EP2403649B1 - Magnetische hydrophobe agglomerate - Google Patents
Magnetische hydrophobe agglomerate Download PDFInfo
- Publication number
- EP2403649B1 EP2403649B1 EP10706247.3A EP10706247A EP2403649B1 EP 2403649 B1 EP2403649 B1 EP 2403649B1 EP 10706247 A EP10706247 A EP 10706247A EP 2403649 B1 EP2403649 B1 EP 2403649B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- particle
- active substance
- magnetic
- particles
- agglomerates
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C1/00—Magnetic separation
- B03C1/005—Pretreatment specially adapted for magnetic separation
- B03C1/015—Pretreatment specially adapted for magnetic separation by chemical treatment imparting magnetic properties to the material to be separated, e.g. roasting, reduction, oxidation
Definitions
- the present invention relates to an agglomerate of at least one particle P, which is hydrophobized on the surface with at least one first surfactant, and at least one magnetic particle MP, which is hydrophobized on the surface with at least one second surfactant, a process for producing these agglomerates and the use of the agglomerates to separate a particle P from mixtures containing these particles P and other components.
- Agglomerates containing at least one magnetic particle and at least one further component are already known from the prior art.
- US 4,643,822 A discloses a method for separating desired substances from mixtures of substances.
- an agglomerate of at least one magnetic material and the desired material is produced by coordinated zeta potentials of the respective surfaces.
- a mixture of metallic copper and lead granules is separated by reacting the amine-dispersed colloid with US 4,643,822 A is added.
- the amine-dispersed colloid is prepared by mixing a magnetite suspension dissolved in hydrochloric acid with dodecylamine.
- WO 2009/010422 A1 discloses a process for ore enrichment by means of hydrophobic solid surfaces.
- a slurry or dispersion of the mixture to be treated is prepared, which is brought into contact with at least one solid hydrophobic surface for attachment of the at least one hydrophobic substance to be separated and the solid hydrophobic surface to which the at least one hydrophobic substance is attached. is removed from the dispersion or slurry.
- Solid hydrophobic surface means according to WO 2009/010422 A1 For example, a plate or a treadmill, or the sum of the surfaces of many moving particles, for example, the individual surfaces of a plurality of balls.
- US 4,657,666 discloses a method for enrichment of ores where the ginger ore is reacted with magnetic particles to form agglomerates due to the hydrophobic interactions.
- the magnetic particles are hydrophobized by treatment with hydrophobic compounds on the surface, so that a connection to the value ore takes place.
- the agglomerates are then separated from the mixture by a magnetic field.
- the document also discloses that the ores are treated with a surface activating solution of 1% sodium ethylxanthogenate before the magnetic particle is added.
- US 4,834,898 discloses a method of separating nonmagnetic materials by contacting them with magnetic reagents encased in two layers of surfactants. US 4,834,898 further discloses that the surface charge of the non-magnetic particles to be separated may be affected by various types and concentrations of electrolyte reagents. For example, the surface charge is altered by the addition of multivalent anions, for example tripolyphosphate ions.
- WO 2007/008322 A1 discloses a magnetic particle hydrophobized on the surface for separating impurities from mineral substances by magnetic separation techniques.
- a dispersing agent selected from sodium silicate, sodium polyacrylate or sodium hexametaphosphate may be added to the solution or dispersion.
- the object of the present invention is to provide agglomerates of at least one magnetic particle and at least one further particle, wherein the at least one further particle is preferably a value component.
- the agglomerates according to the invention should be distinguished by a high stability in water or polar media, but should not be stable in non-polar media. Furthermore, these agglomerates should have a hydrophobic character.
- a further object of the present invention is to provide corresponding agglomerates which, due to their magneticity, can be separated by a magnetic field from further, non-magnetic and non-hydrophobic components.
- hydrophobic means that the corresponding particle can be hydrophobized subsequently by treatment with the at least one surface-active substance. It is also possible that a per se hydrophobic particle is additionally hydrophobized by treatment with the at least one surface-active substance.
- Hydrophobic in the context of the present invention means that the surface of a corresponding "hydrophobic substance” or a “hydrophobized substance” has a contact angle of> 90 ° with water against air.
- Hydrophobic in the context of the present invention means that the surface of a corresponding “hydrophilic substance” has a contact angle of ⁇ 90 ° with water against air.
- At least one particle P is present, which is hydrophobized on the surface with at least one first surface-active substance.
- the at least one particle P contains at least one metal compound and / or carbon.
- the at least one particle P contains a metal compound selected from the group of sulfidic ores, oxidic and / or carbonate-containing ores, for example azurite [Cu 3 (CO 3 ) 2 (OH) 2 ], or malachite [Cu 2 [. (OH) 2
- the at least one particle P consists of said metal compounds.
