EP2313200B1 - Anorganische partikel mit einer durch temperatur hydrophil/hydrophob schaltbaren organischen beschichtung - Google Patents

Anorganische partikel mit einer durch temperatur hydrophil/hydrophob schaltbaren organischen beschichtung Download PDF

Info

Publication number
EP2313200B1
EP2313200B1 EP09780763A EP09780763A EP2313200B1 EP 2313200 B1 EP2313200 B1 EP 2313200B1 EP 09780763 A EP09780763 A EP 09780763A EP 09780763 A EP09780763 A EP 09780763A EP 2313200 B1 EP2313200 B1 EP 2313200B1
Authority
EP
European Patent Office
Prior art keywords
polymeric compound
temperature
substance
lcst
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09780763A
Other languages
English (en)
French (fr)
Other versions
EP2313200A1 (de
Inventor
Imme Domke
Alexej Michailovski
Norbert Mronga
Hartmut Hibst
Jürgen Tropsch
Susanne Stutz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Siemens AG
Original Assignee
BASF SE
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE, Siemens AG filed Critical BASF SE
Priority to EP09780763A priority Critical patent/EP2313200B1/de
Priority to PL09780763T priority patent/PL2313200T3/pl
Publication of EP2313200A1 publication Critical patent/EP2313200A1/de
Application granted granted Critical
Publication of EP2313200B1 publication Critical patent/EP2313200B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/44Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/005Pretreatment specially adapted for magnetic separation
    • B03C1/015Pretreatment specially adapted for magnetic separation by chemical treatment imparting magnetic properties to the material to be separated, e.g. roasting, reduction, oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0045Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
    • H01F1/0054Coated nanoparticles, e.g. nanoparticles coated with organic surfactant

Definitions

  • the present invention relates to a process for the separation of at least one first substance from a mixture containing said first material and at least one second substance, wherein the mixture to be separated is first contacted with at least one selective hydrophobizing agent so that the at least one hydrophobizing agent and forming at least one first material an adduct, then contacting said adduct with at least one magnetic particle functionalized at the surface with at least one polymeric compound having a LCST (Lower Critical Solution Temperature) at a temperature at which the polymeric compound hydrophobic character, so that the adduct and the at least one functionalized magnetic particle agglomerate, this agglomerate is separated by applying a magnetic field, and the agglomerate is finally cleaved by a temperature is set at de the polymeric compound has a hydrophilic character.
  • LCST Lower Critical Solution Temperature
  • Hydrophobic in the context of the present invention means that the surface of a corresponding "hydrophobic substance” or a “hydrophobized substance” has a contact angle of> 90 ° with water against air.
  • Hydrophobic in the context of the present invention means that the surface of a corresponding “hydrophilic substance” has a contact angle of ⁇ 90 ° with water against air.
  • mixtures of substances for example ores
  • substances to be separated for example sulphidic compounds
  • a selective hydrophobizing agent in order to hydrophobize them on the surface.
  • These hydrophobized substances can then be separated by means of magnetic particles functionalized on the surface with a polymeric compound having an LCST.
  • These polymeric compounds have hydrophobic character above the LCST and hydrophilic character below the LCST, or vice versa.
  • the present invention relates to a method for enriching ores in the presence of gait.
  • WO 02/0066168 A1 relates to a process for the separation of ores from mixtures containing them, in which suspensions or slurries of these mixtures are treated with particles which are magnetic and / or buoyant in aqueous solutions. After addition of the magnetic and / or buoyant particles, a magnetic field is applied so that the agglomerates are separated from the mixture.
  • the degree of attachment of the magnetic particles to the ore and the strength of the bond is not sufficient to perform the process with sufficiently high yield and effectiveness.
  • US 4,657,666 discloses a method for enrichment of ores where the ginger ore is reacted with magnetic particles to form agglomerates due to the hydrophobic interactions.
  • the magnetic particles are hydrophobized by treatment with hydrophobic compounds on the surface, so that a connection to the value ore takes place.
  • the agglomerates are then separated from the mixture by a magnetic field.
  • the cited document also discloses that the ores are treated with a surface activating solution of 1% sodium ethylxanthogenate before the magnetic particle is added. Separation of ore and magnetic particles occurs in this process by destroying the surface-activating substance which has been applied to the ore in the form of the surface-activating solution.
  • a disadvantage of this method is that, if necessary, a surface-activating substance is added, the degradation products of which remain in the ore and may possibly interfere with further process steps.
  • US 4,834,898 discloses a method of separating non-magnetic materials by contacting them with magnetic reagents having two layers are enveloped by surface-active substances.
  • the attachment of the thus modified magnetic reagents to the non-magnetic materials is based on an interaction of the coating of the magnetic particles with the non-magnetic materials.
  • thermosensitive polymers that are homogeneously in solution below the Lower Critical Solution Temperature (LCST), while when this temperature is exceeded, a heterogeneous biphasic mixture forms. Furthermore, applications of these targeted drug delivery polymers are disclosed.
  • LCST Lower Critical Solution Temperature
  • Crespy et al., Polymer International (2007), 56 (12), 1461-1468 also disclose polymers which show hydrophilic or hydrophobic behavior depending on the ambient temperature. Furthermore, the use of these polymers in textiles and for the targeted release of pharmaceutically active substances is disclosed.
  • EP 1 316 599 A discloses a process for the preparation of magnetic particles having on its surface polymers having an UCST (Upper Critical Solution Temperature). These functionalized particles can be used for purification, detection or concentration of nucleic acids or enzymes or as separation reagents. As examples of substances which can be separated by the magnetic particles, there are mentioned avidin, avidinylated enzymes or biotinylated enzymes.
  • DE 195 16 323 A1 discloses a process for preparing magnetizable dispersions and their use. According to page 4, from line 28 these are iron-containing particles which are functionalized on the surface with various compounds. These compounds are attached, for example via a carboxylic acid functionality to the iron-containing particles. Subsequently, the compounds have 2 to 6 units of ethylene oxide. The other end of the polymeric compound has either a hydroxy or a carboxylic acid group.
  • the object of the present invention is to provide a method by which at least one first substance can be efficiently separated from mixtures comprising these at least one first substance and at least one second substance. Furthermore, it is an object of the present invention to provide a method in which it is possible to be able to split the agglomerate of magnetic particles and the first material to be separated in the meantime easily and as completely as possible. Furthermore, the bond between the first material to be separated and magnetic particles should be sufficiently stable to ensure a high yield of first material upon separation.
  • the at least one first substance and the at least one second substance can be separated from one another by the method according to the invention, since according to the invention at least one between hydrophobic and hydrophilic switchable functionalized magnetic particles is added under conditions to the mixture, among which at least one first hydrophobized material and the at least one functionalized magnetic particle forms an agglomerate which can be separated by applying a magnetic field.
  • the method according to the invention generally serves to separate at least one first substance from a mixture comprising this at least one first substance and at least one second substance.
  • the mixture may also contain other substances.
  • the at least one first material to be separated off is preferably a metal compound selected from the group consisting of sulfide ores, oxidic and / or carbonate ores, for example azurite [Cu 3 (CO 3 ) 2 (OH) 2 ], or malachite [Cu 2 [(OH ) 2
  • the at least one material to be separated off can be selected from the group of the noble metals and their compounds, for example Au, Pt, Pd, Rh, etc., preferably in a solid state.
