EP2411548B1 - Method for producing partially hardened steel components - Google Patents

Method for producing partially hardened steel components Download PDF

Info

Publication number
EP2411548B1
EP2411548B1 EP10711386.2A EP10711386A EP2411548B1 EP 2411548 B1 EP2411548 B1 EP 2411548B1 EP 10711386 A EP10711386 A EP 10711386A EP 2411548 B1 EP2411548 B1 EP 2411548B1
Authority
EP
European Patent Office
Prior art keywords
component
absorption mass
absorption
blank
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10711386.2A
Other languages
German (de)
French (fr)
Other versions
EP2411548A1 (en
Inventor
Andreas Sommer
Dieter Hartmann
Tobias HÄGELE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Metal Forming GmbH
Original Assignee
Voestalpine Metal Forming GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voestalpine Metal Forming GmbH filed Critical Voestalpine Metal Forming GmbH
Publication of EP2411548A1 publication Critical patent/EP2411548A1/en
Application granted granted Critical
Publication of EP2411548B1 publication Critical patent/EP2411548B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/68Temporary coatings or embedding materials applied before or during heat treatment
    • C21D1/70Temporary coatings or embedding materials applied before or during heat treatment while heating or quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article

Definitions

  • the invention relates to a method for producing partially hardened steel components according to the preamble of claim 1.
  • a method for producing a metal mold component wherein the metallic mold component is to have regions with a higher ductility, wherein the mold component is formed from a hardenable steel and first bring partial areas of a board to a temperature of 600 ° C and 900 ° C in a time of less than 30 seconds, whereupon the heat-treated board is formed in a press tool to the mold component and then the mold component is cooled in the press tool and thereby partially cured ,
  • a mold component is first heated homogeneously to a temperature which is necessary for curing and then the circuit board in the press tool to the mold component final molded. In the press tool also takes place the required hardening.
  • the homogeneously hardened component is then placed on a conveyor and oriented by fixations. On this conveyor, the mold components undergo a heating device in which by an inductor those areas which are to have a higher ductility, in a very short time again to a temperature of 600 ° to 800 ° C and then cooled so slowly that a renewed Hardening does not take place, but these parts are in turn ductile.
  • This method has the disadvantage that it requires several steps and is also energy-intensive.
  • a B-pillar for a motor vehicle which consists of a longitudinal profile made of steel, wherein the longitudinal profile has a first length section with a predominantly martensitic material structure and a strength above 1,400 N / mm 2 and a second length section of higher ductility with a predominantly ferritic-pearlitic Material structure and a strength below 850 N / mm 2 should have.
  • the moldboard is first completely and homogeneously heated to an austenitizing temperature and brought during the transfer or transport of the board in the curing tool by targeted, not too abrupt cooling to a temperature well below the Austenitmaschinestemperatur, so that when hot forming no purely martensitic structure is set.
  • the targeted cooling of a board or of a preformed component increases the cycle times and increases and necessitates additional method steps.
  • both the attachment of the insulation and the removal of the insulation means additional steps that increase the cycle time and increase the cost of the process.
  • a press-cured article and a method of curing the same is known.
  • This component is intended to include hardened and uncured areas, wherein for curing the component or for curing the profile, an inductor is used, which at least partially heats the component to an austenitizing temperature and the inductor below a cooling device is tracked, for example, with water jet, which for the Hardening necessary rapid cooling makes.
  • a cooling device for example, with water jet, which for the Hardening necessary rapid cooling makes.
  • the object of the invention is to provide a method for producing partially hardened steel components, which is simple and inexpensive to carry out with high process reliability and well predictable hardness values in the different areas.
  • an absorption mass is applied during the heating.
  • the term "concerns" within the meaning of the invention also includes a small spacing, in particular a spacing of 0.5 to 2 mm between absorption mass and board.
  • the absorption mass is a "cold" mass applied to the hot board during the furnace process. This mass extracts energy from the board via the contact surface or through the narrow gap via radiation.
  • Heat transfer in the context of the invention comprises heat conduction through the support surface in direct contact with the absorption mass with the board and heat radiation at a small spacing. The mass thus partially absorbs the energy of the board, which is introduced through the furnace. Therefore, in the following, a "cold" applied mass is also referred to as absorption mass. In the invention thus takes place a heat flow from the furnace chamber through the sheet of the component in the absorption mass. Insulation does not take place.
  • the components are not partially or only briefly brought over the austenite start temperature during the heating process.
  • the material in these areas is not / only partially converted to austenite and can not be transformed into martensite during the pressing process (press hardening) in these areas.
  • the areas that do not convert to martensite due to the previous heat treatment during press hardening have significantly lower strength than the areas that were brought to austenite start temperature during the heat treatment and then cured in the press.
  • This partial non-austenitizing is achieved by partially applying the absorption mass to the component at the beginning of the heat treatment (before the component enters the oven).
  • the absorption mass is applied to the component and partially replicates the shape of the component.
  • this relatively large absorption mass heats up less than the component.
  • energy is removed from the component at the support surface by the partial contact with the mass (the energy flow is always from warm to cold).
  • the component heats up in these areas much slower and less than in the other areas where the mass is not applied.
  • the soft areas can be specifically adjusted by the applied absorption mass. With the same contact surface but different thicknesses of the absorption mass (also over their extent), different strengths can be generated. It is thereby possible to set almost any strength between 500 and 1500 MPa and only by varying the thickness of the absorption mass or of the material used (even over their extent), of which the absorption mass is.
  • the strength transition range between Hard and soft material is about 20-50mm, especially 20 to 30 mm.
  • air gaps in particular in the edge region may be provided to make the hardness transition even wider.
  • the absorption mass always has a correspondingly constant low temperature before it is returned to the oven. This can be realized in the series process in different ways during the return of the furnace carrier.
  • a large, precisely adjustable and homogeneous transition range from hard to soft causes, for example, that the component can absorb the occurring stresses homogeneously in the transition region from hard to soft or "softly” cushioning and thus prevents the component is partially loaded too much and possibly breaks in the crash and leads to component failure.
  • a larger transition area also prevents, with certain component geometries, the component tearing in the area of welding points introduced in the bodyshell. It is also possible to influence the behavior of the component in the event of a crash precisely and accurately by means of precisely defined ductile areas in the area of welding points.
  • heat shields are provided on the side of the absorption mass opposite the component. These heat shields can be made of different materials, in particular of ceramic or metallic materials.
  • the heat absorption of the absorption mass and / or the réelleablebleche be selectively controlled by the radiation from the furnace chamber via appropriately selected emissivities (surface condition, coating, paint).
  • the heat absorption can be influenced by the radiation of the board also targeted.
  • an absorption mass is placed on a sheet to be austenitized, for example in the form of a steel square.
  • absorption material is any form of heat-resistant metals such as Ampco alloys and steels, especially heat-resistant steels, but also ceramic bodies in question.
  • Crucial criteria for usability are the thermal conductivity and the heat capacity.
  • the absorption mass in this case has an outer shape or contour, which, if appropriate also matched to the formed part, corresponds to the areas which are to remain softer. In particular, the absorption mass can of course also have a deviating from the simple cuboid shape, complex irregular shape with recesses.
  • Fig. 2 a heating curve for the board and a heating curve for absorption mass is shown.
  • the absorption mass is heated with a considerable delay and while the board in the uncovered area at 720 ° from the oven is taken to press-harden, the absorption mass and thus the underlying sheet has a temperature of less than 600 ° C, in which a rapid subsequent cooling does not lead to a cure.
  • the board after removing the absorption mass and cooling shows the appearance after Fig. 3 It can be seen that in the region in which the absorption mass was applied, the sheet has a substantially unaltered bright metallic appearance.
  • the hardness transition range from the hard region to the soft region below the absorption mass is 20 mm to 50 mm, particularly 20 mm to 30 mm.
  • the absorption mass has a shape which is matched to the shape of a finished formed workpiece.
  • This finished formed workpiece is then heated for the purpose of curing and cooled after heating in a mold without substantial transformation.
  • heating up as in Fig. 4 shown, either the absorption mass placed on the component lying in the furnace to leak the underlying sheet with a lower temperature from the oven or, as in Fig. 9 shown, the component placed so that it rests partially on the absorption mass. The effect for warming up is the same.
  • Fig. 10 a diagram is shown in which were measured at a component during the heating temperatures, namely once in the range of an underlying absorption mass and once in a region in which no absorption mass was present. It can be seen from the diagram that the temperature of the component is above the absorption mass in a non-critical range, which means that due to the significantly lower heating no hardness will be achieved here.
  • the absorption mass can be designed so that either a flat board or an already preformed component in the areas that are to remain softer, rests on this absorption mass, optionally in some areas with a slightly larger air gap, in particular an air gap of 4 mm to 10 mm thickness to realize hardness transitions.
  • a preferred application of the absorption mass is, for example, the production of round or circular softer regions on a component or a circuit board, in particular in the flange region at locations where a joint is to be performed.
  • This is particularly advantageous for welded joints, because it has been shown that by the heat treatment of galvanized high-hardenable steel sheets hardening by the surface of the zinc layer partially changed by oxide coatings so that the weldability is reduced. If these areas are left soft with absorption masses, in particular by an absorption mass which is elongated, for example, in the area of the flange and has rounded columnar projections on which the component rests, areas can be achieved in which the zinc surface is not adversely affected, then that here a very good weldability is maintained. Also for mechanical reasons, this is advantageous because the welds remain ductile even in these softer areas and allow so-called Ausknöpfbrüche, so that a preferred fracture pattern in the industry is achieved.
  • the absorption mass can be actively cooled by a cooling section after the furnace process on the return path of the furnace support. Before the absorption mass returns to the furnace, this cooling distance ensures that the temperature of the mass is always a constant low temperature having.
  • Different cooling media can be used to cool the absorption mass, such as compressed air or nitrogen.
  • the oven supports can be modified in such a way that you can attach the absorption mass by means of robots or suitable device on the furnace support and remove. This can be realized in the series process as follows.
  • the furnace supports are returned above the furnace.
  • the oven holders stay for about 20 seconds always in the same place.
  • a robot or a suitable device can be positioned, which removes the hot absorption mass from its holder and then attaches a cold absorption mass.
  • the hot absorption mass may be fed to a cooling circuit (active or passive) which cools the hot absorption mass until reuse. This ensures that the absorption mass always extracts the same energy from the component in the oven during the oven process.
  • Partial austenitizing may be followed by partial press hardening.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Herstellen partiell gehärteter Stahlbauteile nach dem Oberbegriff des Anspruchs 1.The invention relates to a method for producing partially hardened steel components according to the preamble of claim 1.

