EP3062054A1 - Wärmetauscher, insbesondere für ein kraftfahrzeug - Google Patents

Wärmetauscher, insbesondere für ein kraftfahrzeug Download PDF

Info

Publication number
EP3062054A1
EP3062054A1 EP16153327.8A EP16153327A EP3062054A1 EP 3062054 A1 EP3062054 A1 EP 3062054A1 EP 16153327 A EP16153327 A EP 16153327A EP 3062054 A1 EP3062054 A1 EP 3062054A1
Authority
EP
European Patent Office
Prior art keywords
fluid
heat exchanger
plate
exchanger according
turbulence generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP16153327.8A
Other languages
English (en)
French (fr)
Other versions
EP3062054B1 (de
Inventor
Yavuz Altunkaya
Tobias Fetzer
Wilhelm Grauer
Boris Kerler
Jonas Kühndel
Marco Renz
Volker Velte
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle International GmbH
Original Assignee
Mahle International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle International GmbH filed Critical Mahle International GmbH
Publication of EP3062054A1 publication Critical patent/EP3062054A1/de
Application granted granted Critical
Publication of EP3062054B1 publication Critical patent/EP3062054B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1684Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0081Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by a single plate-like element ; the conduits for one heat-exchange medium being integrated in one single plate-like element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/38Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and being staggered to form tortuous fluid passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/048Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of ribs integral with the element or local variations in thickness of the element, e.g. grooves, microchannels

