EP2416910A1 - Verfahren zur herstellung eines turbinenrads für einen abgasturbolader - Google Patents
Verfahren zur herstellung eines turbinenrads für einen abgasturboladerInfo
- Publication number
- EP2416910A1 EP2416910A1 EP10713170A EP10713170A EP2416910A1 EP 2416910 A1 EP2416910 A1 EP 2416910A1 EP 10713170 A EP10713170 A EP 10713170A EP 10713170 A EP10713170 A EP 10713170A EP 2416910 A1 EP2416910 A1 EP 2416910A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- turbine wheel
- core
- feedstock
- volume
- injection molding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 15
- 238000000034 method Methods 0.000 claims abstract description 53
- 239000011230 binding agent Substances 0.000 claims abstract description 48
- 239000000463 material Substances 0.000 claims abstract description 36
- 229910052751 metal Inorganic materials 0.000 claims abstract description 26
- 239000002184 metal Substances 0.000 claims abstract description 26
- 238000001746 injection moulding Methods 0.000 claims abstract description 23
- 239000000843 powder Substances 0.000 claims abstract description 23
- 238000005245 sintering Methods 0.000 claims abstract description 18
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 26
- 239000000203 mixture Substances 0.000 claims description 15
- 229910045601 alloy Inorganic materials 0.000 claims description 14
- 239000000956 alloy Substances 0.000 claims description 14
- 229910052759 nickel Inorganic materials 0.000 claims description 13
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 7
- 229920001577 copolymer Polymers 0.000 claims description 7
- 239000010936 titanium Substances 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- 229920000098 polyolefin Polymers 0.000 claims description 6
- 239000012255 powdered metal Substances 0.000 claims description 6
- 229910001092 metal group alloy Inorganic materials 0.000 claims description 3
- 229920005638 polyethylene monopolymer Polymers 0.000 claims 1
- 239000007789 gas Substances 0.000 description 17
- 239000002253 acid Substances 0.000 description 14
- 230000008569 process Effects 0.000 description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 10
- 238000002485 combustion reaction Methods 0.000 description 10
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- 239000011651 chromium Substances 0.000 description 7
- -1 polyoxymethylene Polymers 0.000 description 7
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 6
- 150000007513 acids Chemical class 0.000 description 6
- 229910052804 chromium Inorganic materials 0.000 description 6
- 238000005495 investment casting Methods 0.000 description 6
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- 229910052750 molybdenum Inorganic materials 0.000 description 5
- 239000011733 molybdenum Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 150000004292 cyclic ethers Chemical class 0.000 description 4
- 239000000155 melt Substances 0.000 description 4
- 229910052758 niobium Inorganic materials 0.000 description 4
- 239000010955 niobium Substances 0.000 description 4
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 4
- 239000013585 weight reducing agent Substances 0.000 description 4
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 3
- BGJSXRVXTHVRSN-UHFFFAOYSA-N 1,3,5-trioxane Chemical compound C1OCOCO1 BGJSXRVXTHVRSN-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 229930040373 Paraformaldehyde Natural products 0.000 description 3
- 229920012196 Polyoxymethylene Copolymer Polymers 0.000 description 3
- 239000012159 carrier gas Substances 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 229920006324 polyoxymethylene Polymers 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 229920009382 Polyoxymethylene Homopolymer Polymers 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 229910000856 hastalloy Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 229910001026 inconel Inorganic materials 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 229910001235 nimonic Inorganic materials 0.000 description 2
- 125000005704 oxymethylene group Chemical group [H]C([H])([*:2])O[*:1] 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- RBACIKXCRWGCBB-UHFFFAOYSA-N 1,2-Epoxybutane Chemical compound CCC1CO1 RBACIKXCRWGCBB-UHFFFAOYSA-N 0.000 description 1
- VDFVNEFVBPFDSB-UHFFFAOYSA-N 1,3-dioxane Chemical compound C1COCOC1 VDFVNEFVBPFDSB-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- FZIIBDOXPQOKBP-UHFFFAOYSA-N 2-methyloxetane Chemical compound CC1CCO1 FZIIBDOXPQOKBP-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 239000006057 Non-nutritive feed additive Substances 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 230000035508 accumulation Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 235000019437 butane-1,3-diol Nutrition 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000005524 ceramic coating Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- VKONPUDBRVKQLM-UHFFFAOYSA-N cyclohexane-1,4-diol Chemical compound OC1CCC(O)CC1 VKONPUDBRVKQLM-UHFFFAOYSA-N 0.000 description 1