Es ist bekannt, Stahlbauteile dadurch zu härten und herzustellen, dass eine ebene Platine auf eine Austenitisierungstemperatur aufgeheizt, umgeformt und anschließend rasch abgekühlt wird.It is known to cure and manufacture steel components by heating a planar board to an austenitizing temperature, reshaping it, and then rapidly cooling it.

Es ist zudem bekannt, bereits kalt umgeformte Bauteile aufzuheizen und anschließend in einem Werkzeug, welches der Endform des Bauteils entspricht, abzukühlen und zu härten.It is also known to heat already cold-formed components and then in a tool, which corresponds to the final shape of the component to cool and harden.

Um gehärtete Bauteile mit unterschiedlich harten Bereichen zu erzielen ist es unter anderem bekannt, die Bauteile aus lasergeschweißten Platinen auszubilden, wobei die lasergeschweißten Platinen aus Stählen unterschiedlicher Güte und Härtbarkeit bestehen. Ein durch eine entsprechende Temperaturerhöhung härtbarer Stahl ist somit mit einem Stahl benachbart, der bei diesen Temperaturen oder generell nicht härtbar ist.In order to achieve hardened components with different hard areas, it is known, inter alia, to form the components of laser-welded blanks, wherein the laser-welded blanks consist of steels of different quality and hardenability. A hardenable by a corresponding increase in temperature steel is thus adjacent to a steel which is not curable at these temperatures or generally.

Aus der DE 197 43 802 C2 ist ein Verfahren zur Herstellung eines metallischen Formbauteiles bekannt, wobei das metallische Formbauteil Bereiche mit einer höheren Duktilität aufweisen soll, wobei das Formbauteil aus einem härtbaren Stahl ausgebildet wird und zunächst partielle Bereiche einer Platine in einer Zeit von weniger als 30 Sekunden auf eine Temperatur von 600° und 900°C gebracht werden, worauf die wärmebehandelte Platine in einem Pressenwerkzeug zum Formbauteil umgeformt und dann das Formbauteil im Pressenwerkzeug abgekühlt und dabei teilweise gehärtet wird.From the DE 197 43 802 C2 For example, a method for producing a metal mold component is known, wherein the metallic mold component is to have regions with a higher ductility, wherein the mold component is formed from a hardenable steel and first bring partial areas of a board to a temperature of 600 ° C and 900 ° C in a time of less than 30 seconds, whereupon the heat-treated board is formed in a press tool to the mold component and then the mold component is cooled in the press tool and thereby partially cured ,

Bei einer weiteren Ausführungsform, die in dieser Druckschrift beschrieben wird, wird ein Formbauteil zunächst homogen auf eine Temperatur erhitzt, die zum Härten notwendig ist und anschließend die Platine im Pressenwerkzeug zum Formbauteil endgeformt. Im Pressenwerkzeug findet auch die erforderliche Härtung statt. Das homogen gehärtete Bauteil wird anschließend auf einen Förderer aufgelegt und durch Fixierungen lageorientiert. Auf diesem Förderer durchlaufen die Formbauteile eine Heizvorrichtung, in der durch einen Induktor diejenigen Bereiche, die eine höhere Duktilität aufweisen sollen, in kürzester Zeit wiederum auf eine Temperatur von 600° bis 800 °C gebracht werden und anschließend so langsam abgekühlt werden, dass eine erneute Härtung nicht stattfindet, sondern diese Teile wiederum duktil sind. Bei diesem Verfahren ist von Nachteil, dass es mehrere Schritte benötigt und zudem energieintensiv ist.In a further embodiment, which is described in this document, a mold component is first heated homogeneously to a temperature which is necessary for curing and then the circuit board in the press tool to the mold component final molded. In the press tool also takes place the required hardening. The homogeneously hardened component is then placed on a conveyor and oriented by fixations. On this conveyor, the mold components undergo a heating device in which by an inductor those areas which are to have a higher ductility, in a very short time again to a temperature of 600 ° to 800 ° C and then cooled so slowly that a renewed Hardening does not take place, but these parts are in turn ductile. This method has the disadvantage that it requires several steps and is also energy-intensive.