- sulfide ores which can be used according to the invention are selected, for example, from the group of copper ores consisting of covellite CuS, molybdenum (IV) sulfide, chalcopyrite (copper gravel) CuFeS 2 , bornite Cu 5 FeS 4 , chalcocite (copper luster) Cu 2 S, sulfides iron, lead, zinc or molybdenum, ie FeS / FeS 2 , PbS, ZnS or MoS 2 and mixtures thereof.
- copper ores consisting of covellite CuS, molybdenum (IV) sulfide, chalcopyrite (copper gravel) CuFeS 2 , bornite Cu 5 FeS 4 , chalcocite (copper luster) Cu 2 S, sulfides iron, lead, zinc or molybdenum, ie FeS / FeS 2 , PbS, ZnS or MoS 2 and mixtures thereof.
- Suitable oxidic compounds are those of metals and semimetals, for example silicates or borates or other salts of metals and semimetals, for example phosphates, sulfates or oxides / hydroxides / carbonates and further salts, for example azurite [Cu 3 (CO 3 ) 2 (OH ) 2 ], malachite [Cu 2 [(OH) 2 (CO 3 )]], barite (BaSO 4 ), monacite ((La-Lu) PO 4 ).
- metals and semimetals for example silicates or borates or other salts of metals and semimetals, for example phosphates, sulfates or oxides / hydroxides / carbonates and further salts, for example azurite [Cu 3 (CO 3 ) 2 (OH ) 2 ], malachite [Cu 2 [(OH) 2 (CO 3 )]], barite (BaSO 4 ), monacite ((La-Lu) PO 4 ).
- Suitable noble metals are, for example, Au, Pt, Pd, Rh, etc., where Pt is mainly alloyed.
- Suitable Pt / Pd ores are Sperrlith PtAs 2 , Cooperit PtS or Braggit (Pt, Pd, Ni) S.
- the at least one particle P present in the agglomerate according to the invention is hydrophobized on the surface with at least one first surface-active substance and the at least one magnetic particle MP is hydrophobicized with at least one second surface-active substance.
- the at least one first and the at least one second surface-active substance are different.
- the at least one first and the at least one second surface-active substance are identical.
- surface-active substance means a substance which is capable of changing the surface of the particle P so that it becomes hydrophobic in the sense of the abovementioned definition.
- A is a linear or branched C 4 -C 12 -alkyl, very particularly preferably a linear C 4 - or C 8 -alkyl.
- optionally present heteroatoms according to the invention are selected from N, O, P, S and halogens such as F, Cl, Br and I.
- A is preferably a linear or branched, preferably linear, C 6 -C 20 -alkyl.
- A is preferably a branched C 6 -C 14 -alkyl, wherein the at least one substituent, preferably having 1 to 6 carbon atoms, preferably in the 2-position, is present, for example 2-ethylhexyl and / or 2-propylheptyl.
- n 2 in the abovementioned formulas, then two identical or different, preferably identical, groups A are bound to a group Z.
- Preferred counterions in these compounds are cations selected from the group consisting of hydrogen, NR 4 + where R is independently hydrogen and / or C 1 -C 8 -alkyl, alkali or alkaline-earth metals, in particular sodium or potassium.
- Very particularly preferred compounds of general formula (I) are selected from the group consisting of sodium or potassium n-octylxanthate, sodium or potassium butylxanthate, sodium or potassium di-n-octyl dithiophosphinate, sodium or potassium di -n-octyl dithiophosphate, octanethiol and mixtures of these compounds.
- particularly preferred surface-active substances are xanthates, thiocarbamates or hydroxamates.
- Other suitable surface-active substances are, for example, in EP 1200408 B1 described.
- metal oxides for example FeO (OH), Fe 3 O 4 , ZnO etc.
- carbonates for example azurite [Cu (CO 3 ) 2 (OH) 2 ], malachite [Cu 2 [(OH) 2 CO 3 ]] particularly preferred surface-active substances octylphosphonic acid (OPS), (EtO) 3 Si-A, (MeO) 3 Si-A, having the abovementioned meanings for A.
- particularly preferred surface-active substances are mono-, di- and trithiols or xanthates.
- Z is - (X) n -CS 2 - , - (X) n -PO 2 - or - (X) n -S - where X is O and n is 0 or 1 and one Cation selected from hydrogen, sodium or potassium.
- Very particularly preferred surface-active substances are 1-octanethiol, potassium n-octyl xanthate, potassium butylxanthate, octylphosphonic acid or a compound of the following formula (IV)
- At least one particle P is present, which is hydrophobized with at least one surface-active substance.