- HGGNZMUHOHGHBJ-UHFFFAOYSA-N dioxepane Chemical compound C1CCOOCC1 HGGNZMUHOHGHBJ-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229920005676 ethylene-propylene block copolymer Polymers 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- DNIAPMSPPWPWGF-UHFFFAOYSA-N monopropylene glycol Natural products CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- LYRFLYHAGKPMFH-UHFFFAOYSA-N octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(N)=O LYRFLYHAGKPMFH-UHFFFAOYSA-N 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920005606 polypropylene copolymer Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229960004063 propylene glycol Drugs 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000007142 ring opening reaction Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910000601 superalloy Inorganic materials 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- XOUPWBJVJFQSLK-UHFFFAOYSA-J titanium(4+);tetranitrite Chemical compound [Ti+4].[O-]N=O.[O-]N=O.[O-]N=O.[O-]N=O XOUPWBJVJFQSLK-UHFFFAOYSA-J 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F5/009—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine components other than turbine blades
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/10—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
- B22F1/103—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing an organic binding agent comprising a mixture of, or obtained by reaction of, two or more components other than a solvent or a lubricating agent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/22—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/22—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
- B22F3/225—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/02—Blade-carrying members, e.g. rotors
- F01D5/04—Blade-carrying members, e.g. rotors for radial-flow machines or engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/02—Blade-carrying members, e.g. rotors
- F01D5/04—Blade-carrying members, e.g. rotors for radial-flow machines or engines
- F01D5/043—Blade-carrying members, e.g. rotors for radial-flow machines or engines of the axial inlet- radial outlet, or vice versa, type
- F01D5/048—Form or construction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C6/00—Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
- F02C6/04—Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
- F02C6/10—Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output supplying working fluid to a user, e.g. a chemical process, which returns working fluid to a turbine of the plant
- F02C6/12—Turbochargers, i.e. plants for augmenting mechanical power output of internal-combustion piston engines by increase of charge pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/20—Manufacture essentially without removing material
- F05D2230/21—Manufacture essentially without removing material by casting
- F05D2230/211—Manufacture essentially without removing material by casting by precision casting, e.g. microfusing or investment casting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/20—Manufacture essentially without removing material
- F05D2230/23—Manufacture essentially without removing material by permanently joining parts together
Definitions
- the invention relates to a method for producing a weight-reduced turbine wheel for an exhaust gas turbocharger in internal combustion engines by metal powder injection molding.
- a turbocharger for an internal combustion engine comprises an exhaust gas turbine, which is arranged in the exhaust gas flow of the internal combustion engine and is connected via a shaft to a compressor in the intake tract of the internal combustion engine.
- the turbine is set in rotation by the exhaust gas flow of the internal combustion engine and drives the compressor wheel.
- the compressor wheel increases the pressure in the intake tract of the engine so that during the intake stroke, a larger amount of air enters the cylinder, as in a naturally aspirated engine. As a result, more oxygen is available for the combustion of a correspondingly larger amount of fuel.
- the turbine wheel of the "hot" side exposed to the exhaust gas stream is usually manufactured from a high-temperature-resistant material by investment casting and friction welded to the shaft
- Turbocharger extremely high speeds of the shaft are achieved with the two wheels of up to about 300,000 rev / min ..
- the moment of inertia of the rotating parts should be as low as possible.
- JP 2007-120409 discloses the coring of a turbine wheel and thus the saving of material for weight reduction.
- the cored-out turbine wheel is manufactured using the precision casting process.
- the disadvantage, however, is that the described investment casting process is complicated and expensive.
- the MIM process makes it possible to produce small to medium-sized, complex-shaped parts cost-effectively and automatically in large quantities.
- the MIM process involves plasticizing metal powders of spherical or irregular morphology (particle sizes of the powder generally less than 100 microns) by means of a binder to a so-called feedstock.
- the homogenization of the feedstock is carried out in a kneader, then the feedstock is introduced into an injection molding machine.
- parts of the binder material for example, suitable waxes
- a screw then promotes the melt into a divisible mold. After completion of the mold filling, the melt solidifies again and allows the removal of the component from the mold.
- the removal of the binder is carried out by a debindering step upstream of the sintering. Depending on the binder material while the binders are removed in different ways from the component.