Aus der DE 200 14 361 U1 ist eine B-Säule für ein Kraftfahrzeug bekannt, die aus einem Längsprofil aus Stahl besteht, wobei das Längsprofil einen ersten Längenabschnitt mit einem überwiegend martensitischen Werkstoffgefüge und einer Festigkeit über 1.400 N/mm2 und einen zweiten Längenabschnitt höherer Duktilität mit einem überwiegend ferritisch-perlitischen Werkstoffgefüge und einer Festigkeit unter 850 N/mm2 aufweisen soll. Um diese unterschiedlichen Bereiche einzustellen ist es aus dieser Druckschrift bekannt, das Längsprofil in den Bereichen, in denen das Längsprofil weicher bleiben soll, gegen die Wärmeeinwirkung des Ofens zu isolieren, indem Isolierelemente das Profil umgreifen und abdecken. Demzufolge sollen diese Bereiche keine signifikante Erwärmung erfahren, so dass die Temperaturerhöhung insgesamt in diesen Abschnitten deutlich unterhalb der Austenitisierungstemperatur liegt.From the DE 200 14 361 U1 a B-pillar for a motor vehicle is known, which consists of a longitudinal profile made of steel, wherein the longitudinal profile has a first length section with a predominantly martensitic material structure and a strength above 1,400 N / mm 2 and a second length section of higher ductility with a predominantly ferritic-pearlitic Material structure and a strength below 850 N / mm 2 should have. To adjust these different areas, it is known from this document to isolate the longitudinal profile in the areas in which the longitudinal profile is to remain softer against the heat of the furnace by insulating elements encompass and cover the profile. Consequently, these areas should not experience significant heating, so that the overall temperature increase in these sections is well below the austenitizing temperature.

Bei einer weiteren Ausführungsform soll die Formplatine zunächst vollständig und homogen auf eine Austenitisierungstemperatur erhitzt werden und während der Übergabe bzw. des Transports der Platine in das Härtungswerkzeug durch gezieltes, nicht zu schroffes Abkühlen auf eine Temperatur deutlich unter der Austenitisierungstemperatur gebracht werden, so dass beim Warmumformen kein rein martensitisches Gefüge eingestellt wird. Bei diesem Verfahren ist von Nachteil, dass das gezielte Abkühlen einer Platine oder eines vorgeformten Bauteils die Taktzeiten und erhöht und zusätzliche Verfahrensschritte notwendig macht. Bei einer Isolierung gegen die Wärmeeinwirkung des Ofens ist von Nachteil, dass sowohl das Aufstecken der Isolierung als auch das Abnehmen der Isolierung zusätzliche Schritte bedeutet, die die Taktzeit erhöhen und die Verfahrenskosten verteuern.In another embodiment, the moldboard is first completely and homogeneously heated to an austenitizing temperature and brought during the transfer or transport of the board in the curing tool by targeted, not too abrupt cooling to a temperature well below the Austenitisierungstemperatur, so that when hot forming no purely martensitic structure is set. In this method, it is disadvantageous that the targeted cooling of a board or of a preformed component increases the cycle times and increases and necessitates additional method steps. When insulated against the heat of the furnace is a disadvantage that both the attachment of the insulation and the removal of the insulation means additional steps that increase the cycle time and increase the cost of the process.

Aus der EP 0 816 520 B1 ist ein pressgehärteter Gegenstand und ein Verfahren zur Härtung desselben bekannt. Dieses Bauteil soll gehärtete und ungehärtete Bereiche umfassen, wobei zur Härtung des Bauteils bzw. zur Härtung des Profiles ein Induktor eingesetzt wird, der das Bauteil zumindest teilweise auf eine Austenitisierungstemperatur aufheizt und dem Induktor nachfolgend eine Kühleinrichtung beispielsweise mit Wasserstrahl nachgeführt wird, welche die für die Härtung notwendige rasche Abkühlung vornimmt. Versuche haben gezeigt, dass dieses Verfahren einerseits sehr aufwändig ist, die Taktzeiten extrem verlängert und zum anderen haben Versuche gezeigt, dass es hierbei zu einem extrem starken Bauteilverzug kommt. Dieses Verfahren findet sich demzufolge auch nicht in der Praxis.From the EP 0 816 520 B1 For example, a press-cured article and a method of curing the same is known. This component is intended to include hardened and uncured areas, wherein for curing the component or for curing the profile, an inductor is used, which at least partially heats the component to an austenitizing temperature and the inductor below a cooling device is tracked, for example, with water jet, which for the Hardening necessary rapid cooling makes. Experiments have shown that this method is on the one hand very complex, the cycle times extremely lengthened and on the other hand experiments have shown that this leads to an extremely strong component distortion. Consequently, this method is not found in practice.

Aus der DE 10 2006 018 406 A1 ist ein Verfahren zum partiellen Presshärten eines Blechteils bekannt, wobei während des Aufheizens von einem ausgewählten Abschnitt des Blechteils Wärme über einen Körper abgeführt wird, der eine solche Wärmeaufnahmekapazität hat, dass die während des Erwärmungszeitraumes in dem ausgewählten Abschnitt erreichte Temperatur unterhalb der Austenitisierungstemperatur bleibt. Bei einer weiteren Ausführungsform wird von dem Körper während oder/und nach der Erwärmung des Blechteils Wärme durch Konvektion abgeführt.From the DE 10 2006 018 406 A1 For example, there is known a method of partially press-hardening a sheet metal part, wherein heat is removed from a selected portion of the sheet metal part during heating, via a body having a heat-absorbing capacity such that the temperature reached in the selected section during the heating period remains below the austenitizing temperature. In another embodiment, heat is removed by convection from the body during and / or after the heating of the sheet metal part.

Aufgabe der Erfindung ist es, ein Verfahren zum Herstellen von partiell gehärteten Stahlbauteilen zu schaffen, welches einfach und kostengünstig durchführbar ist bei hoher Prozesssicherheit und gut vorhersagbaren Härtewerten in den unterschiedlichen Bereichen.The object of the invention is to provide a method for producing partially hardened steel components, which is simple and inexpensive to carry out with high process reliability and well predictable hardness values in the different areas.

Die Aufgabe wird mit einem Verfahren mit den Merkmalen des Anspruchs 1 gelöst.The object is achieved by a method having the features of claim 1.

Vorteilhafte Weiterbildungen sind in Unteransprüchen gekennzeichnet.Advantageous developments are characterized in the subclaims.

Erfindungsgemäß liegt in den Bereichen, die keine oder eine geringere Härte besitzen sollen, während des Aufheizens eine Absorptionsmasse an. Der Begriff "Anliegen" im Sinne der Erfindung umfasst auch eine geringe Beabstandung, insbesondere eine Beabstandung von 0,5 bis 2 mm zwischen Absorptionsmasse und Platine.According to the invention, in the areas which are to have no or a lower hardness, an absorption mass is applied during the heating. The term "concerns" within the meaning of the invention also includes a small spacing, in particular a spacing of 0.5 to 2 mm between absorption mass and board.

