EP2426317A1 - Turbinenschaufel für eine Gasturbine - Google Patents

Turbinenschaufel für eine Gasturbine Download PDF

Info

Publication number
EP2426317A1
EP2426317A1 EP10175235A EP10175235A EP2426317A1 EP 2426317 A1 EP2426317 A1 EP 2426317A1 EP 10175235 A EP10175235 A EP 10175235A EP 10175235 A EP10175235 A EP 10175235A EP 2426317 A1 EP2426317 A1 EP 2426317A1
Authority
EP
European Patent Office
Prior art keywords
turbine blade
blade
side wall
turbine
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10175235A
Other languages
English (en)
French (fr)
Inventor
Fathi Ahmad
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP10175235A priority Critical patent/EP2426317A1/de
Priority to EP11749827.9A priority patent/EP2611990B1/de
Priority to US13/818,794 priority patent/US20130156599A1/en
Priority to CN201180042590.9A priority patent/CN103080478B/zh
Priority to PCT/EP2011/064811 priority patent/WO2012028574A1/de
Priority to JP2013526429A priority patent/JP5738996B2/ja
Publication of EP2426317A1 publication Critical patent/EP2426317A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/122Fluid guiding means, e.g. vanes related to the trailing edge of a stator vane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/304Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the trailing edge of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/18Two-dimensional patterned
    • F05D2250/184Two-dimensional patterned sinusoidal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/60Structure; Surface texture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/202Heat transfer, e.g. cooling by film cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2212Improvement of heat transfer by creating turbulence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2214Improvement of heat transfer by increasing the heat transfer surface
    • F05D2260/22141Improvement of heat transfer by increasing the heat transfer surface using fins or ribs

