasfaser mit hohem modul | |
EP2480508B1 (de) | Alumosilikatgläser mit hoher thermischer beständigkeit und niedriger verarbeitungstemperatur | |
DE4430710C1 (de) | Borsäurearmes Borosilikatglas und seine Verwendung | |
EP1156989B1 (de) | Hochzirconiumoxidhaltiges glas und seine verwendungen | |
WO2001056941A1 (de) | Alkalihaltiges aluminoborosilicatglas und seine verwendung | |
DE112009004439B4 (de) | Glasfaser-Zusammensetzung | |
DE19601922C2 (de) | Zinn- und zirkonoxidhaltige, alkalifreie Erdalkali-Alumo-Borosilicatgläser und deren Verwendung | |
DE102013103033A1 (de) | Zirkonium/Bor-Aluminiumsilikat-Glas mit Verformungsbeständigkeit, hoher Dehnungsgrenze und geringem Gewicht | |
DE102010006331A1 (de) | Aluminosilikatgläser mit hoher thermischer Beständigkeit, niedriger Verarbeitungstemperatur und hoher Kristallisationsbeständigkeit | |
WO2005073141A1 (ja) | ガラス物品およびその製造方法 | |
EP2432743A1 (de) | Verwendung von alumosilikatgläsern als substratgläser für die photovoltaik | |
CN1792915A (zh) | 低钡高折射率玻璃微珠 | |
CN1200899C (zh) | 无铅的光学轻燧石玻璃 | |
EP0767763A2 (de) | Borosilicatglas | |
CN107673600B (zh) | 一种高透光率、高透红外线的功能硅酸盐玻璃、及其制备和应用 | |
DE112022004003T5 (de) | Glassubstrat für die weltraumbasierte solarstromerzeugung | |
DE102005058759A1 (de) | Glaskeramik | |
CN1792916A (zh) | 低钡高折射率玻璃 | |
EP4385959A1 (de) | Transparente glaskeramik, insbesondere als deckscheibe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20111219 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20121008 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20170912 |