Die Absorptionsmasse ist eine während des Ofenprozesses an der heißen Platine anliegende "kalte" Masse. Diese Masse entzieht der Platine über die Auflagefläche oder durch den schmalen Spalt über Strahlung Energie. Wärmeübertragung im Sinne der Erfindung umfasst Wärmeleitung durch die Auflagefläche bei direkter Berührung der Absorptionsmasse mit der Platine als auch Wärmestrahlung bei geringer Beabstandung. Die Masse absorbiert also partiell die Energie der Platine, die durch den Ofen eingebracht wird. Deshalb wird im Folgenden eine "kalte" anliegende Masse auch als Absorptionsmasse bezeichnet. Bei der Erfindung findet somit ein Wärmestrom aus dem Ofenraum durch das Blech des Bauteils in die Absorptionsmasse statt. Eine Isolierung findet nicht statt.The absorption mass is a "cold" mass applied to the hot board during the furnace process. This mass extracts energy from the board via the contact surface or through the narrow gap via radiation. Heat transfer in the context of the invention comprises heat conduction through the support surface in direct contact with the absorption mass with the board and heat radiation at a small spacing. The mass thus partially absorbs the energy of the board, which is introduced through the furnace. Therefore, in the following, a "cold" applied mass is also referred to as absorption mass. In the invention thus takes place a heat flow from the furnace chamber through the sheet of the component in the absorption mass. Insulation does not take place.

Erfindungsgemäß werden die Bauteile während des Aufheizvorganges partiell nicht bzw. nur kurz über die Austenitstarttemperatur gebracht. Dadurch wandelt sich das Material in diesen Bereichen nicht/nur teilweise in Austenit um und kann sich so während des Pressvorganges (Presshärten) in diesen Bereichen nicht zu Martensit umwandeln. Die Bereiche, die sich aufgrund der vorherigen Wärmebehandlung beim Presshärten nicht in Martensit umwandeln, weisen eine deutlich geringere Festigkeit auf als die Bereiche, die während der Wärmebehandlung über Austenitstarttemperatur gebracht und anschließend in der Presse gehärtet wurden.According to the invention, the components are not partially or only briefly brought over the austenite start temperature during the heating process. As a result, the material in these areas is not / only partially converted to austenite and can not be transformed into martensite during the pressing process (press hardening) in these areas. The areas that do not convert to martensite due to the previous heat treatment during press hardening have significantly lower strength than the areas that were brought to austenite start temperature during the heat treatment and then cured in the press.

Erreicht wird dieses partielle nicht/teil Austenitisieren, indem zu Beginn der Wärmebehandlung (bevor Bauteil in den Ofen kommt) partiell die Absorptionsmasse an das Bauteil angelegt wird. Die Absorptionsmasse liegt am Bauteil an und bildet partiell die Form des Bauteils nach. Beim Transport durch den Ofen erhitzt sich diese relativ große Absorptionsmasse bei weitem nicht so stark wie das Bauteil. Dadurch wird dem Bauteil an der Auflagefläche durch die partielle Anlage mit der Masse Energie entzogen (Energiefluss ist immer von warm zu kalt). Das Bauteil erhitzt sich deshalb in diesen Bereichen deutlich langsamer und geringer als in den übrigen Bereichen, in denen die Masse nicht anliegt.This partial non-austenitizing is achieved by partially applying the absorption mass to the component at the beginning of the heat treatment (before the component enters the oven). The absorption mass is applied to the component and partially replicates the shape of the component. When transported through the oven, this relatively large absorption mass heats up less than the component. As a result, energy is removed from the component at the support surface by the partial contact with the mass (the energy flow is always from warm to cold). The component heats up in these areas much slower and less than in the other areas where the mass is not applied.

Die weichen Bereiche lassen sich gezielt durch die anliegende Absorptionsmasse einstellen. Bei gleicher Auflagefläche aber unterschiedlichen Dicken der Absorptionsmasse (auch über deren Ausdehnung) lassen sich unterschiedliche Festigkeiten erzeugen. Es ist dadurch möglich, annährend jede beliebige Festigkeit zwischen 500 und 1.500 MPa einzustellen und zwar nur durch Variation der Dicke der Absorptionsmasse bzw. des verwendeten Materials (auch über deren Ausdehnung), aus dem die Absorptionsmasse ist. Der Festigkeitsübergangsbereich zwischen hartem und weichem Material beträgt ca. 20-50mm, insbesondere 20 bis 30 mm.The soft areas can be specifically adjusted by the applied absorption mass. With the same contact surface but different thicknesses of the absorption mass (also over their extent), different strengths can be generated. It is thereby possible to set almost any strength between 500 and 1500 MPa and only by varying the thickness of the absorption mass or of the material used (even over their extent), of which the absorption mass is. The strength transition range between Hard and soft material is about 20-50mm, especially 20 to 30 mm.

Zudem können Luftspalten, insbesondere im Randbereich vorgesehen sein, um den Härteübergang noch breiter zu machen.In addition, air gaps, in particular in the edge region may be provided to make the hardness transition even wider.

Um diesen Prozess sicher zu machen muss sichergestellt sein, dass die Absorptionsmasse, bevor sie erneut in den Ofen kommt, immer eine entsprechend konstante niedrige Temperatur aufweist. Dies kann im Serienprozess auf unterschiedliche Arten während des Rücklaufes der Ofenträger realisiert werden.To ensure this process, it must be ensured that the absorption mass always has a correspondingly constant low temperature before it is returned to the oven. This can be realized in the series process in different ways during the return of the furnace carrier.

Ein großer, exakt einstellbarer und homogener Übergangsbereich von Hart zu Weich bewirkt z.b. dass das Bauteil im Crashfall im Übergangsbereich von Hart zu Weich die auftretenden Spannungen homogen absorbieren kann bzw. "weich" abfedert und somit verhindert, dass das Bauteil partiell zu stark belastet wird und eventuell beim Crash einreißt und zum Bauteilversagen führt.
Ein größerer Übergangsbereich verhindert bei bestimmten Bauteilgeometrien auch, dass das Bauteil im Bereich von im Rohbau eingebrachten Schweißpunkten einreißt.
Ebenso ist es möglich, durch genau definierte duktile Bereiche im Bereich von Schweißpunkten exakt und lagegenau auf das Verhalten des Bauteiles beim Crash einzuwirken.
A large, precisely adjustable and homogeneous transition range from hard to soft causes, for example, that the component can absorb the occurring stresses homogeneously in the transition region from hard to soft or "softly" cushioning and thus prevents the component is partially loaded too much and possibly breaks in the crash and leads to component failure.
A larger transition area also prevents, with certain component geometries, the component tearing in the area of welding points introduced in the bodyshell.
It is also possible to influence the behavior of the component in the event of a crash precisely and accurately by means of precisely defined ductile areas in the area of welding points.