Definitions

  • the invention relates to a turbine blade with an airfoil which can be flowed around by a hot gas and which comprises a suction sidewall and a pressure sidewall which extend in the direction of flow of the hot gas from a common leading edge to a trailing edge, wherein at the trailing edge at least one opening for blowing out a blade which previously cools the blade leaf Coolant is arranged, which is in flow communication with at least one opening with a arranged in the airfoil cavity by means of a channel, wherein the channel is also bounded by an inwardly facing surface of the suction side wall and an inwardly facing surface of the pressure side wall and for adjusting the from the Opening exiting coolant amount is provided a throttle element.
  • An aforementioned turbine blade and a casting core for producing such a turbine blade are, for example, from WO 2003/042503 A1 known.
  • the known turbine blade has a cooled trailing edge at which a plurality of openings for blowing out the cooling air by interposed webs - which are also known in English as "tear drops" - are separated from each other.
  • the arranged at the trailing edge of a common cavity is preceded by three rows of columnar sockets - in the English also known as "pin-fins" - are arranged, which increases the heat transfer of them passing cooling air and to increase the Pressure loss are provided there.
  • the casting core required for producing such a turbine blade is shown in FIG WO 2003/042503 A1 shown in perspective.
  • the space occupied by the casting core remains after production of the cast turbine blade as Cavity in the turbine blade, wherein arranged in the casting core openings are filled with casting material.
  • the casting core represents the negative image of the interior of the turbine blade.
  • the object of the invention is therefore to provide an initially mentioned turbine blade for a gas turbine, which is efficient and sufficiently coolable with the smallest possible amount of coolant.
  • the turbine blade for a gas turbine comprises an airfoil which can be flowed around by a hot gas and which comprises a suction sidewall and a pressure sidewall which extend from a common leading edge to a trailing edge in the direction of flow of the hot gas, at least one opening for blowing out the airfoil at or in the trailing edge previously cooling coolant is arranged, which is at least one opening in fluid communication with an arranged in the airfoil cavity by means of a channel, wherein the channel is also bounded by an inwardly facing surface of the suction side wall and an inwardly facing surface of the pressure side wall and adjusting the is provided from the opening exiting cooling air amount, a throttle element, according to the invention, the throttle element upstream - in relation to the flow direction of the channel - the respective opening is arranged and comprises two surveys, each a n one of the two inwardly facing surfaces are arranged.
  • the throttle element comprises on the inwardly facing surfaces arranged elevations which extend transversely to the flow direction of the channel and between which the minimum flow cross-section of the channel is arranged.
  • the minimum vertical distance between each to detect the neutral fiber of the coolant flow and one of the two side surfaces in the cooling channel is arranged.
  • the invention is based on the finding that the coolant consumption with the proposed construction is particularly simple and precisely adjustable, in which the throttle element is arranged in the blade interior upstream of the trailing edge opening.
  • the throttle element is to be formed by two mutually related elevations, each of which are arranged on the inwardly facing surface of the suction side wall and pressure side wall. None of the elevations connects the suction side wall with the pressure side wall.
  • This embodiment of the throttle element is particularly advantageous for turbine blades produced in the casting process.
  • turbine blades are usually produced in casting processes in which so-called lost casting cores are used to produce the internal cooling system. The production of these cores is usually done with the help of a core tool.
  • the core tool comprises two slider elements which can be moved towards and away from each other.
  • these slide elements When pushed together, these slide elements surround a cavity which has the same contour as the cavity of the turbine blade to be cast.
  • the casting core material is inserted into the cavity of the slider elements. After the casting core material has dried, the casting core is available for producing the turbine blade.
  • the slide elements for producing a first prototype of the turbine blade series to be produced are designed such that in the turbine blade prototype to be produced the throttling, minimum distance between the elevations is in any case smaller than the theoretically required one.
  • the first turbine blade prototype produced therewith is then subjected to a coolant flow measurement. Desirably, due to the first time too small distance between the surveys, the throttle effect is too large, which initially too low flow leads.
  • the slide elements are changed. Their elevations are slightly changed, which increases in the collapsed state whose minimum distance. Subsequently, another casting core is produced with it. With this another turbine blade prototype is produced, the flow rate is then determined again and compared with the desired amount.
  • the manufacturing process of the slide elements is completed.
  • the slide elements are then designed so that casting cores are always produced with them, which can be used to manufacture serial turbine blades in series.
  • all steps for the production of a further turbine blade prototype are again carried out, the minimum distance of which is slightly larger than the previous prototype.
  • each of the two slides can be processed by itself - such as by grinding the survey arranged thereon - without fundamentally changing the construction of the turbine blade and its cooling system. It is possible that only one of the slide elements or both slide elements are processed during an iteration step.
  • This method is also particularly suitable for modifications of existing blades in the event that more cooling air is needed for sufficient cooling. In this case, only the smallest changes in the blade design are required. An additional qualification because of an otherwise required casting change is therefore not necessary.
  • the invention leads to the reduction of the scrap rate in the manufacture of turbine blades, which reduces the production costs and significantly improved the production time of turbine blades.
  • the two elevations - seen in the flow direction of the cooling channel - offset from one another.
  • the vertical distance between the inner surface of the pressure sidewall and the inner surface of the suction sidewall can be further reduced, resulting in particularly narrow trailing edge regions of airfoils. This reduces aerodynamic losses in hot gas flowing around the airfoil.
  • elevation which is arranged on the inwardly facing surface of the pressure side wall, arranged downstream of that elevation, which is arranged on the inwardly facing surface of the suction side wall.
  • This construction forces coolant flow in the channel, which flows more intensively past the inwardly facing surface of the suction sidewall.
  • cut-back trailing edges an extended film cooling effect of the unprotected end of the suction-side trailing edge can be achieved, which reduces wear phenomena there and extends the service life of the turbine blade.
  • a plurality of openings are arranged at the trailing edge, wherein the cooling channel jointly connects a plurality of openings with the cavity.
  • the elevations are formed as ribs, with the aid of this angular contour of the inwardly facing surfaces of the side walls of the airfoil turbulence in the coolant can be generated during operation.
  • these turbulences can contribute to the throttle effect and, on the other hand, to increase the heat transfer due to more turbulent coolant flow.
  • the interior of the turbine blade proposed by the invention can be used both for turbine blades with (for the side walls) common trailing edge and for turbine blades with a so-called cut-back trailing edge.
  • FIG. 1 A gas turbine blade 10 relating to the invention is shown in FIG FIG. 1 shown in perspective.
  • the gas turbine blade 10 is according to FIG. 1 designed as a blade.
  • the invention can also be used in a guide vane, not shown, of a gas turbine.
  • the turbine blade 10 comprises a cross-sectionally fir-shaped blade root 12 and a platform 14 arranged thereon.
  • the platform 14 is adjoined by an aerodynamically curved blade 16 on, which has a front edge 18 and a rear edge 20.
  • Provided at the front edge 18 are cooling holes arranged as so-called “shower heads", from which a coolant flowing inside, preferably cooling air, can emerge.
  • the airfoil 16 includes a - with respect FIG.
  • FIG. 2 shows the interior of a turbine blade known in the prior art in a longitudinal section along a plane, spanned by a center line extending from the leading edge 18 to the trailing edge 20 of the airfoil 16, and the blade longitudinal direction extending from the blade root 12 to the blade tip extends.
  • FIG. 2 are further to the right arranged the trailing edge openings 28 shown, between which the webs 30 are arranged.
  • the webs 30 extend substantially parallel to a hot gas flow which, during operation, flows around the airfoil 16 from the front edge 18 to the rear edge 20.
  • FIG. 2 shown on the left is a plurality of arranged in a grid column or sockets 32 are provided. Both the sockets 32 and the webs 30 extend from an inner surface 34 of the suction side wall 22 to an in FIG. 2 Consequently, the sockets 32 are arranged in a cavity 38 of the turbine blade 10, which is bounded laterally by the suction side wall 22 and the pressure side wall 24.
  • a coolant for example cooling air 40 or cooling steam
  • a coolant flows through the cavity 38 during operation.
  • the in FIG. 2 not shown part the turbine blade 10 formed in the interior so that the field of sockets 32 is substantially uniformly flowed through by cooling air 40.
  • the uniform flow of the arranged in grid base 32 is shown by the arrows marked 40.
  • the cooling air 40 impinges on individual pedestals 32 and is thereby deflected by them, the main flow direction of which remains essentially unchanged. This creates 40 turbulences in the cooling air.
  • the introduced from the hot gas in the blade walls 22, 24 heat is passed from these further into the base 32. There, the cooling air 40 impinging on the base 32 absorbs the heat and transports it.
  • cooling air 40 After the cooling air 40 has flowed through the base field, this enters into passages 41 which connect the cavity 38 with the openings 28. After flowing through the passages 41, the cooling air 40 passes out of the turbine blade 10 through the openings 28 and mixes with the hot gas flowing around the blade 16.
  • elevations 42, 44 are provided on the inner surfaces 34, 36 of the suction side wall 22 and the pressure side wall 24, respectively. 3, FIG. 4 ) intended.
  • One (42) of the two elevations 42, 44 is arranged on the inner surface 34 or part thereof, the other (44) of the two elevations 42, 44 is located on the inner surface 36 or part of this.
  • the inner surfaces 34, 36 define a cavity 38 and a cooling channel 46, which connects the cavity 38 with the openings 28. It is possible that cavity 38 and channel 46 merge into one another.
  • the minimum distance between the inner surface 34 and the inner surface 36 in the region of the two elevations 42, 44 is now provided. This is - in FIG.
  • the minimum distance A forming the throttle element is located between the two elevations 42, 44, whereby they are in relation to one another.
  • the elevations 42, 44 replace neither the base 32 nor the webs 30th
  • the elevations 42, 44 extend along the blade longitudinal direction (perpendicular to the sheet plane) over the entire height of the cooling channel 46.
  • the contour of the elevations 42, 44 are, as in the cross section shown in FIG. 3 , Such that they allow a stepless and edge-free course of the cooling channel in the flow direction of the coolant to the trailing edge opening 28 out.
  • the elevations are also designed in the form of ribs, as in FIG. 4 shown.
  • each iteration comprises producing a turbine blade with a defined rib height H 1 and H 2 and determining the coolant consumption of the corresponding turbine blade prototype.
  • a turbine blade 10 is specified, which during the phase of tool production allows a simple and inexpensive test phase to provide 10 accurately fabricated core tool after completion of the iterations for a series of turbine blades.
  • the throttle element instead of two surveys 42, 44 comprises only a single survey 44 (or 42), so that the flow rate determining minimum distance between a single survey 44 (or 42) and its opposite, then after inside facing surface 34 (or 36) of the suction side wall 22 (or the pressure side wall 36) is located.
  • the opposing surface 34 or 36 may then also be configured flat in the region of the minimum distance.
  • the invention specifies a turbine blade 10 whose amount of coolant 40 flowing out of the trailing edge 20 is set comparatively simply and exactly immediately upon casting of the turbine blade 10, without requiring reworking of the cast turbine blade 10 with regard to adjusting the coolant consumption.
  • elevations 42, 44 are located on the inner surfaces 34, 36 of the suction side wall 22 or pressure side wall 24, between which the throttle element is located, by means of which the quantity of outflowing coolant is set.