- Debinding generally distinguishes between thermal debinding (melting out or decomposing the binder via the gas phase), solvent extraction and catalytic debinding. Subsequent to the binder removal step, the sintering process takes place, in which diffusion of the component achieves a compaction of more than 95, preferably even more than 98%, of the theoretical density.
- the object of the invention is to provide a novel economical method for producing a turbine wheel for an exhaust gas turbocharger of an internal combustion engine, which can be produced in a simple manner weight-reduced turbine wheels for exhaust gas turbocharger.
- a tool which comprises a negative mold of the turbine wheel to be produced, for metal powder injection molding of the turbine wheel
- a rotationally symmetrical core which comprises a binder material
- turbine wheels for exhaust-gas turbochargers with a cavity-defining internal structure, can be produced simply and inexpensively.
- the interior structure defining a cavity is formed by removing the core in the debinding step carried out in process step (e).
- This weight reduction leads to a faster response, along with lower fuel consumption and an increase in the efficiency of the internal combustion engine, as well as a considerable material savings.
- the method according to the invention makes it possible to produce turbine wheels for exhaust-gas turbochargers of particularly fine design with wall thicknesses in the range from 0.1 to 1 mm.
- the term "feedstock” generally means a composition which contains a sinterable metal or ceramic powder and a binder material and is suitable for use in metal powder injection molding Meaning of the invention for a powdered metal or a powdered metal alloy tion or mixtures thereof.
- metals which may be present in powder form in the feedstock include, by way of example, iron, cobalt, nickel, chromium, titanium, molybdenum, niobium and aluminum; Alloys are, for example, nickel-based alloys or titanium-based alloys.
- nickel-based alloys which are available 713, for example, under the trade names Inconel ®, these contain 74 wt .-% nickel, 12.5 wt .-% chromium, 4.2 wt .-% molybdenum, 2 wt .-% niobium, 6 wt .-% aluminum, 0.8 wt .-% of titanium and 0.12 wt .-% carbon.
- nickel-based alloy is an alloy that is commercially available under the trade name Inconel ® 718th
- This base alloy contains 50 to 55 wt .-% nickel, 17 to 21 wt .-% chromium, ⁇ 24 wt .-% iron, 2.8 to 3.3 wt .-% molybdenum, 4.8 to 5.5 wt % Of niobium, 0.2 to 0.8% by weight of aluminum, 0.7 to 1.1% by weight of titanium and less than 0.08% by weight of carbon.
- NIMONIC to ® 90 is also preferably, in the nickel-based alloy.
- NIMONIC 90 contains less than 0.13 wt .-% of carbon, 2 to 3 wt .-% of titanium, 1 to 2 wt .-% aluminum, less than 1 , 5% by weight of iron, 15 to 21% by weight of cobalt, 18 to 21% by weight of chromium, the remainder being nickel. Further preferably, in the nickel-based alloy is HASTELLOY ® X.
- HASTELLOY ® X is an alloy containing 0.05 to 0.15 wt .-% carbon, less than 0.5 wt .-% aluminum, 0 , 5 to 2.5 wt .-% cobalt, 8 to 10 wt .-% molybdenum, 17 to 20 wt .-% iron, 20 to 23 wt .-% chromium and the balance nickel. Also suitable is an alloy containing about 15% by weight chromium, about 10% by weight iron, 5% by weight molybdenum, 2% by weight titanium, niobium and nickel.
- the proportion of the metal powder in the feedstock can vary over wide ranges and is usually 40 to 70% by volume, preferably 45 to 60% by volume, based on the feedstock.
- binder material or “binder” in the context of the present invention are in principle all known from the prior art systems that are suitable for use in metal powder injection molding.
- the proportion of the binder material in the feedstock can vary over wide ranges and is usually from 10 to 60% by volume, preferably from 30 to 50% by volume, based on the feedstock.
- Suitable binder materials are generally thermoplastic resins, such as polystyrene, polypropylene, polyethylene and ethylene-vinyl acetate copolymers. Such binder materials can be removed from the green body, for example by heating to temperatures of 300 to 500 0 C over a period of 3 to 8 hours. The binder material is thermally split. Also suitable are binder materials which are removed from the green body by extraction with a solvent.
- binder materials based on polyoxymethylene which are removed by treating the green body in a gaseous, acidic atmosphere.
- acids proton acids are usually used in these processes, ie acids which are split upon reaction with water into a proton (hydrated) and an anion.