Um das Aufheizen der Absorptionsmasse durch die übrige Ofenraumatmosphäre zu verringern, sind an der dem Bauteil gegenüberliegenden Seite der Absorptionsmasse Wärmeabschirmbleche vorgesehen. Diese Wärmeabschirmbleche können aus verschiedenen Materialien gefertigt werden, insbesondere aus keramischen oder metallischen Werkstoffen.In order to reduce the heating of the absorption mass by the remaining furnace chamber atmosphere, heat shields are provided on the side of the absorption mass opposite the component. These heat shields can be made of different materials, in particular of ceramic or metallic materials.

Zudem können über entsprechend gewählte Emissionsgrade (Oberflächenzustand, Beschichtung, Anstrich) die Wärmeaufnahme der Absorptionsmasse und/oder der Wärmeabschirmbleche durch die Strahlung aus dem Ofenraum gezielt gesteuert werden. Bei der Absorptionsmasse kann die Wärmeaufnahme durch die Strahlung der Platine ebenfalls gezielt beeinflusst werden.In addition, the heat absorption of the absorption mass and / or the Wärmeabschirmbleche be selectively controlled by the radiation from the furnace chamber via appropriately selected emissivities (surface condition, coating, paint). In the absorption mass, the heat absorption can be influenced by the radiation of the board also targeted.

Die Erfindung wird anhand einer Zeichnung erläutert. Es zeigen dabei:

Figur 1:
eine Platine mit einer aufgesetzten Absorptionsmasse;
Figur 2:
die Aufheizkurve der Platine und der aufgelegten Absorptionsmasse;
Figur 3:
die Platine nach dem Abnehmen der Absorptionsmasse und einer durchgeführten Abkühlung;
Figur 4:
schematisch eine Absorptionsmasse, die auf ein fertig geformtes Bauteil aufgelegt ist;
Figur 5:
die Darstellung nach Fig. 4 in einer teilgeschnittenen Ansicht;
Figur 6:
die Darstellung nach Fig. 4 in einer Draufsicht;
Figur 7:
die Darstellung nach Fig. 6 in einer teilgeschnittenen Ansicht;
Figur 8:
die Darstellung nach Fig. 4 ein einer geschnittenen Ansicht;
Figur 9:
eine weitere Ausführungsform, bei der das fertig geformte Bauteil auf einer entsprechend geformten Absorptionsmasse aufliegt;
Figur 10:
zwei Aufheizkurven eines Bauteils, wobei die Temperatur im Bereich der darunter liegenden Absorptionsmasse und in einem Bereich ohne Absorptionsmasse gemessen wurde.
The invention will be explained with reference to a drawing. It shows:
FIG. 1:
a board with an attached absorption mass;
FIG. 2:
the heating curve of the board and the applied absorption mass;
FIG. 3:
the board after removing the absorption mass and a cooling carried out;
FIG. 4:
schematically an absorption mass, which is placed on a finished molded component;
FIG. 5:
the representation after Fig. 4 in a partially sectioned view;
FIG. 6:
the representation after Fig. 4 in a plan view;
FIG. 7:
the representation after Fig. 6 in a partially sectioned view;
FIG. 8:
the representation after Fig. 4 a cut view;
FIG. 9:
a further embodiment in which the finished molded component rests on a correspondingly shaped absorption mass;
FIG. 10:
Two heating curves of a component, wherein the temperature was measured in the area of the underlying absorption mass and in an area without absorption mass.

Erfindungsgemäß wird bei einer ersten Ausführungsform der Erfindung eine Absorptionsmasse beispielsweise in Form eines Stahlquaders auf ein zu austenitisierendes Blech aufgelegt.According to the invention, in a first embodiment of the invention, an absorption mass is placed on a sheet to be austenitized, for example in the form of a steel square.

Als Absorptionsmasse kommt jede Form von wärmebeständigen Metallen wie Ampco-Legierungen und Stählen, insbesondere auch hitzebeständige Stähle, aber auch keramische Körper in Frage. Ausschlaggebende Kriterien für die Verwendbarkeit sind die Wärmeleitfähigkeit und die Wärmekapazität. Die Absorptionsmasse besitzt dabei eine äußere Form bzw. Kontur, die gegebenenfalls auch abgestimmt auf das umgeformte Teil den Bereichen entspricht, die weicher verbleiben sollen. Insbesondere kann die Absorptionsmasse selbstverständlich auch eine von der einfachen quaderförmigen Form abweichende, komplexe unregelmäßige Form auch mit Ausnehmungen besitzen.As absorption material is any form of heat-resistant metals such as Ampco alloys and steels, especially heat-resistant steels, but also ceramic bodies in question. Crucial criteria for usability are the thermal conductivity and the heat capacity. The absorption mass in this case has an outer shape or contour, which, if appropriate also matched to the formed part, corresponds to the areas which are to remain softer. In particular, the absorption mass can of course also have a deviating from the simple cuboid shape, complex irregular shape with recesses.

In Fig. 2 ist eine Aufheizkurve für die Platine und eine Aufheizkurve für Absorptionsmasse gezeigt.In Fig. 2 a heating curve for the board and a heating curve for absorption mass is shown.

Man erkennt, dass die Absorptionsmasse mit einer erheblichen Verzögerung aufgeheizt wird und während die Platine im nicht abgedeckten Bereich bei 720° aus dem Ofen genommen wird um sie presszuhärten, die Absorptionsmasse und damit auch das darunter liegende Blech eine Temperatur von unter 600°C besitzt, bei der auch ein rasches nachfolgendes Abkühlen nicht zu einer Härtung führt.It can be seen that the absorption mass is heated with a considerable delay and while the board in the uncovered area at 720 ° from the oven is taken to press-harden, the absorption mass and thus the underlying sheet has a temperature of less than 600 ° C, in which a rapid subsequent cooling does not lead to a cure.

Die Platine nach dem Abnehmen der Absorptionsmasse und einem Abkühlen zeigt das Erscheinungsbild nach Fig. 3, wobei man sieht, dass in dem Bereich, in dem die Absorptionsmasse auflag, das Blech ein im Wesentlichen unverändertes helles metallisches Aussehen besitzt. Der Härteübergangsbereich vom harten Bereich zum unter der Absorptionsmasse liegenden weichen Bereich beträgt 20 mm bis 50 mm, insbesondere 20 mm bis 30 mm.The board after removing the absorption mass and cooling shows the appearance after Fig. 3 It can be seen that in the region in which the absorption mass was applied, the sheet has a substantially unaltered bright metallic appearance. The hardness transition range from the hard region to the soft region below the absorption mass is 20 mm to 50 mm, particularly 20 mm to 30 mm.