Definitions

  • the present invention relates to a heat exchanger, in particular for a motor vehicle.
  • Heat exchangers are used, for example, in motor vehicles to cool the fresh air charged by means of an exhaust-gas turbocharger in a fresh-air system interacting with the internal combustion engine of the motor vehicle.
  • the fresh air to be cooled is introduced into the heat exchanger, where it interacts thermally with a likewise introduced into the heat exchanger coolant and emits heat to the coolant in this way.
  • Such a heat exchanger may be configured, for example, as a plate heat exchanger and have a plurality of plate assemblies each having a pair of plates stacked in a stacking direction, wherein between the plates of a plate pair, a coolant path is formed through which a coolant is passed.
  • the medium to be cooled for example in a turbocharger charged charge air
  • the medium to be cooled can be fluidically separated from the coolant, so that the coolant through the plates of the plate assembly in thermal interaction can be set with the charge air to be cooled.
  • additional rib structures may be provided between adjacent plate assemblies which increase the interaction area of the plates available for the thermal interaction. such Constructions are known in the art as so-called "rib-tube heat exchanger".
  • a heat exchanger comprises a plurality of plate pairs, which are adjacent and spaced apart along a stacking direction.
  • the plate pairs each comprise a first and a second plates, which define in the stacking direction a fluid path through which a first fluid can flow.
  • This fluid may be fresh air, for example, which has been charged by an exhaust gas turbocharger in a fresh air system of an internal combustion engine and thereby heated and should therefore be cooled in the heat exchanger.
  • a second fluid path formed to flow through with a second fluid, which may be a coolant, which by thermal interaction with the fresh air flowing through the first fluid path, a cooling causes the same.
  • a plurality of turbulence-generating elements are arranged in at least one second fluid path, which are connected at one end to a first plate of a plate pair bounding the second fluid path.
  • the turbulence generating elements are connected to a second plate of a plate pair adjacent in the stacking direction.
  • the inventive measures lead to a comparison with conventional heat exchangers improved thermal interaction of the two fluids together. As a result, therefore, a heat exchanger with improved efficiency is realized. Therefore, all second fluid paths are particularly preferably equipped with turbulence generation elements. At the same time, the turbulence generating elements, when properly designed, can act as a support structure for the first and second plates of the plate pairs, which improves the rigidity of the heat exchanger.
  • the turbulence-generating elements can be formed integrally on the first plate and-alternatively or additionally-on the second plate.
  • the production of the heat exchanger offers the use of an additive manufacturing process, which significantly simplifies the entire production process of the heat exchanger according to the invention and should therefore be explained in more detail below.
  • At least the plate pairs and the turbulence generating elements may be manufactured by means of an additive manufacturing method.
  • additive manufacturing process in the present case includes all manufacturing processes which build up the building component directly from a computer model. Such production processes are also known by the name “rapid forming".
  • rapid forming includes in particular production processes for the rapid and flexible production of components by means of tool-free production directly from CAD data.
  • the use of an additive manufacturing method allows the production of the heat exchanger according to the invention without component-specific investment means such as tool molds or the like. and almost no geometric restrictions.
  • heat exchangers made using other methods are eliminated usually in a variety of forms and a large number of existing small parts such as sealing elements or fasteners such as struts or the like. Therefore, all components of the heat exchanger are preferably produced by means of the additive manufacturing process.
  • the heat exchanger may be integrally formed.
  • Such a one-piece design is formed in particular when using the above-proposed additive manufacturing process, in particular laser melting.
  • a one-piece design of the heat exchanger eliminates the very costly and therefore costly attaching the individual components of the heat exchanger together.
  • the additive manufacturing process may include laser melting.
  • a laser melting process is used for producing the plate pairs and the turbulence generating elements, preferably for producing the entire heat exchanger.
  • the components of the heat exchanger can be made directly from 3D CAD data. Basically, the components of the heat exchanger in the laser melting process without tools and in layers based on the three-dimensional CAD model associated with the heat exchanger.
  • turbulent flow patterns in the fluids flowing through the second fluid paths can be generated by forming the turbulence generation elements as guide vanes projecting from the first and second plates, in particular in the stacking direction.
  • the plurality of turbulence generating elements are arranged in a grid-like manner with at least two raster lines in a plan view of the first or second plate.
  • a line direction is defined by the at least two raster lines.
  • the turbulence generating elements are formed longitudinally in the plan view of the first plate and each extend along a longitudinal direction.
  • longitudinal direction is meant that a length of the respective turbulence generating element - measured in the longitudinal direction - is at least five times, preferably ten times, most preferably twenty times, a maximum width measured transversely to the longitudinal direction.
  • the longitudinal direction extends substantially transversely to the row direction.
  • a plurality of subchannels in the first and second fluid path can be produced, wherein the first or second fluid can also be exchanged between the individual subchannels via the intermediate spaces present in the longitudinal direction between the individual turbulence generation elements.
  • this leads to a uniform flow through the respective fluid path to form a plurality of vortices, resulting in an improved heat exchange between the two, flowing through the first and second fluid path fluids.
  • At least one turbulence generating element is curved along the longitudinal direction. This preferably applies to all turbulence generation elements of at least one second fluid channel, particularly preferably to all turbulence generation elements of the heat exchanger. By means of this measure, the formation of eddy currents in the fluid paths is further enhanced.
  • two adjacent first and / or second turbulence generation elements of a raster line are designed such that a distance measured transversely to the longitudinal direction between these two turbulence generation elements decreases at least in sections along the longitudinal direction.
  • all turbulence generation elements of the same raster line are each provided in pairs with such a geometry.
  • the heat exchanger is designed such that the first fluid flows through the first fluid path substantially along a first main flow direction.
  • This first main flow direction extends substantially orthogonal to a second main flow direction, through which the second fluid flows substantially in the second fluid path.
  • the two fluids flow at an angle of substantially 90 ° to each other through the first and second fluid paths, respectively. This measure leads to an increased thermal interaction between the two fluids and thus to an improved efficiency of the heat exchanger.
  • each first fluid path present in the heat exchanger prefferably has a common first fluid inlet for introducing the first fluid into the first fluid path and a fluid outlet for discharging the first fluid have the first fluid path.
  • the first fluid inlet and the first fluid outlet are in the plan view of the first and second plate of the first and second fluid path limiting plate pair substantially opposite.
  • each second fluid path has a second fluid inlet for introducing the second fluid into the second fluid path and a common fluid outlet for discharging the second fluid from the same second fluid path, the second fluid inlet and the second fluid outlet also being in plan view of the first plate in FIG Essentially opposite.
  • the respective common fluid inlet or joint fluid outlet may be formed integrally on the respective plate pairs and contain a respective passage opening. This may in particular apply to the particularly preferred case that the plate pairs with the first and second plates are part of a flat tube; In this case, the passage openings forming a fluid inlet or fluid outlet can be formed in the flat tubes.
  • first fluid inlet and the second fluid inlet are arranged in the plan view of the first plate substantially orthogonal to each other.
  • the first fluid outlet and the second fluid outlet can also be arranged substantially orthogonal to one another in the plan view of the first plate.
  • Both measures taken alone or in combination lead to the first fluid outlet being arranged on a first side of the first or second plate with respect to the plan view of the plate pairs.
  • This page may for example be a longitudinal or transverse side of the plate.
  • the second fluid inlet is then - preferably rotated by 90 ° - arranged on the transverse or longitudinal side.
  • Such an embodiment of the heat exchanger makes it possible to provide on the longitudinal or transverse side a first fluid distributor, which distributes the first fluid to all first fluid inlets and, in the process, communicates fluidically with these. Twisted on the transverse or longitudinal side, ie preferably by 90 °, a second fluid distributor can be provided in the same way, which communicates fluidically with all second fluid inlets to distribute the second fluid to the second fluid paths.
  • the two fluid distributors can thus be mounted on the outside of different sides of the plate pairs, which significantly reduces the design effort for the realization of the two fluid manifold.
  • a first and a second fluid collector on the remaining longitudinal or transverse side.
  • a first fluid collector may be provided which fluidically communicates with all first fluid outlets for collecting the first fluid after flowing through the first fluid paths.
  • a second fluid collector is provided on the last remaining transverse or longitudinal side, which communicates fluidically with all second fluid outlets for collecting the second fluid after flowing through the second fluid paths.
  • first and second plates of at least one pair of plates are part of a flat tube delimiting the first fluid path.