- the feedstock contains A) 40 to 90% by volume of a sinterable powdered metal or a powdered metal alloy or mixtures thereof,
- polyoxymethylene homopolymers or copolymers are known per se to the person skilled in the art and are described in the literature.
- the homopolymers are generally prepared by polymerization of formaldehyde or trioxane, preferably in the presence of suitable catalysts.
- Preferred polyoxymethylene copolymers contain, in addition to the recurring units -OCH 2 -. still up to 50, preferably 0.1 to 20 and particularly preferably 0.3 to 10 mol% of recurring units
- R 1 to R 4 independently of one another are a hydrogen atom, a C 1 - to C 4 -alkyl group or a halogen-substituted alkyl group having 1 to 4 C atoms and R 5 is a -CH 2 -, -CH 2 -O-, to C 4 alkyl or C 1 to C 4 haloalkyl substituted methylene group or a corresponding oxymethylene group and n has a value in the range of 0 to 3.
- these groups can be introduced into the copolymers by ring opening of cyclic ethers.
- Preferred cyclic ethers are those of the formula (II)
- R 1 to R 5 and n have the abovementioned meaning.
- component B1 oxymethylene terpolymers which are prepared, for example, by reacting trioxane, one of the above-described cyclic ethers and a third monomer, preferably a bifunctional compound of the formula (III)
- Preferred monomers of this type are ethylene diglycide, diglycidyl ether and diether of glycidylene and formaldehyde, dioxane or trioxane in the molar ratio 2: 1 and diether of 2 mol glycidyl compound and 1 mol of an aliphatic diol having 2 to 8 carbon atoms, such as the diglycidyl ethers of ethylene glycol, 1, 4 Butanediol, 1, 3-butanediol, cylobutane-1, 3-diol, 1, 2-propanediol and cyclohexane-1, 4-diol to name just a few.
- the preferred polyoxymethylene homopolymers or copolymers have melting points of at least 150 ° C. and molecular weights (weight average) in the range from 5,000 to 150,000, preferably from 7,000 to 60,000.
- Component B2) consists of polyolefins, or mixtures thereof.
- polyolefins are those having 2 to 8 carbon atoms, in particular 2 to 4 carbon atoms called, and their copolymers.
- Particular preference is given to polyethylene and polypropylene and their copolymers, as known to the person skilled in the art and commercially available, for example under the trade name Lupolen® or Novolen® from BASF SE.
- the binder materials used in the context of the process according to the invention may contain 0 to 6, preferably 1 to 5,% by volume of a dispersing assistant.
- a dispersing assistant preferably 1 to 5,% by volume of a dispersing assistant.
- Exemplary here are only oligomeric polyethylene oxide having an average molecular weight of 200 to 600, stearic acid, stearic acid amide, Hydroxistearic acid, fatty alcohols, fatty alcohol sulfonates and block copolymers of ethylene and propylene called.
- binder materials may also contain conventional additives and processing aids which favorably influence the rheological properties of the mixtures during deformation.
- the preparation of the feedstock is usually carried out by melting the component B), preferably in a twin-screw extruder, at temperatures of preferably 150 to 220 0 C, in particular 170 to 200 0 C.
- the metal powder A) is then at temperatures in the same range, in the required amount to the melt stream of the binder material (component B)) dosed.
- a tool which comprises a negative mold of the turbine wheel to be produced. According to the invention this is suitable for metal powder injection molding of the turbine wheel.
- Such tools are known in the art and need not be discussed further here.
- the tool is a tool that allows cores to be pulled.
- a rotationally symmetrical core is introduced into the negative mold of the tool in method step (c) of the method according to the invention.
- the rotationally symmetric core is an aid which introduces a cavity structure into the turbine wheel.
- This core is according to the invention in the negative mold aligned so that it is symmetrical to the axis of rotation of the turbine wheel to be produced.
- the core is mounted on a suitable receiving device in the tool and held in position.
- the receiving device may, for example, be a pin or a rod onto which the core is plugged in.
- the binder or constituents of the binder constituting the core may be then during the debinding step from the cavity, which leaves the receiving device in the green body, diffuse.
- process step (d) of the process according to the invention the feedstock provided in process step a) is injected around the core into the negative mold and thus a green body is produced.
- conventional screw or piston injection molding machines can be used for carrying out the injection molding process in process step (d).
- the deformation of the feedstock is generally carried out at temperatures of 60 to 200 0 C and injection pressures of 300 to 2000 bar, in tools that have a temperature of 60 to 150 0 C.