- P is Cu 2 S, which is hydrophobized with the potassium salts of ethyl, butyl octyl or other aliphatic or branched xanthates or mixtures thereof.
- the particle P is a Pd-containing alloy, preferably with the Potassium salts of ethyl, butyl octyl or other aliphatic or branched xanthates or mixtures thereof is hydrophobized, most preferably, this particle is hydrophobicized with mixtures of these Kaliumxanthate and thiocarbamates.
- agglomerates are preferred in which the particle contains P Rh, Pt, Pd, Au, Ag, Ir or Ru.
- the surface-active hydrophobization is adapted to the corresponding mineral surface, so that it comes to an optimal interaction between surface-active substance and the particle P, which contains Rh, Pt, Pd, Au, Ag, Ir or Ru.
- Methods for hydrophobizing the surface of the particles P which can be used in the agglomerates according to the invention are known to the person skilled in the art, for example by contacting the particles P with the at least one first surface-active substance, for example in bulk or in dispersion.
- the particles P and the at least one surfactant are added and mixed together without additional dispersant in the appropriate amounts.
- Suitable mixing apparatuses are known to the person skilled in the art, for example mills, such as ball mill (planetary vibrating mills).
- the components are combined in a dispersion, preferably in suspension.
- Suitable dispersants are, for example, water, water-soluble organic compounds, for example alcohols having 1 to 4 carbon atoms, and mixtures thereof.
- the at least one first surface-active substance is generally present on the at least one particle P in an amount of 0.01 to 5% by weight, preferably 0.01 to 0.1% by weight, based on the sum of at least a first surfactant and at least one particle P.
- the optimum content of surfactant generally depends on the size of the particles P.
- the particles P may generally be regularly shaped, for example spherical, cylindrical, cuboidal, or irregular, for example splintered.
- Particle P 2 may be selected from the group referred to particle P.
- Particle P 2 may also be selected from the group of oxidic metal or semimetal compounds, for example SiO 2 .
- the at least one particle P which is hydrophobized on the surface with at least one first surface-active substance, generally has a diameter of 1 nm to 10 mm, preferably 10 to 100 ⁇ m. In asymmetrically shaped Particles are considered the diameter of the longest distance in the particle.
- the agglomerate according to the invention further comprises at least one magnetic particle MP, which is hydrophobized on the surface with at least one second surface-active substance.
- the magnetic particles MP can generally be regularly shaped, for example, spherical, cylindrical, cuboidal, or irregular, for example splinter-shaped.
- the at least one magnetic article MP which is hydrophobized on the surface with at least one second surface-active substance, generally has a diameter of 10 nm to 1000 mm, preferably 100 nm to 1 mm, particularly preferably 500 nm to 500 ⁇ m, very particularly preferably 1 up to 100 ⁇ m, on.
- the diameter considered to be the longest distance in the particle.
- magnétique particles MP which have a similar particle size distribution as the particles P. These size distributions may be mono-, bi- or trimodal.
- the magnetic particles MP may, if appropriate, be converted into the appropriate size prior to the use according to the invention using methods known to those skilled in the art, for example by grinding.
- the magnetic particles MP which can be used according to the invention preferably have a BET specific surface area of from 0.01 to 50 m 2 / g, particularly preferably from 0.1 to 20 m 2 / g, very particularly preferably from 0.2 to 10 m 2 / g.
- the magnetic particles MP which can be used according to the invention preferably have a density (measured to DIN 53193) of 3 to 10 g / cm 3 , particularly preferably 4 to 8 g / cm 3 .
- B is a linear or branched C 6 -C 18 -alkyl, preferably linear C 8 -C 12 -alkyl, very particularly preferably a linear C 12 -alkyl.
- optionally present heteroatoms according to the invention are selected from N, O, P, S and halogens such as F, Cl, Br and I.
- Y is selected from the group consisting of - (X) n -SiHal 3 , - (X) n -SiHHal 2 , - (X) n -SiH 2 Hal where Hal is equal to F, Cl, Br, I, and anionic groups such as - (X) n -SiO 3 3- , - (X) n -CO 2 - , - (X) n -PO 3 2- , - (X) n -PO 2 S 2 - , - (X) n -POS 2 2- , - (X) n -PPS 3 2- , - (X) n -PPS 2 - , - (X) n -POS - , - (X) n -PO 2 - , - (X) n -CO 2 - , - (X) n -CS 2 - , - (X) n -CO 2 -
- n 2 in the abovementioned formulas, then two identical or different, preferably identical, groups B are bound to a group Y.