Bei einer weiteren vorteilhaften Ausführungsform besitzt die Absorptionsmasse eine Form, die auf die Form eines fertig umgeformten Werkstückes abgestimmt wird. Dieses fertig umgeformte Werkstück wird zum Zwecke der Härtung anschließend aufgeheizt und nach dem Aufheizen in einem Formwerkzeug ohne wesentliche Umformung abgekühlt. Während des Aufheizens wird, wie in Fig. 4 gezeigt, entweder die Absorptionsmasse auf das im Ofen liegende Bauteil aufgelegt um das darunter liegende Blech mit einer geringeren Temperatur aus dem Ofen auslaufen zu lassen oder, wie in Fig. 9 gezeigt, das Bauteil so aufgelegt, dass es partiell auf der Absorptionsmasse aufliegt. Der Effekt für das Aufwärmen ist hierbei der gleiche.In a further advantageous embodiment, the absorption mass has a shape which is matched to the shape of a finished formed workpiece. This finished formed workpiece is then heated for the purpose of curing and cooled after heating in a mold without substantial transformation. During heating up, as in Fig. 4 shown, either the absorption mass placed on the component lying in the furnace to leak the underlying sheet with a lower temperature from the oven or, as in Fig. 9 shown, the component placed so that it rests partially on the absorption mass. The effect for warming up is the same.

In Fig. 10 ist ein Diagramm gezeigt, bei dem an einem Bauteil während des Aufheizens Temperaturen gemessen wurden, nämlich einmal im Bereich einer darunter liegenden Absorptionsmasse und einmal in einem Bereich, in dem keine Absorptionsmasse vorhanden war. Man sieht anhand des Diagramms, dass die Temperatur des Bauteils oberhalb der Absorptionsmasse in einem unkritischen Bereich liegt, was bedeutet, dass hier aufgrund der erheblich geringeren Erwärmung keine Härte zu erzielen sein wird.In Fig. 10 a diagram is shown in which were measured at a component during the heating temperatures, namely once in the range of an underlying absorption mass and once in a region in which no absorption mass was present. It can be seen from the diagram that the temperature of the component is above the absorption mass in a non-critical range, which means that due to the significantly lower heating no hardness will be achieved here.

Wie bereits ausgeführt, kann die Absorptionsmasse so ausgestaltet sein, dass entweder eine ebene Platine oder ein bereits vorgeformtes Bauteil in den Bereichen, die weicher bleiben sollen, auf dieser Absorptionsmasse aufliegt, gegebenenfalls in manchen Bereichen auch mit einem etwas größeren Luftspalt, insbesondere ein Luftspalt von 4 mm bis 10 mm Dicke um Härteübergänge zu realisieren.As already stated, the absorption mass can be designed so that either a flat board or an already preformed component in the areas that are to remain softer, rests on this absorption mass, optionally in some areas with a slightly larger air gap, in particular an air gap of 4 mm to 10 mm thickness to realize hardness transitions.

Eine bevorzugte Anwendung der Absorptionsmasse ist beispielsweise die Erzeugung von runden bzw. kreisförmigen weicheren Bereichen an einem Bauteil oder einer Platine, insbesondere im Flanschbereich an Stellen, wo eine Fügung durchgeführt werden soll. Von besonderem Vorteil ist dies für Schweißverbindungen, denn es hat sich gezeigt, dass durch die Wärmebehandlung von verzinkten hochhärtbaren Stahlblechen sich durch das Härten die Oberfläche der Zinkschicht teilweise durch Oxidauflagen so verändert, dass die Schweißbarkeit verringert wird. Werden diese Bereiche mit Absorptionsmassen weich gelassen, insbesondere durch eine Absorptionsmasse, die beispielsweise im Bereich des Flansches lang gestreckt ausgebildet ist und rundliche säulenförmige Vorsprünge besitzt, auf denen das Bauteil aufliegt, können Bereiche erzielt werden, bei denen die Zinkoberfläche nicht nachteilig verändert ist, so dass hier eine sehr gute Schweißbarkeit erhalten bleibt. Auch aus mechanischen Gründen ist dies vorteilhaft, weil die Schweißverbindungen in diesen weicheren Bereichen selbst duktiler bleiben und sogenannte Ausknöpfbrüche ermöglichen, so dass auch ein in der Industrie bevorzugtes Bruchbild erreicht wird.A preferred application of the absorption mass is, for example, the production of round or circular softer regions on a component or a circuit board, in particular in the flange region at locations where a joint is to be performed. This is particularly advantageous for welded joints, because it has been shown that by the heat treatment of galvanized high-hardenable steel sheets hardening by the surface of the zinc layer partially changed by oxide coatings so that the weldability is reduced. If these areas are left soft with absorption masses, in particular by an absorption mass which is elongated, for example, in the area of the flange and has rounded columnar projections on which the component rests, areas can be achieved in which the zinc surface is not adversely affected, then that here a very good weldability is maintained. Also for mechanical reasons, this is advantageous because the welds remain ductile even in these softer areas and allow so-called Ausknöpfbrüche, so that a preferred fracture pattern in the industry is achieved.

Die Absorptionsmasse kann nach dem Ofenprozess auf der Rücklaufstrecke der Ofenträger aktiv durch eine Kühlstrecke gekühlt werden. Bevor die Absorptionsmasse erneut in den Ofen kommt, ist durch diese Kühlstrecke sichergestellt, dass die Temperatur der Masse immer eine konstante niedrige Temperatur aufweist. Es können unterschiedliche Kühlmedien verwendet werden um die Absorptionsmasse abzukühlen, wie zum Beispiel Pressluft oder Stickstoff.The absorption mass can be actively cooled by a cooling section after the furnace process on the return path of the furnace support. Before the absorption mass returns to the furnace, this cooling distance ensures that the temperature of the mass is always a constant low temperature having. Different cooling media can be used to cool the absorption mass, such as compressed air or nitrogen.

Die Ofenträger können in der Weise modifiziert werden, dass man die Absorptionsmasse mittels Roboter oder geeigneter Vorrichtung auf die Ofenträger aufstecken und abziehen kann. Dies kann im Serienprozess wie folgt realisiert werden. Die Ofenträger werden oberhalb des Ofens zurückgeführt. Dabei verweilen die Ofenträger für ca. 20 Sekunden immer an derselben Stelle. Dort kann ein Roboter oder eine geeignete Vorrichtung positioniert werden, welcher die heiße Absorptionsmasse aus seiner Halterung entnimmt und anschließend eine kalte Absorptionsmasse aufsteckt. Die heiße Absorptionsmasse kann einem Kühlkreislauf (aktiv oder passiv) zugeführt werden, der die heiße Absorptionsmasse bis zur Wiederverwendung abkühlt. So wird sichergestellt, dass die Absorptionsmasse während des Ofenprozesses immer dieselbe Energie dem Bauteil im Ofen entzieht.The oven supports can be modified in such a way that you can attach the absorption mass by means of robots or suitable device on the furnace support and remove. This can be realized in the series process as follows. The furnace supports are returned above the furnace. The oven holders stay for about 20 seconds always in the same place. There, a robot or a suitable device can be positioned, which removes the hot absorption mass from its holder and then attaches a cold absorption mass. The hot absorption mass may be fed to a cooling circuit (active or passive) which cools the hot absorption mass until reuse. This ensures that the absorption mass always extracts the same energy from the component in the oven during the oven process.

Dem partiellen Austenitisieren kann ein partielles Presshärten folgen.Partial austenitizing may be followed by partial press hardening.