Abstract

Die Erfindung betrifft eine Turbinenschaufel (10) für eine Gasturbine, deren Menge an aus der Hinterkante (20) ausströmenden Kühlmittel (40) vergleichweise einfach und exakt unmittelbar beim Abgießen der Turbinenschaufel (10) eingestellt ist, ohne dass eine Nachbearbeitung der gegossenen Turbinenschaufel (10) hinsichtlich der Einstellung des Kühlmittelverbrauchs nötig ist. Um dies zu erreichen, wird vorgeschlagen, dass an den Innenflächen (34, 36) der Saugseitenwand (22) bzw. Druckseitenwand (24) Erhebungen (42, 44) angesiedelt sind, zwischen denen sich das Drosselelement befindet, mittels welchem die Menge ausströmenden Kühlmittel (40) eingestellt ist. Diese Anordnung ermöglicht das einfache Herstellen eines Kernwerkzeugs, mit dem die zum Gießen der Turbinenschaufel (10) erforderlichen Gusskerne stets mit der gewünschten Genauigkeit vielfach herstellbar sind.

Description

  • Die Erfindung betrifft eine Turbinenschaufel mit einem von einem Heißgas umströmbaren Schaufelblatt, welches eine Saugseitenwand und eine Druckseitenwand umfasst, die sich in Strömungsrichtung des Heißgases von einer gemeinsamen Vorderkante zu einer Hinterkante erstrecken, wobei an der Hinterkante zumindest eine Öffnung zum Ausblasen eines das Schaufelblatt zuvor kühlenden Kühlmittels angeordnet ist, welche zumindest eine Öffnung mit einem im Schaufelblatt angeordneten Hohlraum mittels eines Kanals in Strömungsverbindung steht, wobei der Kanal auch von einer nach innen gewandten Fläche der Saugseitenwand und von einer nach innen gewandte Fläche der Druckseitenwand begrenzt ist und zur Einstellung der aus der Öffnung austretenden Kühlmittelmenge ein Drosselelement vorgesehen ist.
  • Eine eingangs genannte Turbinenschaufel und ein Gusskern zum Herstellen einer solchen Turbinenschaufel sind beispielsweise aus der WO 2003/042503 A1 bekannt. Die bekannte Turbinenschaufel weist eine gekühlte Hinterkante auf, an der mehrere Öffnungen zum Ausblasen der Kühlluft durch dazwischen angeordnete Stege - welche im Englischen auch als "tear drops" bekannt sind - voneinander getrennt sind. Den an der Hinterkante angeordneten Öffnungen ist ein gemeinschaftlicher Hohlraum vorgeschaltet, in dem drei Reihen von säulenartigen Sockeln - im Englischen auch bekannt unter dem Namen "Pin-Fins" - angeordnet sind, welche zur Erhöhung des Wärmeübergangs der an ihnen vorbeistreifenden Kühlluft und zur Erhöhung des Druckverlusts dort vorgesehen sind.
  • Der zur Herstellung einer solchen Turbinenschaufel benötigte Gusskern ist dabei in FIG 7 der WO 2003/042503 A1 perspektivisch dargestellt. Der vom Gusskern eingenommene Platz verbleibt nach Herstellung der gegossenen Turbinenschaufel als Hohlraum in der Turbinenschaufel, wobei im Gusskern angeordnete Öffnungen mit Gussmaterial aufgefüllt sind. Insofern stellt der Gusskern das negative Abbild des Inneren der Turbinenschaufel dar.
  • Die aus der WO 2003/042503 A1 bekannten Pin-Fins haben eine zylindrische Form und verbinden die einander gegenüberliegenden Innenflächen der Saugseitenwand und Druckseitenwand des Schaufelblatts der Turbinenschaufel.
  • Es ist dabei bekannt, die an der Hinterkante der Turbinenschaufel austretende Kühlluftmenge durch eine geeignete Wahl des maximalen Druckverlustes und/oder die kleinste, von der Kühlluft zu durchströmenden Querschnittsfläche nahe der Hinterkante einzustellen. Diese Vorgehensweise kann jedoch zu Gusskernen führen, bei denen die an der Gusskernhinterkante vorgesehenen Öffnungen derartig groß werden, dass zwischen ihnen nur noch vergleichsweise dünne Trennstege verbleiben. Während der Handhabung des Gusskerns kann jedoch genau an dieser Stelle der Gusskern brechen, so dass dieser anschließend unbrauchbar ist.
  • Des Weiteren sind aus der WO 2003/042503 A1 in Wendebereichen von Kühlkanälen angeordnete C-förmige Leitelemente für Kühlluft bekannt, die eine verlustarme Umlenkung und Führung der Kühlluft in stromabwärtige Gebiete bewirken sollen.
  • Weiter ist aus der EP 1 091 092 A2 eine luftgekühlte Turbinenschaufel bekannt. Um eine besonders effiziente Kühlung einer hohlwandigen Saug- bzw. Druckseite des Schaufelblatts zu erreichen, sind im Hohlraum der Doppelwand Pins rasterförmig angeordnet. Die Pins weisen prinzipiell eine Rautenform auf, wobei deren Ecken abgerundet und deren Kanten konkav nach innen gewölbt sind. Zwischen den Pins entsteht somit ein Netz aus Passagen für Kühlluft, die jeweils eine verengte Eingangs- und eine verengte Ausgangsöffnung aufweisen, zwischen denen ein Diffusor- und Düsenabschnitt angeordnet ist. Mit Hilfe der Abschnitte soll die Kühlluft verlangsamt und beschleunigt werden, um die effiziente Kühlung zu erreichen.
  • Aufgabe der Erfindung ist daher die Bereitstellung einer eingangs genannten Turbinenschaufel für eine Gasturbine, die mit einer möglichst geringen Menge an Kühlmittel effizient und ausreichend kühlbar ist.
  • Die auf die Turbinenschaufel gerichtet Aufgabe wird mit einer Turbinenschaufel gemäß den Merkmalen von Anspruch 1 gelöst, wobei vorteilhafte Lösungen in den Anspruch 2 bis 6 angeführt sind.
  • Die Turbinenschaufel für eine Gasturbine umfasst ein von einem Heißgas umströmbares Schaufelblatt, welches eine Saugseitenwand und eine Druckseitenwand umfasst, die sich in Strömungsrichtung des Heißgases von einer gemeinsamen Vorderkante zu einer Hinterkante erstrecken, wobei an oder in der Hinterkante zumindest eine Öffnung zum Ausblasen eines das Schaufelblatt zuvor kühlenden Kühlmittels angeordnet ist, welche zumindest eine Öffnung mit einem in Schaufelblatt angeordneten Hohlraum mittels eines Kanals in Strömungsverbindung steht, wobei der Kanal auch von einer nach innen gewandten Fläche der Saugseitenwand und von einer nach innen gewandten Fläche der Druckseitenwand begrenzt ist und zur Einstellung der aus der Öffnung austretenden Kühlluftmenge ein Drosselelement vorgesehen ist, wobei erfindungsgemäß das Drosselelement stromauf - in Bezug auf die Durchströmungsrichtung des Kanals - der betreffenden Öffnung angeordnet ist und zwei Erhebungen umfasst, die jeweils an einer der beiden nach innen gewandten Flächen angeordnet sind. Mit anderen Worten: das Drosselelement umfasst an den nach innen gewandten Flächen angeordnete Erhebungen, die sich quer zur Durchströmungsrichtung des Kanals erstrecken und zwischen denen der minimale Durchströmungsquerschnitt des Kanals angeordnet ist. Zur Bestimmung des minimalen Durchströmungsquerschnitts ist der minimale senkrechte Abstand zwischen jeweils der neutralen Faser der Kühlmittelströmung und einer der beiden Seitenflächen im Kühlkanal zu erfassen.