- Very particularly preferred hydrophobizing substances of the general formula (III) are alkyltrichlorosilanes (alkyl group having 6-12 carbon atoms), alkyltrimethoxysilanes (alkyl group having 6-12 carbon atoms), octylphosphonic acid, lauric acid, oleic acid, stearic acid or mixtures thereof.
- the at least one second surface-active substance is present on the at least one magnetic particle MP, preferably in an amount of from 0.01 to 0.1% by weight, based on the sum of at least one second surface-active substance and at least one magnetic particle MP.
- the optimum amount of at least one second surface-active substance is dependent on the size of the magnetic particle MP.
- At least one magnetic particle MP which is hydrophobicized with at least one second surface-active substance, magnetite, hydrophobed with dodecyltrichlorosilane and / or magnetite, hydrophobicized with octylphosphonic acid.
- the magnetic particles MP rendered hydrophobic with at least one second surface-active substance can be prepared by all processes known to those skilled in the art, preferably as described with regard to the hydrophobized particles P.
- the at least one particle P which is hydrophobized on the surface with at least one first surface-active substance
- the at least one magnetic particle MP which is hydrophobized on the surface with at least one second surface-active substance
- the at least one particle P is present on the surface with at least one first surface active substance Substance is hydrophobicized, at 10 to 90 wt .-%, preferably 20 to 80 wt .-%, particularly preferably 40 to 60 wt .-%, and the at least one magnetic particle MP, which hydrophobicized at the surface with at least one second surfactant is, to 10 to 90 wt .-%, preferably 20 to 80 wt .-%, particularly preferably 40 to 60 wt .-%, before, in each case based on the total agglomerate, the sum in each case 100 wt .-% results.
- the agglomerate according to the invention at least one particle P, which is hydrophobized on the surface with at least one first surface-active substance, and 50% by weight at least one magnetic particle MP, which at least with the surface a second surfactant is hydrophobized before. It must be ensured that, depending on the magnetic properties of the magnetic particles MP, the agglomerate as a whole can still be deflected magnetically under the influence of an external magnetic field.
- the ratio P to MP is particularly preferred if an external magnetic field (which can be generated, for example, by a strong CoSm permanent magnet) can still magnetically deflect these particles if the agglomerates move with a flow of 300 mm / sec. at a 90 ° angle to the external magnet. Further, it is most preferred that the hydrophobic interactions between P and MP are strong enough that they are not torn apart at this flow rate.
- the bond between the at least one particle P, which is hydrophobized on the surface with at least one first surface-active substance, and the at least one magnetic particle, which is hydrophobized on the surface with at least one second surface-active substance, takes place in the agglomerate according to the invention by hydrophobic interactions.
- the diameter of the agglomerates according to the invention is dependent on the percentage of the particles P and the magnetic particles MP, the diameters of the particles P and magnetic particles MP, as well as the spaces between the particles, which are dependent on the type and amount of surface-active substances.
- the agglomerates according to the invention generally have a magneticity, so that an external magnetic field, which can be generated, for example, by a strong CoSm permanent magnet, can at least still magnetically deflect these agglomerates if the agglomerates move with a flow of 300 mm / sec. at a 90 ° angle to the external magnet.
- the hydrophobic interactions between P and MP within the agglomerates are generally strong enough that they remain stable at said flow rate, ie, are not torn apart.
- the agglomerates according to the invention can be cleaved in a non-polar medium, for example diesel or acetone, preferably without the at least one particle P or the at least one magnetic particle MP being destroyed.
- a non-polar medium for example diesel or acetone
- the agglomerates according to the invention can be prepared, for example, by contacting the particles P which have been rendered hydrophobic with the at least one first surface-active substance, and the hydrophobicized with the at least one second surface-active substance MP, for example, in bulk or in dispersion.
- the hydrophobized particles P and the hydrophobized magnetic particles MP are added and mixed together without additional dispersant in the appropriate amounts.
- the particles P and the magnetic particles MP are added and mixed together in the corresponding amounts in the presence of the at least one first and at least one second surface-active substance without further dispersing agent.
- Suitable mixing apparatuses are known to the person skilled in the art, for example mills, such as ball mill.
- Dispersants suitable for the process according to the invention are, for example, water, water-soluble organic compounds, for example alcohols having 1 to 4 carbon atoms, and mixtures thereof.
- the present invention also relates to a method for producing agglomerates according to the invention comprising contacting the particles P hydrophobized with the at least one first surfactant, and the magnet article MP hydrophobized with the at least one second surfactant, to obtain the agglomerates.