- a green body is produced with the structure of the turbine wheel to be produced, which contains the core of the binder material.
- the binder removal step, process step (e), is carried out in order to obtain a shaped body in the form of the turbine wheel.
- the debinding step is carried out as a function of the selected binder material. The progress of the debindering step can be monitored by the person skilled in the art, for example, by determining the change in weight of the green body.
- the debinding step is generally carried out at temperatures in the range of 20 to 180 ° C over a period of 0.1 to 24 hours, preferably 0.5 to 12 hours in a gaseous acidic atmosphere.
- Suitable acids for the treatment are inorganic, already gaseous at room temperature, but at least at the treatment temperature vaporizable acids.
- the hydrohalic acids and HNO 3 may be mentioned .
- Suitable organic acids are those which have a boiling point of less than 130 ° C. under atmospheric pressure, for example formic acid, acetic acid or trifluoroacetic acid or mixtures thereof.
- BF 3 or its adducts of organic ethers are also suitable as acid.
- the required treatment time depends on the treatment temperature and the concentration of the acid in the treatment atmosphere. If a carrier gas is used, this is generally preceded by passing through and loading the acid.
- the loaded carrier gas is then brought to the treatment temperature, which is suitably higher than the loading temperature in order to avoid condensation of the acid.
- the acid is admixed to the carrier gas via a metering device and the mixture is heated to such an extent that the acid can no longer condense.
- the debinding step can also be carried out, for example, in two stages.
- the treatment in the first stage is carried out until the polyoxymethylene B1) content of the binder is at least 80% by weight, preferably at least 90% by weight. This can be easily recognized by the weight loss of the green body.
- the shaped body thus obtained is heated to 250 to 500 0 C, preferably 350 to 450 0 C for 0.1 to 12, preferably 0.3 to 6 hours to almost completely remove the remaining portion of the binder.
- the in the binder removal step freed from the binder material can be converted in a conventional manner by sintering in a metallic molding.
- sintering moldings are compressed or shrunk into the components with the final, geometric properties.
- the linear shrinkage generally depends on the binder content between 10% and 20%.
- the sintering can be carried out under different protective gases or under vacuum.
- Process step (f) is generally carried out at temperatures in the range of 250 to 1500 ° C.
- the sintering time is generally in the range of 1 to 12 hours, preferably in the range of 2 to 5 hours.
- a holding device is used in method step (f) during sintering, which supports the shaped body during sintering in order to at least substantially prevent distortion on the component.
- this holding device is attached in the form of a dome on the component.
- one or more holding devices are used in the sintering, whose material composition and wall thickness are adapted to the material composition and wall thickness of the turbine wheel to be produced. This ensures that the molded body to be sintered and the corresponding holding device are compressed or shrink to the same extent during sintering.
- a surface of the respective holding device is at least partially coated.
- the surface is coated at least in those sections in which the holding device is in contact with the body to be sintered.
- the holding device can also be coated on all sides.
- the coating used depends on the material or material composition of the shaped bodies to be sintered.
- the use of a ceramic coating or a coating of titanium nitrite for the holding device is preferred.
- the core introduced in process step (c) consists of the same binder material which is contained in the feedstock. This advantageously ensures that the removal of the core and the binder material contained in the feedstock can be carried out in an identical process step.
- the size and / or geometry of the rotationally symmetric core introduced in method step (c) can be varied over further ranges.
- the size of the core is chosen to have a volume which is approximately 5 to 60% of the volume of the turbine wheel, preferably 45 to 55% of the volume of the turbine wheel.
- the geometry of the core can be selected by the person skilled in the art depending on the geometry of the turbine wheel. Generally suitable are cores which have a cone geometry, spherical geometry (spherical geometry), elliptical geometry, cylindrical geometry or, more generally, a rotationally symmetric geometry.
- a core can be selected, the geometry of which is modeled on the geometry of the turbine wheel, which particularly weight-optimized turbine wheels can be obtained, the wall thicknesses are chosen so that they affect the forces acting on them during operation withstand.
- the turbine wheel according to the invention After the turbine wheel according to the invention has been produced, it is conventionally connected to a shaft by friction welding or direct injection molding and then balanced.
- the turbine wheel obtained in method step (f) is connected to a shaft in a further method step (g) by means of metal injection molding.
- Fig. 1 shows a sectional view of the turbine wheel 1 for an exhaust gas turbocharger for internal combustion engines.