  • Der Erfindung liegt dabei die Erkenntnis zu Grunde, dass der Kühlmittelverbrauch mit der vorgeschlagenen Konstruktion besonders einfach und exakt einstellbar ist, in dem im Schaufelinneren stromauf der Hinterkantenöffnung das Drosselelement angeordnet ist. Dabei soll das Drosselelement von zwei aneinander in Relation stehenden Erhebungen gebildet werden, von denen jeweils eine an der nach innen gewandten Fläche der Saugseitenwand und Druckseitenwand angeordnet sind. Keine der Erhebungen verbindet die Saugseitenwand mit der Druckseitenwand. Diese Ausführungsform des Drosselelementes ist insbesondere für im Gießverfahren hergestellte Turbinenschaufeln vorteilhaft. Bekanntermaßen werden Turbinenschaufeln zumeist in Gießverfahren hergestellt, bei denen sogenannte verlorene Gusskerne zur Herstellung des inneren Kühlsystems verwendet werden. Die Herstellung dieser Gusskerne erfolgt zumeist mit Hilfe eines Kernwerkzeugs. Das Kernwerkzeug umfasst zwei Schieberelemente, die aufeinander zu bzw. voneinander weg bewegt werden können. Zusammengeschoben umgeben diese Schieberelemente einen Hohlraum, der die gleiche Kontur wie der Hohlraum der zu gießenden Turbinenschaufel hat. Zur Herstellung des Gusskerns wird in den Hohlraum der Schieberelemente das Gusskernmaterial eingefügt. Nach dem Trocknen des Gusskernmaterials steht der Gusskern zur Herstellung der Turbinenschaufel zur Verfügung.
  • Erfindungsgemäß werden die Schieberelemente zur Herstellung eines ersten Prototyps der zu fertigenden Turbinenschaufel-Serie dabei so ausgebildet, dass in dem zu fertigenden Turbinenschaufel-Prototyp der drosselnde, minimale Abstand zwischen den Erhebungen auf jeden Fall kleiner als der theoretisch erforderliche ist. Der damit hergestellte erste Turbinenschaufel-Prototyp wird dann einer Kühlmittel-Durchflussmessung unterzogen. Wunschgemäß ist aufgrund des erstmals zu geringen Abstands zwischen den Erhebungen die Drosselwirkung zu groß, was vorerst zu einer zu geringen Durchflussmenge führt. In Abhängigkeit des Ergebnisses der Durchflussmessung werden dann die Schieberelemente verändert. Deren Erhebungen werden geringfügig verändert, wodurch sich im zusammen geschobenen Zustand deren minimaler Abstand vergrößert. Anschließend wird ein weiterer Gusskern damit hergestellt. Mit diesem wird ein weiterer Turbinenschaufel-Prototyp hergestellt, dessen Durchflussmenge dann erneut ermittelt und mit der gewünschten Menge verglichen wird. Entspricht die ermittelte Durchflussmenge der gewünschten Durchflussmenge, ist der Herstellungsprozess der Schieberelemente abgeschlossen. Die Schieberelemente sind dann so ausgebildet, dass mit ihnen stets Gusskerne hergestellt werden, mit denen sich bestimmungsgemäße Turbinenschaufeln in Serie fertigen lassen. Für den Fall, die die zuletzt ermittelte Durchflussmenge nicht der gewünschten Durchflussmenge entspricht, werden erneut alle Schritte zur Herstellung eines weiteren Turbinenschaufel-Prototyps durchgeführt, dessen minimaler Abstand gegenüber dem vorherigen Prototypen etwas vergrößert ist.
  • Der besondere Vorteil der vorgeschlagenen Lösung liegt darin, dass jeder der beiden Schieber jeweils für sich alleine bearbeitet werden kann - etwa durch Schleifen der daran angeordneten Erhebung - ohne die Konstruktion der Turbinenschaufel und deren Kühlsystem grundlegend zu ändern. Es ist dabei möglich, dass während eines Iterationsschritts nur einer der Schieberelemente oder auch beide Schieberelemente bearbeitet werden.
  • Diese Methode bietet sich auch insbesondere bei Modifikationen bereits bestehender Schaufeln an für den Fall, dass mehr Kühlluft zur ausreichenden Kühlung gebraucht wird. In diesem Fall sind nur geringste Änderungen im Schaufeldesign erforderlich. Eine zusätzliche Qualifikation wegen einer ansonsten erforderlichen Gussänderung ist somit nicht notwendig.
  • Insgesamt führt die Erfindung zur Erniedrigung der Ausschussquote bei der Herstellung von Turbinenschaufeln, was die Produktionskosten und die Produktionszeit von Turbinenschaufeln signifikant verbessert.
  • Gemäß einer vorteilhaften Weiterbildung sind die beiden Erhebungen - in Strömungsrichtung des Kühlkanals gesehen - versetzt zueinander angeordnet. Durch das versetzte Anordnen kann der senkrechte Abstand zwischen der inneren Fläche der Druckseitenwand und der inneren Fläche der Saugseitenwand weiter reduziert werden, was zu besonders schmalen Hinterkantenbereichen von Schaufelblättern führt. Dies verringert aerodynamische Verluste im das Schaufelblatt umströmenden Heißgas.
  • Vorteilhafter Weise ist diejenige Erhebung, welche an der nach innen gewandten Fläche der Druckseitenwand angeordnet ist, stromab derjenigen Erhebung angeordnet, welche an der nach innen gewandten Fläche der Saugseitenwand angeordnet ist. Diese Konstruktion erzwingt eine Kühlmittelströmung im Kanal, die verstärkt an der nach innen gewandten Fläche der Saugseitenwand vorbei strömt. Hierdurch kann insbesondere bei den so genannten Cut-Back-Hinterkanten eine verlängerte Filmkühlwirkung des ungeschützten Endes der saugseitigen Hinterkante erreicht werden, was dort Verschleißerscheinungen reduziert und die Lebensdauer der Turbinenschaufel verlängert.
  • Bevorzugtermaßen sind an der Hinterkante mehrere Öffnungen angeordnet, wobei der Kühlkanal gemeinschaftlich mehrere Öffnungen mit dem Hohlraum verbindet.
  • Wenn die Erhebungen als Rippen ausgebildet sind, können mit Hilfe dieser kantigen Kontur der nach innen gewandten Flächen der Seitenwände des Schaufelblatts im Betrieb auch Turbulenzen im Kühlmittel erzeugt werden. Diese Turbulenzen können einerseits zur Drosselwirkung beitragen und andererseits zur Erhöhung des Wärmeübergangs aufgrund turbulenterer Kühlmittel-Strömung.
  • Das mit der Erfindung vorgeschlagene Interieur der Turbinenschaufel kann sowohl für Turbinenschaufeln mit (für die Seitenwände) gemeinsamer Hinterkante angewendet werden als auch für Turbinenschaufeln mit einer sogenannten Cut-Back-Hinterkante.
  • Eine weitere vorteilhafte Ausführungsform der Erfindung wird anhand der Zeichnung näher erläutert.
  • Es zeigen:
  • FIG 1
    eine Turbinenlaufschaufel in einer perspektivischen Darstellung,
    FIG 2
    einen Längsschnitt durch den Bereich der Hinterkante der aus dem Stand der Technik bekannten Turbinenlaufschaufel,
    FIG 3
    einen Querschnitt durch den Hinterkantenbereich einer erfindungsgemäßen Turbinenschaufeln nach einer ersten Ausgestaltung und
    FIG 4
    einen Querschnitt durch den Hinterkantenbereich einer erfindungsgemäßen Turbinenschaufeln nach einer zweiten Ausgestaltung.
  • Gleiche Merkmale sind in allen Figuren mit identischen Bezugszeichen versehen.
  • Eine die Erfindung betreffende Gasturbinenschaufel 10 ist in FIG 1 perspektivisch dargestellt. Die Gasturbinenschaufel 10 ist gemäß FIG 1 als Laufschaufel ausgebildet. Die Erfindung kann auch in einer nicht dargestellten Leitschaufel einer Gasturbine verwendet werden. Die Turbinenschaufel 10 umfasst einen im Querschnitt tannenbaumförmigen Schaufelfuß 12 sowie eine daran angeordnete Plattform 14. An die Plattform 14 schließt sich ein aerodynamisch gekrümmtes Schaufelblatt 16 an, welches eine Vorderkante 18 sowie eine Hinterkante 20 aufweist. An der Vorderkante 18 sind als sog. "Shower Head" angeordnete Kühlöffnungen vorgesehen, aus denen ein im Inneren strömendes Kühlmittel, vorzugsweise Kühlluft, austreten kann. Das Schaufelblatt 16 umfasst eine - bezüglich FIG 1 - rückseitige Saugseitenwand 22 sowie eine vorderseitige Druckseitenwand 24. Entlang der Hinterkante 20 sind eine Vielzahl von Öffnungen 28 vorgesehen, welche durch dazwischen angeordnete Stege 30 voneinander getrennt sind. Die Hinterkante 20 ist dabei als so genannte Cut-Back-Hinterkante ausgebildet, so dass die Öffnungen 28 eher druckseitig angesiedelt sind als mittig in der Hinterkante 20.