Die Vorteile der Erfindung sind:

  • Die Bauteilgeometrie wird prozesssicher gewährleistet, da das Bauteil beim Presshärten während des Abkühlens im Presswerkzeug gehalten wird.
  • keine Erhöhung von Taktzeiten beim Presshärten
  • kein extra Anlassen notwendig
  • Es sind beliebige Festigkeiten zwischen 500 MPa und 1.500 MPa, je nach eingesetzter Absorptionsmasse auf den Ofenträgern gezielt erreichbar.
  • überschaubare Investitionskosten
  • Die Größe des jeweils duktilen Bereiches kann je nach Anwendungsfall frei variiert werden.
  • relativ schmaler Härteübergangsbereich zwischen hart und weich
The advantages of the invention are:
  • The component geometry is guaranteed to be reliable, since the component is held during press hardening during cooling in the pressing tool.
  • no increase in cycle times during press hardening
  • no extra starting necessary
  • There are arbitrary strengths between 500 MPa and 1500 MPa, depending on the used absorption mass on the furnace carriers targeted.
  • manageable investment costs
  • The size of each ductile area can be varied freely depending on the application.
  • relatively narrow hardness transition range between hard and soft

Um keine Oberflächenverschmutzungen oder Ausblühungen der Bauteiloberfläche durch die anliegende Absorptionsmasse zu erzeugen muss sichergestellt sein, dass die Auflagefläche der Absorptionsmasse nicht verschmutzt ist und nicht durch den ständigen Aufheiz- und Abkühlvorgangvorgang verzundert. Es ist entweder ein geeignetes Material als Absorptionsmasse zu verwenden oder eine entsprechende Oberflächenbeschichtung von Vorteil.In order not to produce surface contamination or efflorescence of the component surface by the applied absorption mass must be ensured that the support surface of the absorption mass is not dirty and not scaled by the constant heating and Abkühlvorgangvorgang. It is either a suitable material to use as an absorption mass or a corresponding surface coating of advantage.

Claims (5)

  1. A method for producing partially hardened steel components in which a blank composed of a hardenable sheet steel is subjected to a temperature increase that is sufficient for a quench-hardening and after reaching a desired temperature and optionally after a desired holding time, the blank is transferred to a forming tool in which the blank is formed into a component and at the same time quench-hardened or the blank is cold-formed and the component obtained by the cold-forming is then subjected to a temperature increase, the temperature increase being carried out so that a component temperature required for a quench-hardening is reached and the component is then transferred into a tool in which the heated component is cooled and thus quench-hardened; during the heating of the blank or component for the purpose of increasing the temperature to a temperature required for the hardening, absorption masses rest against and/or are spaced with a small gap apart from regions that are intended to have a lower hardness and/or higher ductility; and with regard to its expansion and thickness, its thermal conductivity, and its thermal capacity and/or with regard to its emissivity, the absorption mass is dimensioned so that the thermal energy acting on the component in the region to remain ductile flows through the component into the absorption mass, characterized in that on one or more surfaces of the absorption mass that are oriented toward the furnace chamber, shielding plates are provided, which shield the absorption mass from radiation emanating from the furnace chamber.
  2. The method as recited in claim 1, characterized in that an absorption mass is used, which is composed of a heat-resistant metal such as an Ampco alloy, a steel, or the like, and at least one surface of the absorption mass is embodied as contoured so that rests against the blank or component and/or is spaced apart from it by a small gap, in particular a gap of 0.5 mm to 2 mm, or, in order to adjust hardness transition zones, is spaced apart from the blank or component in some areas by slightly larger air gaps, in particular gaps of 4 to 10 mm.
  3. The method as recited in one of the preceding claims, characterized in that the absorption mass or masses is/are situated on a support with which the blank or component is conveyed through a heating device such as a furnace and as it travels through the heating device, the blank or component rests on the absorption mass or masses.
  4. The method as recited in one or more of the preceding claims, characterized in that the heat absorption of the absorption mass from the furnace chamber and/or from the component is controlled by adjusting the emissivities of the surface of the absorption mass.
  5. The method as recited in one or more of the preceding claims, characterized in that the thermal absorption of the shielding plates from the furnace chamber is controlled by adjusting the emissivities of the surface of the shielding plates.
EP10711386.2A 2009-03-26 2010-03-26 Method for producing partially hardened steel components Active EP2411548B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009015013A DE102009015013B4 (en) 2009-03-26 2009-03-26 Process for producing partially hardened steel components
PCT/EP2010/054019 WO2010109012A1 (en) 2009-03-26 2010-03-26 Method for producing partially hardened steel components

Publications (2)

Publication Number Publication Date
EP2411548A1 EP2411548A1 (en) 2012-02-01
EP2411548B1 true EP2411548B1 (en) 2013-06-26

Family

ID=42309460

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10711386.2A Active EP2411548B1 (en) 2009-03-26 2010-03-26 Method for producing partially hardened steel components

Country Status (7)

Country Link
US (1) US8597441B2 (en)
EP (1) EP2411548B1 (en)
CN (1) CN102365375B (en)
DE (1) DE102009015013B4 (en)
ES (1) ES2429021T3 (en)
WO (1) WO2010109012A1 (en)
ZA (1) ZA201105487B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021110702A1 (en) 2021-04-27 2022-10-27 Voestalpine Metal Forming Gmbh Process and device for manufacturing hardened steel components with different ductile areas