- the turbine wheel 1 for an exhaust gas turbocharger for internal combustion engines shown in Figure 1 has a cavity structure 2, which was created by means of the method according to the invention.
- the cavity structure is located in the center of the turbine wheel and has a symmetry to the axis of rotation of the turbine wheel 1.
- the feedstock used was an injection-moldable granulate for the production of sintered shaped parts from a heat-resistant nickel super alloy (DIN 2 4632), which is sold by BASF SE under the brand name Catamold® N90.
- DIN 2 4632 heat-resistant nickel super alloy
- a core consisting of the binder material with a volume of about 6 cm 3 was introduced into the negative mold of the tool.
- the binder removal was carried out at 1 10 0 C in HNCvAtmosphot.
- a 50 l debinding furnace from Heraeus VT 6060 MU2 with an acid dosage of 30 ml / h and a purge gas passage (nitrogen) of 500 l / h was used.
- the delivery was completed after the debindering loss of 7.7%, based on the initial weight of the green body was achieved.
- the sintering was carried out under an atmosphere of 100% argon.
- the argon comparable turned clean and dry (99.98%, dew point ⁇ -80 0 C).
- the sintering cycle was as follows
- the component was held for a period of 4 hours at a pressure of 1000 bar at a temperature of 1 185 0 C.
- step 1 the turbine wheel was annealed in vacuo at 1080 0 C over a period of 8 h under 900 mbar argon.
- step 2 the workpiece was annealed in vacuo at 705 0 C for 16 h at 900 mbar argon.
- a turbine wheel was obtained with a volume of 7.5 cm 3 , which was one third lighter than a massively manufactured turbine wheel.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Powder Metallurgy (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Supercharger (AREA)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP10713170A EP2416910A1 (de) | 2009-04-09 | 2010-04-01 | Verfahren zur herstellung eines turbinenrads für einen abgasturbolader |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP09157695 | 2009-04-09 | ||
| EP10713170A EP2416910A1 (de) | 2009-04-09 | 2010-04-01 | Verfahren zur herstellung eines turbinenrads für einen abgasturbolader |
| PCT/EP2010/054400 WO2010115837A1 (de) | 2009-04-09 | 2010-04-01 | Verfahren zur herstellung eines turbinenrads für einen abgasturbolader |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP2416910A1 true EP2416910A1 (de) | 2012-02-15 |
Family
ID=42289418
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP10713170A Withdrawn EP2416910A1 (de) | 2009-04-09 | 2010-04-01 | Verfahren zur herstellung eines turbinenrads für einen abgasturbolader |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US20120034084A1 (enExample) |
| EP (1) | EP2416910A1 (enExample) |
| JP (1) | JP5600734B2 (enExample) |
| KR (1) | KR20120042728A (enExample) |
| CN (1) | CN102387882A (enExample) |
| WO (1) | WO2010115837A1 (enExample) |
Families Citing this family (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103240418B (zh) * | 2013-05-23 | 2014-12-24 | 北京科技大学 | 一种具有中空内部结构增压涡轮的近终成形方法 |
| CN103603693A (zh) * | 2013-12-05 | 2014-02-26 | 罗亚军 | 空心轴新动力发动机 |
| DE102014213343A1 (de) * | 2014-07-09 | 2016-01-14 | Bosch Mahle Turbo Systems Gmbh & Co. Kg | Turbinenrad eines Abgasturboladers und zugehöriges Herstellungsverfahren |
| JP2016159616A (ja) * | 2015-03-05 | 2016-09-05 | 富士ゼロックス株式会社 | 造形装置 |
| CN106623903A (zh) * | 2016-12-29 | 2017-05-10 | 柳州市凯夕贸易有限公司 | 一种耐高温合金及其制备方法 |
| JP6833561B2 (ja) * | 2017-02-27 | 2021-02-24 | 三菱重工業株式会社 | タービンホイールの製造方法、タービンホイール、およびタービンホイールの焼結治具 |