  • the distance between stack pipes adjacent in the stacking direction may serve as a space for a respective second fluid path in this scenario.
  • all plate pairs can each be part of a flat tube delimiting the first fluid path.
  • a first plate of a respective plate pair and the adjacent in the stacking direction second plate, which is thus assigned to the stack adjacent plate pair are formed as a flat tube, which define the second fluid path.
  • all second fluid paths can be realized in the form of flat tubes described above.
  • the first and second plates of the plate pairs can be designed to be complementary to one another, a channel structure being formed on the inner sides facing the respective other plate.
  • a channel structure may for example have a meander-like or geometry.
  • other geometries are conceivable that can be generated in the plates in a particularly simple and flexible manner by using the aforementioned additive manufacturing process.
  • FIG. 1 shows an example of a heat exchanger 1 according to the invention in a longitudinal section along a stacking direction S of the plate pairs 2 of the heat exchanger, the FIG. 2 a pair of plates 2 of the heat exchanger 1 in a perspective view.
  • the heat exchanger 1 comprises a plurality of plate pairs 2 which are adjacent and spaced apart along a stacking direction S and each comprising a first and a second plates 3a, 3b.
  • the first and second plates 3a, 3b of the plate pairs 2 each delimit in the stacking direction S a first fluid path 4a, through which a first fluid F 1 can flow.
  • a main flow direction of the first fluid F 1 is in a direction indicated by Z.
  • a second fluid path 4b is designed to flow through with a second fluid F 2 .
  • a main flow direction of the second fluid F 2 is L-designated Direction perpendicular to the plane, ie orthogonal to the main flow direction of the first fluid F first
  • a plurality of turbulence generating elements 6 are arranged, which are connected at one end to a first plate 3a of the respective second fluid path 4b limiting plate pair 2 and the other end with a second plate 3b of a stacking direction S adjacent plate pair 2 are connected ,
  • This second plate 3b also defines the fluid passage 4b with the turbulence generating elements 6.
  • the turbulence generating elements 6 are integrally formed on both the first plate 3a and the second plate 3b to which they are connected endwise.
  • the plate pairs 2 with the first and second plates 3a, 3b and the turbulence generating elements 6 are manufactured by an additive manufacturing method.
  • all other components of the heat exchanger 1 can be produced by means of such an additive manufacturing process.
  • the use of an additive manufacturing method allows the production of the heat exchanger 1 with almost no geometric restrictions.
  • the additive manufacturing process it is possible to construct the design of the heat exchanger 1 functionally bound - and no longer tool-bound.
  • the individual components of the heat exchanger 1, such as the pairs of plates 2 and the adjacent pairs of plates 2 connecting turbulence generating elements 6 can be integrally formed directly in the course of the manufacturing process to each other.
  • turbulence generating elements 6 can be made with almost any geometry.
  • the additive manufacturing process may also include the so-called laser melting process.
  • a laser melting process is used for producing the plate pairs 2 and the Turbulence generating elements 6, in an extreme case for producing the entire heat exchanger 1.
  • the above-mentioned components of the heat exchanger can be produced directly from 3D CAD data.
  • the said components of the heat exchanger 1 during the laser melting process are manufactured without tools and in layers on the basis of a three-dimensional CAD model assigned to the heat exchanger 1.
  • the turbulence generating elements 6 may be formed in each case as from the first plate 3a and second plate 3b projecting vanes 8.
  • the formation of the turbulence-generating elements 6 in the form of guide vanes 8 assists in the formation of particularly turbulent flow patterns in the second fluid F 2 flowing through the second fluid paths 4 b. This leads to an improved efficiency of the heat exchanger 1.
  • FIG. 3 can be seen, the plurality of turbulence generating elements 6 in the plan view of the first plate 3a grid-like with multiple raster lines 9 - in FIG. 3
  • three such raster lines 9 are shown - arranged on this.
  • a row direction Z is defined.
  • the turbulence generating elements 6 are formed longitudinally in the stacking direction S on the first plate 3a and each extending along a longitudinal direction L which is substantially transverse to the row direction Z.
  • a length l of the turbulence generating elements 6 is at least five times a maximum width b of the same turbulence generating element 6.
  • the length is preferably at least ten times, more preferably at least twenty times the maximum width b.
  • the width b measured in the row direction Z can be determined according to FIG. 3 vary along the longitudinal direction L.
  • At least one turbulence generating element 6 is formed curved in the top direction in the stacking direction S on the first plate 3a in the longitudinal direction L. This is especially preferred as in FIG. 3 shown for all turbulence generating elements 6 of the heat exchanger 1.
  • the turbulence elements 6 with a curved geometry can be produced in a particularly simple manner by using the aforementioned additive manufacturing method, in particular laser melting. This proves to be particularly advantageous if, as shown in the example, a large number of turbulence generating elements 6 to be used, which can then be used as a support structure for the plates 3a, 3b of the plate pairs 2.
  • Two adjacent turbulence generation elements 6 of a raster line 9 are preferably designed such that a distance a measured transversely to the longitudinal direction L between these two turbulence generation elements 6 decreases along the longitudinal direction L at least in sections.
  • all turbulence generating elements 6 of the same raster line 9 can be provided in pairs with such a geometry.
  • the turbulence generation elements 6 of a respective raster line 9 which are adjacent in a specific line direction Z can form element pairs 12.
  • the Both turbulence generating elements 6 of a respective pair of elements 12 may be arranged with respect to an axis of symmetry A, which extends in the plan view of the first and second plates 3a, 3b along the longitudinal direction L, axially symmetrical to each other.
  • a particularly advantageous arrangement geometry of the turbulence generating elements 6 is realized, which causes a particularly pronounced turbulence in the first and second fluid F 2 and thus to an improved heat exchange between the two fluids F1, F 2 when flowing through the fluid paths 4a, 4b in the heat exchanger 1 leads.
  • Such an axisymmetric arrangement of a multiplicity of element pairs 12 can also be realized in a particularly simple and precise manner by using an additive manufacturing method.
  • the heat exchanger 1 can be formed such that the first fluid F 1 flows through the first fluid path 4a substantially along a first main flow direction R 1 .
  • the first main flow direction R 1 extends substantially orthogonal to a second main flow direction R 2 , through which the second fluid F 2 flows in the second fluid path 4 b.
  • Each first fluid path 4a may have a common first fluid inlet 13 for introducing the first fluid F 1 into the first fluid paths 4a and a common first fluid outlet 14 for discharging the first fluid F 1 from the first fluid paths 4a.
  • the first fluid inlet 13 and the first fluid outlet 14 - whose position is in FIG.
  • each second fluid path may have 4b 4b a common second fluid inlet 15 for introducing the second fluid F2 into the second fluid path 4b and a common second fluid outlet 16 for discharging the second fluid F2 from the second fluid paths.
  • the common second fluid inlet 15 and the common second fluid outlet 16 are also in the plan view of the first plate 3a each other across from.
  • the first fluid inlet 13 and the second fluid inlet 15 with respect to the plan view of the first plate 3a in the stacking direction S are arranged substantially rotated by 90 ° to each other.
  • first fluid outlet 14 and the second fluid outlet 16 are arranged with respect to the plan view of the first plate 2 along the stacking direction S substantially orthogonal to each other.
  • first plate 3a with two longitudinal sides 17a, 17b and two transverse sides 17c, 17d
  • the common first fluid inlet 13 and the common first fluid outlet 14 in the region of opposite longitudinal sides 17a, 17b may be arranged
  • the common second fluid inlet 15 and the common second fluid outlet 16 can be arranged in the region of the opposite transverse sides 17c, 17d.
  • the first and second plates 3a, 3b of the plate pairs 2 may each be part of a flat tube defining the first and / or second fluid path 4a, 4b (not shown). This allows a production of the heat exchanger 1 in flat construction.
  • the two plates 3a, 3b of a respective plate pair 2 may be formed complementary to each other.
  • a channel structure may be formed on the inner side 11 facing the respective other plate.
  • Such a channel structure may for example have a meander-like or geometry.
  • other geometries are conceivable, which can be produced in the plates 3a, 3b in a particularly simple and flexible manner by using the aforementioned additive manufacturing process.
  • the heat exchanger 1 may be formed in one piece. Such a one-piece design is formed in particular when using the above-proposed additive manufacturing process, in particular laser melting. In a one-piece design of the heat exchanger eliminates the very costly and therefore costly attaching the individual components of the heat exchanger together. It is understood that in the case of a one-piece construction of the heat exchanger 1, the terms used herein such as e.g. "first plate 3a" remain valid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Die Erfindung betrifft einen Wärmetauscher (1), insbesondere für ein Kraftfahrzeug, - mit einer Mehrzahl von Plattenpaaren (2), die entlang einer Stapelrichtung (S) benachbart zueinander angeordnet sind und jeweils eine erste und eine zweite Platten (3a, 3b) umfassen, die in der Stapelrichtung (S) einen von einem ersten Fluid (F 1 ) durchströmbaren ersten Fluidpfad (4a) begrenzen, - wobei zwischen zwei in der Stapelrichtung (S) benachbarten Plattenpaaren (2) ein zweiter Fluidpfad (4b) zum Durchströmen mit einem zweiten Fluid ausgebildet ist, - wobei in wenigstens einem zweiten Fluidpfad (4b), vorzugsweise in allen zweiten Fluidpfaden (4b), eine Mehrzahl von Turbulenzerzeugungselementen (6) angeordnet ist, welche einenends mit einer ersten Platte (3a) eines den zweiten Fluidpfad (4b) begrenzenden Plattenpaars (2) verbunden sind und anderenends mit einer zweiten Platte (3b) eines in Stapelrichtung (S) benachbarten Plattenpaars (2) verbunden sind.