  • FIG 2 zeigt das Innere einer aus dem Stand der Technik bekannten Turbinenschaufel in einem Längsschnitt entlang einer Ebene, aufgespannt von einer Mittenlinie, welche sich von der Vorderkante 18 zur Hinterkante 20 des Schaufelblattes 16 erstreckt, und von der Schaufellängsrichtung, welche sich von Schaufelfuß 12 zur Schaufelspitze hin erstreckt.
  • In FIG 2 sind weiter rechts angeordnet die Hinterkantenöffnungen 28 dargestellt, zwischen denen die Stege 30 angeordnet sind. Die Stege 30 erstrecken sich im Wesentlichen parallel zu einer Heißgasströmung, welche beim Betrieb das Schaufelblatt 16 von der Vorderkante 18 zur Hinterkante 20 umströmt. In FIG 2 links dargestellt ist eine Vielzahl von in einem Raster angeordnete Säulen- bzw. Sockeln 32 vorgesehen. Sowohl die Sockeln 32 als auch die Stege 30 erstrecken sich dabei von einer Innenfläche 34 der Saugseitenwand 22 zu einer in FIG 2 nicht dargestellten Innenfläche der Druckseitenwand 24. Folglich sind die Sockeln 32 in einem Hohlraum 38 der Turbinenschaufel 10 angeordnet, welcher seitlich von der Saugseitenwand 22 und der Druckseitenwand 24 begrenzt ist.
  • Bei der Verwendung der Turbinenschaufel 10 in einer Gasturbine wird während des Betriebes der Hohlraum 38 von einem Kühlmittel, beispielsweise Kühlluft 40 oder Kühldampf, durchströmt. In der Regel ist der in FIG 2 nicht dargestellte Teil der Turbinenschaufel 10 im Inneren so ausgebildet, dass das Feld von Sockeln 32 im Wesentlichen gleichmäßig von Kühlluft 40 angeströmt wird. Die gleichmäßige Anströmung der im Raster angeordneten Sockel 32 ist durch die mit 40 markierten Pfeile gezeigt. Die Kühlluft 40 trifft auf einzelne Sockel 32 und wird dabei von diesen umgelenkt, wobei deren Hauptströmungsrichtung im Wesentlichen unverändert bleibt. Dabei entstehen in der Kühlluft 40 Turbulenzen. Die vom Heißgas in die Schaufelwände 22, 24 eingebrachte Wärme wird von diesen weiter in die Sockel 32 geleitet. Dort nimmt die die auf die Sockel 32 auftreffende Kühlluft 40 die Wärme auf und transportiert sie ab. Nachdem die Kühlluft 40 das Sockelfeld durchströmt hat, tritt diese in Passagen 41 ein, welche den Hohlraum 38 mit den Öffnungen 28 verbinden. Nach Durchströmen der Passagen 41 tritt die Kühlluft 40 durch die Öffnungen 28 aus der Turbinenschaufel 10 heraus und vermischt sich mit dem das Schaufelblatt 16 umströmenden Heißgas.
  • Um nun die Menge an die Öffnungen 28 verlassendem Kühlmittel einzustellen, sind an den Innenflächen 34, 36 der Saugseitenwand 22 bzw. Druckseitenwand 24 Erhebungen 42, 44 (FIG 3, FIG 4) vorgesehen. Die eine (42) der beiden Erhebungen 42, 44 ist an der Innenfläche 34 angeordnet bzw. Teil dieser, die andere (44) der beiden Erhebungen 42, 44 ist an der Innenfläche 36 angesiedelt bzw. Teil dieser. Die Innenflächen 34, 36 begrenzen einen Hohlraum 38 sowie einen Kühlkanal 46, welcher den Hohlraum 38 mit den Öffnungen 28 verbindet. Dabei ist es möglich, dass Hohlraum 38 und Kanal 46 ineinander übergehen. Erfindungsgemäß ist nun der minimale Abstand zwischen der Innenfläche 34 und der Innenfläche 36 im Bereich der beiden Erhebungen 42, 44 vorgesehen. Hierzu ist - in FIG 3 in Bezug auf den darin gezeigten Querschnitt durch die Hinterkante 20 der Turbinenschaufel 10 - die neutrale Faser 47 des Kühlkanals 46 gezeigt, welche stets den gleichen senkrechten Abstand zur Innenfläche 34 und Innenfläche 36 aufweist. Der das Drosselelement bildende minimale Abstand A ist dabei zwischen den beiden Erhebungen 42, 44 angesiedelt, wodurch diese in Relation zueinander sind.
  • Die Erhebungen 42, 44 ersetzen weder die Sockel 32 noch die Stege 30.
  • Gemäß FIG 3 erstrecken sich die Erhebungen 42, 44 entlang der Schaufellängsrichtung (senkrecht zur Blattebene) über die gesamte Höhe des Kühlkanals 46. Die Kontur der Erhebungen 42, 44 sind, wie im gezeigten Querschnitt gemäß FIG 3, dergestalt, dass sie einen stufenlosen und kantenfreien Verlauf des Kühlkanals in Strömungsrichtung des Kühlmittels zur Hinterkantenöffnung 28 hin ermöglichen. Alternativ kann vorgesehen sein, dass die Erhebungen auch in Form von Rippen ausgestaltet sind, wie in FIG 4 dargestellt.
  • Gemäß FIG 4 weisen die Erhebungen 42, 44 eine rippenförmige Kontur mit einer Höhe H1 bzw. H2 auf.
  • Beim Herstellen eines ersten Prototyps der erfindungsgemäßen Turbinenschaufel sind die Höhen H1 und H2 vergleichsweise groß, so dass ein Kühlluftverbrauch ermittelt werden kann, der unterhalb des gewünschten bzw. vorgegebenen Verbrauchs liegt. Durch Modifikation des Kernwerkzeugs, d. h. der entsprechenden Schieberelemente, sind weitere Prototypen sukzessive herstellbar, die aufgrund verringerter Rippenhöhen H1, H2 stets etwas mehr Kühlmittel verbrauchen als der zuvor gefertigte Prototyp. Jede Iteration umfasst dabei das Herstellen einer Turbinenschaufel mit einer definierten Rippenhöhe H1 und H2 und die Bestimmung des Kühlmittelverbrauchs des entsprechenden Turbinenschaufel-Prototyps. Alsbald ein Kühlmittelverbrauch festgestellt wird, der der gewünschten bzw. vorgegebenen Menge entspricht, ist die Herstellung der Schieberelemente beendet, so dass mit dem dann verfügbaren Kernwerkzeug in erhöhtem Maße Gusskerne und damit Turbinenschaufeln mit dem gewünschten Kühlmittelverbrauch hergestellt werden können, was die Ausschussquote signifikant verringert.
  • De facto ist mit der vorgeschlagenen Ausgestaltung eine Turbinenschaufel 10 angegeben, die während der Phase der Werkzeugherstellung eine einfache und kostengünstige Testphase ermöglicht, um nach Abschluss der Iterationen für eine Serie von Turbinenschaufeln 10 exakt gefertigtes Kernwerkzeug bereitzustellen.
  • Weiter ist sogar möglich, dass die zum Gießen der erfindungsgemäßen Turbinenschaufel 10 benötigten Gusskerne seltener bei der Handhabung brechen als die aus dem Stand der Technik bekannten Gusskerne.
  • Selbstverständlich ist auch möglich, dass das Drosselelement anstelle von zwei Erhebungen 42, 44 nur eine einzige Erhebung 44 (oder 42) umfasst, so dass der die Durchflussmenge bestimmende minimale Abstand zwischen einer einzigen Erhebung 44 (oder 42) und der ihre gegenüberliegenden, dann nach innen gerichteten Fläche 34 (oder 36) der Saugseitenwand 22 (oder der Druckseitenwand 36) angesiedelt ist. In diesem Fall kann die gegenüberliegenden Fläche 34 bzw. 36 dann im Bereich des minimalen Abstands auch eben ausgestaltet sein.
  • Insgesamt wird mit der Erfindung eine Turbinenschaufel 10 angegeben, deren Menge an aus der Hinterkante 20 ausströmenden Kühlmittel 40 vergleichweise einfach und exakt unmittelbar beim Abgießen der Turbinenschaufel 10 eingestellt ist, ohne dass eine Nachbearbeitung der gegossenen Turbinenschaufel 10 hinsichtlich der Einstellung des Kühlmittelverbrauchs nötig ist. Um dies zu erreichen, wird vorgeschlagen, dass an den Innenflächen 34, 36 der Saugseitenwand 22 bzw. Druckseitenwand 24 Erhebungen 42, 44 angesiedelt sind, zwischen denen sich das Drosselelement befindet, mittels welchem die Menge ausströmenden Kühlmittel eingestellt ist. Diese Anordnung ermöglicht das einfache Herstellen eines Kernwerkzeugs, mit dem die zum Gießen der Turbinenschaufel 10 erforderlichen Gusskerne stets mit der gewünschten Genauigkeit vielfach herstellbar sind.