| DE202017003726U1 (de) | 2017-07-14 | 2017-12-22 | Johann Schweiger | Einteiliger Einsatz mit integriertem, selbstabtrennenden Angusssystem und Temperierkanal zur Verarbeitung vernetzender Formmassen im Spritzgießverfahren |
| DE102017006722A1 (de) | 2017-07-14 | 2019-01-17 | Johann Schweiger | Einteiliger Einsatz mit integriertem, selbstabtrennenden Angusssystem und Temperierkanal zur Verarbeitung thermoplastischer Formmassen mit Spritzgießverfahren |
| JP6985118B2 (ja) * | 2017-11-24 | 2021-12-22 | 三菱重工航空エンジン株式会社 | 金属部材の製造方法 |
| FR3081372B1 (fr) * | 2018-05-23 | 2021-10-01 | Safran | Procede de fabrication d’une piece de turbomachine |
| CN110102767A (zh) * | 2019-04-18 | 2019-08-09 | 中南大学湘雅二医院 | 一种无损去除内芯的血管内支架的制备方法 |
| JP7261668B2 (ja) * | 2019-06-18 | 2023-04-20 | 株式会社小松製作所 | タービンホイール |
| KR20230133334A (ko) * | 2021-01-20 | 2023-09-19 | 바스프 에스이 | 저 밀도 및 우수한 기계적 특성을 갖는 금속 부품의제조를 위한 물질 및 방법 |
| CN116079060A (zh) * | 2023-01-10 | 2023-05-09 | 上海精科智能科技股份有限公司 | 一种一体成形具有中空结构精密零件的制备方法 |
Family Cites Families (22)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CH360247A (de) * | 1956-09-06 | 1962-02-15 | Birmingham Small Arms Co Ltd | Verfahren zur Herstellung des Rotors einer Turbogruppe für ein elastisches Medium |
| DE2457231C2 (de) * | 1974-12-04 | 1976-11-25 | Motoren Turbinen Union | Laufrad fuer eine schnellaufende turbomaschine |
| DE2621201C3 (de) * | 1976-05-13 | 1979-09-27 | Maschinenfabrik Augsburg-Nuernberg Ag, 8900 Augsburg | Laufrad für eine Strömungsmaschine |
| DE2830358C2 (de) * | 1978-07-11 | 1984-05-17 | MTU Motoren- und Turbinen-Union München GmbH, 8000 München | Verdichterlaufrad, insbesondere Radialverdichterlaufrad für Strömungsmaschinen |
| JPS5896101A (ja) * | 1981-12-03 | 1983-06-08 | Honda Motor Co Ltd | タ−ビンホイ−ルの製造方法 |
| JPS62228602A (ja) * | 1986-03-28 | 1987-10-07 | Toyota Central Res & Dev Lab Inc | 熱機関用回転体 |
| JPS6384902A (ja) * | 1986-09-29 | 1988-04-15 | トヨタ自動車株式会社 | セラミツク焼結体の製造方法 |
| US4787821A (en) * | 1987-04-10 | 1988-11-29 | Allied Signal Inc. | Dual alloy rotor |
| JPH0313251A (ja) * | 1989-06-12 | 1991-01-22 | Honda Motor Co Ltd | 翼車模型成形用金型の製作方法 |
| EP0799102B1 (en) * | 1994-12-19 | 2001-02-28 | Aga Aktiebolag | Process including heating and cooling for production of an injection-moulded body |
| CN1074698C (zh) * | 1997-06-19 | 2001-11-14 | 陈吉彪 | 金属粉末注射成型工艺 |
| DE19827618A1 (de) * | 1998-06-20 | 1999-12-23 | Gert Feix | Sinterverfahren mit verlorenem Kern |
| US5989493A (en) * | 1998-08-28 | 1999-11-23 | Alliedsignal Inc. | Net shape hastelloy X made by metal injection molding using an aqueous binder |
| US6499953B1 (en) * | 2000-09-29 | 2002-12-31 | Pratt & Whitney Canada Corp. | Dual flow impeller |
| AU2003278115A1 (en) * | 2002-10-29 | 2004-05-25 | Basf Aktiengesellschaft | Metal powder injection molding material and metal powder injection molding method |
| US7281901B2 (en) * | 2004-12-29 | 2007-10-16 | Caterpillar Inc. | Free-form welded power system component |
| JP2007120409A (ja) | 2005-10-28 | 2007-05-17 | Daido Castings:Kk | ターボチャージャのホットホイール |
| CN1824434A (zh) * | 2006-03-24 | 2006-08-30 | 周彦学 | 用金属粉末注射成型汽车增压器涡轮、叶轮的工艺方法 |
| US20070274854A1 (en) * | 2006-05-23 | 2007-11-29 | General Electric Company | Method of making metallic composite foam components |
| UA96452C2 (uk) * | 2006-07-13 | 2011-11-10 | Басф Се | Зв'язувальний засіб, термопластична маса, що містить зв'язувальний засіб, формований виріб на основі термопластичної маси та спосіб одержання термопластичної маси та формованих виробів |
| US20090014101A1 (en) * | 2007-07-15 | 2009-01-15 | General Electric Company | Injection molding methods for manufacturing components capable of transporting liquids |