Description

  • Die vorliegende Erfindung betrifft einen Wärmetauscher, insbesondere für ein Kraftfahrzeug.
  • Als Wärmetauscher oder Wärmeübertrager wird gemeinhin eine Vorrichtung bezeichnet, die Wärme von einem Stoffstrom auf einen anderen Stoffstrom überträgt. Wärmetauscher kommen beispielsweise in Kraftfahrzeugen zum Einsatz, um in einer mit der Brennkraftmaschine des Kraftfahrzeugs zusammenwirkenden Frischluftanlage die mittels eines Abgasturboladers aufgeladene Frischluft zu kühlen. Hierzu wird die zu kühlende Frischluft in den Wärmetauscher eingeleitet, wo sie thermisch mit einem ebenfalls in den Wärmetauscher eingeleiteten Kühlmittel wechselwirkt und auf diese Weise Wärme an das Kühlmittel abgibt.
  • Ein derartiger Wärmetauscher kann beispielsweise als Plattenwärmetauscher ausgestaltet sein und mehrere Platten-Anordnungen mit jeweils einem Plattenpaar aufweisen, die in einer Stapelrichtung aufeinander gestapelt sind, wobei zwischen den Platten eines Plattenpaars ein Kühlmittelpfad ausgebildet wird, durch den ein Kühlmittel geführt wird. Zwischen zwei Platten-Anordnungen, also in einem zwischen zwei benachbarten Plattenpaaren ausgebildeten Abstand, kann fluidisch getrennt zum Kühlmittel das zu kühlende Medium, beispielsweise in einem Abgasturbolader aufgeladene Ladeluft, geführt werden, so dass das Kühlmittel durch die Platten der Platten-Anordnung in thermische Wechselwirkung mit der zu kühlenden Ladeluft gesetzt werden kann. Zur Verbesserung des Wärmeaustauschs können zwischen benachbarten Platten-Anordnungen zusätzlich Rippenstrukturen vorgesehen werden, welche die für die thermische Wechselwirkung zur Verfügung stehende Wechselwirkungsfläche der Platten erhöhen. Derartige Konstruktionen sind dem Fachmann als sog. "Rippe-Rohr-Wärmetauscher" bekannt.
  • Es ist eine Aufgabe der vorliegenden Erfindung, bei der Entwicklung von Wärmetauschern, insbesondere für Kraftfahrzeuge, neue Wege aufzuzeigen.
  • Diese Aufgabe wird durch einen Wärmetauscher gemäß dem unabhängigen Patentanspruch 1 gelöst. Bevorzugte Ausführungsformen sind Gegenstand der abhängigen Patentansprüche.
  • Ein erfindungsgemäßer Wärmetauscher umfasst eine Mehrzahl von Plattenpaaren, die entlang einer Stapelrichtung benachbart und im Abstand zueinander angeordnet sind. Die Plattenpaare umfassen jeweils eine erste und eine zweite Platten, die in der Stapelrichtung einen Fluidpfad begrenzen, der von einem ersten Fluid durchströmbar ist. Dieses Fluid kann beispielsweise Frischluft sein, die in einer Frischluftanlage einer Brennkraftmaschine von einem Abgasturbolader aufgeladen und dabei erwärmt wurde und daher in dem Wärmetauscher gekühlt werden soll. Zwischen zwei in der Stapelrichtung benachbarten Plattenpaaren ist - fluidisch getrennt und thermisch mit dem ersten Fluidpfad verbunden - ein zweiter Fluidpfad zum Durchströmen mit einem zweiten Fluid ausgebildet, welches ein Kühlmittel sein kann, das durch thermische Wechselwirkung mit der durch den ersten Fluidpfad strömenden Frischluft eine Abkühlung derselben bewirkt. Erfindungsgemäß ist in wenigstens einem zweiten Fluidpfad eine Mehrzahl von Turbulenzerzeugungselementen angeordnet, welche einenends mit einer ersten Platte eines den zweiten Fluidpfad begrenzenden Plattenpaars verbunden sind. Außerdem sind die Turbulenzerzeugungselementen mit einer zweiten Platte eines in Stapelrichtung benachbarten Plattenpaars verbunden.
  • Die erfindungsgemäßen Maßnahmen führen zu einer gegenüber herkömmlichen Wärmetauschern verbesserten thermischen Wechselwirkung der beiden Fluide miteinander. Im Ergebnis wird also ein Wärmetauscher mit verbesserter Effizienz realisiert. Besonders bevorzugt sind daher alle zweiten Fluidpfade mit Turbulenzerzeugungselementen ausgestattet. Gleichzeitig können die Turbulenzerzeugungselemente bei geeigneter Auslegung als Stützstruktur für die ersten und zweiten Platten der Plattenpaare wirken, was die Steifigkeit des Wärmetauschers verbessert.
  • Besonders zweckmäßig können die Turbulenzerzeugungselemente integral an der ersten Platte sowie - alternativ oder zusätzlich - an der zweiten Platte ausgeformt sein. In diesem Szenario bietet sich zur Fertigung des Wärmetauschers die Verwendung eines additiven Herstellungsverfahrens an, welches den gesamten Fertigungsprozess des erfindungsgemäßen Wärmetauschers maßgeblich vereinfacht und daher im Folgenden genauer erläutert werden soll.
  • In einer weiteren bevorzugten Ausführungsform können wenigstens die Plattenpaare und die Turbulenzerzeugungselemente mittels eines additiven Herstellungsverfahrens hergestellt sein. Vom dem Begriff "additives Herstellungsverfahren" sind vorliegend alle Herstellungsverfahren umfasst, welche das Bauteil unmittelbar aus einem Computermodell heraus schichtweise aufbauen. Derartige Herstellungsverfahren sind auch unter der Bezeichnung "Rapid Forming" bekannt. Unter dem Begriff "Rapid Forming" sind dabei insbesondere Produktionsverfahren zur schnellen und flexiblen Herstellung von Bauteilen mittels werkzeugloser Fertigung direkt aus CAD-Daten gefasst. Die Verwendung eines additiven Herstellungsverfahrens ermöglicht die Herstellung des erfindungsgemäßen Wärmetauschers ohne bauteilspezifische Investitionsmittel wie z.B. Werkzeugformen o.ä. und nahezu ohne geometrische Einschränkungen. Außerdem entfallen bei herkömmlichen, unter Verwendung anderer Verfahren hergestellten Wärmetauschern zumeist in vielfältiger Form und großer Anzahl vorhandene Kleinteile wie etwa Dichtungselemente oder Befestigungselemente wie beispielsweise Streben o.ä. Bevorzugt sind daher alle Komponenten des Wärmetauschers mittels des additiven Herstellungsverfahrens hergestellt.
  • Alternativ oder zusätzlich kann der Wärmetauscher einstückig ausgebildet sein. Eine solche, einstückige Ausbildung bildet sich insbesondere bei Verwendung des vorangehend vorgestellten additiven Herstellungsverfahrens, insbesondere des Laserschmelzens, an. Bei einer einstückigen Ausbildung des Wärmetauschers entfällt das sehr aufwändige und somit kostenintensive Befestigen der einzelnen Komponenten des Wärmetauschers aneinander.
  • In einer besonders bevorzugten Ausführungsform kann das additive Herstellungsverfahren Laserschmelzen umfassen. Dies bedeutet, dass zum Herstellen der Plattenpaare und der Turbulenzerzeugungselemente, vorzugsweise zum Herstellen des gesamten Wärmetauschers, ein Laserschmelzverfahren verwendet wird. Mittels eines solchen Verfahrens können die Komponenten des Wärmetauschers direkt aus 3D-CAD-Daten hergestellt werden. Grundsätzlich werden die Bauteile des Wärmetauschers beim Laserschmelzverfahren werkzeuglos und schichtweise auf Basis des dem Wärmetauscher zugeordneten dreidimensionalen CAD-Modells gefertigt.
  • Besonders turbulente Strömungsbilder in den durch die zweiten Fluidpfade strömenden Fluiden, etwa in der Art von Strömungsbildern mit Wirbelströmen, lassen sich erzeugen, indem die Turbulenzerzeugungselemente jeweils als von der ersten und zweiten Platte, insbesondere in Stapelrichtung, abstehende Leitschaufeln ausgebildet werden.
  • In einer anderen bevorzugten Ausführungsform ist die Mehrzahl von Turbulenzerzeugungselementen in einer Draufsicht auf die erste oder zweite Platte rasterartig mit wenigstens zwei Rasterzeilen auf dieser angeordnet. Dies erlaubt es, an den den ersten bzw. zweiten Fluidpfad in Stapelrichtung begrenzenden ersten bzw. zweiten Platten eine Vielzahl von Turbulenzerzeugungselementen vorzusehen, was für eine besonders ausgeprägte Erzeugung von Verwirbelungen etc. über den gesamten zweiten Fluidpfad hinweg sorgt, in welchen die Turbulenzerzeugungselemente jeweils hineinragen. Dies führt zu einer verbesserten thermischen Wechselwirkung zwischen den beiden, durch die Fluidpfade strömenden Fluiden und somit zu einer verbesserten Effizienz des Wärmetauschers.
  • In einer vorteilhaften Weiterbildung der Erfindung wird durch die wenigstens zwei Rasterzeilen eine Zeilenrichtung definiert. Die Turbulenzerzeugungselemente sind in der Draufsicht auf die erste Platte längsförmig ausgebildet und erstrecken sich jeweils entlang einer Längsrichtung. Unter "längsförmig" wird dabei verstanden, dass eine Länge des betreffenden Turbulenzerzeugungselements - gemessen in der Längsrichtung - wenigstens das Fünffache, vorzugsweise das Zehnfache, höchst vorzugsweise das Zwanzigfache, einer quer zur Längsrichtung gemessenen maximalen Breite beträgt. Die Längsrichtung erstreckt sich dabei im Wesentlichen quer zur Zeilenrichtung. Mittels einer derartigen Geometrie der Turbulenzerzeugungselemente lassen sich eine Mehrzahl von Unterkanälen im ersten bzw. zweiten Fluidpfad erzeugen, wobei über die in Längsrichtung zwischen den einzelnen Turbulenzerzeugungselementen vorhandenen Zwischenräume das erste bzw. zweite Fluid auch zwischen den einzelnen Teilkanälen ausgetauscht werden kann. Im Ergebnis führt dies zu einer gleichmäßigen Durchströmung des jeweiligen Fluidpfads unter Ausbildung einer Vielzahl von Wirbeln, was einen verbesserten Wärmaustausch zwischen den beiden, durch den ersten bzw. zweiten Fluidpfad strömenden Fluiden zur Folge hat.
  • In einer weiteren bevorzugten Ausführungsform ist wenigstens ein Turbulenzerzeugungselement entlang der Längsrichtung gekrümmt ausgebildet. Bevorzugt gilt dies für alle Turbulenzerzeugungselemente wenigstens eines zweiten Fluidkanals, besonders bevorzugt für alle Turbulenzerzeugungselemente des Wärmetauschers. Mittels dieser Maßnahme wird die Ausbildung von Wirbelströmen in den Fluidpfaden weiter verstärkt.
  • In einer weiteren bevorzugten Ausführungsform sind zwei benachbarte erste und/oder zweite Turbulenzerzeugungselemente einer Rasterzeile derart ausgebildet, dass ein quer zur Längsrichtung gemessener Abstand zwischen diesen beiden Turbulenzerzeugungselementen entlang der Längsrichtung wenigstens abschnittsweise abnimmt. Besonders bevorzugt sind alle Turbulenzerzeugungselemente derselben Rasterzeile jeweils paarweise mit einer derartigen Geometrie versehen.
  • In einer weiteren bevorzugten Ausführungsform ist der Wärmetauscher derart ausgebildet, dass das erste Fluid durch den ersten Fluidpfad im Wesentlichen entlang einer ersten Hauptströmungsrichtung strömt. Diese erste Hauptströmungsrichtung erstreckt sich dabei im Wesentlichen orthogonal zu einer zweiten Hauptströmungsrichtung, durch die das zweite Fluid im Wesentlichen im zweiten Fluidpfad strömt. Mit anderen Worten, die beiden Fluide strömen unter einem Winkel von im Wesentlichen 90° zueinander durch den ersten bzw. zweiten Fluidpfad. Diese Maßnahme führt zu einer erhöhten thermischen Wechselwirkung zwischen den beiden Fluiden und somit zu einer verbesserten Effizienz des Wärmetauschers.
  • Besonders zweckmäßig kann jeder im Wärmetauscher vorhandene erste Fluidpfad einen gemeinsamen ersten Fluideinlass zum Einleiten des ersten Fluids in den ersten Fluidpfad und einen Fluidauslass zu Ausleiten des ersten Fluids aus dem ersten Fluidpfad aufweisen. Vorzugsweise liegen sich der erste Fluideinlass und der erste Fluidauslass dabei in der Draufsicht auf die erste bzw. zweite Platte des den ersten bzw. zweiten Fluidpfad begrenzenden Plattenpaars im Wesentlichen gegenüber. Entsprechend weist jeder zweite Fluidpfad einen zweiten Fluideinlass zum Einleiten des zweiten Fluids in den zweiten Fluidpfad und einen gemeinsamen Fluidauslass zu Ausleiten des zweiten Fluids aus demselben zweiten Fluidpfad auf, wobei sich auch der zweite Fluideinlass und der zweite Fluidauslass in der Draufsicht auf die erste Platte im Wesentlichen gegenüberliegen. Diese Maßnahmen erlauben eine einfache Ein- und Ausleitung des ersten bzw. zweiten Fluids in den bzw. aus dem betreffenden Fluidpfad. Gleiches gilt für die Ein- bzw. Ausleitung des ersten Fluids in bzw. aus dem jeweiligen zweiten Fluidpfad. Der jeweilige gemeinsame Fluideinlass bzw. gemeinsame Fluidauslass kann integral an den jeweiligen Plattenpaaren ausgeformt sein und eine jeweilige Durchgangsöffnung enthalten. Dies mag insbesondere für den besonders bevorzugten Fall gelten, dass die Plattenpaare mit den ersten und zweiten Platten Teil eines Flachrohrs sind; in diesem Fall können die einen Fluideinlass bzw. Fluidauslass ausbildenden Durchgangsöffnungen in den Flachrohren ausgebildet sein.
  • Besonders wenig Bauraum beansprucht eine vorteilhafte Weiterbildung der Erfindung, bei welcher der erste Fluideinlass und der zweite Fluideinlass in der Draufsicht auf die erste Platte im Wesentlichen orthogonal zueinander angeordnet sind. Alternativ oder zusätzlich können auch der erste Fluidauslass und der zweite Fluidauslass in der Draufsicht auf die erste Platte im Wesentlichen orthogonal zueinander angeordnet sein. Beide Maßnahmen, für sich genommen oder in Kombination, führen dazu, dass - bezüglich der Draufsicht auf die Plattenpaare - der erste Fluidauslass an einer ersten Seite der ersten bzw. zweiten Platte angeordnet sind. Diese Seite kann beispielsweise eine Längs- oder Querseite der Platte sein. Der zweite Fluideinlass ist dann - vorzugsweise um 90° verdreht - an der Quer- bzw. Längsseite angeordnet. Dies erleichtert die Montage der ersten und zweiten Fluideinlässe insbesondere dann, wenn eine Vielzahl von aufeinandergestapelten Plattenpaaren vorliegt und folglich für die einzelnen Fluidpfade eine Vielzahl von ersten und zweiten Fluideinlässen erforderlich ist. Eine solche Ausführungsform des Wärmetauschers erlaubt es, an der Längs- oder Querseite einen ersten Fluidverteiler bereitzustellen, der das erste Fluid auf alle ersten Fluideinlässe verteilt und hierzu mit diesen fluidisch kommuniziert. An der Quer- oder Längsseite, also vorzugsweise um 90°, verdreht kann in derselben Weise ein zweiter Fluidverteiler bereitgestellt werden, welcher zum Verteilen des zweiten Fluids auf die zweiten Fluidpfade fluidisch mit allen zweiten Fluideinlässen kommuniziert. Die beiden Fluidverteiler können also außen an verschiedenen Seiten der Plattenpaare angebracht werden, was den konstruktiven Aufwand zur Realisierung der beiden Fluidverteiler erheblich reduziert. Gleiches gilt für die Bereitstellung eines ersten und eines zweiten Fluidsammlers an der verbleibenden Längs- bzw. Querseite. Mit anderen Worten, an der verbleibenden Längs- bzw. Querseite, kann ein erster Fluidsammler bereitgestellt werden, welcher zum Sammeln des ersten Fluids nach dem Durchströmen der ersten Fluidpfade fluidisch mit allen ersten Fluidauslässen kommuniziert. Schließlich ist an der letzten verbleibenden Quer- oder Längsseite ein zweiter Fluidsammler bereitgestellt, welcher zum Sammeln des zweiten Fluids nach dem Durchströmen der zweiten Fluidpfade fluidisch mit allen zweiten Fluidauslässen kommuniziert.
  • Besonders wenig Bauraum in Stapelrichtung erfordert eine andere bevorzugte Ausführungsform, bei welcher die erste und zweite Platte wenigstens eines Plattenpaars Teil eines den ersten Fluidpfad begrenzenden Flachrohrs sind. Der Abstand zwischen in Stapelrichtung benachbarte Flachrohren kann in diesem Szenario als Raum für einen jeweiligen zweiten Fluidpfad dienen. Besonders bevorzugt können alle Plattenpaare jeweils Teil eines den ersten Fluidpfad begrenzenden Flachrohrs sein. In einem dazu alternativen Szenario ist es auch vorstellbar, dass eine erste Platte eines jeweiligen Plattenpaars und die in Stapelrichtung benachbarte zweite Platte, die folglich dem in Stapelrichtung benachbarten Plattenpaar zugeordnet ist, als Flachrohr ausgebildet sind, die den zweiten Fluidpfad begrenzen. In einer besonders bevorzugten Variante können alle zweiten Fluidpfade in Form vorangehend beschriebener Flachrohre realisiert sein.
  • Besonders zweckmäßig können die erste und zweite Platte der Plattenpaare komplementär zueinander ausgebildet sein, wobei an den der jeweils anderen Platte zugewandten Innenseiten eine Kanalstruktur ausgebildet ist. Eine solche Kanalstruktur kann beispielsweise eine meanderartige oder Geometrie aufweisen. In Varianten sind auch andere Geometrien vorstellbar, die in den Platten auf besonders einfache und flexible Weise durch Verwendung des bereits genannten additiven Herstellungsverfahrens erzeugt werden können.
  • Weitere wichtige Merkmale und Vorteile der Erfindung ergeben sich aus den Unteransprüchen, aus den Zeichnungen und aus der zugehörigen Figurenbeschreibung anhand der Zeichnungen.
  • Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
  • Bevorzugte Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert, wobei sich gleiche Bezugszeichen auf gleiche oder ähnliche oder funktional gleiche Komponenten beziehen.
  • Es zeigen, jeweils schematisch
  • Fig. 1
    ein Beispiel eines erfindungsgemäßen Wärmetauschers 1 in einem Längsschnitt entlang einer Stapelrichtung S der Plattenpaare 2 des Wärmetauschers,
    Fig. 2
    einen Ausschnitt des Wärmetauschers der Figur 1 in einer perspektiven Ansicht,
    Fig. 3
    den Wärmetauscher der Figur 1 in einer Schnittdarstellung entlang der Schnittlinie III-III der Figur 1.
  • Figur 1 zeigt ein Beispiel eines erfindungsgemäßen Wärmetauschers 1 in einem Längsschnitt entlang einer Stapelrichtung S der Plattenpaare 2 des Wärmetauschers, die Figur 2 ein Plattenpaar 2 des Wärmetauschers 1 in einer perspektiven Ansicht.
  • Entsprechend Figur 1 umfasst der Wärmetauscher 1 eine Mehrzahl von Plattenpaaren 2, die entlang einer Stapelrichtung S benachbart und im Abstand zueinander angeordnet sind und jeweils eine erste und eine zweite Platten 3a, 3b umfassen. Im Beispiel der Figur 1 sind exemplarisch drei solche Plattenpaare 2 mit jeweiligen ersten und zweiten Platten 3a, 3b gezeigt. Die ersten und zweiten Platten 3a, 3b der Plattenpaare 2 begrenzen in der Stapelrichtung S jeweils einen ersten Fluidpfad 4a, der einen von einem ersten Fluid F1 durchströmt werden kann. Im Beispiel der Figur 1 verläuft eine Hauptströmungsrichtung des ersten Fluids F1 in einer mit Z bezeichneten Richtung. Jeweils zwischen zwei in Stapelrichtung S benachbarten Plattenpaaren 2 ist ein zweiter Fluidpfad 4b zum Durchströmen mit einem zweiten Fluid F2 ausgebildet. Im Beispiel der Figur 1 verläuft eine Hauptströmungsrichtung des zweiten Fluids F2 in einer mit L bezeichneten Richtung senkrecht zur Zeichenebene, also orthogonal zur Hauptströmungsrichtung des ersten Fluids F1.
  • Wie die Figuren 1 erkennen lässt, ist in den zweiten Fluidpfaden 4b eine Mehrzahl von Turbulenzerzeugungselementen 6 angeordnet, welche einenends mit einer ersten Platte 3a eines den jeweiligen zweiten Fluidpfad 4b begrenzenden Plattenpaars 2 verbunden sind und anderenends mit einer zweiten Platte 3b eines in Stapelrichtung S benachbarten Plattenpaars 2 verbunden sind. Diese zweite Platte 3b begrenzt ebenfalls den Fluidkanal 4b mit den Turbulenzerzeugungselementen 6. Die Turbulenzerzeugungselemente 6 sind integral sowohl an der ersten Platte 3a als auch an der zweiten Platte 3b ausgeformt, mit denen sie endseitig verbunden sind. Die Plattenpaare 2 mit den ersten und zweiten Platten 3a, 3b sowie die Turbulenzerzeugungselemente 6 sind mittels eines additiven Herstellungsverfahrens hergestellt. Bevorzugt können auch alle weiteren Komponenten des Wärmetauscher 1 mittels eines solchen additiven Herstellungsverfahrens hergestellt werden. Die Verwendung eines additiven Herstellungsverfahrens gestattet die Herstellung des Wärmetauschers 1 nahezu ohne geometrische Einschränkungen. Mittels des additiven Herstellungsverfahrens ist es möglich, die Gestaltung des Wärmetauschers 1 funktionsgebunden - und nicht mehr werkzeuggebunden - zu konstruieren. Damit können die einzelnen Komponenten des Wärmetauschers 1 wie beispielsweise die Plattenpaare 2 sowie die benachbarte Plattenpaare 2 verbindenden Turbulenzerzeugungselemente 6 direkt im Zuge des Herstellungsverfahrens integral aneinander ausgeformt werden. Im Zuge des additiven Herstellungsverfahrens können Turbulenzerzeugungselemente 6 mit nahezu beliebiger Geometrie hergestellt werden.
  • Das additive Herstellungsverfahren kann auch das sogenannte Laserschmelzverfahren umfassen. Dies bedeutet, dass zum Herstellen der Plattenpaare 2 und der Turbulenzerzeugungselemente 6, im Extremfall zum Herstellen des gesamten Wärmetauschers 1, ein Laserschmelzverfahren verwendet wird. Mittels eines solchen Verfahrens können die oben genannten Komponenten des Wärmetauschers direkt aus 3D-CAD-Daten hergestellt werden. Grundsätzlich werden die genannten Komponenten des Wärmetauschers 1 beim Laserschmelzverfahren werkzeuglos und schichtweise auf Basis eines dem Wärmetauscher 1 zugeordneten dreidimensionalen CAD-Modells gefertigt.
  • Betrachtet man die Darstellung der Figur 3, welche den Wärmetauscher der Figur 1 in einer Schnittdarstellung entlang der Schnittlinie III-III der Figur 1 zeigt, so erkennt man, dass die Turbulenzerzeugungselemente 6 jeweils als von der ersten Platte 3a bzw. zweiten Platte 3b abstehende Leitschaufeln 8 ausgebildet sein können. Die Ausbildung der Turbulenzerzeugungselemente 6 in Form von Leitschaufeln 8 unterstützt eine Ausbildung von besonders turbulenzreichen Strömungsmustern in dem durch die zweiten Fluidpfade 4b strömenden zweiten Fluid F2. Dies führt zu einer verbesserten Effizienz des Wärmetauschers 1.
  • Wie der Figur 3 zu entnehmen ist, ist die Mehrzahl von Turbulenzerzeugungselementen 6 in der Draufsicht auf die erste Platte 3a rasterartig mit mehreren Rasterzeilen 9 - in Figur 3 sind exemplarisch drei solche Rasterzeilen 9 gezeigt - auf dieser angeordnet. Durch die Rasterzeilen 9 wird eine Zeilenrichtung Z definiert. Die Turbulenzerzeugungselemente 6 sind in der Draufsicht in Stapelrichtung S auf die erste Platte 3a längsförmig ausgebildet und erstrecken sich jeweils entlang einer Längsrichtung L, die im Wesentlichen quer zur Zeilenrichtung Z verläuft. Besonders zweckmäßig beträgt eine Länge I der Turbulenzerzeugungselemente 6 wenigstens das Fünffache einer maximalen Breite b desselben Turbulenzerzeugungselements 6. Bevorzugt beträgt die Länge wenigstens mindestens das Zehnfache, besonders bevorzugt mindestens das Zwanzigfache der maximalen Breite b. Dabei wird die Länge I in der Längsrichtung L und die Breite b in der Zeilenrichtung Z gemessen. Die in Zeilenrichtung Z gemessene Breite b kann dabei gemäß Figur 3 entlang der Längsrichtung L variieren. Mittels einer solchen geometrischen Anordnung bzw. Ausbildung der Turbulenzerzeugungselemente 6 auf den die ersten bzw. zweiten Fluidpfade 4a, 4b begrenzenden ersten bzw. zweiten Platten 3a, 3b lassen sich besonders ausgeprägte Verwirbelungen in dem durch die zweiten Fluidpfade 4b strömenden zweiten Fluid F2 erzeugen. Dies hat eine erhöhte thermische Wechselwirkung zwischen den beiden Fluiden F1, F2 und somit zu einer verbesserten Effizienz des Wärmetauschers 1 zur Folge.
  • Wie Figur 3 weiter erkennen lässt, ist wenigstens ein Turbulenzerzeugungselement 6 in der Draufsicht in Stapelrichtung S auf die erste Platte 3a in Längsrichtung L gekrümmt ausgebildet. Besonders bevorzugt gilt dies wie in Figur 3 gezeigt für alle Turbulenzerzeugungselemente 6 des Wärmetauschers 1. Mittels dieser Maßnahme kann die Ausbildung von Wirbelströmen in den zweiten Fluidpfaden 4b verstärkt werden. Die Turbulenzelemente 6 mit gekrümmter Geometrie lassen sich durch Verwendung des bereits erwähnten additiven Herstellungsverfahrens, insbesondere des Laserschmelzens, besonders einfach herstellen. Dies erweist sich als besonders vorteilhaft, wenn wie im Beispiel gezeigt eine große Anzahl von Turbulenzerzeugungselementen 6 verwendet werden soll, die dann als Stützstruktur für die Platten 3a, 3b der Plattenpaare 2 verwendet werden können. Zwei benachbarte Turbulenzerzeugungselemente 6 einer Rasterzeile 9 sind vorzugsweise derart ausgebildet, dass ein quer zur Längsrichtung L gemessener Abstand a zwischen diesen beiden Turbulenzerzeugungselementen 6 entlang der Längsrichtung L wenigstens abschnittsweise abnimmt. Besonders bevorzugt können alle Turbulenzerzeugungselemente 6 derselben Rasterzeile 9 jeweils paarweise mit einer derartigen Geometrie versehen sein.
  • Die in einer bestimmten Zeilenrichtung Z benachbarten Turbulenzerzeugungselemente 6 einer jeweiligen Rasterzeile 9 können Elementpaare 12 ausbilden. Die beiden Turbulenzerzeugungselemente 6 eines jeweiligen Elementpaars 12 können bezüglich einer Symmetrieachse A, die in der Draufsicht auf die erste bzw. zweite Platte 3a, 3b entlang der Längsrichtung L verläuft, achsensymmetrisch zueinander angeordnet sein. Auf diese Weise wird eine besonders vorteilhafte Anordnungsgeometrie der Turbulenzerzeugungselemente 6 realisiert, die eine besonders ausgeprägte Wirbelströmung im ersten bzw. zweiten Fluid F2 bewirkt und somit zu einem verbesserten Wärmeaustausch zwischen den beiden Fluiden F1, F2 beim Durchströmen der Fluidpfade 4a, 4b im Wärmetauscher 1 führt. Auch eine solche achsensymmetrische Anordnung einer Vielzahl von Elementpaaren 12 lässt sich durch Verwendung eines additiven Herstellungsverfahrens besonders einfach und präzise verwirklichen.
  • Der Figur 3 lässt sich auch entnehmen, dass der Wärmetauscher 1 derart ausgebildet werden kann, dass das erste Fluid F1 durch den ersten Fluidpfad 4a im Wesentlichen entlang einer ersten Hauptströmungsrichtung R1 strömt. Die ersten Hauptströmungsrichtung R1 erstreckt sich im Wesentlichen orthogonal zu einer zweiten Hauptströmungsrichtung R2, durch die das zweite Fluid F2 im zweiten Fluidpfad 4b strömt. Jeder erste Fluidpfad 4a kann einen gemeinsamen ersten Fluideinlass 13 zum Einleiten des ersten Fluids F1 in die ersten Fluidpfade 4a und einen gemeinsamen ersten Fluidauslass 14 zu Ausleiten des ersten Fluids F1 aus den ersten Fluidpfaden 4a auf. Gemäß der Darstellung der Figur 3 liegen sich der erste Fluideinlass 13 und der erste Fluidauslass 14 - deren Position ist in Figur 3 nur schematisch (gestrichelte Rechtecke) angedeutet - in der Draufsicht auf die erste Platte 3a im Wesentlichen gegenüber. Entsprechend kann jeder zweite Fluidpfad 4b einen gemeinsamen zweiten Fluideinlass 15 zum Einleiten des zweiten Fluids F2 in den zweiten Fluidpfad 4b und einen gemeinsamen zweiten Fluidauslass 16 zu Ausleiten des zweiten Fluids F2 aus den zweiten Fluidpfaden 4b aufweisen. Der gemeinsame zweite Fluideinlass 15 und der gemeinsame zweite Fluidauslass 16 liegen sich in der Draufsicht auf die erste Platte 3a einander ebenfalls gegenüber. Besonders vorteilhaft sind der erste Fluideinlass 13 und der zweite Fluideinlass 15 bezüglich der Draufsicht auf die erste Platte 3a in der Stapelrichtung S im Wesentlichen um 90° verdreht zueinander angeordnet. Entsprechend sind der erste Fluidauslass 14 und der zweite Fluidauslass 16 bezüglich der Draufsicht auf die erste Platte 2 entlang der Stapelrichtung S im Wesentlichen orthogonal zueinander angeordnet. Mit anderen Worten, im Falle der im Beispielszenario im Wesentlichen rechteckig ausgebildeten ersten Platte 3a mit zwei Längsseiten 17a, 17b und zwei Querseiten 17c, 17d können der gemeinsame erste Fluideinlass 13 und der gemeinsame erste Fluidauslass 14 im Bereich einander gegenüberliegenden Längsseiten 17a, 17b angeordnet sein. Entsprechend können der gemeinsame zweite Fluideinlass 15 und der gemeinsame zweite Fluidauslass 16 im Bereich der einander gegenüberliegenden Querseiten 17c, 17d angeordnet sein.
  • Die erste und zweite Platte 3a, 3b der Plattenpaare 2 können jeweils Teil eines den ersten und/oder zweiten Fluidpfad 4a, 4b begrenzenden Flachrohrs sein (nicht gezeigt). Dies erlaubt eine Fertigung des Wärmetauschers 1 in Flachbauweise. In diesem Fall können die beiden Platten 3a, 3b eines jeweiligen Plattenpaars 2 komplementär zueinander ausgebildet sein. Insbesondere kann an den der jeweils anderen Platte zugewandten Innenseite 11 eine Kanalstruktur ausgebildet sein. Eine solche Kanalstruktur kann beispielsweise eine meanderartige oder Geometrie aufweisen. In Varianten sind auch andere Geometrien vorstellbar, die in den Platten 3a, 3b auf besonders einfache und flexible Weise durch Verwendung des bereits genannten additiven Herstellungsverfahrens erzeugt werden können.
  • Es versteht sich, dass in den vorangehend erläuterten Figuren nur die wesentlichen Komponenten des erfindungsgemäßen Wärmetauschers 1 in schematischer Darstellung dargestellt sind. Konstruktive Details, die dem einschlägigen Fachmann aus seinem Fachwissen heraus bekannt sind, sind in den Figuren der Übersichtlichkeit halber nicht dargestellt.
  • Der Wärmetauscher 1 kann einstückig ausgebildet sein. Eine solche, einstückige Ausbildung bildet sich insbesondere bei Verwendung des vorangehend vorgestellten additiven Herstellungsverfahrens, insbesondere des Laserschmelzens, an. Bei einer einstückigen Ausbildung des Wärmetauschers entfällt das sehr aufwändige und somit kostenintensive Befestigen der einzelnen Komponenten des Wärmetauschers aneinander. Es versteht sich, dass im Falle einer einstückigen Ausbildung des Wärmetauschers 1 die vorliegend verwendeten Bezeichnungen wie z.B. "erste Platte 3a" gültig bleiben.

Claims (15)

  1. Wärmetauscher (1), insbesondere für ein Kraftfahrzeug,
    - mit einer Mehrzahl von Plattenpaaren (2), die entlang einer Stapelrichtung (S) benachbart zueinander angeordnet sind und jeweils eine erste und eine zweite Platten (3a, 3b) umfassen, die in der Stapelrichtung (S) einen von einem ersten Fluid (F1) durchströmbaren ersten Fluidpfad (4a) begrenzen,
    - wobei zwischen zwei in der Stapelrichtung (S) benachbarten Plattenpaaren (2) ein zweiter Fluidpfad (4b) zum Durchströmen mit einem zweiten Fluid ausgebildet ist,
    - wobei in wenigstens einem zweiten Fluidpfad (4b), vorzugsweise in allen zweiten Fluidpfaden (4b), eine Mehrzahl von Turbulenzerzeugungselementen (6) angeordnet ist, welche einenends mit einer ersten Platte (3a) eines den zweiten Fluidpfad (4b) begrenzenden Plattenpaars (2) verbunden sind und anderenends mit einer zweiten Platte (3b) eines in Stapelrichtung (S) benachbarten Plattenpaars (2) verbunden sind.
  2. Wärmetauscher nach Anspruch 1,
    dadurch gekennzeichnet, dass
    die Turbulenzerzeugungselemente (6) integral an der ersten und/oder zweiten Platte (3a, 3b) ausgeformt sind.
  3. Wärmetauscher nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass
    - wenigstens die Plattenpaare (2) und die Turbulenzerzeugungselemente (6) mittels eines additiven Herstellungsverfahrens hergestellt sind., und/oder dass
    - der Wärmetauscher (1) einstückig ausgebildet ist.
  4. Wärmetauscher nach Anspruch 3,
    dadurch gekennzeichnet, dass
    das additive Herstellungsverfahren Laserschmelzverfahren umfasst.
  5. Wärmetauscher nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet, dass
    die Turbulenzerzeugungselemente (6) jeweils als von der ersten und zweiten Platte (3a, 3b) abstehende Leitschaufeln ausgebildet sind.
  6. Wärmetauscher nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet, dass
    die Mehrzahl von Turbulenzerzeugungselementen (6) in einer Draufsicht auf die erste oder zweite Platte (3a, 3b) rasterartig mit wenigstens zwei Rasterzeilen (9) auf der ersten und/oder zweiten Platte (3a, 3b) angeordnet ist.
  7. Wärmetauscher nach Anspruch 6,
    dadurch gekennzeichnet, dass
    - durch die wenigstens zwei Rasterzeilen (9) eine Zeilenrichtung (Z) definiert ist,
    - die Turbulenzerzeugungselemente (6) in der Draufsicht entlang der Stapelrichtung (S) auf die erste Platte (3a, 3b) längsförmig ausgebildet sind und sich jeweils entlang einer Längsrichtung (L) erstrecken, die quer zur Zeilenrichtung (Z) verläuft,
    - eine Länge (I) wenigstens eines Turbulenzerzeugungselements (6), vorzugsweise aller Turbulenzerzeugungselemente (6), mindestens das Fünffache, vorzugsweise mindestens das Zehnfache, höchst vorzugsweise mindestens das Zwanzigfache, einer maximalen Breite (b) des jeweiligen Turbulenzerzeugungselements (6) beträgt,
    - wobei die Länge (I) in der Längsrichtung (L) und die Breite (b) in der Zeilenrichtung (Z) gemessen ist.
  8. Wärmetauscher nach Anspruch 7,
    dadurch gekennzeichnet, dass
    wenigstens ein Turbulenzerzeugungselement (6), vorzugsweise alle Turbulenzerzeugungselemente (6) in der Längsrichtung (L) gekrümmt ausgebildet sind.
  9. Wärmetauscher nach Anspruch 7 oder 8,
    dadurch gekennzeichnet, dass
    zwei benachbarte Turbulenzerzeugungselemente (6) einer Rasterzeile (9) derart ausgebildet sind, dass ein quer zur Längsrichtung (L) gemessener Abstand (a) zwischen diesen beiden Turbulenzerzeugungselementen (6) entlang der Längsrichtung (L) wenigstens abschnittsweise abnimmt.
  10. Wärmetauscher nach einem der Ansprüche 7 bis 9,
    dadurch gekennzeichnet, dass
    die in Zeilenrichtung (Z) benachbarten Turbulenzerzeugungselemente (6) Elementpaare (12) ausbilden, wobei die beiden Turbulenzerzeugungselemente (6) eines jeweiligen Elementpaars (12) bezüglich einer Symmetrieachse (A), die in der Draufsicht auf die erste oder zweite Platte entlang der Längsrichtung (L) verläuft, achsensymmetrisch zueinander angeordnet sind.
  11. Wärmetauscher nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    der Wärmetauscher derart ausgebildet ist, dass das erste Fluid (F1) durch den ersten Fluidpfad (4a) im Wesentlichen entlang einer ersten Hauptströmungsrichtung (R1) strömt, welche sich im Wesentlichen orthogonal zu einer zweiten Hauptströmungsrichtung (R2) erstreckt, durch die das zweite Fluid (F2) im zweiten Fluidpfad (4b) strömt.
  12. Wärmetauscher nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    - jeder erste Fluidpfad (4a) einen gemeinsamen ersten Fluideinlass (13) zum Einleiten des ersten Fluids (F1) die ersten Fluidpfade (4a) und einen gemeinsamen ersten Fluidauslass (14) zu Ausleiten des ersten Fluids (F1) aus den ersten Fluidpfaden (4a) aufweist, wobei sich der gemeinsame erste Fluideinlass (13) und der gemeinsame erste Fluidauslass (14) in der Draufsicht auf die erste Platte (3a) gegenüberliegen,
    - jeder zweite Fluidpfad (4b) einen gemeinsamen zweiten Fluideinlass (15) zum Einleiten des zweiten Fluids (F2) in die zweiten Fluidpfade (4b) und einen gemeinsamen zweiten Fluidauslass (16) zum Ausleiten des zweiten Fluids (F2) aus den zweiten Fluidpfaden (4b) aufweist, wobei sich der gemeinsame zweite Fluideinlass (15) und der gemeinsame zweite Fluidauslass (16) in der Draufsicht auf die erste Platte (3a) gegenüberliegen.
  13. Wärmetauscher nach Anspruch 12,
    dadurch gekennzeichnet, dass
    - der gemeinsame erste Fluideinlass (13) und der gemeinsame zweite Fluideinlass (15) in der Draufsicht auf die erste Platte (3a) im Wesentlichen orthogonal zueinander angeordnet sind, und/oder dass
    - der erste Fluidauslass (14) und der zweite Fluidauslass (16) in der Draufsicht auf die erste Platte (3a) im Wesentlichen orthogonal zueinander angeordnet sind.
  14. Wärmetauscher nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die erste und zweite Platte (3a, 3b) wenigstens eines Plattenpaars (2) Teil eines den ersten und/oder zweiten Fluidpfad (4a, 4b) begrenzenden Flachrohrs sind.
  15. Wärmetauscher nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die erste und zweite Platte (3a, 3b) eines Plattenpaars (2) komplementär zueinander ausgebildet sind, wobei an den der jeweils anderen Platte (3a, 3b) zugewandten Innenseite (11) der beiden Platten (3a, 3b) eine Kanalstruktur ausgebildet ist.
EP16153327.8A 2015-02-26 2016-01-29 Wärmetauscher, insbesondere für ein kraftfahrzeug Active EP3062054B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015203472.0A DE102015203472A1 (de) 2015-02-26 2015-02-26 Wärmetauscher, insbesondere für ein Kraftfahrzeug

Publications (2)

Publication Number Publication Date
EP3062054A1 true EP3062054A1 (de) 2016-08-31
EP3062054B1 EP3062054B1 (de) 2018-10-24

Family

ID=55272315

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16153327.8A Active EP3062054B1 (de) 2015-02-26 2016-01-29 Wärmetauscher, insbesondere für ein kraftfahrzeug

Country Status (2)

Country Link
EP (1) EP3062054B1 (de)
DE (1) DE102015203472A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3057057A1 (fr) * 2016-10-05 2018-04-06 Valeo Systemes Thermiques Procede de fabrication par impression en trois dimensions d'un echangeur thermique a plaques
WO2019073277A1 (en) 2017-10-13 2019-04-18 Volvo Truck Corporation HEAT EXCHANGER AND ADDITIVE HEAT EXCHANGER MANUFACTURING METHOD
US20190162483A1 (en) * 2017-11-29 2019-05-30 Honda Motor Co., Ltd. Cooling apparatus
CN113834368A (zh) * 2021-10-22 2021-12-24 河北工业大学 一种三维变截面扰流柱结构、换热板及换热器芯体
EP3519753B1 (de) * 2016-10-03 2022-08-24 Safran Aero Boosters SA Matrix für einen luft-öl-wärmetauscher eines strahltriebwerks

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180292146A1 (en) * 2017-04-10 2018-10-11 United Technologies Corporation Partially additively manufactured heat exchanger
DE102018219626A1 (de) * 2018-11-16 2020-05-20 Mahle International Gmbh Wärmeübertrager
JP7208053B2 (ja) * 2019-02-19 2023-01-18 株式会社Subaru 冷却装置
DE202019102083U1 (de) 2019-04-11 2019-04-18 Mahle International Gmbh Kühlfluiddurchströmte Wellrippenanordnung und Kraftfahrzeugbauteil
DE102019110262A1 (de) * 2019-04-18 2020-10-22 Hans Quack Platten-Rippen-Wärmeübertrager

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55152397A (en) * 1979-05-18 1980-11-27 Hitachi Ltd Plate type heat exchanger
GB2424265A (en) * 2005-02-16 2006-09-20 Timothy Frank Brise Heat Exchanger including Heat Exchange Tubes with Integral Fins
US20150027667A1 (en) * 2013-07-24 2015-01-29 Cale Patrick Collins Kaupp Condensing heat recovery unit for a portable fluid heater

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB892534A (en) * 1957-10-24 1962-03-28 Richard Kablitz Improvements in and relating to heat exchangers
DE3521914A1 (de) * 1984-06-20 1986-01-02 Showa Aluminum Corp., Sakai, Osaka Waermetauscher in fluegelplattenbauweise
FR2795166B1 (fr) * 1999-06-21 2001-09-07 Valeo Thermique Moteur Sa Echangeur de chaleur a plaques, en particulier pour le refroidissement d'une huile de vehicule automobile
GB0427362D0 (en) * 2004-12-14 2005-01-19 Sustainable Engine Systems Ltd Heat exchanger
ITPN20080042A1 (it) * 2008-05-20 2009-11-21 Parker Hiross Spa Essicatore di gas compresso a refrigerazione con scambiatori di calore perfezionati

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55152397A (en) * 1979-05-18 1980-11-27 Hitachi Ltd Plate type heat exchanger
GB2424265A (en) * 2005-02-16 2006-09-20 Timothy Frank Brise Heat Exchanger including Heat Exchange Tubes with Integral Fins
US20150027667A1 (en) * 2013-07-24 2015-01-29 Cale Patrick Collins Kaupp Condensing heat recovery unit for a portable fluid heater

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3519753B1 (de) * 2016-10-03 2022-08-24 Safran Aero Boosters SA Matrix für einen luft-öl-wärmetauscher eines strahltriebwerks
FR3057057A1 (fr) * 2016-10-05 2018-04-06 Valeo Systemes Thermiques Procede de fabrication par impression en trois dimensions d'un echangeur thermique a plaques
WO2019073277A1 (en) 2017-10-13 2019-04-18 Volvo Truck Corporation HEAT EXCHANGER AND ADDITIVE HEAT EXCHANGER MANUFACTURING METHOD
US11788801B2 (en) 2017-10-13 2023-10-17 Volvo Truck Corporation Heat exchanger and an additive manufacturing method for manufacturing a heat exchanger
US20190162483A1 (en) * 2017-11-29 2019-05-30 Honda Motor Co., Ltd. Cooling apparatus
CN113834368A (zh) * 2021-10-22 2021-12-24 河北工业大学 一种三维变截面扰流柱结构、换热板及换热器芯体
CN113834368B (zh) * 2021-10-22 2023-07-25 河北工业大学 一种三维变截面扰流柱结构、换热板及换热器芯体

Also Published As

Publication number Publication date
EP3062054B1 (de) 2018-10-24
DE102015203472A1 (de) 2016-09-01

Similar Documents

Publication Publication Date Title
EP3062054B1 (de) Wärmetauscher, insbesondere für ein kraftfahrzeug
EP3062055B1 (de) Wärmetauscher, insbesondere für ein kraftfahrzeug
DE102016216019A1 (de) Einsatz für einen Kühlmantel einer elektrischen Maschine
EP3077751B1 (de) Wärmeübertrager und verfahren zum herstellen eines wärmeübertragers
EP3265738B1 (de) Wärmetauscher, insbesondere für ein kraftfahrzeug
EP2664886B1 (de) Wärmetauscher
EP1792135B1 (de) Wärmetauscher für kraftfahrzeuge
EP2863157B1 (de) Wärmeübertrager
WO2016146296A1 (de) Wärmetauscher, insbesondere für eine abwärmenutzungseinrichtung
DE102017200335A1 (de) Wärmetauscher mit einer verbesserten Verstopfungsbeständigkeit
EP2710318A1 (de) Lamellenwärmeübertrager
EP3062057B1 (de) Wärmetauscher, insbesondere für ein kraftfahrzeug
DE102015204014A1 (de) Wärmetauscher, insbesondere für ein Kraftfahrzeug
WO2016146294A1 (de) Wärmetauscher, insbesondere für ein kraftfahrzeug
DE19814028A1 (de) Doppel-Wärmetauscher
DE102008046507A1 (de) Ladeluftkühler, insbesondere für Großmotoren
DE102020000274A1 (de) Verfahren zur Herstellung eines Rippen-Platten-Wärmetauschers
WO2014086558A1 (de) Wärmetauscher für eine verbrennungskraftmaschine
DE102017218122A1 (de) Wärmeübertrager, insbesondere Batteriekühler, zum Temperieren von Batteriemodulen eines Kraftfahrzeugs
DE2527810C3 (de) Plattenwärmetauscher
EP3492855A1 (de) Wärmetauscher
DE102010031397A1 (de) Verdampfervorrichtung
DE102018007010A1 (de) Fluidströmungskanal mit Effizienz-steigernden Umformungen
DE102017130094A1 (de) Abgaswärmetauscher
WO2017207205A1 (de) Fluidkanalanordnung für eine kühleinrichtung, insbesondere für einen kühlmantel einer elektrischen maschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170228

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170619

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180516

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1057196

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016002297

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181024

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190124

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190224

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190224

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190125

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016002297

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190129

26N No opposition filed

Effective date: 20190725

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190131

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160129

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1057196

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240119

Year of fee payment: 9