Claims (6)

  1. Turbinenschaufel (10) für eine Gasturbine,
    mit einem von einem Heißgas umströmbaren Schaufelblatt (16), welches eine Saugseitenwand (22) und eine Druckseitenwand (24) umfasst, die sich in Strömungsrichtung des Heißgases von einer gemeinsamen Vorderkante (18) zu einer Hinterkante (20) erstrecken,
    wobei an der Hinterkante (20) zumindest eine Öffnung (28) zum Ausblasen eines das Schaufelblatt (16) zuvor kühlenden Kühlmittels (40) angeordnet ist, welche mit einem im Schaufelblatt (16) angeordneten Hohlraum (38) mittels eines Kanals (46) in Strömungsverbindung steht,
    wobei der Kanal (46) auch von einer nach innen gewandten Fläche (34) der Saugseitenwand (22) und von einer nach innen gewandte Fläche (36) der Druckseitenwand (24) begrenzt ist und zur Einstellung der aus der Öffnung (28) austretenden Kühlmittelmenge ein Drosselelement vorgesehen ist,
    dadurch gekennzeichnet, dass
    das Drosselelement stromauf - in Bezug auf die Durchströmungsrichtung des Kanals (46) - der betreffenden Öffnung (28) zwei Erhebungen (42, 44) umfasst, die jeweils an einer der beiden nach innen gewandten Flächen (34, 36) angeordnet sind.
  2. Turbinenschaufel (10) nach Anspruch 1,
    bei der die beiden Erhebungen (42, 44) - in Durchströmungsrichtung des Kühlkanals (46) gesehen - versetzt zueinander angeordnet sind.
  3. Turbinenschaufel (10) nach Anspruch 2,
    bei der diejenige Erhebung (42, 44), welche an der nach innen gewandten Fläche (36) der Druckseitenwand (24) angeordnet ist, stromab derjenigen Erhebung (42, 44) angeordnet ist, welche an der nach innen gewandten Fläche (34) der Saugseitenwand (22) angeordnet ist.
  4. Turbinenschaufel (10) nach Anspruch 1, 2 oder 3,
    bei der an der Hinterkante (20) mehrere Öffnungen (28) angeordnet sind und der Kühlkanal (46) gemeinschaftlich mehrere Öffnungen (28) mit dem Hohlraum (38) verbindet.
  5. Turbinenschaufel (10) nach einem der vorangehenden Ansprüche,
    bei der die Erhebungen (24, 44) als Rippen ausgebildet sind.
  6. Turbinenschaufel (10) nach einem der vorangehenden Ansprüche,
    bei der die Öffnungen (28) druckwandseitig vorgesehen sind.
EP10175235A 2010-09-03 2010-09-03 Turbinenschaufel für eine Gasturbine Withdrawn EP2426317A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP10175235A EP2426317A1 (de) 2010-09-03 2010-09-03 Turbinenschaufel für eine Gasturbine
EP11749827.9A EP2611990B1 (de) 2010-09-03 2011-08-29 Turbinenschaufel für eine gasturbine
US13/818,794 US20130156599A1 (en) 2010-09-03 2011-08-29 Turbine blade for a gas turbine
CN201180042590.9A CN103080478B (zh) 2010-09-03 2011-08-29 用于燃气轮机的涡轮叶片
PCT/EP2011/064811 WO2012028574A1 (de) 2010-09-03 2011-08-29 Turbinenschaufel für eine gasturbine
JP2013526429A JP5738996B2 (ja) 2010-09-03 2011-08-29 ガスタービンのためのタービンブレード