- the process according to the invention is generally carried out at a temperature of 5 to 50 ° C., preferably at ambient temperature.
- the process according to the invention is generally carried out at atmospheric pressure.
- agglomerates After obtaining the agglomerates according to the invention, these can be separated from an optionally present solvent or dispersion medium by methods known to the person skilled in the art, for example by filtration, decanting, sedimentation and / or magnetic processes.
- the agglomerates according to the invention can be used to separate corresponding particles P from mixtures containing these particles P and further components.
- particle P may be an ore and the other components may be gait.
- the agglomerates can be cleaved after separation by methods known to those skilled in the art.
- the present invention also relates to the use of the agglomerates according to the invention for the separation of a particle P from mixtures containing these particles P and other components, for example for the separation of ores from raw ores containing the gangue.
- the system is poured into water.
- the hydrophobic agglomerates according to the invention are formed between the hydrophobic magnetite and the selectively hydrophobized copper sulfide. These agglomerates can by the action of a strong permanent magnet at flow rates greater than 320 mm / sec. are held perpendicular to the magnet without the hydrophobic agglomerates are destroyed.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Soft Magnetic Materials (AREA)
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
- Compounds Of Iron (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Glanulating (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Extraction Or Liquid Replacement (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PL10706247T PL2403649T3 (pl) | 2009-03-04 | 2010-03-03 | Magnetyczne aglomeraty hydrofobowe |
| EP10706247.3A EP2403649B1 (de) | 2009-03-04 | 2010-03-03 | Magnetische hydrophobe agglomerate |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP09154285 | 2009-03-04 | ||
| PCT/EP2010/052667 WO2010100180A1 (de) | 2009-03-04 | 2010-03-03 | Magnetische hydrophobe agglomerate |
| EP10706247.3A EP2403649B1 (de) | 2009-03-04 | 2010-03-03 | Magnetische hydrophobe agglomerate |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP2403649A1 EP2403649A1 (de) | 2012-01-11 |
| EP2403649B1 true EP2403649B1 (de) | 2013-08-28 |
Family
ID=42145078
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP10706247.3A Not-in-force EP2403649B1 (de) | 2009-03-04 | 2010-03-03 | Magnetische hydrophobe agglomerate |
Country Status (17)
| Country | Link |
|---|---|
| US (1) | US8377313B2 (enExample) |
| EP (1) | EP2403649B1 (enExample) |
| JP (1) | JP5683498B2 (enExample) |
| CN (1) | CN102341179B (enExample) |
| AR (1) | AR076077A1 (enExample) |
| AU (1) | AU2010220284B2 (enExample) |
| BR (1) | BRPI1011516A8 (enExample) |
| CA (1) | CA2752881C (enExample) |
| EA (1) | EA020958B1 (enExample) |
| ES (1) | ES2435631T3 (enExample) |
| MX (1) | MX2011009082A (enExample) |
| PE (1) | PE20120731A1 (enExample) |
| PL (1) | PL2403649T3 (enExample) |
| PT (1) | PT2403649E (enExample) |
| UA (1) | UA103077C2 (enExample) |
| WO (1) | WO2010100180A1 (enExample) |
| ZA (1) | ZA201107236B (enExample) |
Families Citing this family (23)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2009065802A2 (de) | 2007-11-19 | 2009-05-28 | Basf Se | Magnetische trennung von substanzen basierend auf ihren unterschiedlichen oberflächenladungen |
| WO2010007075A1 (de) | 2008-07-18 | 2010-01-21 | Basf Se | Selektive stofftrennung mit modifizierten magnetpartikeln |
| WO2010066770A1 (de) | 2008-12-11 | 2010-06-17 | Basf Se | Anreicherung von werterzen aus minenabfall (tailings) |
| WO2010084635A1 (ja) * | 2009-01-23 | 2010-07-29 | 財団法人大阪産業振興機構 | 混合物の処理方法及び処理装置 |
| AU2010217681B2 (en) | 2009-02-24 | 2016-07-07 | Basf Se | Cu-Mo separation |
| CN102341178B (zh) | 2009-03-04 | 2015-06-03 | 西门子公司 | 通过多级式调节进行有色金属矿物的磁分离 |
| US8865000B2 (en) | 2010-06-11 | 2014-10-21 | Basf Se | Utilization of the naturally occurring magnetic constituents of ores |
| US9376457B2 (en) | 2010-09-03 | 2016-06-28 | Basf Se | Hydrophobic, functionalized particles |
| PE20140809A1 (es) * | 2010-11-29 | 2014-07-06 | Basf Se | Recuperacion magnetica de elementos de valor a partir de escoria |
| PE20141524A1 (es) | 2011-02-01 | 2014-10-31 | Basf Se | Aparato para ahorro de energia y separacion continua de constituyentes magneticos y limpieza eficiente de la fraccion magnetica |