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0702513L (en) * 2007-11-15 2009-04-28 Gestamp Hardtech Ab B-pillar for vehicles
WO2011091983A2 (en) 2010-01-29 2011-08-04 Tata Steel Nederland Technology Bv Process for the heat treatment of metal strip material, and strip material produced in that way
DE102010048209C5 (en) 2010-10-15 2016-05-25 Benteler Automobiltechnik Gmbh Method for producing a hot-formed press-hardened metal component
WO2012085248A2 (en) * 2010-12-24 2012-06-28 Voestalpine Stahl Gmbh Method for forming and hardening coated steel sheets
DE102011053939B4 (en) 2011-09-26 2015-10-29 Voestalpine Stahl Gmbh Method for producing hardened components
DE102011053941B4 (en) 2011-09-26 2015-11-05 Voestalpine Stahl Gmbh Method for producing hardened components with regions of different hardness and / or ductility
EP2562034B1 (en) 2011-08-25 2017-10-04 Adient Luxembourg Holding S.à r.l. Profile component for a vehicle seat, method and device for producing a profile component
DE102011056444C5 (en) * 2011-12-14 2015-10-15 Voestalpine Metal Forming Gmbh Method and device for partial hardening of sheet metal components
CN102492818B (en) * 2011-12-24 2013-12-18 山东普利森集团有限公司 Thermal treatment process for inlaid steel guide rail
DE102012006941B4 (en) * 2012-03-30 2013-10-17 Salzgitter Flachstahl Gmbh Method for producing a steel component by hot forming
DE202012007777U1 (en) * 2012-06-22 2012-09-18 Steinhoff & Braun's Gmbh Device for producing a metal component
DE102013100682B3 (en) * 2013-01-23 2014-06-05 Voestalpine Metal Forming Gmbh A method of producing cured components and a structural component made by the method
DE102013212816B4 (en) 2013-07-01 2016-03-24 Volkswagen Aktiengesellschaft Process for producing a partially press-hardened sheet metal part by direct press hardening
DE102013108044B3 (en) * 2013-07-26 2014-11-20 Voestalpine Metal Forming Gmbh Heat sink with spacer
DE102014211241A1 (en) 2014-06-12 2015-12-17 Sms Elotherm Gmbh Method and heating system for the standard heating of sheet metal blanks with formation of different temperature zones
DE102014215365A1 (en) * 2014-08-05 2016-02-11 Bayerische Motoren Werke Aktiengesellschaft Process for the production of hot formed components
DE102015203338A1 (en) 2015-02-25 2016-08-25 Bayerische Motoren Werke Aktiengesellschaft Positioning device for a sheet metal component
DE102015113056B4 (en) 2015-08-07 2018-07-26 Voestalpine Metal Forming Gmbh Method for the contactless cooling of steel sheets and device therefor
JP7141828B2 (en) 2015-05-29 2022-09-26 フォエスタルピネ スタール ゲーエムベーハー Uniform non-contact temperature control method and apparatus for non-endless surface to be temperature controlled
DE102016109095B4 (en) * 2015-11-20 2018-09-13 Voestalpine Metal Forming Gmbh Apparatus and method for partial hardening of sheet steel components
DE102016201025A1 (en) * 2016-01-25 2017-07-27 Schwartz Gmbh Heat treatment process and heat treatment device
ES2827455T3 (en) * 2016-02-25 2021-05-21 Benteler Automobiltechnik Gmbh Manufacturing method of an automobile component with at least two mutually different resistance zones
WO2018115914A1 (en) 2016-12-19 2018-06-28 Arcelormittal A manufacturing process of hot press formed aluminized steel parts
DE102017125473B3 (en) 2017-10-30 2019-03-28 Voestalpine Metal Forming Gmbh Method and device for producing partially hardened sheet steel components
DE102018130860A1 (en) * 2018-12-04 2020-06-04 Bayerische Motoren Werke Aktiengesellschaft Process for hot forming a, in particular plate-shaped, semi-finished product
CN110936589A (en) * 2019-04-18 2020-03-31 陈鹏 Hot-pressing mould with multiple heat conduction effects in different areas
US20220388574A1 (en) * 2019-11-08 2022-12-08 Autotech Engineering, S.L. A forming sheet metal part for a vehicle frame and corresponding production method
DE102020103276A1 (en) 2020-02-10 2021-08-12 Benteler Automobiltechnik Gmbh Furnace for partial heating of metal components
DE102022000670A1 (en) 2022-02-24 2023-08-24 Mercedes-Benz Group AG Process for the heat treatment of a test piece and test piece

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4506822A (en) * 1982-03-18 1985-03-26 The United States Of America As Represented By The United States Department Of Energy Method for brazing together planar and nonplanar metal members
JP3305952B2 (en) * 1996-06-28 2002-07-24 トヨタ自動車株式会社 How to strengthen induction hardening of center pillar reinforce
DE19743802C2 (en) * 1996-10-07 2000-09-14 Benteler Werke Ag Method for producing a metallic molded component
DE20014361U1 (en) * 2000-08-19 2000-10-12 Benteler Werke Ag B-pillar for a motor vehicle
DE10162415A1 (en) 2001-12-19 2003-07-03 Siempelkamp Pressen Sys Gmbh Heat forming process, especially for making aluminium workpieces, comprises providing metal blank with reflectance altering coating
DE10212819B4 (en) 2002-03-22 2004-07-08 Benteler Automobiltechnik Gmbh Process for the production of a metallic component
DE10356679A1 (en) 2003-11-28 2005-07-21 Rolls-Royce Deutschland Ltd & Co Kg Process and apparatus for coating or heat treating BLISK aircraft gas turbine disks
DE102006018406B4 (en) * 2006-03-06 2012-04-19 Elisabeth Braun Process for heating workpieces, in particular sheet-metal parts intended for press-hardening

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021110702A1 (en) 2021-04-27 2022-10-27 Voestalpine Metal Forming Gmbh Process and device for manufacturing hardened steel components with different ductile areas

Also Published As

Publication number Publication date
ZA201105487B (en) 2012-08-29
CN102365375B (en) 2014-07-30
DE102009015013B4 (en) 2011-05-12
US8597441B2 (en) 2013-12-03
US20120097298A1 (en) 2012-04-26
WO2010109012A1 (en) 2010-09-30
ES2429021T3 (en) 2013-11-12
EP2411548A1 (en) 2012-02-01
DE102009015013A1 (en) 2010-11-25
CN102365375A (en) 2012-02-29

Similar Documents

Publication Publication Date Title
EP2411548B1 (en) Method for producing partially hardened steel components
DE102011101991B3 (en) Heat treatment of hardenable sheet metal components
EP2791372B1 (en) Method and device for partially hardening sheet metal components
DE102005032113B3 (en) Thermal deformation and partial hardening apparatus, e.g. for automobile components, comprises mold of at least two parts, each formed from segments adjustable to different temperatures
DE102004038626B3 (en) Method for producing hardened components from sheet steel
EP2366805B1 (en) Method for manufacturing press hardened components
EP2497840B2 (en) Oven system for partially heating steel blanks
EP2864506B1 (en) Method and device for producing a press-hardened metal component
EP2324938B1 (en) Method and thermal recasting assembly for producing a hardened, thermally recast workpiece
DE10208216C1 (en) Production of a hardened metallic component used as vehicle component comprises heating a plate or a pre-molded component to an austenitizing temperature, and feeding via a transport path while quenching parts of plate or component
EP2182082B2 (en) Method and device for tempering a steel sheet body
EP2905346B1 (en) Heat treatment process
DE102011078075A1 (en) Features tailored by heat treatment post-processing
DE102008063985B4 (en) Method and device for producing partially hardened sheet steel components
DE102009012940B4 (en) Method for producing a component, in particular a sheet-metal component, and production line for producing the component
DE102004007071A1 (en) Method for producing a component by forming a circuit board and apparatus for carrying out the method
EP3420111B1 (en) Process for targeted heat treatment of individual component zones
DE102013108044B3 (en) Heat sink with spacer
AT15624U1 (en) Heat treatment process and heat treatment device
WO2011082934A1 (en) Method and device for heating and partially cooling work pieces in a continuous furnace
EP2679692A1 (en) Method for manufacturing a press hardened formed component made of sheet steel
EP3221474B1 (en) Method for hot or warm forming a workpiece and production plant for hot or warm forming a workpiece
DE102016109095A1 (en) Method and device for partial hardening of sheet steel components
EP3497251B1 (en) Method for forming and hardening steel materials
EP3985133A2 (en) Method for making a steel plate and temperature control station

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110905

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: C21D 9/46 20060101ALI20121213BHEP

Ipc: C21D 1/673 20060101AFI20121213BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VOESTALPINE METAL FORMING GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 618744

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010003800

Country of ref document: DE

Effective date: 20130822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130927

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130926

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2429021

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20131112

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130926

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131028

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131026

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

26N No opposition filed

Effective date: 20140327

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010003800

Country of ref document: DE

Effective date: 20140327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140326

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140326

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140326

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140326

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 618744

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100326

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150326

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230403

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240327

Year of fee payment: 15

Ref country code: CZ

Payment date: 20240306

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240325

Year of fee payment: 15