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP10175235A EP2426317A1 (de) 2010-09-03 2010-09-03 Turbinenschaufel für eine Gasturbine

Publications (1)

Publication Number Publication Date
EP2426317A1 true EP2426317A1 (de) 2012-03-07

Family

ID=43545953

Family Applications (2)

Application Number Title Priority Date Filing Date
EP10175235A Withdrawn EP2426317A1 (de) 2010-09-03 2010-09-03 Turbinenschaufel für eine Gasturbine
EP11749827.9A Not-in-force EP2611990B1 (de) 2010-09-03 2011-08-29 Turbinenschaufel für eine gasturbine

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP11749827.9A Not-in-force EP2611990B1 (de) 2010-09-03 2011-08-29 Turbinenschaufel für eine gasturbine

Country Status (5)

Country Link
US (1) US20130156599A1 (de)
EP (2) EP2426317A1 (de)
JP (1) JP5738996B2 (de)
CN (1) CN103080478B (de)
WO (1) WO2012028574A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014031189A1 (en) * 2012-05-09 2014-02-27 General Electric Company Asymmetrically shaped trailing edge cooling holes
WO2014179157A1 (en) * 2013-04-29 2014-11-06 Siemens Aktiengesellschaft Cooling system including wavy cooling chamber in a trailing edge portion of an airfoil assembly
JP2015512494A (ja) * 2012-04-03 2015-04-27 ゼネラル・エレクトリック・カンパニイ タービン翼の後縁冷却スロット
EP3147455A1 (de) * 2015-09-23 2017-03-29 Siemens Aktiengesellschaft Turbinenleitschaufel mit einer drosseleinrichtung
WO2017164935A1 (en) * 2016-03-22 2017-09-28 Siemens Aktiengesellschaft Turbine airfoil with trailing edge framing features
WO2019005425A1 (en) * 2017-06-30 2019-01-03 Siemens Aktiengesellschaft AERODYNAMIC TURBINE PROFILE HAVING LEAK EDGE CHARACTERISTICS AND CASTING CORE
EP3492700A1 (de) * 2017-11-29 2019-06-05 Siemens Aktiengesellschaft Innengekühlte turbomaschinenkomponente

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9132476B2 (en) * 2013-10-31 2015-09-15 Siemens Aktiengesellschaft Multi-wall gas turbine airfoil cast using a ceramic core formed with a fugitive insert and method of manufacturing same
US10323524B2 (en) * 2015-05-08 2019-06-18 United Technologies Corporation Axial skin core cooling passage for a turbine engine component
US10502066B2 (en) 2015-05-08 2019-12-10 United Technologies Corporation Turbine engine component including an axially aligned skin core passage interrupted by a pedestal
US10260354B2 (en) * 2016-02-12 2019-04-16 General Electric Company Airfoil trailing edge cooling
KR20180082118A (ko) * 2017-01-10 2018-07-18 두산중공업 주식회사 가스 터빈의 블레이드 또는 베인의 컷백
KR101875692B1 (ko) * 2017-04-10 2018-07-06 연세대학교 산학협력단 가스터빈 냉각을 위한 직물형태의 내부 유로 구조를 포함하는 가스터빈 블레이드
US10753210B2 (en) * 2018-05-02 2020-08-25 Raytheon Technologies Corporation Airfoil having improved cooling scheme

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5356265A (en) * 1992-08-25 1994-10-18 General Electric Company Chordally bifurcated turbine blade
US5752801A (en) * 1997-02-20 1998-05-19 Westinghouse Electric Corporation Apparatus for cooling a gas turbine airfoil and method of making same
EP1091092A2 (de) 1999-10-05 2001-04-11 United Technologies Corporation Methode und Einrichtung zur Kühlung einer Wand in einer Gasturbine
WO2003042503A1 (en) 2001-11-14 2003-05-22 Honeywell International Inc. Internal cooled gas turbine vane or blade
EP1327747A2 (de) * 2002-01-11 2003-07-16 General Electric Company Prallkühlung für Hinterkanten einer Turbinenschaufel
WO2008100305A1 (en) * 2007-02-15 2008-08-21 Siemens Energy, Inc. Turbine blade having a convergent cavity cooling system for a trailing edge