  • sulfidic ores which can be used according to the invention are selected from the group of sulfide non-ferrous metals, for example copper ores such as covellite CuS, chalcopyrite CuFeS 2 , bornite Cu 5 FeS 4 , chalcocite Cu 2 S or mixtures thereof, molybdenum ores such as molybdenum (IV ) sulfide molybdenum MoS 2 , iron sulfides such as FeS / FeS 2 , nickel ores such as NiS, lead ores such as PbS, zinc ores such as ZnS or mixtures thereof:
  • copper ores such as covellite CuS, chalcopyrite CuFeS 2 , bornite Cu 5 FeS 4 , chalcocite Cu 2 S or mixtures thereof
  • molybdenum ores such as molybdenum (IV ) sulfide molybdenum MoS 2
  • iron sulfides such as FeS / FeS
  • oxidic compounds of metals and semimetals for example borates or other salts of metals and semimetals, for example phosphates, sulfates or oxides / hydroxides / carbonates and further salts, may be present in the ore mixtures to be treated according to the invention, for example azurite [Cu 3 (CO 3 ) 2 (OH) 2 ], malachite [Cu 2 [(OH) 2 (Co 3 )]].
  • untreated ore mixtures are preferably used, which are obtained from mine deposits.
  • the mixture containing at least one first substance and at least one second substance in step (A) is in the form of particles having a size of 100 nm to 100 ⁇ m, see for example US 5,051,199 , In a preferred embodiment, this particle size becomes obtained by grinding. Suitable methods and devices are known to the person skilled in the art, for example wet milling in a ball mill.
  • the mixture containing at least one first substance and at least one second substance before or during step (A) to particles having a size of 100 nm to 500 .mu.m, preferably 100 nm to 100 microns milled.
  • Preferably usable ore mixtures have the highest possible content of sulfidic minerals.
  • a typically used ore mixture which can be separated by the method according to the invention, has the following composition: about 30 wt .-% SiO 2 , about 10 wt .-% Na (Si 3 Al) O 8 , about 3 wt. -% Cu 2 S, about 1 wt .-% MoS 2 , balance chromium, iron, titanium and magnesium oxides.
  • Step (A) of the method according to the invention comprises contacting the mixture containing the at least one first substance and at least one second substance with at least one selective hydrophobizing agent in a suitable suspending agent, so that the at least one hydrophobizing agent and the at least one first substance but not forms with the at least one second substance, an adduct.
  • the first step of the process according to the invention serves to hydrophobize the at least one first substance on the surface so that in the following step (B) it agglomerates with the at least one functionalized magnetic particle.
  • hydrophobing agent means a substance which is capable of hydrophobizing the surface of the at least one first substance in the presence of the other particles which are not to be separated, ie of modifying the surface of the hydrophobized one at least one first substance has a contact angle of> 90 ° with water against air.
  • “Selective” in the context of the present invention means that the distribution coefficient of the hydrophobing agent between the surface of the at least one first substance and the surface of the at least one second substance, in general> 1, preferably> 100, particularly preferably> 10000, d. h., That the hydrophobizing agent preferably on the surface of the at least one first substance, and not on the surface of the at least one second substance, attached.
  • A is a linear or branched C 6 -C 16 -alkyl, for example 2-propyl-heptyl.
  • heteroatoms according to the invention are selected from N, O, P, S and halogens such as F, Cl, Br and I.
  • the anions mentioned and the corresponding cations form neutral charged compounds of the general formula (I) according to the invention.
  • Dithiophosphinat [- (X) n] 2 P 2 -, - [(X) n] 2 POS - or dithiophosphate [- (X) n] 2 PO 2 - are present at these functional groups attached two radicals A, the, in the context of the above meanings may be the same or different, preferably equal and selected from C 6 -C 30 , more preferably C 6 -C 16 alkyl.
  • Z is [- (X) n] 2 P 2 -, - (X) n -CS 2 -, - [(X) n] 2 PO 2 -, or - (X) n -S - where X is O and n is 0 or 1 and a cation selected from hydrogen, sodium or potassium.
  • hydrophobizing agents are mono-, di- and trithiols or 8-hydroxyquinolines, for example described in US Pat EP 1200408 B1 ,
  • metal oxides for example FeO (OH), Fe 3 O 4 , ZnO etc.
  • carbonates for example azurite [Cu (CO 3 ) 2 (OH) 2 ], malachite [Cu 2 [(OH) 2 CO 3 ]]
  • C 6 -C 16 -alkylphosphonic acids for example octylphosphonic acid (OPS), mono- and dialkyl esters of phosphoric acid with a C 6 -C 20 -alkyl radical, hydroxamates, and long-chain carboxylic acids (fatty acids).
  • OPS octylphosphonic acid
  • particularly preferred water repellents are mono-, di- and trithiols, xanthates, dithiophosphinates or mono-, di- or tri-C 6 -C 30 -alkyl esters of thiophosphoric acids of the general formula (VII) in which R independently of one another denote hydrogen or C 6 -C 30 -alkyl and X independently of one another denote S or O, where one to three of the XS present and the remaining O mean
  • Very particularly preferred surface-active substances are 1-octanethiol, potassium octylxanthate, octylphosphonic acid, phosphoric acid monooctyl ester or a compound of the general formula (IV) with the meanings given above for A.
  • step (A) of the process according to the invention can be carried out by all methods known to the person skilled in the art.
  • the mixture to be treated, the at least one hydrophobing agent and the suspending agent in the appropriate amounts are added together and mixed.
  • the mixing can be done for example by wet milling. Suitable mixing apparatuses are known to the person skilled in the art, for example mills, such as ball mill.
  • the suspending agent is generally added in step (A) in an amount such that the suspension obtained has a solids content of from 0.1 to 80% by weight, preferably from 20 to 40% by weight.
  • suspending agents known to those skilled in the art can be used in the process according to the invention, i. H. Suspending agents in which the mixture of step (A) is not completely soluble.
  • the suspending agent is an aqueous mixture, i. H. a mixture containing at least 80% by weight, preferably at least 95% by weight, of water.
  • the suspending agent in step (A) is water.
  • the suspending agent may contain, in addition to water, other components, for example selected from the group consisting of water-soluble organic compounds such as alcohols having 1 to 4 carbon atoms, ketones such as acetone and mixtures thereof, soluble salts such as NaCl, KCl, MgCl 2 , CaCl 2 , Na 2 CO 3 , K 2 CO 3 , MgCO 3 , inorganic acids and bases such as NaOH, KOH, Ca (OH) 2 , HCl, H 2 SO 4 , HNO 3 , organic acids and bases such as formic acid or acetic acid, etc.
  • water-soluble organic compounds such as alcohols having 1 to 4 carbon atoms, ketones such as acetone and mixtures thereof
  • soluble salts such as NaCl, KCl, MgCl 2 , CaCl 2 , Na 2 CO 3 , K 2 CO 3 , MgCO 3
  • inorganic acids and bases such as NaOH, KOH, Ca (OH) 2 , HCl
  • Step (A) of the process according to the invention is generally carried out at a temperature of 1 to 80 ° C, preferably at 40 to 60 ° C.
  • the at least one water repellent is generally used in an amount sufficient to achieve the desired effect.
  • the at least one hydrophobizing agent is in an amount from 0.01 to 5 wt .-%, in each case based on the present in the mixture at least one first material.
  • step (A) is a mixture in suspension before containing an adduct of at least a first material and at least one hydrophobizing agent, and at least one second material.
  • Step (B) of the process of the invention comprises contacting the adduct of step (A) with at least one magnetic particle functionalized on the surface with at least one polymeric compound having a lower critical solution temperature (LCST) at a temperature, wherein the polymeric compound has hydrophobic character such that the adduct of step (A) and the at least one functionalized magnetic particle agglomerate.
  • LCST critical solution temperature
  • magnetic particles it is generally possible to use all magnetic particles known to the person skilled in the art which satisfy the requirements of the process according to the invention, for example suspensibility in the optionally used suspending agent and ability to be functionalized with the at least one polymeric compound.
  • the magnetic particle should have a sufficiently high saturation magnetizability, for example 25-300 emu / g, and a low remanence, so that the adduct can be separated from the suspension in a sufficient amount in step (D) of the process according to the invention.
  • the at least one magnetic particle is magnetite Fe 3 O 4 or cobalt ferrite Co 2+ x Fe 2+ 1-x Fe 3+ 2 O 4 with x ⁇ 1, for example CO 2 .25 Fe 2, 75 o 4 .
  • the size of the magnetic particles used according to the invention is preferably from 10 nm to 1 .mu.m.
  • the at least one magnetic particle is functionalized on the surface with at least one polymeric compound.
  • the polymeric compounds used according to the invention are characterized in that they have a transition temperature LCST (Lower Critical Solution Temperature). Below this LCST, the polymeric compound has a hydrophilic character since the polymer chain has a hydration shell, for example due to addition of water molecules. Above the LCST, the polymeric compound has a hydrophobic character, since the polymer chain is no longer surrounded by a hydrate shell, for example. Depending on the polymeric compound, the reverse case is also possible, namely that the polymeric compound below the LCST has a hydrophobic character and has a hydrophilic character above the LCST.
  • LCST Lower Critical Solution Temperature
  • the polymeric compound When such a polymeric compound is heated from below the LCST to a temperature above the LCST, the polymeric compound switches from hydrophilic to hydrophobic in the LCST, or vice versa.
  • the polymers which can be used according to the invention depending on the temperature, have a hydrophilic or hydrophobic character.
  • the change of the polymeric compound from hydrophobic to hydrophilic or vice versa corresponds to a phase transition, which takes place in a closed system generally in a narrow temperature range, for example 0.5 ° C.
  • the phase transition may extend over a broader range of, for example, 15 ° C, by changing the concentration of the present components, for example, polymers and / or impurities, varying the pH and / or pressure.
  • the temperature range at which the transition occurs generally increases with increasing chain length.
  • the properties described for the polymeric compounds which can be used according to the invention are essentially correspondingly also present in the case of the particles modified with these polymeric compounds, in particular magnetic particles.
  • the polymeric compound above the LCST is hydrophobic and hydrophilic below the LCST.
  • polymer means a, preferably organic, compound having a molecular weight of at least 500 g / mol, preferably 500 to 10000 g / mol, particularly preferably 1000 to 7000 g / mol.
  • the at least one polymeric compound is selected from the group consisting of polyvinyl ethers, for example polyvinylmethylethers, poly-N-alkylacrylamides, for example poly-NC 1 -C 6 -alkylacrylamides, in particular polyvinylethers.
  • Suitable polymeric compounds and processes for their preparation are, for example, in Li et al., International Journal of Pharmacology (2006), 2 (5), 513-519 , and Crespy et al., Polymer International (2007), 56 (12), 1461-1468 , called. These polymeric compounds have hydrophobic character below the LCST and hydrophobic character above the LCST.
  • polymeric compounds which have an LCST are bound by functional groups to the corresponding magnetic particles.
  • These functional groups can be present in said polymeric compounds per se, or the functional groups can be introduced into the polymeric compounds by methods known to those skilled in the art, ie the polymeric compounds are functionalized.
  • Suitable functional groups are those which ensure a sufficiently strong bond between magnetic particle and polymeric compound, for example selected from the group consisting of thiol group -SH, carboxylic acid group -CO 2 H, optionally at least partially esterified phosphonic acid group -PO 3 R ' 2 with R' same Hydrogen or C 1 -C 6 -alkyl (Va), optionally at least partially esterified phosphoric acid group -O-PO 3 R " 2 with R "equal to hydrogen or C 1 -C 6 -alkyl (Vb), hydroxamate group (Vc), xanthate group (Vd) and mixtures thereof, more preferably selected from the group consisting of thiol group -SH, carboxylic acid group -CO 2 H, optionally at least partially esterified phosphonic acid group -PO 3 R ' 2 with R' equal to hydrogen or C 1 -C 6 -alkyl (Va), optionally at least partially esterified phosphoric acid group -O-PO 3
  • F represents a functional group which selectively binds to the at least one magnetic particle.
  • the choice of this functional group depends on the at least one magnetic particle to which the functional group is to bind. It is preferable to form a dissociation-stable bond between the at least one magnetic particle and the at least one polymeric compound of general formula (III).
  • F is selected from the group consisting of carboxylic acid group -CO 2 H, optionally at least partially esterified phosphonic acid group -PO 3 R ' 2 with R' equal to hydrogen or C 1 -C 6 alkyl (Va), optionally at least partially esterified Phosphoric acid group -O-PO 3 R “ 2 with R” equal to hydrogen or C 1 -C 6 -alkyl (Vb), hydroxamate group (Vc), xanthogenate group (Vd) and mixtures thereof, particularly preferably an optionally at least partially esterified phosphonic acid group (Va) or an optionally at least partially esterified phosphoric acid group (Vb).
  • the binding of the functional groups Va to Vd to the polymer preferably takes place via lone-pair electrons.
  • B represents an alkyl group having 1 to 6 carbon atoms, for example, methyl, ethyl, propyl, butyl, for example, n-butyl, pentyl, hexyl.
  • the polymeric compounds of the general formula (III) have an LCST which is generally in each case dependent on the amount of the individual alkylene oxides, ie. H. Ethylene oxide, propylene oxide and / or butylene oxide, is dependent in the polymer.
  • a polymeric compound composed solely of propylene oxide has an LCST of ⁇ -10 ° C.
  • a polymeric compound which is composed exclusively of ethylene oxide, for example, has an LCST of> 120 ° C.
  • the LCST of the polymeric compound used in the process according to the invention is -10 to 100 ° C, more preferably 5 to 45 ° C, most preferably 20 to 40 ° C.
  • the LCST of a polymeric compound is in a temperature range of about 5 to 15 ° C.
  • the width of this area is generally dependent on uniformity, i. H. the monodispersity, the polymeric compound used. The higher the monodispersity, the narrower the range of the LCST.
  • the functionalization of the at least one magnetic particle with the at least one polymeric compound can be carried out by all methods known to the person skilled in the art.
  • the at least one magnetic particle is functionalized with the at least one polymeric compound by first preparing the magnetic particle itself by known methods. Then, this magnetic particle is modified by contacting a solution of the functionalized polymeric compound, in particular compounds of the general formula (III), in water or in an organic solvent, for example low molecular weight alcohols or ketones, and the product obtained is used to remove excess polymeric compound washed with an appropriate solvent.
  • step (B) The contacting of the adduct from step (A) with at least one functionalized magnetic particle in step (B) can be carried out by all methods known to the person skilled in the art.
  • the at least one functionalized magnetic particle is added to the mixture of step (A).
  • step (B) is carried out in a mill, more preferably in the same mill in which step (A) has been carried out.
  • the heat generated when milling the components in step (B) is used to achieve the temperature necessary for step (A) in the mixture, preferably in the case where the polymeric compound is hydrophobic above its LCST.
  • Step (B) of the process according to the invention is carried out at a temperature at which the polymeric compound used has a hydrophobic character so that the switchably functionalized magnetic particle and the hydrophobized at least one first material agglomerate.
  • this temperature may be above or below the LCST, preferably the temperature is above the LCST.
  • step (B) is conducted at a temperature greater than the LCST of the polymeric compound and less than the boiling point of the suspending agent used. More preferably, step (B) is carried out at a temperature which is 1 to 20 ° C above the LCST. Thus, in a preferred embodiment, step (B) is carried out at a temperature of 6 to 65 ° C, more preferably 21 to 60 ° C.
  • step (B) of the inventive method is carried out at a temperature which is above the melting temperature of the suspending agent used and below the LCST of the polymeric compound.
  • step (B) is carried out at a temperature which is 1 to 20 ° C below the LCST.
  • step (B) is thus preferably carried out at a temperature of from -15 to 44.degree. C., more preferably from 0 to 39.degree.
  • Step (B) of the process according to the invention is preferably carried out until a sufficient amount of agglomerate of at least one hydrophobized first material and switchable functionalized magnetic particles is formed, for example in a proportion of 80 to 100%, preferably completely (100%).
  • agglomerates of magnetic particles functionalized on the surface with at least one polymeric compound and at least one hydrophobicized first substance are present in addition to at least one second substance and optionally further substances in a suspending agent.
  • the optional step (C) of the process of the invention comprises (C) the addition of further suspending agent to the mixture obtained in step (B).
  • Step (C) is preferably carried out when, in step (A), a suspension has been provided whose solids content is too high for the following steps (D) and (E), such that, for example, the mobility of those formed in step (B) Agglomerates in the suspension is not sufficient.
  • step (C) of the process according to the invention all suspending agents which have already been mentioned with regard to step (A) are suitable as suspending agents.
  • an aqueous mixture i. H. a mixture containing at least 80% by weight, preferably at least 95% by weight, of water.
  • the aqueous mixture may additionally contain the components referred to in step (A).
  • water is added in step (C) of the process according to the invention.
  • Step (C) of the process according to the invention is generally carried out at a temperature at which the agglomerate formed in step (B) from at least one hydrophobized substance and the functionalized magnetic particle is not cleaved.
  • step (C) is carried out at a temperature greater than the LCST of the polymeric compound and less than the boiling point of the suspending agent used is. More preferably, step (C) is carried out at a temperature which is 1 to 20 ° C above the LCST. Thus, in a preferred embodiment, step (C) is carried out at a temperature of 6 to 65 ° C, more preferably 21 to 60 ° C.
  • step (C) of the inventive method is carried out at a temperature which is above the melting temperature of the suspending agent used and below the LCST of the polymeric compound.
  • step (C) is carried out at a temperature which is 1 to 20 ° C below the LCST.
  • step (C) is thus preferably carried out at a temperature of -15 to 44 ° C, more preferably 0 to 39 ° C.
  • the amount of suspending agent according to the invention can be chosen so that in step (C) a suspension is obtained which is easy to stir and / or convey.
  • a suitable suspending agent is added so that a solids content of the resulting suspension of 0.1 to 80 wt .-%, particularly preferably 0.1 to 40 wt .-% results.
  • Step (D) of the process according to the invention comprises separating the agglomerate present in the suspension from step (B) or (C) by applying a magnetic field.
  • Step (D) may be carried out in a preferred embodiment by introducing a permanent magnet into the reactor in which the suspension from step (B) or (C) is located.
  • a permanent magnet In a preferred embodiment is located between the permanent magnet and the mixture to be treated, a partition wall of non-magnetic material, such as the wall of the reactor.
  • an electrically switchable magnet is used in step (D) which is magnetic only when an electric current flows. Suitable devices are known in the art.
  • Step (D) of the process according to the invention is generally carried out at a temperature at which the agglomerate formed in step (B) from at least one hydrophobized substance and the functionalized magnetic particle is not cleaved.
  • step (D) is preferably carried out at a temperature which is greater than the LCST of the polymeric compound and less than the boiling point of the suspending agent used. Particularly preferably, step (D) is carried out at a temperature which is 1 to 20 ° C above the LCST. Thus, in a preferred embodiment, step (D) is carried out at a temperature of 6 to 65 ° C, more preferably 21 to 60 ° C.
  • step (D) of the inventive method is carried out at a temperature which is above the melting temperature of the suspending agent used and below the LCST of the polymeric compound.
  • step (D) is carried out at a temperature which is 1 to 20 ° C below the LCST.
  • step (D) is thus preferably carried out at a temperature of -15 to 44 ° C, particularly preferably 0 to 39 ° C.
  • steps (B), (C) and (D) can be carried out at the same temperature, it is according to the invention also possible that the steps at different temperatures, in the specified ranges, are performed.
  • step (D) the mixture is mixed, preferably permanently, with a suitable device.
  • step (D) the components remaining in the suspension after treatment with a magnet may optionally be separated by any means known to those skilled in the art, for example by draining the portions of the suspension which are not captured by the magnet from the bottom valve of step by step (D) used reactor or pumping the not captured by the at least one magnet portions of the suspension.
  • the agglomerate formed in step (B) of the process according to the invention consists of at least one functionalized magnetic particle and the at least one hydrophobized first substance on the magnet or on a wall which is located between magnet and adduct.
  • the adduct may be removed from the magnet by shutting off the electrical current so that there is no more magnetic field gradient. If there is a wall between the magnet and the suspension, then the adduct can be removed by methods known to those skilled in the art.
  • Step (E) of the process of the present invention comprises cleaving the agglomerate separated in step (D) by adjusting a temperature at which the polymeric compound has a hydrophilic character to obtain the at least one first substance.
  • step (E) of the process according to the invention is set.
  • step (E) of the process of the invention is carried out at a temperature which is above the melting temperature of the suspending agent employed and below the LCST of the polymeric compound.
  • step (E) is carried out at a temperature which is 1 to 20 ° C below the LCST.
  • step (E) is thus preferably carried out at a temperature of -15 to 44 ° C, particularly preferably 0 to 39 ° C.
  • step (E) is carried out at a temperature which is greater than the LCST of the polymeric compound and less than the boiling point of the suspending agent used. Particularly preferably, step (E) is carried out in this case at a temperature which is 1 to 20 ° C above the LCST. Thus, in a preferred embodiment, step (D) is carried out at a temperature of 6 to 65 ° C, more preferably 21 to 60 ° C.
  • the polymeric compound has hydrophilic character, i. there can be no hydrophobic interactions between the polymeric compound on the surface of the at least one magnetic particle and the hydrophobized first material, so that the agglomerates are cleaved.
  • Step (E) of the process according to the invention is carried out until the agglomerates present are cleaved as completely as possible, for example to a proportion of 70 to 99%, preferably 80 to 98%.
  • the at least one functionalized magnetic particle and the at least one hydrophobized first substance are suspended Form before. These two substances can be separated from one another and from the suspending agent by all methods known to those skilled in the art.
  • the at least one magnetic particle is preferably separated from the suspension containing this at least one magnetic particle and the at least one first material by a permanent or switchable magnet. Details of this separation are analogous to step (D) of the method according to the invention. Preferably, after this separation, the at least one first substance is present in suspended form, while the at least one magnetic particle adheres to the magnet.
  • the first material to be separated is separated from the suspending agent by distilling off the suspending agent or filtration.
  • the first substance thus obtained can be purified by further methods known to the person skilled in the art.
  • the suspending agent may, optionally after purification, be recycled back to the process of the invention.
  • the at least one magnetic particle is recycled in step (A) of the process according to the invention.
  • P generally denotes a particle containing at least one metal or semimetal, preferably in oxidic or sulfidic form.
  • particles which contain at least one metal in oxidic form are, for example, selected from the group consisting of secondary or main group metal oxides, for example CuO, ZnO, Cr 2 O 3 , Fe 2 O 3 , TiO 2 , SiO 2 , CeO 2 , Titanates, for example BaTiO 3 , SrTiO 3 and mixtures thereof.
  • secondary or main group metal oxides for example CuO, ZnO, Cr 2 O 3 , Fe 2 O 3 , TiO 2 , SiO 2 , CeO 2 , Titanates, for example BaTiO 3 , SrTiO 3 and mixtures thereof.
  • Examples of particles containing at least one metal in sulfidic form are, for example, selected from the group consisting of subgroup metal sulfides, for example CuS, Zn 1-x Mn x S with 0 ⁇ x ⁇ 0.22, chalcopyrite (copper pyrites) CuFeS 2 , bornite Cu 5 FeS 4 , chalcocite Cu 2 S or mixtures thereof, molybdenum (IV) sulfide molybdenum MoS 2 , iron sulfides such as FeS / FeS 2 , nickel sulfide such as NiS, lead sulfide such as PbS, zinc sulfide such as ZnS, CdS, CdSe, CdTe or mixtures thereof.
  • subgroup metal sulfides for example CuS, Zn 1-x Mn x S with 0 ⁇ x ⁇ 0.22
  • chalcopyrite (copper pyrites) CuFeS 2 , bornit
  • metals contained in the particle P are platinum and coin metals such as copper, silver, gold, iron, cobalt, nickel and their alloys.
  • semiconducting materials selected from the group consisting of Ge, Si, ⁇ -Sn, C, for
  • P is selected from the group consisting of magnetite Fe 3 O 4 , cobalt ferrite Co 2+ x Fe 2+ 1-x Fe 3+ 2 O 4 with x ⁇ 1, for example Co 0.25 Fe 2.75 O 4 , and mixtures thereof.
  • the size of the particle present in the adduct of the general formula (IV) according to the invention is preferably from 5 nm to 100 ⁇ m, more preferably from 10 nm to 50 ⁇ m.
  • F is a functional group which, preferably selectively, binds to the particle P.
  • F is for example selected from the group consisting of thiol group -SH, carboxylic acid group -CO 2 H, optionally at least partially esterified phosphonic acid group -PO 3 R ' 2 with R' equal to hydrogen or C 1 -C 6 alkyl (Va), optionally at least partially esterified phosphoric acid group -O-PO 3 R " 2 with R” equal to hydrogen or C 1 -C 6 -alkyl (Vb), hydroxamate group (Vc), xanthate group (Vd) and mixtures thereof, particularly preferably an optionally at least partially esterified phosphonic acid group (Va) or optionally at least partially esterified phosphoric acid group (Vb).
  • oxidic particles P especially functional groups selected from carboxylic acid group -CO 2 H, optionally at least partially esterified phosphonic acid group -PO 3 R ' 2 with R' is hydrogen or C 1 -C 6 alkyl (Va), optionally at least partially esterified phosphoric acid group - O-PO 3 R “ 2 with R” equal to hydrogen or C 1 -C 6 alkyl (Vb) or hydroxamate (Vc) suitable.
  • sulfidic particles P in particular functional groups selected from thiol group -SH and xanthate group (Vd) are suitable.
  • B in the compound of the general formula (VI) denotes an alkyl radical having 1 to 6 carbon atoms, for example methyl, ethyl, propyl, butyl, for example n-butyl, pentyl or hexyl.
  • q in the compound of general formula (VI) is an integer of 1 to 1 x 10 15 , preferably 1 x 10 3 to 1 x 10 12 .
  • q in the general formula (VI) describes the number of molecules of the polymeric compound bound to a particle P. These values correspond to a maximum occupation density of the particle P of 1.67 ⁇ 10 -6 mol / m 2 , preferably 1 to 100% of the maximum occupation density.
  • the number of polymer molecules attached to a particle P can be controlled by the amount of polymeric compound in the manufacturing process.
  • the number of polymer molecules per particle P can be determined by methods known to the person skilled in the art, for example electron resonance analysis.
  • Functionalized particles of the general formula (VI) can be prepared by processes known to those skilled in the art, for example by contacting a solution of the polymeric compound of the general formula (III) in water or an organic solvent, preferably water, low molecular weight alcohols or ketones and washing the resulting Product with the appropriate solvent to remove excess polymeric compound.
  • Functionalized particles according to the general formula (VI) can be used to separate at least one first substance from a substance mixture comprising the at least one first substance and at least one second substance, for example by the process according to the invention.
  • the present invention therefore also relates to the use of a functionalized particle according to the general formula (VI) for the separation of mixtures of substances. With respect to the mixtures and the other parameters of the separation of substances, the above applies.
  • the functionalizing agent is prepared by reacting an alkoxylate of the formula n-Bu- (PO) 22 -OH (Pluriol A1350P, BASF SE) with polyphosphoric acid (ThermPhos) by methods known to the person skilled in the art.
  • the transition range from hydrophilic to hydrophobic is found at 15-26 ° C.
  • the alkoxylate n-Bu- (PO) 22 -OH used has an OH number (OHN) of 46.3 and a molecular weight of 1213 g / mol.
  • Alkoxylate and polyphosphonic acid are reacted at 80 ° C. for 31.7 h. After 29 h, a conversion of 72% is determined by means of titration, the acid number is 102 mg KOH / g.
  • a suspension of 100 mg of the product obtained in Example 1 in 10 ml of water (about 10 ° C) is prepared. 2 g of magnetite (Magnetic Black 345, BASF, 0 4 ⁇ m) are stirred with the suspension for 15 minutes, filtered off, washed with 50 ml of cold water (T ⁇ 10 ° C.) and dried in vacuo at 80 ° C.
  • magnetite Magnetic Black 345, BASF, 0 4 ⁇ m
  • a suspension of 54 g of quartz powder (SiO 2 , Microsil type S8 from Euroquarz), 2 g of Cu 2 S, (325 mesh, Aldrich) and 1000 g of process water is placed in a beaker with stirring. 0.13 g of potassium 1-octylxanthate and 0.08 g of Shellsol 40 are added to the suspension. The suspension is stirred for 1 h with a paddle stirrer (35 rpm) and then heated to 45 ° C. with stirring. 2 g of the hydrophilic / hydrophobic switchable magnetite from Example 2 are added with stirring. The suspension is stirred for a further 30 minutes at 45.degree.
  • the suspension is guided past several permanent magnets behind glass.
  • the magnetic components are held on the magnet, the remainder of the suspension is collected, filtered off, dried and analyzed for Cu content (fraction A1).
  • the magnetic components After removal of the permanent magnets, the magnetic components are suspended in cold water (10 ° C.) and redirected past the magnet. The effluent is collected, filtered off, dried and analyzed for Cu content (fraction A2).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zum Abtrennen wenigstens eines ersten Stoffes aus einer Mischung enthaltend diesen wenigstens einen ersten Stoff und wenigstens einen zweiten Stoff, umfassend die folgenden Schritte: (A) Inkontaktbringen der Mischung enthaltend den wenigstens einen ersten Stoff und wenigstens einen zweiten Stoff mit wenigstens einem selektiven Hydrophobierungsmittel in Gegenwart eines Suspendiermittels, so dass sich aus dem wenigstens einen Hydrophobierungsmittels und dem wenigstens einen ersten Stoff, nicht aber mit dem wenigstens einen zweiten Stoff, ein Addukt bildet, (B) Inkontaktbringen des Adduktes aus Schritt (A) mit wenigstens einem Magnetpartikel, der an der Oberfläche mit wenigstens einer polymeren Verbindung funktionalisiert ist, die eine Übergangstemperatur LCST (Lower Critical Solution Temperature) aufweist, bei einer Temperatur, bei der die polymere Verbindung hydrophoben Charakter aufweist, so dass das Addukt aus Schritt (A) und der wenigstens eine funktionalisierte Magnetpartikel agglomerieren, (C) gegebenenfalls Zugabe von weiterem Suspendiermittel zu der in Schritt (B) erhaltenen Mischung, (D) Abtrennen des in der Suspension aus Schritt (B) oder (C) vorliegenden Agglomerates durch Anlegen eines magnetischen Feldes, (E) Spalten des in Schritt (D) abgetrennten Agglomerates durch Einstellen einer Temperatur, bei der die polymere Verbindung hydrophilen Charakter aufweist, um den wenigstens einen ersten Stoff zu erhalten.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Abtrennung wenigstens eines ersten Stoffes aus einer Mischung enthaltend diesen einen ersten Stoff und wenigstens einen zweiten Stoff, wobei das aufzutrennende Gemisch zunächst mit wenigstens einem selektiven Hydrophobierungsmittel in Kontakt gebracht wird, so dass sich aus dem wenigstens einen Hydrophobierungsmittel und dem wenigstens einen ersten Stoff ein Addukt bildet, dieses Addukt dann mit wenigstens einem an der Oberfläche mit wenigstens einer polymeren Verbindung, die eine LCST (Lower Critical Solution Temperature) aufweist, funktionalisierten Magnetpartikel bei einer Temperatur in Kontakt gebracht wird, bei der die polymere Verbindung hydrophoben Charakter aufweist, so dass das Addukt und der wenigstens eine funktionalisierte Magnetpartikel agglomerieren, dieses Agglomerat durch Anlegen eines magnetischen Feldes abgetrennt wird, und das Agglomerat abschließend gespalten wird, indem eine Temperatur eingestellt wird, bei der die polymere Verbindung hydrophilen Charakter aufweist.
  • "Hydrophob" bedeutet im Rahmen der vorliegenden Erfindung, dass die Oberfläche einer entsprechenden "hydrophoben Substanz" bzw. eine "hydrophobisierten Substanz" einen Kontaktwinkel von > 90° mit Wasser gegen Luft aufweist. "Hydrophil" bedeutet im Rahmen der vorliegenden Erfindung, dass die Oberfläche einer entsprechenden "hydrophilen Substanz" einen Kontaktwinkel von < 90° mit Wasser gegen Luft aufweist.
  • Mit dem erfindungsgemäßen Verfahren können Stoffgemische, beispielsweise Erze, getrennt werden, indem die abzutrennenden Stoffe, beispielsweise sulfidische Verbindungen, mit einem selektiven Hydrophobierungsmittel behandelt werden, um sie an der Oberfläche zu hydrophobisieren. Diese hydrophobisierten Stoffe können dann mit Hilfe von Magnetpartikeln abgetrennt werden, die an der Oberfläche mit einer polymeren Verbindung, die eine LCST aufweist, funktionalisiert sind. Diese polymeren Verbindungen weisen oberhalb der LCST hydrophoben Charakter und unterhalb der LCST hydrophilen Charakter auf, oder umgekehrt. Erhitzt man diese polymeren Verbindungen bzw. Magnetpartikel, die an der Oberfläche mit diesen polymeren Verbindungen funktionalisiert sind, erfolgt bei der LCST ein Wechsel des hydrophilen Charakters der polymeren Verbindung zu hydrophobem Charakter, oder umgekehrt ein Wechsel von hydrophobem Charakter zu hydrophilen Charakter. Bringt man daher den hydrophobisierten Stoff und den schaltbar funktionalisierten Magnetpartikel bei einer Temperatur zusammen, bei der die polymere Verbindung hydrophoben Charakter aufweist, erfolgt die Bildung eines Agglomerates aus funktionalisiertem Magnetpartikel und hydrophobisiertem Stoff. Dieses Agglomerat kann dann durch Anlegen eines magnetischen Feldes abgetrennt werden. Eine anschließende Spaltung des Agglomerates kann erfolgen, indem es auf eine Temperatur gebracht wird, bei der die polymere Verbindung hydrophilen Charakter aufweist, so dass keine hydrophoben Wechselwirkungen zwischen funktionalisiertem Magnetpartikel und hydrophobisiertem Stoff mehr möglich sind.
  • Die vorliegende Erfindung betrifft insbesondere ein Verfahren zur Anreicherung von Werterzen in Gegenwart der Gangart.
  • Verfahren zum Abtrennen von Werterzen aus Mischungen enthaltend diese mit Hilfe magnetischer Partikel sind aus dem Stand der Technik bereits bekannt.
  • WO 02/0066168 A1 betrifft ein Verfahren zur Abtrennung von Werterzen aus Mischungen enthaltend diese, in dem Suspensionen oder Aufschlämmungen dieser Mischungen mit Partikeln, welche magnetisch und/oder schwimmfähig in wässrigen Lösungen sind, behandelt werden. Nach Zugabe der magnetischen und/oder schwimmfähigen Partikel wird ein Magnetfeld angelegt, so dass die Agglomerate von der Mischung abgetrennt werden. Der Grad der Anbindung der magnetischen Partikel an die Werterze und die Stärke der Bindung ist jedoch nicht ausreichend, um das Verfahren mit genügend hoher Ausbeute und Effektivität durchzuführen.
  • US 4,657,666 offenbart ein Verfahren zur Anreicherung von Werterzen, wobei das in der Gangart vorliegende Werterz mit magnetischen Partikeln umgesetzt wird, wodurch sich aufgrund der hydrophoben Wechselwirkungen Agglomerate bilden. Die magnetischen Partikel werden durch Behandlung mit hydrophoben Verbindungen auf der Oberfläche hydrophobiert, so dass eine Anbindung an das Werterz erfolgt. Die Agglomerate werden dann durch ein magnetisches Feld von der Mischung abgetrennt. Das genannte Dokument offenbart auch, dass die Werterze mit einer oberflächenaktivierenden Lösung von 1 % Natrium-ethylxanthogenat behandelt werden, bevor das magnetische Teilchen zugefügt wird. Eine Trennung von Werterz und Magnetpartikel erfolgt bei diesem Verfahren durch das Zerstören der oberflächenaktivierenden Substanz, die in Form der oberflächenaktivierenden Lösung auf das Werterz aufgebracht worden ist. Nachteilig an diesem Verfahren ist, dass ggf. eine oberflächenaktivierende Substanz zugesetzt wird, deren Abbauprodukte im Werterz zurückbleiben und ggf. weitere Verfahrensschritte stören können.
  • US 4,834,898 offenbart ein Verfahren zum Abtrennen nicht magnetischer Materialien durch Inkontaktbringen dieser mit magnetischen Reagenzien, welche mit zwei Schichten aus oberflächenaktiven Substanzen umhüllt sind. Die Anbindung der so modifizierten magnetischen Reagenzien an die nicht magnetischen Materialien basiert auf einer Wechselwirkung der Beschichtung der Magnetpartikel mit den nicht magnetischen Materialien. Bei diesem Verfahren ist von Nachteil, dass die Magnetpartikel aufwendig mit zwei Schichten oberflächenaktiver Substanzen versehen werden müssen, um eine Ankopplung zu erzielen.
  • S. R. Gray, D. Landberg, N. B. Gray, Extractive Metallurgy Conference, Perth, 2 - 4 October 1991, Seiten 223 - 226 offenbart ein Verfahren zur Rückgewinnung von kleinen Goldpartikeln durch Inkontaktbringen der Partikel mit Magnetit. Vor dem Inkontaktbringen werden die Goldteilchen mit Kalium-amylxanthogenat behandelt. Ein Verfahren zum Abtrennen der Goldteilchen von wenigstens einem hydrophilen Stoff wird in diesem Dokument nicht offenbart.
  • Li et al., International Journal of Pharmacology (2006), 2(5), 513-519, offenbaren thermosensitive Polymere, die unterhalb der Lower Critical Solution Temperature (LCST) homogen in Lösung vorliegen, während sich bei Überschreiten dieser Temperatur eine heterogene zweiphasige Mischung bildet. Des Weiteren werden Anwendungen dieser Polymere zur gezielten Freisetzung von Medikamenten offenbart.
  • Crespy et al., Polymer International (2007), 56(12), 1461-1468, offenbaren ebenfalls Polymere, die abhängig von der Umgebungstemperatur hydrophiles oder hydrophobes Verhalten zeigen. Des Weiteren wird die Verwendung dieser Polymere in Textilien und zur gezielten Freisetzung von pharmazeutisch aktiven Substanzen offenbart.
  • EP 1 316 599 A offenbart ein Verfahren zur Herstellung von magnetischen Partikeln, auf deren Oberfläche Polymere mit einer UCST (Upper Critical Solution Temperature) vorliegen. Diese funktionalisierten Partikel können zur Reinigung, Detektion oder Konzentration von Nukleinsäuren oder Enzymen oder als Abtrennreagentien verwendet werden. Als Beispiele von Substanzen, die durch die magnetischen Partikel abgetrennt werden können, sind Avidin, avidinylierte Enzyme oder biotinylierte Enzyme genannt.
  • DE 195 16 323 A1 offenbart ein Verfahren zur Herstellung von magnetisierbaren Dispersionen und deren Verwendung. Gemäß Seite 4, ab Zeile 28 sind dies eisenhaltige Partikel, die an der Oberfläche mit verschiedenen Verbindungen funktionalisiert sind. Diese Verbindungen werden beispielsweise über eine Carbonsäurefunktionalität an den eisenhaltigen Partikel angebunden. Anschließend weisen die Verbindungen 2 bis 6 Einheiten Ethylenoxid auf. Das andere Ende der polymeren Verbindung weist entweder eine Hydroxy- oder eine Carbonsäuregruppe auf.
  • In keiner der genannten Schriften wird offenbart, dass Polymere, die eine LCST aufweisen, zur Stofftrennung eingesetzt werden können.
  • Aufgabe der vorliegenden Erfindung ist es, ein Verfahren bereitzustellen, durch das wenigstens ein erster Stoff aus Mischungen enthaltend diesen wenigstens einen ersten Stoff und wenigstens einen zweiten Stoff effizient abgetrennt werden kann. Des Weiteren ist es eine Aufgabe der vorliegenden Erfindung, ein Verfahren bereitzustellen, bei dem es möglich ist, das zwischenzeitlich gebildete Agglomerat aus Magnetpartikel und abzutrennendem ersten Stoff leicht und möglichst vollständig wieder spalten zu können. Des Weiteren sollte die Bindung zwischen abzutrennendem ersten Stoff und Magnetpartikel genügend stabil sein, um eine hohe Ausbeute an erstem Stoff bei der Abtrennung zu gewährleisten.
  • Die Aufgaben werden gelöst durch das erfindungsgemäße Verfahren zum Abtrennen wenigstens eines ersten Stoffes ausgewählt aus der Gruppe bestehend aus sulfidischen Erzen, oxidischen und/oder carbonathaltigen Erzen und Mischungen davon, oder Edelmetallen und deren Verbindungen aus einer Mischung enthaltend diesen wenigstens einen ersten Stoff und wenigstens einen zweiten Stoff, umfassend die folgenden Schritte:
    1. (A) Inkontaktbringen der Mischung enthaltend den wenigstens einen ersten Stoff und wenigstens einen zweiten Stoff mit wenigstens einem selektiven Hydrophobierungsmittel in Gegenwart eines Suspendiermittels, so dass sich aus dem wenigstens einen Hydrophobierungsmittels und dem wenigstens einen ersten Stoff, nicht aber mit dem wenigstens einen zweiten Stoff, ein Addukt bildet,
    2. (B) Inkontaktbringen des Adduktes aus Schritt (A) mit wenigstens einem Magnetpartikel, der an der Oberfläche mit wenigstens einer polymeren Verbindung funktionalisiert ist, die eine Übergangstemperatur LCST (Lower Critical Solution Temperature) aufweist, bei einer Temperatur, bei der die polymere Verbindung hydrophoben Charakter aufweist, so dass das Addukt aus Schritt (A) und der wenigstens eine funktionalisierte Magnetpartikel agglomerieren,
    3. (C) gegebenenfalls Zugabe von weiterem Suspendiermittel zu der in Schritt (B) erhaltenen Mischung,
    4. (D) Abtrennen des in der Suspension aus Schritt (B) oder (C) vorliegenden Agglomerates durch Anlegen einen magnetischen Feldes,
    5. (E) Spalten des in Schritt (D) abgetrennten Agglomerates durch Einstellen einer Temperatur, bei der die polymere Verbindung hydrophilen Charakter aufweist, um den wenigstens einen ersten Stoff zu erhalten.