| CA2832814C (en) * | 2011-04-12 | 2019-04-02 | Basf Se | Hydrophobic, functionalised particles |
| CN106132551B (zh) | 2014-03-31 | 2019-08-27 | 巴斯夫欧洲公司 | 用于输送磁化材料的磁体装置 |
| PE20170804A1 (es) | 2014-11-27 | 2017-07-04 | Basf Se | Mejora de la calidad del concentrado |
| CA2966807C (en) | 2014-11-27 | 2023-05-02 | Basf Se | Energy input during agglomeration for magnetic separation |
| EP3181230A1 (en) | 2015-12-17 | 2017-06-21 | Basf Se | Ultraflotation with magnetically responsive carrier particles |
| CN106076602A (zh) * | 2016-06-29 | 2016-11-09 | 昆明理工大学 | 一种磁介质团聚弱磁选富集氧化锌矿的方法 |
| WO2018006959A1 (de) * | 2016-07-06 | 2018-01-11 | Friedrich-Alexander-Universität Erlangen-Nürnberg | Kern-hülle-partikel |
| AU2018309321A1 (en) * | 2017-08-03 | 2020-02-27 | Basf Se | Separation of a mixture using magnetic carrier particles |
| HUE061858T2 (hu) * | 2017-09-29 | 2023-08-28 | Basf Se | Grafitrészecskék koncentrálása hidrofób mágneses részecskékkel történõ agglomerációval |
| JP7152003B2 (ja) * | 2018-08-22 | 2022-10-12 | 河合石灰工業株式会社 | 高熱伝導性無機フィラー複合粒子及びその製造方法 |
| CN109078761B (zh) * | 2018-09-27 | 2020-11-27 | 江西理工大学 | 一种利用磁性疏水颗粒强化难处理硫化镍矿浮选的方法 |
| CN109078760B (zh) * | 2018-09-27 | 2020-07-31 | 江西理工大学 | 用带磁性疏水颗粒提高微细粒硫化铜矿浮选回收率的方法 |
| CN110216020B (zh) * | 2019-04-23 | 2020-11-03 | 中南大学 | 一种荷电磁性疏水材料及其制备方法和应用 |
Family Cites Families (25)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS508718A (enExample) * | 1973-05-29 | 1975-01-29 | ||
| DE3275506D1 (en) * | 1981-10-26 | 1987-04-09 | Wsr Pty Ltd | Magnetic flotation |
| US4643822A (en) | 1985-02-28 | 1987-02-17 | The Secretary Of State For Trade And Industry In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland | Method of separation of material from material mixtures |
| JPS61281022A (ja) * | 1985-06-06 | 1986-12-11 | Tone Sangyo Kk | 酸化鉄の不純物除去方法 |
| US4834898A (en) * | 1988-03-14 | 1989-05-30 | Board Of Control Of Michigan Technological University | Reagents for magnetizing nonmagnetic materials |
| JPH02298284A (ja) * | 1989-02-02 | 1990-12-10 | Kunio Mori | 金属表面の電気化学的表面処理法とその複合体 |
| US5207996A (en) * | 1991-10-10 | 1993-05-04 | Minnesota Mining And Manufacturing Company | Acid leaching of copper ore heap with fluoroaliphatic surfactant |
| EP0952964A1 (en) * | 1996-10-03 | 1999-11-03 | Cytec Technology Corp. | Aqueous dispersions |
| CN1391586A (zh) * | 1998-10-05 | 2003-01-15 | Cytec技术有限公司 | 水性分散体 |
| MY137154A (en) * | 2002-01-21 | 2008-12-31 | Basf Ag | Alkylglycol alkoxylates or alkyldiglycol alkoxylates, mixtures thereof with tensides and their use |
| US8033398B2 (en) | 2005-07-06 | 2011-10-11 | Cytec Technology Corp. | Process and magnetic reagent for the removal of impurities from minerals |
| CA2693902C (en) | 2007-07-17 | 2016-06-28 | Basf Se | Process for the beneficiation of ores by means of hydrophobic surfaces |
| CN101815581B (zh) | 2007-09-03 | 2015-01-21 | 巴斯夫欧洲公司 | 使用磁性颗粒加工富矿 |
| WO2009065802A2 (de) | 2007-11-19 | 2009-05-28 | Basf Se | Magnetische trennung von substanzen basierend auf ihren unterschiedlichen oberflächenladungen |
| EP2090367A1 (de) | 2008-02-15 | 2009-08-19 | Siemens Aktiengesellschaft | Verfahren und Vorrichtung zur kontinuierlichen Gewinnung von nichtmagnetischen Erzen |
| WO2010007157A1 (de) | 2008-07-18 | 2010-01-21 | Basf Se | Anorganische partikel mit einer durch temperatur hydrophil/hydrophob schaltbaren organischen beschichtung |
| WO2010007075A1 (de) | 2008-07-18 | 2010-01-21 | Basf Se | Selektive stofftrennung mit modifizierten magnetpartikeln |
| JP5631308B2 (ja) * | 2008-07-18 | 2014-11-26 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | 変性された酸化亜鉛粒子 |
| WO2010066770A1 (de) | 2008-12-11 | 2010-06-17 | Basf Se | Anreicherung von werterzen aus minenabfall (tailings) |
| AU2010217681B2 (en) | 2009-02-24 | 2016-07-07 | Basf Se | Cu-Mo separation |
| CN102341178B (zh) | 2009-03-04 | 2015-06-03 | 西门子公司 | 通过多级式调节进行有色金属矿物的磁分离 |
| US20110229384A1 (en) | 2010-03-18 | 2011-09-22 | Basf Se | Concentrate quality in the enrichment of ug-2 platinum ore |
| US20110272623A1 (en) | 2010-05-06 | 2011-11-10 | Siemens Ag | Formulation of hydrophobized magnetite |
| US8865000B2 (en) | 2010-06-11 | 2014-10-21 | Basf Se | Utilization of the naturally occurring magnetic constituents of ores |
| US9376457B2 (en) | 2010-09-03 | 2016-06-28 | Basf Se | Hydrophobic, functionalized particles |
-
2010
- 2010-03-03 JP JP2011552428A patent/JP5683498B2/ja not_active Expired - Fee Related
- 2010-03-03 CN CN201080010308.4A patent/CN102341179B/zh not_active Expired - Fee Related
- 2010-03-03 MX MX2011009082A patent/MX2011009082A/es active IP Right Grant
- 2010-03-03 EP EP10706247.3A patent/EP2403649B1/de not_active Not-in-force
- 2010-03-03 ES ES10706247T patent/ES2435631T3/es active Active
- 2010-03-03 PT PT107062473T patent/PT2403649E/pt unknown
- 2010-03-03 CA CA2752881A patent/CA2752881C/en active Active
- 2010-03-03 PL PL10706247T patent/PL2403649T3/pl unknown
- 2010-03-03 AU AU2010220284A patent/AU2010220284B2/en not_active Ceased
- 2010-03-03 UA UAA201111668A patent/UA103077C2/uk unknown
- 2010-03-03 US US13/203,575 patent/US8377313B2/en not_active Expired - Fee Related
- 2010-03-03 PE PE2011001584A patent/PE20120731A1/es active IP Right Grant
- 2010-03-03 AR ARP100100637A patent/AR076077A1/es not_active Application Discontinuation
- 2010-03-03 BR BRPI1011516A patent/BRPI1011516A8/pt not_active IP Right Cessation
- 2010-03-03 WO PCT/EP2010/052667 patent/WO2010100180A1/de not_active Ceased
- 2010-03-03 EA EA201190196A patent/EA020958B1/ru not_active IP Right Cessation
-
2011
- 2011-10-03 ZA ZA2011/07236A patent/ZA201107236B/en unknown
Also Published As
| Publication number | Publication date |
|---|---|
| US20110309003A1 (en) | 2011-12-22 |
| PT2403649E (pt) | 2013-11-07 |
| JP5683498B2 (ja) | 2015-03-11 |
| CA2752881C (en) | 2017-07-04 |
| WO2010100180A1 (de) | 2010-09-10 |
| CN102341179A (zh) | 2012-02-01 |
| AR076077A1 (es) | 2011-05-18 |
| ES2435631T3 (es) | 2013-12-20 |
| AU2010220284A1 (en) | 2011-09-08 |
| PL2403649T3 (pl) | 2014-01-31 |
| CN102341179B (zh) | 2014-08-13 |
| AU2010220284B2 (en) | 2016-02-18 |
| MX2011009082A (es) | 2011-09-27 |
| JP2012519073A (ja) | 2012-08-23 |
| PE20120731A1 (es) | 2012-06-15 |
| BRPI1011516A2 (pt) | 2016-03-29 |
| EA201190196A1 (ru) | 2012-06-29 |
| EA020958B1 (ru) | 2015-03-31 |
| EP2403649A1 (de) | 2012-01-11 |
| CA2752881A1 (en) | 2010-09-10 |
| US8377313B2 (en) | 2013-02-19 |
| UA103077C2 (uk) | 2013-09-10 |
| ZA201107236B (en) | 2012-12-27 |
| BRPI1011516A8 (pt) | 2017-10-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2403649B1 (de) | Magnetische hydrophobe agglomerate | |
| EP2190584B1 (de) | Aufbereitung von werterzen durch magnetpartikel | |
| EP2313200B1 (de) | Anorganische partikel mit einer durch temperatur hydrophil/hydrophob schaltbaren organischen beschichtung | |
| EP2403648B1 (de) | Magnetische trennung von buntmetallerzen durch mehrstufige konditionierung | |
| EP2401084B1 (de) | Cu-mo-trennung | |
| EP2212027B1 (de) | Magnetische trennung von substanzen basierend auf ihren unterschiedlichen oberflächenladungen | |
| EP2498913B1 (de) | Verfahren zur effizienzsteigerung beim erztrennungsprozess mittels hydrophober magnetischer partikel durch gezielten eintrag mechanischer energie | |
| EP2376230B1 (de) | Anreicherung von werterzen aus minenabfall (tailings) | |
| EP2313201B1 (de) | Selektive stofftrennung mit modifizierten magnetpartikeln | |
| EP2498912A1 (de) | Verfahren zur aufkonzentrierung magnetisch abgetrennter bestandteile aus erzsuspensionen und zur verlustarmen ausschleusung dieser bestandteile aus einem magnetseparator | |
| EP2579987B1 (de) | Nutzung der natürlich vorkommenden magnetischen bestandteile von erzen | |
| EP2841204B1 (en) | Magnetic separation of particles including one-step-conditioning of a pulp |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20111004 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
| DAX | Request for extension of the european patent (deleted) | ||
| RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS AKTIENGESELLSCHAFT Owner name: BASF SE |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 628983 Country of ref document: AT Kind code of ref document: T Effective date: 20130915 |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502010004508 Country of ref document: DE Effective date: 20131031 |
|
| REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20131031 |
|
| REG | Reference to a national code |
Ref country code: RO Ref legal event code: EPE |
|
| REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2435631 Country of ref document: ES Kind code of ref document: T3 Effective date: 20131220 |
|
| REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D Ref country code: NO Ref legal event code: T2 Effective date: 20130828 |
|
| REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20130828 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131228 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130828 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130807 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130828 |