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3651490B2 (ja) * 1993-12-28 2005-05-25 株式会社東芝 タービン冷却翼
JPH08334003A (ja) * 1995-06-06 1996-12-17 Mitsubishi Heavy Ind Ltd 冷却翼後縁冷却装置
EP1445423B1 (de) * 1999-04-21 2006-08-02 Alstom Technology Ltd Kühlbare Turbomaschinenschaufel
DE50106385D1 (de) * 2001-03-26 2005-07-07 Siemens Ag Verfahren zur Herstellung einer Turbinenschaufel
EP1653046A1 (de) * 2004-10-26 2006-05-03 Siemens Aktiengesellschaft Gekühlte Turbinenschaufel sowie Verfahren zur Einstellung des Durchflussvolumens eines Kühlmediums
US7575414B2 (en) * 2005-04-01 2009-08-18 General Electric Company Turbine nozzle with trailing edge convection and film cooling
US7785070B2 (en) * 2007-03-27 2010-08-31 Siemens Energy, Inc. Wavy flow cooling concept for turbine airfoils
CH700321A1 (de) * 2009-01-30 2010-07-30 Alstom Technology Ltd Gekühlte schaufel für eine gasturbine.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5356265A (en) * 1992-08-25 1994-10-18 General Electric Company Chordally bifurcated turbine blade
US5752801A (en) * 1997-02-20 1998-05-19 Westinghouse Electric Corporation Apparatus for cooling a gas turbine airfoil and method of making same
EP1091092A2 (de) 1999-10-05 2001-04-11 United Technologies Corporation Methode und Einrichtung zur Kühlung einer Wand in einer Gasturbine
WO2003042503A1 (en) 2001-11-14 2003-05-22 Honeywell International Inc. Internal cooled gas turbine vane or blade
EP1327747A2 (de) * 2002-01-11 2003-07-16 General Electric Company Prallkühlung für Hinterkanten einer Turbinenschaufel
WO2008100305A1 (en) * 2007-02-15 2008-08-21 Siemens Energy, Inc. Turbine blade having a convergent cavity cooling system for a trailing edge

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015512494A (ja) * 2012-04-03 2015-04-27 ゼネラル・エレクトリック・カンパニイ タービン翼の後縁冷却スロット
WO2014031189A1 (en) * 2012-05-09 2014-02-27 General Electric Company Asymmetrically shaped trailing edge cooling holes
CN104487658A (zh) * 2012-05-09 2015-04-01 通用电气公司 非对称成形的后缘冷却孔
JP2015516540A (ja) * 2012-05-09 2015-06-11 ゼネラル・エレクトリック・カンパニイ 非対称形状の後縁冷却孔
US9145773B2 (en) 2012-05-09 2015-09-29 General Electric Company Asymmetrically shaped trailing edge cooling holes
CN104487658B (zh) * 2012-05-09 2016-04-13 通用电气公司 非对称成形的后缘冷却孔
WO2014179157A1 (en) * 2013-04-29 2014-11-06 Siemens Aktiengesellschaft Cooling system including wavy cooling chamber in a trailing edge portion of an airfoil assembly
EP3147455A1 (de) * 2015-09-23 2017-03-29 Siemens Aktiengesellschaft Turbinenleitschaufel mit einer drosseleinrichtung
WO2017164935A1 (en) * 2016-03-22 2017-09-28 Siemens Aktiengesellschaft Turbine airfoil with trailing edge framing features
CN108779678A (zh) * 2016-03-22 2018-11-09 西门子股份公司 具有后缘框架特征的涡轮翼型件
CN108779678B (zh) * 2016-03-22 2021-05-28 西门子股份公司 具有后缘框架特征的涡轮翼型件
US11193378B2 (en) 2016-03-22 2021-12-07 Siemens Energy Global GmbH & Co. KG Turbine airfoil with trailing edge framing features
WO2019005425A1 (en) * 2017-06-30 2019-01-03 Siemens Aktiengesellschaft AERODYNAMIC TURBINE PROFILE HAVING LEAK EDGE CHARACTERISTICS AND CASTING CORE
US11415000B2 (en) 2017-06-30 2022-08-16 Siemens Energy Global GmbH & Co. KG Turbine airfoil with trailing edge features and casting core
EP3492700A1 (de) * 2017-11-29 2019-06-05 Siemens Aktiengesellschaft Innengekühlte turbomaschinenkomponente
WO2019105742A1 (en) * 2017-11-29 2019-06-06 Siemens Aktiengesellschaft Internally-cooled turbomachine component

Also Published As

Publication number Publication date
WO2012028574A1 (de) 2012-03-08
JP2013536913A (ja) 2013-09-26
US20130156599A1 (en) 2013-06-20
CN103080478A (zh) 2013-05-01
CN103080478B (zh) 2015-05-20
EP2611990A1 (de) 2013-07-10
JP5738996B2 (ja) 2015-06-24
EP2611990B1 (de) 2015-01-28

Similar Documents

Publication Publication Date Title
EP2611990B1 (de) Turbinenschaufel für eine gasturbine
EP2304185B1 (de) Turbinenschaufel für eine gasturbine und gusskern zum herstellen in einer solchen
EP1113145B1 (de) Schaufel für Gasturbinen mit Drosselquerschnitt an Hinterkante
DE69823236T2 (de) Einrichtung zur kühlung von gasturbinenschaufeln und methode zu deren herstellung
EP1223308B1 (de) Komponente einer Strömungsmaschine
EP2300178B1 (de) Verfahren zum gusstechnischen herstellen einer schaufel für eine gasturbine werkzeug zur herstellung eines gusskerns für die schaufel
DE102016216019A1 (de) Einsatz für einen Kühlmantel einer elektrischen Maschine
WO2010086419A1 (de) Gekühlte schaufel für eine gasturbine
EP3062054A1 (de) Wärmetauscher, insbesondere für ein kraftfahrzeug
EP2181792A1 (de) Vorrichtung und Verfahren zum Herstellen von Bohrungen in einer Kante einer Turbinenschaufel
EP3658751A1 (de) Schaufelblatt für eine turbinenschaufel
EP2489837A1 (de) Drosseleinsatz für Turbinenschaufel und zugehörige Turbinenschaufel
DE10129975B4 (de) Giessform für den Kern einer Gasturbinenschaufel oder dergleichen
EP1288435B1 (de) Turbinenschaufel mit zumindest einer Kühlungsöffnung
EP2163726A1 (de) Turbinenschaufel mit einer modularen, gestuften Hinterkante
EP3112593A1 (de) Innengekühlte turbinenschaufel
EP2993337A1 (de) Flugzeugtriebwerk mit mindestens einer vorrichtung zur entnahme von zapfluft
EP3320788B1 (de) Strangherstellmaschine zur herstellung von produkten der tabak verarbeitenden industrie und zugehörige formatgarnitur
DE19961565A1 (de) Verfahren zur Einstellung des Durchflussvolumens eines Kühlmediums durch eine Turbinenkomponente
EP1138878A2 (de) Plattenförmiger, auskragender Bauteilabschnitt einer Gasturbine
EP2861829A1 (de) Luftgekühlte turbinenlaufschaufel für eine gasturbine
WO2010086402A2 (de) Verfahren zum herstellen eines bauteils einer gasturbine
EP2476863A1 (de) Turbinenschaufel für eine Gasturbine
WO2015044008A1 (de) Einsatz zur kühlung einer turbinenschaufel aus mehreren teilstücken
DE4443696A1 (de) Gekühlte Turbinenschaufel

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120908

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT