EP2421686A1 - Structure filtrante dont les faces d'entree et de sortie presentent un materiau de bouchage different - Google Patents

Structure filtrante dont les faces d'entree et de sortie presentent un materiau de bouchage different

Info

Publication number
EP2421686A1
EP2421686A1 EP09805777A EP09805777A EP2421686A1 EP 2421686 A1 EP2421686 A1 EP 2421686A1 EP 09805777 A EP09805777 A EP 09805777A EP 09805777 A EP09805777 A EP 09805777A EP 2421686 A1 EP2421686 A1 EP 2421686A1
Authority
EP
European Patent Office
Prior art keywords
channels
drying
filter
plugs
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09805777A
Other languages
German (de)
English (en)
Inventor
Matthias Schumann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Centre de Recherche et dEtudes Europeen SAS
Original Assignee
Saint Gobain Centre de Recherche et dEtudes Europeen SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Centre de Recherche et dEtudes Europeen SAS filed Critical Saint Gobain Centre de Recherche et dEtudes Europeen SAS
Publication of EP2421686A1 publication Critical patent/EP2421686A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/003Apparatus or processes for treating or working the shaped or preshaped articles the shaping of preshaped articles, e.g. by bending
    • B28B11/006Making hollow articles or partly closed articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/478Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on aluminium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62665Flame, plasma or melting treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs

Definitions

  • the invention relates to the field of optionally catalytic filtering structures, in particular used in an exhaust line of a diesel type internal combustion engine.
  • Catalytic filters for the treatment of gases and the removal of soot from a diesel engine are well known in the prior art. These structures all most often have a honeycomb structure, one of the faces of the structure allowing the admission of the exhaust gas to be treated and the other side the evacuation of the treated exhaust gas.
  • the structure comprises, between the intake and discharge faces, a set of adjacent ducts or channels of axes parallel to each other separated by porous walls.
  • the ducts are closed at one or the other of their ends to delimit inlet chambers opening on the inlet face and outlet chambers opening along the discharge face.
  • the channels are alternately closed in an order such that the exhaust gases, during the crossing of the honeycomb body, are forced to pass through the sidewalls of the inlet channels to join the outlet channels. In this way, the particles or soot are deposited and accumulate on the porous walls of the filter body.
  • the particulate filter is subjected to a succession of filtration (soot accumulation) and regeneration phases.
  • the soot particles emitted by the engine are retained and settle inside the filter.
  • the soot particles are burned inside the filter, in order to restore its filtration properties.
  • the structures referred to hereafter as "asymmetrical" have a constant filter volume, a surface or a volume of the input channels different from that or that of the output channels of said filter.
  • the filters are porous ceramic material, for example cordierite or silicon carbide.
  • Silicon carbide filters made with these structures are for example described in patent applications EP 816 065, EP 1 142 619, EP 1 455 923 or WO 2004/090294 and WO 2004/065088, to which the skilled person For example, reference may be made for more details and details, both for the description of filters according to the present invention and for their method of production.
  • These filters advantageously have a high chemical inertness with respect to soot and hot gases but a coefficient of thermal expansion a little high, which leads, for the production of large filters, the need to assemble several monolithic elements by a cement joint or grouting in a filter block, in order to reduce their thermomechanical stresses. Due to the high mechanical strength of the recrystallized SiC materials, it is possible to produce filters with thin filter walls and high porosity, with a very satisfactory filtration efficiency.
  • Cordierite filters have also been used for a long time because of their low cost. Due to the very low coefficient of thermal expansion of this material, in the normal operating temperature range of a filter it is possible to produce monolithic filters of larger size.
  • the aluminum Titanate material may also have a low coefficient of thermal expansion and exhibits refractoriness and corrosion resistance superior to that of cordierite. It thus makes it possible to produce monolithic filters of large size provided, however, to control the thermal stability of the aluminum titanate, in particular during the regeneration phases of the filter.
  • Monolithic filters are thus described in the patent application WO 2004/011124 which proposes structures based on aluminum titanate for 60 to 90% by weight, reinforced with mullite, present at a level of 10 to 40% by weight. According to the authors, the filter thus obtained has improved durability.
  • the patent application EP 1741684 describes a filter having a low coefficient of expansion and whose main phase of aluminum titanate is stabilized firstly by the substitution of a fraction of the Al atoms by Mg atoms. in the lattice Al 2 TiO 5 in a solid solution and secondly by substitution of a fraction of the Al atoms at the surface of said solid solution by Si atoms, provided in the structure by an additional intergranular phase of potassium and sodium aluminosilicate type, especially feldspar.
  • large size is meant in particular for the purposes of the present invention, structures of diameter greater than 100 mm or section greater than 75 cm ; 2
  • the patent application US2006 / 0272306 thus proposes a formulation of plugs for application to a structure based on aluminum Titanate or Cordierite involving a "curing" operation up to 1000 ° C. plugs made on the sintered structure however have a refractoriness, that is to say a resistance at high temperature, too low under the most severe conditions of use, especially in case of accidental severe regeneration of the filter.
  • patent application US2008 / 010960 envisages the possibility of making structures of the TiAl type either clogged raw (that is to say before cooking) or corked at cooked (that is to say after baking), from the formulations of suitable mixtures but this solution is still not satisfactory because it also leads to the likely occurrence of cracks, in the lifetime of the filter.
  • the object of the present invention is thus to provide a filtering honeycomb structure of a new type, to address all of the previously discussed problems.
  • the present invention relates to a method for obtaining a filtering structure of particles-loaded gases, of the honeycomb type, comprising a set of longitudinal adjacent channels of axes parallel to each other. separated by porous filtering walls, said channels being alternately plugged at one or other end of the structure so as to define inlet channels and outlet channels for the gas to be filtered, and to force said gas to pass through the porous walls separating the inlet and outlet channels, said method comprising at least steps for shaping the honeycomb, cooking the honeycomb and plugging the inlet channels and the outlet channels and characterized in that: a) a portion of the inlet channels is plugged on a first end before baking the nest structure; bee, b) part of the outlet channels is plugged on a second end after firing the honeycomb structure.
  • the materials are chosen such that the material constituting the plugs disposed on the first end of the filter have substantially the same composition and continuity of structure with said walls and that the plugs arranged on the second end of the filter have a chemical composition and / or a structural composition different from that of the plugs disposed on said first end.
  • a method of manufacturing a structure according to the invention comprising the following main steps: a) preparation of a composition based on the material constituting the structure and shaped, in particular by extrusion through a die of said material , a honeycomb structure, b) drying of said structure in air according to a technique chosen from drying by hot air, drying by microwave drying, freeze-drying by drying at a temperature below 130 ° C. or a combination of said techniques; c) preparing a composition of a plugging and sealing material on a first end of said raw structure of a part of the channels by said composition, d) optionally drying in air according to a technique chosen from hot air drying, drying by microwave drying, drying by lyophilization at a temperature below 130 ° C.
  • e) firing of said structure optionally comprising an initial debinding step, f) preparing a composition of a plugging and sealing material by said composition, on the second end of said baked structure, unsealed channels in step c), g drying and / or heat treatment of the plugs placed on the second end of the fired structure.
  • step e) of curing is carried out to a temperature between 1300 C and 1800 0 0 C.
  • Step g) may consist of at least one drying selected from the group consisting of air drying, hot air drying, microwave drying or lyophilization drying at a temperature below 130 ° C or their combination.
  • step g) consists at least of a heat treatment up to a temperature of between 500 and 1100 ° C.
  • the present invention furthermore relates to a filtering structure that can be obtained by a method as previously described, of the honeycomb type, comprising a set of longitudinal adjacent channels of axes parallel to each other separated by porous walls. filtering, said channels being alternately plugged at one or the other end of the structure so as to define inlet channels and outlet channels for the gas to be filtered and to force the gas to pass through the walls porous separating input and output channels, said structure being characterized in that the material constituting the plugs disposed on a first end of the filter have substantially the same composition and continuity of structure with said walls and in that the plugs arranged on the second end of the filter have a chemical composition and / or a structural composition different from that of the plugs disposed on said first end.
  • continuity of structure it is understood, in the classical sense, that it is no longer possible to establish a clear structural limit, that is to say a structural discontinuity, between the plugs and the walls.
  • the volume of at least a portion of the input channels is different, in particular greater than that of at least a portion of the output channels.
  • the filtering structure according to the invention is thus of the "asymmetrical" type, that is to say that the volume or the surface of the input channels is different and preferably greater than that of the output channels.
  • the larger surface of plugs of the inlet channels is then advantageously favorable to better drying and debinding (elimination of binders) as soon as the thickness and the density of the plugs is not too high. This thus makes it possible, in particular, to promote the passage of the gases originating from debinding before consolidation by sintering the plugs and the structure.
  • the plugs of the outlet channels which are in contact with the exhaust gas have a smaller surface area which reduces their gas permeability to equal plug lengths.
  • the lowest mass of plugs in comparison with that of the inlet channels is favorable to debinding and consolidation of the filtering structure.
  • the porous walls of the filtering structure consist of a material based on aluminum titanate.
  • the porous walls of the filtering structure consist of an SiC-based material and possibly a ceramic and / or vitreous binder matrix, said vitreous matrix possibly comprising SiO 2.
  • the porous walls of the filtering structure consist of a material based on alumina.
  • the porous walls of the filtering structure consist of a Cordierite-based material.
  • said walls comprise at least 50% by weight and preferably at least 70% by weight, or even at least 90 or even 98% by weight of said material.
  • the plug material of the first end and the plug material of the second end may have a different chemical composition.
  • the material of the plugs of the first end and the material of the plugs of the second end may have a substantially identical chemical composition but a different structural composition, in particular because of a different baking temperature.
  • the filtering structure according to the invention may further comprise a supported or preferably unsupported active catalytic phase, typically comprising at least a precious metal such as Pt and / or Rh and / or Pd and optionally an oxide such as CeO2, ZrO2, CeO2 ⁇ ZrO2.
  • a supported or preferably unsupported active catalytic phase typically comprising at least a precious metal such as Pt and / or Rh and / or Pd and optionally an oxide such as CeO2, ZrO2, CeO2 ⁇ ZrO2.
  • the present invention relates to an exhaust line, comprising a filtering structure as described above, in which the second end constitutes the inlet face of the particulate polluted exhaust gases and in which the first end constitutes the exit face of the cleaned gases.
  • plugging or sealing only the inlet channels, before firing the structure, at the filter outlet face, with reference to the direction of the gases to be filtered makes it possible to eliminate the cracks appearing during the cooking of the structure.
  • the support surface of the structure does not have plugs before cooking, which reduces or even eliminate shrinkage constraints.
  • the green-clogged face, opposite to the bearing face is therefore more "accessible” which facilitates the evacuation of water from the mixture forming the plugs during the drying and evacuation of the binders during the debinding phase of the plugs.
  • Clogging or blocking after firing of the structure consists of closing the outlet channels, on the side of the front face of the filter, with reference to the direction of arrival of the exhaust gases to be filtered.
  • This configuration finds advantages in that these plugs of the output channels are less stressed thermally and thermomechanically when the filter is operating on an exhaust line and more particularly during the successive phases of regeneration of the filter, in operation.
  • the plugs of the filtering structure made by closing the structure before baking are advantageously constituted at least in part by a sintered ceramic refractory material identical to that of the filtering walls of the structure, so as to obtain, after said baking, a continuity of structure between the walls and the plugs on the rear face of the filter, that is to say a structural homogeneity of the material, in particular at the interface between the walls and the plugs.
  • the plugs are preferably made of a material of the same mineralogical composition as the filtering walls, which is characterized by the presence of the same phases and / or a volume or mass distribution of the crystalline phases present very close.
  • the plugs of the filtering structure made by closing after firing of the structure are preferably also constituted at least in part by a refractory material formed in particular of grains preferably present in the wall material but unlike the structure of the previous plugs these grains, typically of size or average diameter of between 1 and 100 microns, preferably of size or average diameter between 10 and 100 microns may not be bound by a ceramic matrix binder.
  • ceramic binder matrix is meant a continuous structure between the grains and obtained by baking or sintering so as to consolidate the material constituting the plugs.
  • these plugs made by closing after firing are for example formed grains or inorganic particles bonded by an optionally vitreous matrix for example and / or by a chemical binder of organic and / or mineral nature.
  • vitreous matrix in particular a matrix formed by a non or slightly crystallized material comprising at least 30% silica (SiO 2 ).
  • chemical binders selected from the following nonlimiting list:
  • thermosetting resins that is to say formed of at least one polymer convertible by heat treatment (heat, radiation) or physicochemical (catalysis, hardener) into infusible material and insoluble.
  • the thermosetting resins thus take their final form at the first hardening, the reversibility being impossible.
  • Thermosetting resins include, in particular, phenolic resins, silicone-based resins or epoxides.
  • binders such as derivatives of cellulose or lignin, such as carboxymethylcellulose, dextrin, polyvinyl alcohols, polyethylene glycols -caking agents such as phosphoric acid, alkali metal polyphosphates or alumino-phosphates, or sodium silicate and its derivatives,
  • inorganic binders such as silica gels or silica in colloidal form; binder based on silica gel and / or alumina and / or zirconium chemical setting agents, such as phosphoric acid, aluminum monophosphate, etc.
  • the plugs made by plugging the structure before or after curing may optionally comprise a pore-forming agent, for example chosen from cellulose derivatives, acrylic particles, graphite particles and mixtures thereof, incorporated in a particulate mixing mixture so as to to create porosity to relax the stresses on the walls and / or possibly lighten the filter.
  • the amount must not be too high, for example it must be less than 25% by weight relative to the mineral composition of the capping mixture in order to have a sufficient seal.
  • Closures made by sealing the structure after firing may also include other organic additions such as lubricants or plasticizers.
  • the structure according to the invention may be based on grains of SiC bonded by a ceramic matrix obtained by reactive sintering or by a glass-ceramic matrix.
  • SiC-based material it is understood in the sense of the present description that said material comprises at least 30% by weight of said material, preferably at least 70% and very preferably at least 98% by weight of said material.
  • the filtering structure is monolithic and the filtering walls are based on an inorganic oxide material in particular based on aluminum Titanate or Cordierite or Mullite or a composite from these materials.
  • the composition of the porous ceramic material comprises from 5 to 15% by weight of SiO 2.
  • the composition of the porous ceramic material comprises less than 7.5% by weight of MgO, and even more preferably less than 5% by weight of MgO.
  • the composition of the porous ceramic material comprises less than 0.25% of the oxides Na 2 ⁇ 0 and / or K 2 O and / or SrO and / or CaO and / or Fe 2 Os and / or BaO and / or oxides of rare earths in the form of voluntary contributions.
  • the composition of the porous ceramic material based on aluminum titanate may have all known additions for stabilizing the aluminum titanate phase.
  • High temperature stability means the capacity of the aluminum titanate material not to decompose into two titanium oxide TiO 2 and Al 2 O 3 aluminum oxide phases, under normal conditions. use of a particulate filter.
  • this property is measured according to the invention by a stability test consisting of determining the phases present in the material, typically by X-ray diffraction, then subjecting it to heat treatment at 1100 ° C. for 10 hours and checking, according to the same method of X - ray diffraction analysis and under the same conditions, the appearance of the alumina and titanium oxide phases at the detection threshold of the material.
  • the material constituting the walls of the structures obtained according to the invention preferably has an open porosity of between 20% and 65%, and preferably between 35% and 60%. Especially in the particle filter application, too low porosity leads to a too high pressure drop. Too high a porosity, however, leads to a level of mechanical resistance that is too low.
  • the median diameter d 5 o by volume of the pores constituting the porosity of the material is preferably between 5 and 30 microns, preferably between 8 and 25 microns. In general, in the applications concerned, it is generally accepted that a too small diameter of pores leads to excessive pressure loss, while too large median pore diameter leads to poor filtration efficiency.
  • the thickness of the walls is between 0.2 to 1.0 mm, preferably 0.2 to 0.5 mm.
  • the number of channels in the filter elements is preferably between 7.75 and 62 per cm 2 , said channels typically having a cross section of about 0.5 to 9 mm 2 .
  • the filter consists of assembled monolithic elements
  • the section of a monolithic element constituting the assembled structure is square, the width of the element being between 30 mm and 50 mm.
  • the grouting material is understood here as a moldable composition formed by a particulate and / or fibrous mix, dry or wet, capable of setting in mass able to have a sufficient mechanical strength at ambient temperature or after drying and / or heat treatment of which the temperature will not exceed the softening or subsidence temperature which defines the refractoriness of the material (s) constituting the monolithic elements.
  • Mouldable means a composition capable of plastic deformation necessary for the display on the joint face of the monolithic elements and having a sufficient adhesion with respect to these elements so as to make them integral or to allow the manipulation of the filter assembled immediately after the grouting operation, or if necessary after heat or chemical treatment or other treatment such as ultraviolet irradiation.
  • the grouting material preferably comprises particles and / or fibers of ceramic or refractory material, chosen from non-oxides, such as SiC, aluminum nitride and / or silicon nitride, aluminum oxynitride, or among oxides, in particular comprising Al 2 O 3 , SiO 2 , MgO, TiO 2 , ZrO 2 , Cr 2 O 3 or any one of the following: of their mixtures.
  • the assembled or unassembled filter preferably has a coating cement integral with the assembled filter, in particular of the same mineral composition as the grouting material in order to reduce the thermomechanical stresses.
  • the present invention also relates to a catalytic filter obtained from a structure as previously described and by deposition, preferably by impregnation, of at least one supported or preferably unsupported active catalytic phase, typically comprising at least one precious metal such as Pt and / or Rh and / or Pd and optionally an oxide such as CeO 2 , ZrO 2 , CeO 2 -ZrO 2 for the treatment of CO or HC and / or NOx type polluting gases and / or combustion soot.
  • a catalytic filter finds particular application as a catalytic support in an exhaust line of a diesel or gasoline engine or as a particulate filter in a diesel engine exhaust line.
  • the filter device comprising the filter may also include around the filter a fibrous mat preferably formed of inorganic fibers in order to confer the thermal insulation properties required by the application.
  • the inorganic fibers are preferably ceramic fibers, such as alumina, mullite, zirconia, titanium oxide, silica, silicon carbide or nitride fibers, or glass fibers, such as R-glass. These fibers can be obtained by fiberizing from a bath of molten oxides, or from a solution of organometallic precursors (solid process). gel).
  • the fibrous mat is preferably non-intumescent. It is advantageously in the form of a needle felt.
  • the invention relates to a method of manufacturing a particle filter as previously described. Such a method comprises the steps described above.
  • said structure according to the invention can also be obtained from an initial mixture of grains based on aluminum titanate and / or cordierite.
  • the aluminum titanate or cordierite-based powder has a median diameter of less than 60 microns.
  • the median diameter, or d 5 o of a mixture of particles or a set of grains, the size dividing the particles of this mixture or the grains of this set in the first and second populations equal in volume, these first and second populations having only particles or grains having a size greater than or less than the median diameter respectively.
  • the manufacturing method according to the invention most often comprises a step of kneading the initial mixture of powders into a homogeneous product in the form of a paste, a step of extruding a raw product shaped through a suitable die so as to obtain monoliths of the honeycomb type, a drying step of the monoliths obtained, possibly an assembly step and a cooking step carried out under air or under an oxidizing atmosphere at a temperature not exceeding 1800 ° C. preferably not exceeding 1650 ° C.
  • closure steps c) and f) can be carried out according to the method described for example in US Pat. EP1500482 for example.
  • Clogging mixtures are mixtures of particles, dry or moist, suitable for mass. Bulking or hardening of these mixtures after blocking of the channels of the structure may result from drying or, for example, curing of a resin. Finally, the heating makes it possible to accelerate the evaporation of the water or the residual liquid after hardening.
  • the capping mixtures according to the invention may especially comprise refractory powders, inorganic hollow spheres, plasticizers, dispersants, lubricants, temporary binders of organic and / or inorganic nature, chemical binders, porogenic agents, such as mentioned above but also other shaping and / or sintering additives. All the refractory powders conventionally used for the production of corking mixture can be used, taking into account, of course, the composition of the material constituting the filtering walls.
  • the refractory powders may in particular be powders based on silicon carbide and / or alumina and / or zirconia and / or silica and / or titanium oxide and / or magnesia or mixed powders, in particular aluminum titanate or mullite.
  • the refractory powders are molten products. The use of sintered products is also possible.
  • binder conventionally means within the meaning of the present invention a set of grains or particles characterized by a grain size distribution or diameter generally centered and distributed around a mean or median diameter.
  • grain or “particle” is meant a solid product individualized in a powder or a mixture of powders.
  • the refractory powders represent more than 50%, preferably more than 70% of the mass of the dry mineral material of the capping mixture.
  • the capping mixture comprises at least one or more aluminum titanate powders which represent at least 50% preferably at least 80% by weight of the particulate mixture.
  • the blocking mixture of the structure before firing can comprise precursor powders of aluminum titanate, in particular powders of alumina and titanium, transforming into alumina titanate during the firing of the structure.
  • Embodiments a) Production of a fused aluminum titanate powder: In all the examples, the percentages are given by weight. In a preliminary step, Aluminum Titanate was prepared from the following raw materials:
  • titanium oxide in rutile comprising more than 95% TiO2 and about 1% zirconia and having a median diameter d 5 o of about 120 .mu.m, sold by Europe Minerals,
  • the mixture of the initial reactive oxides was melted in an electric arc furnace, under air, with an electric oxidizing step. The molten mixture was then cast into a CS mold so as to obtain rapid cooling. The product obtained is crushed and sieved to obtain powders of different size fractions.
  • a particle size fraction is characterized by a median diameter d 5 o substantially equal to 50 microns, referred to as a large fraction according to present invention
  • a particle size fraction is characterized by a median diameter d 5 o substantially equal to 1.5 microns, referred to as the fine fraction according to the present invention
  • the median diameter d50 denotes the diameter of the particles, measured by sedigraphy, below which 50% by volume of the population is found. Microprobe analysis shows that all the grains of the melt phase thus obtained have the following composition, as a percentage by weight of the oxides (Table 1 °):
  • plasticizer derived from ethylene glycol, - 2% lubricant (oil),
  • the channels of the two ends of the monolith are closed according to well-known techniques, for example described in patent US4557773 and with a mixture corresponding to the following formulation: 100% of a mixture of two aluminum titanate powders previously produced by electrofusion, approximately 66% of a first powder with a median diameter of 50 ⁇ m and 34% of a second powder with a median diameter of 1.5 ⁇ m.
  • the monoliths are then cooked under air gradually until a temperature of 1450 ° C. is maintained for 4 hours.
  • Example 2 The structure of these monoliths according to Example 1 consists of aluminum titanate whose characteristics are presented in Table 2.
  • the second series of dry raw monoliths is cooked, without the channels being blocked, under air progressively until reaching a temperature of 1450 0 C which is maintained for 4 hours.
  • the monoliths are then corked after cooking, according to the classical chessboard configuration (one channel out of two), with a corking mixture corresponding to the following formulation:
  • the monoliths alternately blocked one channel out of two are then subjected to heat treatment to a final temperature of 1000 0 C, which is maintained for 1 hour.
  • the structure of these monoliths according to Example 2 consists of aluminum titanate whose characteristics are presented in Table 2 below.
  • Example 2 the third series of dry raw monoliths is plugged with the plug mix of Example 1 only on one end, which is the end opposite to the bearing face on the baking support. These monoliths are then cooked under air gradually until a temperature of 1450 ° C. is maintained for 4 hours. The baked monoliths are then plugged on the side of the end or of the support surface on the baking support using a corking mixture according to Example 2 and then subjected to a heat treatment to a temperature final 1000 0 C which is maintained for 1 hour.
  • Example 3 The structure of these monoliths according to Example 3 consists of aluminum titanate whose characteristics are presented in Table 2 below.
  • the porosity characteristics were measured by high-pressure mercury porosimetry analyzes carried out with a Micromeritics 9500 porosimeter.
  • FIG. 2 A fine observation of the channels and plugs of the filter made according to Example 2 with the visible scanning electron microscope in FIG. 2 has highlighted the presence of cracks 11 between the wall 2 and the plug 3. The same analyzes or observations do not show no such defects on the filter made according to Example 3.
  • Figure 3 shows the continuity of structure between the walls 2 and the plugs 3, rear side, that is to say on the opposite side to the face of filter support during cooking.
  • the Figure 4 shows the junction between a wall 2 and a plug 3, front panel. In the embodiment according to the invention, no cracks are observed between the plugs 3 and the walls 2, on the front face and on the rear face.
  • the filter made according to Example 3 loaded with 4g / l of soot was tested on a motor bench comprising a direct injection engine OL 2 Diesel. It has been verified that the filtration efficiency, measured by a SMPS type probe (Scanning Mobility Particle Sizer), was satisfactory for this filter.
  • the filter subsequently subjected to regeneration does not show cracks after visual inspection, which shows that this filtering structure is suitable for use in filtering the exhaust gases of an internal combustion engine, particularly of the Diesel type.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Geometry (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Toxicology (AREA)
  • General Engineering & Computer Science (AREA)
  • Filtering Materials (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Catalysts (AREA)

Abstract

L' invention se rapporte à une structure filtrante du type en nid d'abeilles, comprenant un ensemble de canaux adjacents longitudinaux d'axes parallèles entre eux séparés par des parois poreuses filtrantes, ladite structure se caractérisant en ce que le matériau constituant les bouchons disposés sur une première extrémité du filtre présentent sensiblement la même composition et une continuité de structure avec lesdites parois et en ce que les bouchons disposés sur la deuxième extrémité du filtre présentent une composition chimique et/ou une composition structurale différente de celle des bouchons disposés sur ladite première extrémité.

Description

STRUCTURE FILTRiWTE DONT LES FACES D'ENTREE ET DE SORTIE PRESENTENT UN MATERIAU DE BOUCHAGE DIFFERENT
L' invention se rapporte au domaine des structures filtrantes éventuellement catalytiques, notamment utilisées dans une ligne d'échappement d'un moteur à combustion interne du type diesel.
Les filtres catalytiques permettant le traitement des gaz et l'élimination des suies issues d'un moteur diesel sont bien connus de l'art antérieur. Ces structures présentent toutes le plus souvent une structure en nid d'abeille, une des faces de la structure permettant l'admission des gaz d'échappement à traiter et l'autre face l'évacuation des gaz d'échappement traités. La structure comporte, entre les faces d'admission et d'évacuation, un ensemble de conduits ou canaux adjacents d'axes parallèles entre eux séparés par des parois poreuses. Les conduits sont obturés à l'une ou l'autre de leurs extrémités pour délimiter des chambres d'entrée s ' ouvrant suivant la face d'admission et des chambres de sortie s ' ouvrant suivant la face d'évacuation. Les canaux sont alternativement obturés dans un ordre tel que les gaz d'échappement, au cours de la traversée du corps en nid d'abeille, sont contraints de traverser les parois latérales des canaux d'entrée pour rejoindre les canaux de sortie. De cette manière, les particules ou suies se déposent et s'accumulent sur les parois poreuses du corps filtrant.
De façon connue, durant son utilisation, le filtre à particules est soumis à une succession de phases de filtration (accumulation des suies) et de régénération
(élimination des suies) . Lors des phases de filtration, les particules de suies émises par le moteur sont retenues et se déposent à l'intérieur du filtre. Lors des phases de régénération, les particules de suie sont brûlées à l'intérieur du filtre, afin de lui restituer ses propriétés de filtration. De manière à augmenter notamment le volume de stockage en particules ou en suies, et celui des résidus issus de la combustion de ces suies et ainsi augmenter le délai entre deux régénérations, il a déjà été proposé dans l'art antérieur différentes structures filtrantes. Notamment les structures appelées par la suite « asymétriques » présentent à volume de filtre constant, une surface ou un volume des canaux d'entrée différent de celle ou celui des canaux de sortie dudit filtre. Par exemple, il a été proposé dans la demande de brevet WO 05/016491 des structures dans lesquelles les éléments de paroi se succèdent, en coupe transversale et en suivant un rang horizontal et/ou vertical de canaux, pour définir une forme sinusoïdale ou en vague (wavy en anglais) . Les éléments de paroi ondulent typiquement d'une demi-période de sinusoïde sur la largeur d'un canal. De telles configurations de canaux permettent d' obtenir une perte de charge faible et un volume de stockage de suies important. Selon un autre mode de réalisation, il est proposé dans la demande EP 1 495 791 des blocs monolithes se caractérisant par une disposition octogonale des canaux internes d'entrée (souvent appelée structure octosquare dans le domaine) .
Le plus souvent, les filtres sont en matière céramique poreuse, par exemple en cordiérite ou en carbure de silicium. Des filtres en Carbure de Silicium réalisés avec ces structures sont par exemple décrits dans les demandes de brevets EP 816 065, EP 1 142 619, EP 1 455 923 ou encore WO 2004/090294 et WO 2004/065088, auquel l'homme du métier pourra par exemple se référer pour plus de précisions et de détails, tant pour la description de filtres selon la présente invention que pour leur procédé d'obtention. Ces filtres présentent avantageusement une forte inertie chimique vis à vis des suies et des gaz chauds mais un coefficient de dilatation thermique un peu élevé, qui conduit, pour la réalisation de filtres de grande taille, à la nécessité d'assembler plusieurs éléments monolithiques par un ciment de joint ou de jointoiement en un bloc filtrant, afin de réduire leurs contraintes thermomécaniques. En raison de la résistance mécanique élevée des matériaux en SiC recristallisé, il est possible de réaliser des filtres avec des parois filtrantes de faible épaisseur et une porosité élevée, avec une efficacité de filtration très satisfaisante.
Les filtres en cordiérite sont également utilisés depuis longtemps du fait de leur faible coût. Grâce au coefficient de dilatation thermique très faible de ce matériau, dans la gamme de température de fonctionnement normal d'un filtre il est possible de réaliser des filtres monolithiques de plus grande dimension.
Le matériau Titanate d'Aluminium peut aussi présenter un coefficient de dilation thermique faible et montre une réfractarité et une résistance à la corrosion supérieure à celle de la cordiérite. Il permet ainsi de réaliser des filtres monolithiques de grande taille à la condition cependant de maitriser la stabilité thermique du titanate d' aluminium, notamment lors des phases de régénération du filtre. Des filtres monolithiques sont ainsi décrits dans la demande de brevet WO 2004/011124 qui propose des structures à base de titanate d'aluminium pour 60 à 90% poids, renforcé par de la mullite, présente à hauteur de 10 à 40% poids. Selon les auteurs, le filtre ainsi obtenu présente une durabilité améliorée. Selon une autre réalisation, la demande de brevet EP 1741684 décrit un filtre présentant un faible coefficient de dilatation et dont la phase principale en titanate d'aluminium est stabilisée d'une part par la substitution d'une fraction des atomes Al par des atomes Mg dans le réseau cristallin Al2TiO5 au sein d'une solution solide et d'autre part par substitution d'une fraction des atomes Al en surface de ladite solution solide par des atomes de Si, apportés dans la structure par une phase supplémentaire intergranulaire du type d' aluminosilicate de potassium et sodium, notamment de feldspath.
Ces structures monolithiques sont typiquement extrudées puis obturées à l'une et l'autre de leurs extrémités afin de délimiter des chambres d'entrée et des chambres de sortie comme décrit précédemment.
Il s'avère que le procédé d'obturation ou de bouchage sur les deux faces d'une structure extrudée notamment de grande taille conduit cependant à une fissuration des filtres dans la zone correspondant à leur face d' appui sur le support de cuisson. Par grande taille, on entend en particulier, au sens de la présente invention, des structures de diamètre supérieur à 100 mm ou de section supérieure à 75 cm ,;2
Ces fissures sont dues à des contraintes liées à la différence de retrait entre les canaux bouchés à cru, c'est-à-dire avant la cuisson du filtre, et ceux non bouchés. Par le terme « retrait », il est entendu, au sens de la présente description, la différence entre une dimension du filtre, par exemple la longueur, avant et après sa cuisson. Ce phénomène peut être minimisé dès lors que la formulation minérale du mélange destiné à la confection des bouchons est très proche de celle du mélange destiné à la confection des parois du filtre. Le brevet US4455180 décrit par exemple un procédé de fabrication d'une structure filtrante à base de cordiérite mettant en œuvre des compositions de bouchons réalisés par bouchage d'une structure crue présentant un coefficient d'expansion ou de dilatation thermique suffisamment élevé pour remplir les canaux mais suffisamment faible pour éviter une fracturation de ces canaux. Ce problème de fissuration persiste et devient critique pour des filtres de grande longueur (c'est-à-dire, par exemple, de longueur supérieure à 150 mm), voire de très grande taille (c'est-à-dire, par exemple, de diamètre supérieur à 125mm) ou encore de grande section (c'est-à-dire de section supérieure ou égale à 120cm2) et/ou si le retrait de la structure après cuisson, selon sa plus grande dimension, est supérieur ou égal à 5%. Le procédé de bouchage ou d'obturation des canaux d'une structure déjà frittée est aussi décrit dans l'art antérieur. Il constitue une étape supplémentaire de cuisson (ou « curing » selon le terme anglais utilisé) . Ce procédé conduit cependant à l'apparition de fissures entre les bouchons et les parois des canaux obturés pendant la cuisson supplémentaire de la structure (voir notamment la figure 1) . Ce problème peut être attribué à une différence de comportement dilatométrique entre le matériau constituant le bouchon et celui des parois. Les solutions proposées à ce jour, visant notamment à adapter le mélange de bouchage dans le but d'obtenir une courbe dilatométrique à la cuisson proche de celle du matériau déjà fritte constituant les parois de la structure ne sont cependant pas satisfaisantes. Selon une réalisation, la demande de brevet US2006/0272306 propose ainsi une formulation de bouchons pour application à une structure à base de Titanate d'Aluminium ou de Cordiérite faisant intervenir une opération de « curing » allant jusqu'à 10000C. Les bouchons réalisés sur la structure frittée présentent cependant une réfractarité, c'est-à-dire une résistance à haute température, trop faible au regard des conditions d'utilisation les plus sévères, en particulier en cas de régénération sévère accidentelle du filtre. Ils conduisent en outre à une étanchéité insuffisante et par conséquent à un filtre qui présente une efficacité de filtration trop faible, si on prend en compte la durée de service du filtre dans une ligne d'échappement automobile. Selon une autre réalisation, la demande de brevet US2008/010960 envisage la possibilité de faire des structures du type TiAl soit bouchées à cru (c'est-à-dire avant cuisson) soit bouchées à cuit (c'est-à-dire après cuisson) , à partir des formulations de mélanges adaptées mais cette solution n'est toujours pas satisfaisante car elle conduit également à l'apparition probable de fissures, à l'échelle de la durée de vie du filtre.
Le but de la présente invention est ainsi de fournir une structure filtrante en nid d'abeille d'un type nouveau, permettant de répondre à l'ensemble des problèmes précédemment exposés.
Dans sa forme la plus générale, la présente invention se rapporte à un procédé d'obtention d'une structure filtrante de gaz chargés en particules, du type en nid d'abeilles, comprenant un ensemble de canaux adjacents longitudinaux d'axes parallèles entre eux séparés par des parois poreuses filtrantes, lesdits canaux étant alternativement bouchés à l'une ou l'autre des extrémités de la structure de façon à définir des canaux d'entrée et des canaux de sortie pour le gaz à filtrer, et de façon à forcer ledit gaz à traverser les parois poreuses séparant les canaux d'entrée et de sortie, ledit procédé comprenant au moins des étapes de mise en forme du nid d'abeille, de cuisson du nid d'abeille et de bouchage des canaux d'entrée et des canaux de sortie et se caractérisant en ce que : a) une partie des canaux d'entrée est bouchée sur une première extrémité avant cuisson de la structure en nid d'abeille, b) une partie des canaux de sortie est bouchée sur une deuxième extrémité après cuisson de la structure en nid d' abeille .
Avantageusement, dans le procédé selon l'invention, les matériaux sont choisis de telle façon que le matériau constituant les bouchons disposés sur la première extrémité du filtre présentent sensiblement la même composition et une continuité de structure avec lesdites parois et que les bouchons disposés sur la deuxième extrémité du filtre présentent une composition chimique et/ou une composition structurale différente de celle des bouchons disposés sur ladite première extrémité.
Par exemple, un procédé de fabrication d'une structure selon l'invention comprenant les étapes principales suivantes: a) préparation d'une composition à base du matériau constitutif de la structure et mise en forme, notamment par extrusion à travers une filière dudit matériau, d'une structure en nid d'abeille, b) séchage de ladite structure sous air selon une technique choisie parmi le séchage par air chaud, le séchage par séchage micro-onde, le séchage par lyophilisation à une température inférieure à 1300C ou une combinaison desdites techniques, c) préparation d'une composition d'un matériau de bouchage et obturation sur une première extrémité de ladite structure crue d'une partie des canaux par ladite composition, d) éventuellement séchage sous air selon une technique choisie parmi le séchage par air chaud, le séchage par séchage micro-onde, le séchage par lyophilisation à une température inférieure à 1300C ou une combinaison desdites techniques, e) cuisson de ladite structure, comprenant éventuellement une étape initiale de déliantage, f) préparation d'une composition d'un matériau de bouchage et obturation par ladite composition, sur la deuxième extrémité de ladite structure cuite, des canaux non obturés au cours de l'étape c) , g) séchage et/ou traitement thermique des bouchons disposés sur la deuxième extrémité de la structure cuite.
Typiquement, l'étape e) de cuisson est mise en œuvre jusqu'à une température comprise entre 13000C et 18000C.
L'étape g) peut consister au moins en un séchage choisi dans le groupe constitué par un séchage sous air, un séchage sous air chaud, un séchage par micro-onde ou un séchage par lyophilisation à une température inférieure à 130°C ou leur combinaison.
Alternativement ou en combinaison, l'étape g) consiste au moins en un traitement thermique jusqu'à une température comprise entre 500 et 11000C.
La présente invention se rapporte en outre à une structure filtrante susceptible d'être obtenue par un procédé tel que précédemment décrit, du type en nid d'abeilles, comprenant un ensemble de canaux adjacents longitudinaux d'axes parallèles entre eux séparés par des parois poreuses filtrantes, lesdits canaux étant alternativement bouchés à l'une ou l'autre des extrémités de la structure de façon à définir des canaux d'entrée et des canaux de sortie pour le gaz à filtrer et de façon à forcer le gaz à traverser les parois poreuses séparant les canaux d'entrée et de sortie, ladite structure se caractérisant en ce que le matériau constituant les bouchons disposés sur une première extrémité du filtre présentent sensiblement la même composition et une continuité de structure avec lesdites parois et en ce que les bouchons disposés sur la deuxième extrémité du filtre présentent une composition chimique et/ou une composition structurale différente de celle des bouchons disposés sur ladite première extrémité. Par « continuité de structure », il est entendu, au sens classique, qu'il n'est plus possible d'établir une limite structurale claire, c'est à dire une discontinuité structurale, entre les bouchons et les parois.
Selon un mode possible de réalisation, le volume d' au moins une partie des canaux d'entrée est différent, en particulier supérieur, à celui d'au moins une partie des canaux de sortie. Avantageusement la structure filtrante selon l'invention est ainsi du type « asymétrique » c'est- à-dire que le volume ou la surface des canaux d'entrée est différent et de préférence supérieur par rapport à celui des canaux de sortie.
- la plus grande surface de bouchons des canaux d'entrée est alors avantageusement favorable à un meilleur séchage et déliantage (élimination des liants) dès lors que l'épaisseur et la densité des bouchons n'est pas trop élevée. Ceci permet ainsi notamment de favoriser le passage des gaz issus du déliantage avant consolidation par frittage des bouchons et de la structure.
- les bouchons des canaux de sortie qui sont au contact du gaz d'échappement présentent une plus petite surface ce qui réduit leur perméabilité au gaz à longueur de bouchons égale. La plus faible masse de bouchons en comparaison avec celle des canaux d'entrée est favorable au déliantage et à la consolidation de la structure filtrante.
Selon un premier mode possible selon l'invention, les parois poreuses de la structure filtrante sont constituées d'un matériau à base de titanate d'aluminium.
Selon un autre mode possible selon l'invention, les parois poreuses de la structure filtrante sont constituées d'un matériau à base de SiC et éventuellement d'une matrice liante céramique et/ou vitreuse, ladite matrice vitreuse comprenant éventuellement du Siθ2.
Selon un autre mode possible selon l'invention, les parois poreuses de la structure filtrante sont constituées d'un matériau à base d'alumine.
Selon un autre mode possible selon l'invention, les parois poreuses de la structure filtrante sont constituées d'un matériau à base de Cordiérite.
Par l'expression «à base de », il est entendu que lesdites parois comprennent au moins 50% poids et de préférence au moins 70% poids, voire au moins 90 ou même 98% poids dudit matériau.
Par exemple, le matériau des bouchons de la première extrémité et le matériau des bouchons de la deuxième extrémité peuvent présenter une composition chimique différente . Alternativement, le matériau des bouchons de la première extrémité et le matériau des bouchons de la deuxième extrémité peuvent présenter une composition chimique sensiblement identique mais une composition structurale différente notamment en raison d'une température de cuisson différente.
La structure filtrante selon l'invention peut en outre comprendre une phase catalytique active supportée ou de préférence non supportée, comprenant typiquement au moins un métal précieux tel que Pt et/ou Rh et/ou Pd et éventuellement un oxyde tel que Ceθ2, Zrθ2, Ceθ2~Zrθ2.
Enfin, la présente invention se rapporte à une ligne d'échappement, comprenant une structure filtrante telle que précédemment décrite, dans laquelle la deuxième extrémité constitue la face d'entrée des gaz d'échappement pollués en particules et dans laquelle la première extrémité constitue la face de sortie des gaz dépollués.
Selon l'invention, le bouchage ou l'obturation uniquement des canaux d'entrée, avant cuisson de la structure , au niveau de la face de sortie de filtre, par référence à la direction des gaz à filtrer, permet d'éliminer les fissures apparaissant lors de la cuisson de la structure. Dans cette configuration en effet, la face d'appui de la structure ne comporte pas de bouchons avant cuisson, ce qui permet de réduire voire d'éliminer les contraintes de retrait. Par ailleurs la face bouchée à cru, opposée à la face d'appui, est donc plus « accessible » ce qui permet de faciliter l'évacuation de l'eau du mélange formant les bouchons pendant le séchage et l'évacuation des liants pendant la phase de déliantage des bouchons.
Le bouchage ou l'obturation après cuisson de la structure consiste à fermer les canaux de sortie, du coté de la face avant du filtre, par référence au sens d'arrivée des gaz d'échappement à filtrer. Cette configuration trouve des avantages par le fait que ces bouchons des canaux de sortie sont moins sollicités thermiquement et thermomécaniquement lorsque le filtre est en fonctionnement sur une ligne d'échappement et plus particulièrement pendant les phases successives de régénération du filtre, en fonctionnement.
En outre, selon l'invention, comme le bouchage des canaux de sortie est réalisé après cuisson, il est possible d'économiser une opération de bouchage, notamment en cas de mise au rebut du filtre après cuisson.
D'autres caractéristiques et modes de réalisation avantageux de l'invention sont décrits plus en détail ci- après :
Les bouchons de la structure filtrante réalisés par obturation de la structure avant sa cuisson sont avantageusement constitués au moins en partie d'un matériau réfractaire céramique fritte identique à celui des parois filtrantes de la structure, de manière à obtenir après ladite cuisson une continuité de structure entre les parois et les bouchons sur la face arrière du filtre, c'est-à-dire une homogénéité structurale du matériau, notamment à l'interface entre les parois et les bouchons. Les bouchons sont de préférence constitués d'un matériau de même composition minéralogique que les parois filtrantes, ce qui se caractérise par la présence de même phases et/ou une répartition volumique ou massique des phases cristallisées présentes très proche.
Les bouchons de la structure filtrante réalisés par obturation après cuisson de la structure sont de préférence également constitués au moins en partie d'un matériau réfractaire formé notamment de grains de préférence présents dans le matériau de paroi mais à la différence de la structure des bouchons précédents, ces grains, typiquement de taille ou de diamètre moyen compris entre 1 et 100 microns, de préférence de taille ou de diamètre moyen compris entre 10 et 100 microns peuvent ne pas être liés par une matrice liante céramique. Par matrice liante céramique, on entend une structure continue entre les grains et obtenue par cuisson ou frittage de manière à consolider le matériau constituant les bouchons. Selon un mode possible, ces bouchons réalisés par obturation après cuisson sont par exemple formés de grains ou de particules inorganiques liées par une matrice éventuellement vitreuse par exemple et/ou par un liant chimique de nature organique et/ou minérale.
Par matrice vitreuse, on entend en particulier une matrice formée par un matériau non ou peu cristallisé comportant au moins 30% de silice (SiO2) •
Par liants chimiques on entend des liants chimiques choisis parmi la liste suivante non limitative :
-des liants temporaires organiques, tels que des résines, notamment des thermodurcissables, c'est-à-dire formées d'au moins un polymère transformable par traitement thermique (chaleur, radiation) ou physico- chimique (catalyse, durcisseur) en matériau infusible et insoluble. Les résines thermodurcissables prennent ainsi leur forme définitive au premier durcissement, la réversibilité étant impossible. Les résines thermodurcissables comprennent notamment les résines phénoliques, à base de silicone ou encore époxides.
-d'autres liants temporaires tels que des dérivés de la cellulose ou de la lignone, comme la carboxyméthylcellulose, la dextrine, des polyvinyle alcools, des polyéthylène glycols -des agents chimiques de prise tels que l'acide phosphorique, les polyphosphates de métaux alcalins ou les alumino-phosphates, ou le silicate de soude et ses dérivés,
-des liants inorganiques, tels que les gels de silice ou la silice sous forme colloïdale ; des liant à base de gel de silice et/ou d'alumine et/ou de zircone des agents de prise chimiques, tels que l'acide phosphorique, le monophosphate d' aluminium, etc . Les bouchons réalisés par obturation de la structure avant ou après cuisson peuvent éventuellement comporter un agent porogène, par exemple choisi parmi les dérivés de cellulose, les particules d'acrylique, les particules de graphite et leurs mélanges, incorporés dans un mélange particulaire de bouchage afin de créer de la porosité pour relaxer les contraintes sur les parois et/ou éventuellement alléger le filtre. Cependant la quantité ne doit pas être trop élevée, par exemple elle doit être inférieure à 25 % massique par rapport à la composition minérale du mélange de bouchage afin de présenter une étanchéité suffisante.
Les bouchons réalisés par obturation de la structure après cuisson peuvent aussi comprendre d'autres ajouts organiques tels que des lubrifiants ou des plastifiants. Par exemple, la structure selon l'invention peut être à base de grains de SiC liés par une matrice céramique obtenue par frittage réactif ou par une matrice vitrocéramique . Par matériau à base de SiC, il est entendu au sens de la présente description que ledit matériau comprend au moins 30% en masse dudit matériau, de préférence au moins 70% et de manière très préférée au moins 98% en masse dudit matériau.
De préférence la structure filtrante est monolithique et les parois filtrantes sont à base d'un matériau inorganique oxyde en particulier à base de Titanate d'Aluminium ou de Cordiérite voire de Mullite ou un composite à partir de ces matériaux.
De préférence, la composition du matériau céramique poreux comprend de 5 à 15% en masse de Siθ2. De préférence, la composition du matériau céramique poreux comprend moins de 7,5% en masse de MgO, et de manière encore plus préférée moins de 5% en masse de MgO. De préférence, la composition du matériau céramique poreux comprend moins de 0,25% des oxydes Na2<0 et/ou K2O et/ou SrO et/ou CaO et/ou Fe2Os et/ou BaO et/ou des oxydes de terres rares sous forme d'apport volontaires. De façon générale, la composition du matériau céramique poreux à base de Titanate d'Aluminium peut présenter tous les ajouts connus permettant de stabiliser la phase titanate d'aluminium. Par stabilité à haute température, on entend la capacité du matériau à base de titanate d'aluminium à ne pas se décomposer en deux phases d'oxyde de titane TiO2 et d'oxyde d'aluminium Al2θ3, dans les conditions normales d'utilisation d'un filtre à particules. De manière classique, cette propriété est mesurée selon l'invention par un test de stabilité consistant à déterminer les phases présentes dans le matériau, typiquement par diffraction X, puis à le soumettre à un traitement thermique à 11000C pendant 10 heures et vérifier, selon la même méthode d' analyse par diffraction X et dans les mêmes conditions, l'apparition des phases alumine et oxyde de titane, au seuil de détection du matériel.
Le matériau constituant les parois des structures obtenues selon l'invention présente de préférence une porosité ouverte comprise entre 20% et 65%, et de manière préférée entre 35% et 60%. Notamment dans l'application filtre à particules, une porosité trop faible conduit à une perte de charge trop élevée. Une porosité trop élevée conduit en revanche à un niveau de résistance mécanique trop faible. Le diamètre médian d5o, en volume, des pores constituant la porosité du matériau est de préférence compris entre 5 et 30 microns, de préférence entre 8 et 25 microns. De manière générale, dans les applications visées, il est généralement admis qu'un trop faible diamètre des pores entraîne une trop forte perte de charge, tandis qu'un diamètre médian de pores trop important entraîne une mauvaise efficacité de filtration.
Avantageusement, l'épaisseur des parois est comprise entre 0,2 à 1,0 mm, de préférence 0,2 et 0,5 mm. Le nombre de canaux dans les éléments filtrants est de préférence compris entre 7,75 et 62 par cm2, lesdits canaux ayant typiquement une section d'environ 0,5 à 9 mm2.
Si le filtre est constitué d'éléments monolithiques assemblés, la section d'un élément monolithique constituant la structure assemblée est carrée, la largeur de l'élément étant comprise entre 30 mm et 50 mm. Le matériau de jointoiement est entendu ici comme une composition moulable formée par un mélange particulaire et/ou fibreux, sec ou humide, apte à prendre en masse apte à avoir une tenue mécanique suffisante à température ambiante ou après séchage et/ou traitement thermique dont la température n'excédera pas la température de ramollissement ou d'affaissement qui définit la réfractarité du ou des matériaux constituant les éléments monolithiques .
On entend par moulable une composition apte à une déformation plastique nécessaire pour l'étalage sur la face de joint des éléments monolithiques et présentant une adhésion suffisante vis-à-vis de ces éléments de manière à les rendre solidaires ou à permettre la manipulation du filtre assemblé immédiatement après l'opération de jointoiement, ou si cela est nécessaire, après un traitement thermique ou chimique ou un autre traitement tel qu'une irradiation aux rayons ultraviolets.
Le matériau de jointoiement comprend de préférence des particules et/ou des fibres de céramique ou de matériau réfractaire, choisi parmi les non oxydes, tels que le SiC, le nitrure d'aluminium et/ou de silicium, l'oxynitrure d'aluminium, ou parmi les oxydes, notamment comprenant Al2O3, SiO2, MgO, TiO2, ZrO2, Cr2O3 ou l'un quelconque de leurs mélanges. Le filtre assemblé ou non présente de préférence un ciment de revêtement solidaire du filtre assemblé, notamment de même composition minérale que le matériau de jointoiement afin de réduire les contraintes thermomécaniques . La présente invention se rapporte également à un filtre catalytique obtenu à partir d'une structure telle que précédemment décrite et par dépôt, de préférence par imprégnation, d'au moins une phase catalytique active supportée ou de préférence non supportée, comprenant typiquement au moins un métal précieux tel que Pt et/ou Rh et/ou Pd et éventuellement un oxyde tel que CeO2, ZrO2, CeO2-ZrO2 pour le traitement des gaz polluants du type CO ou HC et/ou NOx et/ou la combustion des suies. Un tel filtre trouve notamment son application comme support catalytique dans une ligne d'échappement d'un moteur diesel ou essence ou comme filtre à particules dans une ligne d'échappement d'un moteur diesel.
Le dispositif filtrant comprenant le filtre peut aussi inclure autour du filtre un mat fibreux de préférence formé de fibres inorganiques afin de conférer les propriétés d'isolation thermiques requises par l'application. Les fibres inorganiques sont de préférence des fibres céramiques, comme des fibres d'alumine, de mullite, de zircone, d'oxyde de titane, de silice, de carbure ou nitrure de silicium, ou encore des fibres de verre, comme le verre R. Ces fibres peuvent être obtenues par fibrage à partir d'un bain d'oxydes en fusion, ou à partir d'une solution de précurseurs organométalliques (procédé sol- gel) . Le mat fibreux est de préférence non intumescent. Il se présente avantageusement sous la forme d'un feutre aiguilleté .
Comme décrit précédemment, l'invention se rapporte à un procédé de fabrication d'un filtre à particules tel que précédemment décrit. Un tel procédé comporte les étapes décrites précédemment.
Par exemple, ladite structure selon l'invention peut également être obtenue à partir d'un mélange initial de grains à base de titanate d'aluminium et/ou de cordiérite. Avantageusement, selon ce mode la poudre à base de titanate d'aluminium ou de cordiérite présente un diamètre médian inférieur à 60 microns.
On entend au sens de la présente description par diamètre médian, ou d5o, d'un mélange de particules ou d'un ensemble de grains, la taille divisant les particules de ce mélange ou les grains de cet ensemble en première et deuxième populations égales en volume, ces première et deuxième populations ne comportant que des particules ou des grains présentant une taille supérieure, ou inférieure respectivement, à ce diamètre médian.
Le procédé de fabrication selon l'invention comprend le plus souvent classiquement une étape de malaxage du mélange initial de poudres en un produit homogène sous la forme d'une pâte, une étape d'extrusion d'un produit cru mis en forme à travers une filière appropriée de manière à obtenir des monolithes du type nid d'abeilles, une étape de séchage des monolithes obtenus, éventuellement une étape d'assemblage et une étape de cuisson réalisée sous air ou sous atmosphère oxydante à une température ne dépassant pas 18000C, de préférence ne dépassant pas 16500C.
Les étapes de bouchage c) et f) peuvent être réalisées selon le procédé décrit par exemple dans US4557773 ou EP1500482 par exemple. Les mélanges de bouchage sont des mélanges de particules, secs ou humides, aptes à prendre en masse. La prise en masse ou durcissement de ces mélanges après obturation des canaux de la structure peut résulter d'un séchage ou, par exemple, du durcissement d'une résine. Le chauffage permet enfin d'accélérer l' évaporation de l'eau ou du liquide résiduel après durcissement.
Les mélanges de bouchage selon l'invention peuvent notamment comprendre des poudres réfractaires, des sphères creuses inorganiques, des plastifiants, des dispersants, des lubrifiants, des liants temporaires de nature organique et/ou inorganiques, des liants chimiques, des agents porogènes, tels que cités précédemment mais aussi des d'autres additifs de mise en forme et/ou de frittage. Toutes les poudres réfractaires classiquement utilisées pour la réalisation de mélange de bouchage peuvent être utilisées, en tenant compte bien entendu de la composition du matériau constituant les parois filtrantes. Les poudres réfractaires peuvent en particulier être des poudres à base carbure de silicium et/ou d'alumine et/ou de zircone et/ou de silice et/ou d'oxyde de titane et/ou de magnésie ou des poudres mixtes, notamment de titanate d'aluminium ou de mullite. De préférence, les poudres réfractaires sont des produits fondus. L'utilisation de produits frittes est également possible.
Par le terme «poudre» on entend classiquement au sens de la présente invention un ensemble de grains ou particules se caractérisant par une distribution de taille ou diamètre de grain en général centrée et répartie autour d'un diamètre moyen ou médian. Par les termes «grain» ou «particule», on entend un produit solide individualisé dans une poudre ou un mélange de poudres. De préférence, les poudres réfractaires représentent plus de 50 %, de préférence plus de 70 % de la masse de la matière minérale sèche du mélange de bouchage.
Dans un mode de réalisation préféré, le mélange de bouchage comprend au moins ou plusieurs poudres de Titanate d'Aluminium qui représentent au moins 50% de préférence au moins 80% en masse du mélange particulaire .
Selon un mode de réalisation alternatif le mélange de bouchage de la structure avant cuisson peut comprendre des poudres précurseurs du titanate d'aluminium, notamment des poudres d'alumine et de titane se transformant en titanate d'alumine pendant la cuisson de la structure.
L' invention et ses avantages seront mieux compris à la lecture des exemples non limitatifs qui suivent. Dans les exemples, tous les pourcentages sont donnés en poids.
Exemples de réalisation : a) réalisation d'une poudre de titanate d'aluminium électrofondue : Dans tous les exemples les pourcentages sont donnés en poids. Dans une étape préliminaire, du Titanate d'Aluminium a été préparé à partir des matières premières suivantes :
- environ 40% poids d'alumine avec un taux de pureté en AI2O3 supérieur à 99,5% et de diamètre médian d5o de 90 μm, commercialisée sous la référence AR75 ® par la société Pechiney,
- environ 50% poids d'oxyde de titane sous forme rutile comportant plus de 95% de TiO2 et environ 1% de zircone et présentant un diamètre médian d5o d'environ 120 μm, commercialisée par la société Europe Minerais,
- environ 5% poids de silice avec un taux de pureté en SiO2 supérieur à 99,5% et de diamètre médian d5o de l'ordre de 210 μm, commercialisée par la société SIFRACO, - environ 4% poids d'une poudre de magnésie avec un taux de pureté en MgO supérieur à 98% et dont plus de 80% de particules présentant un diamètre compris entre 0,25 et 1 mm, commercialisée par la société Nedmag. Le mélange des oxydes réactifs initiaux a été fondu dans un four à arcs électriques, sous air, avec une marche électrique oxydante. Le mélange fondu a ensuite été coulé en moule CS de façon à obtenir un refroidissement rapide. Le produit obtenu est broyé et tamisé pour obtenir des poudres de différentes fractions granulométriques . Plus précisément, le broyage et le tamisage sont réalisés dans des conditions permettant l'obtention au final de deux fractions granulométriques : une fraction granulométrique se caractérisant par un diamètre médian d5o sensiblement égal à 50 microns, désignée sous le terme fraction grosse selon la présente invention, une fraction granulométrique se caractérisant par un diamètre médian d5o sensiblement égal à 1,5 microns, désignée sous le terme fraction fine selon la présente invention,
Au sens de la présente description, le diamètre médian d50 désigne le diamètre des particules, mesuré par sédigraphie, au dessous duquel se trouve 50% en volume de la population. L'analyse par microsonde montre que tous les grains de la phase fondue ainsi obtenue présentent la composition suivante, en pourcentage poids des oxydes (tableau 1°) :
Tableau 1 b) fabrication des monolithes crus
Dans un premier temps, on a synthétisé une série de monolithes crus secs de la manière suivante : Dans un malaxeur, on mélange des poudres selon la composition suivante :
100 % d'un mélange de deux poudres de titanate d'aluminium réalisées précédemment par électrofusion, environ 75% d'une première poudre de diamètre médian de 50 μm et 25% d'une deuxième poudre de diamètre médian de 1,5 μm.
On ajoute, par rapport à la masse totale du mélange :
- 4% poids d'un liant organique du type cellulose,
- 15% poids d'un agent porogène,
- 5 % de plastifiant dérivé d' éthylène glycol, - 2% de lubrifiant (huile),
- 0,1 % de surfactant,
- environ 20% d'eau environ de manière à obtenir, selon les techniques de l'art, une pâte homogène après malaxage dont la plasticité permet l'extrusion à travers une filière d'une structure en nid d'abeille qui après cuisson présente les caractéristiques dimensionnelles selon le tableau 2. On sèche ensuite les monolithes crus obtenus par micro-onde pendant un temps suffisant pour amener la teneur en eau non liée chimiquement à moins de 1 % en masse. La population des monolithes crus secs a été divisée en trois séries représentatives de cette population.
Exemple 1 : (comparatif)
Sur une première série des monolithes ainsi réalisés, on bouche les canaux des deux extrémités du monolithe selon des techniques bien connues, par exemple décrites dans le brevet US4557773 et avec un mélange répondant à la formulation suivante : 100 % d'un mélange de deux poudres de titanate d'aluminium réalisées précédemment par électrofusion, environ 66% d'une première poudre de diamètre médian de 50 μm et 34% d'une deuxième poudre de diamètre médian de 1,5 μm.
- 1,5 % de liant organique du type cellulose,
- 21,4% de porogène,
- 0,8% de dispersant à base d'acide carboxylique,
- environ 55 % eau environ de manière à obtenir un mélange apte à obturer les monolithes, un canal sur deux.
Les monolithes sont ensuite cuits sous air progressivement jusqu'à atteindre une température de 14500C qui est maintenue pendant 4 heures.
La structure de ces monolithes selon l'exemple 1 est constituée de titanate d'aluminium dont les caractéristiques sont présentées dans le tableau 2.
Exemple 2 : (comparatif)
La deuxième série des monolithes crus secs est cuite, sans que les canaux aient été bouchés, sous air progressivement jusqu'à atteindre une température de 14500C qui est maintenue pendant 4 heures.
Les monolithes sont ensuite bouchés après cuisson, selon la configuration classique en échiquier (un canal sur deux) , avec un mélange de bouchage répondant à la formulation suivante :
100 % d'un mélange de deux poudres de titanate d'aluminium réalisées précédemment par électrofusion, environ 66% d'une première poudre de diamètre médian de 50 μm et 34% d'une deuxième poudre de diamètre médian de 1,5 μm.
- 31% de silice d'Elkem 971U, - 25 % de la poudre de verre sodocalcique ST300 de Reidt dont le diamètre médian est de 22 μm,
- 1,5 % de liant organique du type cellulose,
- 0,6% de dispersant à base d'acide carboxylique, - environ 45% d'eau.
Les monolithes alternativement bouchés un canal sur deux sont ensuite soumis à un traitement thermique jusqu'à une température finale de 10000C, qui est maintenue pendant 1 heure . La structure de ces monolithes selon l'exemple 2 est constituée de titanate d'aluminium dont les caractéristiques sont présentées dans le tableau 2 ci- après .
Exemple 3 (selon l'invention) :
A la différence de l'exemple 2, la troisième série des monolithes crus secs est bouchée avec le mélange de bouchons selon exemple 1 seulement sur une extrémité, qui est l'extrémité opposée à la face d'appui sur le support de cuisson. Ces monolithes sont ensuite cuits sous air progressivement jusqu'à atteindre une température de 14500C qui est maintenue pendant 4 heures. Les monolithes cuits sont ensuite bouchés du coté de l'extrémité ou de la face d'appui sur le support de cuisson à l'aide d'un mélange de bouchage selon l'exemple 2 puis soumis à un traitement thermique jusqu'à une température finale de 10000C qui est maintenue pendant 1 heure.
La structure de ces monolithes selon l'exemple 3 est constituée de titanate d'aluminium dont les caractéristiques sont présentées dans le tableau 2 ci- après .
Tableau 2
Les caractéristiques de porosité ont été mesurées par des analyses par porosimétrie à haute pression de mercure, effectuées avec un porosimètre de type Micromeritics 9500.
Il a été observé des fissures 10 sur le filtre 1 selon l'exemple 1 comme le montre la figure 1 qui est une vue du filtre depuis la face d'appui.
Une observation fine des canaux et bouchons du filtre réalisée selon l'exemple 2 au microscope électronique à balayage visible sur la figure 2 a mis en évidence la présence de fissures 11 entre la paroi 2 et le bouchon 3. Les mêmes analyses ou observations ne montrent pas de tels défauts sur le filtre réalisé selon l'exemple 3. La figure 3 montre la continuité de structure entre les parois 2 et les bouchons 3, en face arrière, c'est-à-dire sur le coté opposé à la face d'appui du filtre lors de la cuisson. La Figure 4 montre la jonction entre une paroi 2 et un bouchon 3, en face avant. On n'observe pas, dans le mode de réalisation selon l'invention, de fissures entre les bouchons 3 et les parois 2, en face avant comme en face arrière.
Additionnellement , le filtre réalisé selon l'exemple 3 chargé à 4g/l de suies a été testé sur un banc moteur comportant un moteur 2,OL Diesel à injection directe. Il a été vérifié que l'efficacité de filtration, mesurée par une sonde de type SMPS (Scanning Mobility Particules Sizer en anglais) était satisfaisante pour ce filtre. Le filtre soumis ensuite à une régénération ne montre pas de fissures après inspection visuelle ce qui montre que cette structure filtrante est apte à l'utilisation pour filtrer les gaz d'échappement d'un moteur à combustion interne en particulier de type Diesel.

Claims

REVENDICATIONS
1. Procédé d'obtention d'une structure filtrante de gaz chargés en particules, du type en nid d'abeilles, comprenant un ensemble de canaux adjacents longitudinaux d'axes parallèles entre eux séparés par des parois poreuses filtrantes, lesdits canaux étant alternativement bouchés à l'une ou l'autre des extrémités de la structure de façon à définir des canaux d'entrée et des canaux de sortie pour le gaz à filtrer, et de façon à forcer ledit gaz à traverser les parois poreuses séparant les canaux d'entrée et de sortie, ledit procédé comprenant au moins des étapes de mise en forme du nid d'abeille, de cuisson du nid d'abeille et de bouchage des canaux d'entrée et des canaux de sortie et se caractérisant en ce que : a) une partie des canaux d'entrée est bouchée sur une première extrémité avant cuisson de la structure en nid d' abeille, b) une partie des canaux de sortie est bouchée sur une deuxième extrémité après cuisson de la structure en nid d' abeille .
2. Procédé selon la revendication 1, dans lequel le matériau constituant les bouchons disposés sur la première extrémité du filtre présente sensiblement la même composition et une continuité de structure avec lesdites parois et dans lequel les bouchons disposés sur la deuxième extrémité du filtre présentent une composition chimique et/ou une composition structurale différente de celle des bouchons disposés sur ladite première extrémité.
3. Procédé de fabrication d'une structure selon l'une des revendications 1 ou 2, comprenant les étapes principales suivantes : a) préparation d'une composition à base du matériau constitutif de la structure et mise en forme, notamment par extrusion à travers une filière dudit matériau, d'une structure en nid d'abeille, b) séchage de ladite structure sous air selon une technique choisie parmi le séchage par air chaud, le séchage par séchage micro-onde, le séchage par lyophilisation à une température inférieure à 1300C ou une combinaison desdites techniques, c) préparation d'une composition d'un matériau de bouchage et obturation sur une première extrémité de ladite structure crue d'une partie des canaux par ladite composition, d) éventuellement séchage sous air selon une technique choisie parmi le séchage par air chaud, le séchage par séchage micro-onde, le séchage par lyophilisation à une température inférieure à 1300C ou une combinaison desdites techniques, e) cuisson de ladite structure, comprenant éventuellement une étape initiale de déliantage, f) préparation d'une composition d'un matériau de bouchage et obturation par ladite composition, sur la deuxième extrémité de ladite structure cuite, des canaux non obturés au cours de l'étape c) , g) séchage et/ou traitement thermique des bouchons disposés sur la deuxième extrémité de la structure cuite.
4. Procédé de fabrication d'une structure selon l'une des revendications précédentes, dans lequel l'étape e) de cuisson est mise en œuvre jusqu'à une température comprise entre 13000C et 18000C.
5. Procédé de fabrication d'une structure selon l'une des revendications précédentes, dans lequel l'étape g) consiste au moins en un séchage choisi dans le groupe constitué par un séchage sous air, un séchage sous air chaud, un séchage par micro-onde ou un séchage par lyophilisation à une température inférieure à 1300C ou leur combinaison.
6. Procédé de fabrication d'une structure selon l'une des revendications précédentes, dans lequel l'étape g) consiste au moins en un traitement thermique jusqu'à une température comprise entre 500 et HOO0C.
7. Structure filtrante susceptible d'être obtenue par un procédé selon l'une des revendications précédentes, du type en nid d'abeilles, comprenant un ensemble de canaux adjacents longitudinaux d'axes parallèles entre eux séparés par des parois poreuses filtrantes, lesdits canaux étant alternativement bouchés à l'une ou l'autre des extrémités de la structure de façon à définir des canaux d'entrée et des canaux de sortie pour le gaz à filtrer et de façon à forcer le gaz à traverser les parois poreuses séparant les canaux d'entrée et de sortie, ladite structure se caractérisant en ce que le matériau constituant les bouchons disposés sur une première extrémité du filtre présentent sensiblement la même composition et une continuité de structure avec lesdites parois et en ce que les bouchons disposés sur la deuxième extrémité du filtre présentent une composition chimique et/ou une composition structurale différente de celle des bouchons disposés sur ladite première extrémité.
8. Structure filtrante selon la revendication 7, dans laquelle le volume d'au moins une partie des canaux d'entrée est différent, en particulier supérieur, à celui d'au moins une partie des canaux de sortie.
9. Structure filtrante selon l'une des revendications 7 ou
8, dans laquelle les parois poreuses sont constituées d'un matériau à base de titanate d'aluminium, d'un matériau à base de SiC comprenant en outre éventuellement une matrice liante céramique et/ou vitreuse, ladite matrice vitreuse comprenant du Siθ2, d'un matériau à base d'alumine ou encore d'un matériau à base de Cordiérite.
10. Structure filtrante selon l'une des revendications 7 à
9, dans laquelle le matériau constituant les bouchons présente une composition chimique essentiellement identique à celle du matériau constituant les parois poreuses.
11. Structure filtrante selon l'une des revendications 7 à
10, dans laquelle le matériau des bouchons de la première extrémité et le matériau des bouchons de la deuxième extrémité présentent une composition chimique différente.
12. Structure filtrante selon l'une des revendications 7 à
11, dans laquelle le matériau des bouchons de la première extrémité et le matériau des bouchons de la deuxième extrémité présentent une composition chimique sensiblement identique mais une composition structurale différente notamment en raison d'une température de cuisson différente .
13. Structure filtrante selon l'une des revendications 7 à 12 comprenant en outre une phase catalytique active supportée ou de préférence non supportée, comprenant typiquement au moins un métal précieux tel que Pt et/ou Rh et/ou Pd et éventuellement un oxyde tel que Ceθ2, ZrO2, CeO2-ZrO2.
14. Ligne d'échappement, comprenant une structure filtrante selon l'une des revendications 7 à 13, dans laquelle la deuxième extrémité constitue la face d'entrée des gaz d'échappement pollués en particules et dans laquelle la première extrémité constitue la face de sortie des gaz dépollués .
EP09805777A 2008-12-23 2009-12-22 Structure filtrante dont les faces d'entree et de sortie presentent un materiau de bouchage different Withdrawn EP2421686A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0858998 2008-12-23
PCT/FR2009/052659 WO2010072971A1 (fr) 2008-12-23 2009-12-22 Structure filtrante dont les faces d'entree et de sortie presentent un materiau de bouchage different

Publications (1)

Publication Number Publication Date
EP2421686A1 true EP2421686A1 (fr) 2012-02-29

Family

ID=40914035

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09805777A Withdrawn EP2421686A1 (fr) 2008-12-23 2009-12-22 Structure filtrante dont les faces d'entree et de sortie presentent un materiau de bouchage different

Country Status (5)

Country Link
US (1) US20110262311A1 (fr)
EP (1) EP2421686A1 (fr)
JP (1) JP2012513555A (fr)
KR (1) KR20110114542A (fr)
WO (1) WO2010072971A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2957529B1 (fr) * 2010-03-19 2012-04-06 Saint Gobain Ct Recherches Structure filtrante comprenant un materiau de bouchage ameliore
WO2012056905A1 (fr) * 2010-10-26 2012-05-03 住友化学株式会社 Matériau d'étanchéité et procédé de fabrication d'un corps cuit en céramique nid d'abeille
US9205362B2 (en) * 2011-10-31 2015-12-08 Corning Incorporated Methods for manufacturing particulate filters
US9499442B1 (en) * 2013-03-15 2016-11-22 Ibiden Co., Ltd. Method for manufacturing aluminum-titanate-based ceramic honeycomb structure
WO2015098386A1 (fr) * 2013-12-27 2015-07-02 富士フイルム株式会社 Filtre inorganique
FR3024665B1 (fr) * 2014-08-11 2020-05-08 Technologies Avancees Et Membranes Industrielles Element de separation par flux tangentiel integrant des obstacles a la circulation et procede de fabrication

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5742316A (en) * 1980-08-28 1982-03-09 Ngk Insulators Ltd Ceramic honeycomb filter
US4557773A (en) 1981-07-15 1985-12-10 Corning Glass Works Method for selectively manifolding honeycomb structures
US4455180A (en) 1981-08-24 1984-06-19 Corning Glass Works Method of fabricating a sintered and selectively plugged honeycomb structure
WO1997025203A1 (fr) 1994-07-14 1997-07-17 Ibiden Co., Ltd. Structure ceramique
EP1508358B1 (fr) 1999-09-29 2009-04-15 Ibiden Co., Ltd. Filtre en nid d' abeilles et ensemble de filtres céramiques
JP4019732B2 (ja) * 2001-03-26 2007-12-12 株式会社デンソー セラミックハニカム成形体の栓詰め方法
US6840976B2 (en) * 2001-04-23 2005-01-11 Dow Global Technologies Inc. Method of making wall-flow monolith filter
FR2833857B1 (fr) 2001-12-20 2004-10-15 Saint Gobain Ct Recherches Corps filtrant comportant une pluralite de blocs filtrants, notamment destine a un filtre a particules
JP4155758B2 (ja) 2002-04-30 2008-09-24 日本碍子株式会社 ハニカム構造体の製造方法
WO2003106028A1 (fr) * 2002-06-01 2003-12-24 日立金属株式会社 Structure de ceramique en nid d'abeille, processus de production de cette structure et materiau de recouvrement destine a cette production
US6849181B2 (en) 2002-07-31 2005-02-01 Corning Incorporated Mullite-aluminum titanate diesel exhaust filter
EP1502640B1 (fr) 2002-09-13 2013-03-20 Ibiden Co., Ltd. Structure en nid d'abeille
JP4723173B2 (ja) 2003-01-20 2011-07-13 日本碍子株式会社 ハニカム構造体の製造方法
FR2853256B1 (fr) 2003-04-01 2005-10-21 Saint Gobain Ct Recherches Structure de filtration, notamment filtre a particules pour les gaz d'echappement d'un moteur a combustion interne.
FR2857696B1 (fr) 2003-07-18 2005-10-21 Saint Gobain Ct Recherches Bloc filtrant pour la filtration de particules contenues dans les gaz d'echappement d'un moteur a combustion interne.
WO2005105704A1 (fr) 2004-04-28 2005-11-10 Ohcera Co., Ltd. Structure de ctristal de titanate d'aluminium de magnesiun et procédé de rpoeuction de ce dernier
US20060272306A1 (en) 2005-06-01 2006-12-07 Kirk Brian S Ceramic wall flow filter manufacture
JP2007230222A (ja) * 2006-02-06 2007-09-13 Ngk Insulators Ltd 目封止ハニカム構造体の製造方法及び目封止ハニカム構造体製造装置
US7744669B2 (en) 2006-07-14 2010-06-29 Corning Incorporated Plugging material for aluminum titanate ceramic wall flow filter manufacture
JP5234970B2 (ja) * 2008-02-13 2013-07-10 イビデン株式会社 ハニカム構造体、排ガス浄化装置、及び、ハニカム構造体の製造方法
WO2009101682A1 (fr) * 2008-02-13 2009-08-20 Ibiden Co., Ltd. Structure en nid d'abeilles, appareil de purification de gaz d'échappement et processus de production d'une structure en nid d'abeilles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010072971A1 *

Also Published As

Publication number Publication date
JP2012513555A (ja) 2012-06-14
KR20110114542A (ko) 2011-10-19
WO2010072971A1 (fr) 2010-07-01
US20110262311A1 (en) 2011-10-27

Similar Documents

Publication Publication Date Title
EP2547417A1 (fr) Structure filtrante comprenant un materiau de bouchage
EP2303796B1 (fr) Grains fondus d&#39;oxydes comprenant al, ti, mg et zr et produits ceramiques comportant de tels grains
KR101123173B1 (ko) 세라믹 허니컴 필터 및 그 제조 방법
WO2009156652A1 (fr) Structure en nid d&#39;abeille a base de titanate d&#39;aluminium
WO2010001066A2 (fr) Structure poreuse du type titanate d&#39;alumine
JP5722869B2 (ja) ハニカム構造を硬化させるための方法及び基材
US20090202402A1 (en) Honeycomb structure, exhaust gas purifying apparatus and method for manufacturing honeycomb structure
WO2007148011A2 (fr) Ciment de jointoiement a spheres creuses pour filtre a particules
EP2421686A1 (fr) Structure filtrante dont les faces d&#39;entree et de sortie presentent un materiau de bouchage different
FR2947260A1 (fr) Grains fondus d&#39;oxydes comprenant al, ti, si et produits ceramiques comportant de tels grains
FR2931366A1 (fr) Filtre composite sic-vitroceramique
WO2010001064A2 (fr) GRAINS FONDUS D&#39;OXYDES COMPRENANT AL, TI et MG ET PRODUITS CERAMIQUES COMPORTANT DE TELS GRAINS
EP2303797A2 (fr) Melange de grains pour la synthese d&#39;une structure poreuse du type titanate d&#39;alumine
WO2007148010A2 (fr) Ciment pour filtre a particules
EP2582644A1 (fr) Filtre catalytique pour la filtration d&#39;un gaz comprenant un ciment de joint incorporant un materiau geopolymere
FR2931697A1 (fr) Filtre ou support catalytique a base de carbure de silicium et de titanate d&#39;aluminium
CA2616922A1 (fr) Procede de preparation d&#39;une structure poreuse utilisant des agents porogenes a base de silice
FR2931698A1 (fr) Structure en nid d&#39;abeille a base de titanate d&#39;aluminium.
WO2011051901A1 (fr) Corps filtrant assemblé à résistance thermique spécifique variable

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110725

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
111L Licence recorded

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

Free format text: EXCLUSIVE LICENSE

Name of requester: SAINT-GOBAIN INDUSTRIEKERAMIK ROEDENTAL GMBH, DE

Effective date: 20120710

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150701