|
| REG | Reference to a national code |
Ref country code: PL Ref legal event code: T3 |
|
| REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20130828 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130828 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130828 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131129 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130828 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130828 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130828 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130828 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130828 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130828 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130828 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502010004508 Country of ref document: DE |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed |
Effective date: 20140530 |
|
| REG | Reference to a national code |
Ref country code: NO Ref legal event code: CHAD Owner name: BASF SE, DE |
|
| REG | Reference to a national code |
Ref country code: PT Ref legal event code: PC4A Owner name: BASF SE, DE Effective date: 20140825 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502010004508 Country of ref document: DE Effective date: 20140530 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502010004508 Country of ref document: DE Owner name: BASF SE, DE Free format text: FORMER OWNERS: BASF SE, 67063 LUDWIGSHAFEN, DE; SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE Effective date: 20140821 Ref country code: DE Ref legal event code: R081 Ref document number: 502010004508 Country of ref document: DE Owner name: BASF SE, DE Free format text: FORMER OWNER: BASF SE, SIEMENS AKTIENGESELLSCHAFT, , DE Effective date: 20140821 |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A Owner name: BASF SE Effective date: 20141006 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140303 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20140303 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20141128 |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140303 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140331 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140303 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140331 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140331 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130828 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130828 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NO Payment date: 20160329 Year of fee payment: 7 Ref country code: TR Payment date: 20160303 Year of fee payment: 7 |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 628983 Country of ref document: AT Kind code of ref document: T Effective date: 20150303 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130828 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20160224 Year of fee payment: 7 Ref country code: FI Payment date: 20160324 Year of fee payment: 7 Ref country code: PT Payment date: 20160218 Year of fee payment: 7 Ref country code: RO Payment date: 20160301 Year of fee payment: 7 Ref country code: SE Payment date: 20160329 Year of fee payment: 7 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130828 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140331 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20100303 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20160422 Year of fee payment: 7 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150303 |
|
| REG | Reference to a national code |
Ref country code: NO Ref legal event code: MMEP |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170303 Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170303 |
|
| REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170304 Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170904 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170331 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130828 |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20180703 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170304 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170303 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20220329 Year of fee payment: 13 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170303 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502010004508 Country of ref document: DE |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231003 |