| JP4240512B1 (ja) * | 2008-10-29 | 2009-03-18 | 株式会社テクネス | タービンホイールの製造方法 |
-
2010
- 2010-04-01 WO PCT/EP2010/054400 patent/WO2010115837A1/de not_active Ceased
- 2010-04-01 EP EP10713170A patent/EP2416910A1/de not_active Withdrawn
- 2010-04-01 JP JP2012503983A patent/JP5600734B2/ja not_active Expired - Fee Related
- 2010-04-01 US US13/263,135 patent/US20120034084A1/en not_active Abandoned
- 2010-04-01 CN CN201080015746XA patent/CN102387882A/zh active Pending
- 2010-04-01 KR KR1020117026156A patent/KR20120042728A/ko not_active Withdrawn
Non-Patent Citations (1)
| Title |
|---|
| See references of WO2010115837A1 * |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2010115837A1 (de) | 2010-10-14 |
| CN102387882A (zh) | 2012-03-21 |
| KR20120042728A (ko) | 2012-05-03 |
| JP5600734B2 (ja) | 2014-10-01 |
| JP2012523496A (ja) | 2012-10-04 |
| US20120034084A1 (en) | 2012-02-09 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2416910A1 (de) | Verfahren zur herstellung eines turbinenrads für einen abgasturbolader | |
| EP2043802B1 (de) | Bindemittel enthaltende thermoplastische massen für die herstellung metallischer formkörper | |
| EP0465940B1 (de) | Thermoplastische Massen für die Herstellung metallischer Formkörper | |
| EP1523390B1 (de) | Verfahren zur endkonturnahen herstellung von hochporösen met allischen formkörpern | |
| EP0701875B1 (de) | Verfahren zur Herstellung metallischer Formteile durch Pulverspritzguss | |
| EP1276811B1 (de) | Bindemittel für anorganische materialpulver zur herstellung metallischer und keramischer formkörper | |
| EP2709967B1 (de) | Verfahren zur herstellung von bauteilen im pulverspritzgussverfahren | |
| WO2012123913A2 (de) | Verfahren zur herstellung von metallischen oder keramischen formkörpern | |
| WO1994025205A1 (de) | Verfahren zur herstellung von sinterformteilen | |
| WO2007112727A2 (de) | Verfahren zum herstellen einer wabendichtung | |
| DE10331397A1 (de) | Verfahren zur Herstellung von Bauteilen einer Gasturbine sowie entsprechendes Bauteil | |
| EP0217807B1 (de) | Sinterverfahren | |
| WO2005030417A1 (de) | Verfahren zur herstellung von bauteilen | |
| EP0517025B1 (de) | Verfahren zum thermoplastischen Verarbeiten nichtplastifizierbarer Polymerer | |
| DE10343780A1 (de) | Verfahren zur Herstellung von Bauteilen und Halteeinrichtung | |
| EP2376245A1 (de) | Vorprodukt für die herstellung gesinterter metallischer bauteile, ein verfahren zur herstellung des vorprodukts sowie die herstellung der bauteile | |
| DE10343781B4 (de) | Verfahren zur Herstellung von Bauteilen | |
| RU2310542C1 (ru) | Металлополимерная композиция для изготовления стальных заготовок | |
| DE19722416B4 (de) | Verfahren zur Herstellung von hochdichten Bauteilen auf der Basis intermetallischer Phasen | |
| DE10336701B4 (de) | Verfahren zur Herstellung von Bauteilen | |
| DE10332882A1 (de) | Verfahren zur Herstellung von Bauteilen einer Gasturbine | |
| WO2008077776A2 (de) | Verfahren zum thermischen entbindern eines durch spritzgiessen, extrudieren oder verpressen unter verwendung einer thermoplastischen masse hergestellten metallischen und/oder keramischen formkörpers | |
| DE4021741A1 (de) | Thermoplastische massen fuer die herstellung keramischer formkoerper |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20111109 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
| DAX | Request for extension of the european patent (deleted) | ||
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
| 18D | Application deemed to be withdrawn |
Effective date: 20151103 |