  • Der wenigstens eine erste Stoff und der wenigstens eine zweite Stoff können mit dem erfindungsgemäßen Verfahren voneinander getrennt werden, da erfindungsgemäß wenigstens ein zwischen hydrophob und hydrophil schaltbarer funktionalisierter Magnetpartikel unter Bedingungen zu der Mischung gegeben wird, unter denen sich aus dem wenigstens einen ersten hydrophobisierten Stoff und dem wenigstens einen funktionalisierten Magnetpartikel ein Agglomerat ausbildet, welches durch Anlegen eines Magnetfeldes abgetrennt werden kann.
  • Das erfindungsgemäße Verfahren dient im Allgemeinen zum Abtrennen wenigstens eines ersten Stoffes aus einer Mischung umfassend diesen wenigstens einen ersten Stoff und wenigstens einen zweiten Stoff. Neben diesen Komponenten kann die Mischung auch weitere Stoffe enthalten.
  • Der wenigstens eine abzutrennende erste Stoff ist bevorzugt eine Metallverbindung ausgewählt aus der Gruppe bestehend aus sulfidischen Erzen, oxidischen und/oder carbonathaltigen Erzen, beispielsweise Azurit [Cu3(CO3)2(OH)2], oder Malachit [Cu2[(OH)2|CO3]]). Des Weiteren kann der wenigstens eine abzutrennende Stoff ausgewählt sein aus der Gruppe der Edelmetalle und deren Verbindungen, beispielsweise Au, Pt, Pd, Rh etc., bevorzugt im gediegenen Zustand.
  • Beispiele für erfindungsgemäß einsetzbare sulfidische Erze sind ausgewählt aus der Gruppe der sulfidischen Buntmetallerze, beispielsweise Kupfererze wie Covellit CuS, Chalkopyrit (Kupferkies) CuFeS2, Bornit Cu5FeS4, Chalkozyt (Kupferglanz) Cu2S oder Mischungen davon, Molybdänerze wie Molybdän(IV)-sulfid Molybdit MoS2, Eisensulfide wie FeS/FeS2, Nickelerze wie NiS, Bleierze wie PbS, Zinkerze wie ZnS oder Mischungen davon:
  • Der wenigstens eine zweite Stoff ist bevorzugt ausgewählt aus der Gruppe bestehend aus oxidischen Metall- und Halbmetallverbindungen, hydroxidischen Metall- und Halbmetallverbindungen und Mischungen davon, beispielsweise Siliziumdioxid SiO2, Silikate, Alumosilikate, beispielsweise Feldspate (Ba, Ca, Na, K, NH4)(Al, B, Si)4O8, beispielsweise Albit Na(Si3Al)O8 oder Anorthit (CaAl2Si2O8), Olivine (Mg, Fe)2SiO4, Glimmer, beispielsweise Muskovit KAl2[(OH,F)2AlSi3O10], Granate (X3Y2(SiO4)3 mit X = Mg, Ca, Fe(II), Mn(II) und Y = Al, Fe(III), Cr(III), Ti(III), V(III)), FeO(OH), FeCO3 und weitere verwandte Mineralien und Mischungen davon. Des Weiteren können in den erfindungsgemäß zu behandelnden Erzmischungen oxidische Verbindungen von Metallen und Halbmetallen, beispielsweise Borate oder andere Salze von Metallen und Halbmetallen, beispielsweise Phosphate, Sulfate oder Oxide/Hydroxide/Carbonate und weitere Salze, vorliegen, beispielsweise Azurit [Cu3(CO3)2(OH)2], Malachit [Cu2[(OH)2(Co3)]]. Baryt (BaSO4), Monazit ((Ce, La, Nd) [PO4]).
  • In dem erfindungsgemäßen Verfahren werden bevorzugt unbehandelte Erzmischungen eingesetzt, welche aus Minenvorkommen gewonnen werden.
  • In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens liegt die Mischung enthaltend wenigstens einen ersten Stoff und wenigstens einen zweiten Stoff in Schritt (A) in Form von Partikeln mit einer Größe 100 nm bis 100 µm vor, siehe beispielsweise US 5,051,199 . In einer bevorzugten Ausführungsform wird diese Partikelgröße durch Mahlen erhalten. Geeignete Verfahren und Vorrichtungen sind dem Fachmann bekannt, beispielsweise Nassmahlen in einer Kugelmühle.
  • In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird die Mischung enthaltend wenigstens einen ersten Stoff und wenigstens einen zweiten Stoff vor oder während Schritt (A) zu Partikeln mit einer Größe von 100 nm bis 500 µm, bevorzugt 100 nm bis 100 µm, vermahlen.
  • Bevorzugt einsetzbare Erzmischungen weisen einen möglichst hohen Gehalt an sulfidischen Mineralien auf. Eine typischerweise eingesetzte Erzmischung, die mit dem erfindungsgemäßen Verfahren getrennt werden kann, hat die folgende Zusammensetzung: ca. 30 Gew.-% SiO2, ca. 10 Gew.-% Na(Si3Al)O8, ca. 3 Gew.-% Cu2S, ca. 1 Gew.-% MoS2, Rest Chrom-, Eisen-, Titan- und Magnesiumoxide.
  • Die einzelnen Schritte des erfindungsgemäßen Verfahrens werden im Folgenden detailliert beschrieben:
  • Schritt (A):
  • Schritt (A) des erfindungsgemäßen Verfahrens umfasst das Inkontaktbringen der Mischung enthaltend den wenigstens einen ersten Stoff und wenigstens einen zweiten Stoff mit wenigstens einem selektiven Hydrophobierungsmittel in einem geeigneten Suspendiermittel, so dass sich aus dem wenigstens einen Hydrophobierungsmittels und dem wenigstens einen ersten Stoff, nicht aber mit dem wenigstens einen zweiten Stoff, ein Addukt bildet.
  • Der erste Schritt des erfindungsgemäßen Verfahrens dient dazu, den wenigstens einen ersten Stoff an der Oberfläche zu hydrophobisieren, damit im folgenden Schritt (B) dieser mit dem wenigstens einen funktionalisierten Magnetpartikel agglomeriert.
  • Verfahren zum Hydrophobisieren der Oberfläche des wenigstens einen ersten Stoffes sind dem Fachmann bekannt.
  • Im Rahmen der vorliegenden Erfindung bedeutet "Hydrophobierungsmittel" eine Substanz, die in der Lage ist, die Oberfläche des wenigstens einen ersten Stoffes in Anwesenheit der anderen Teilchen, die nicht abgetrennt werden sollen, zu hydrophobisieren, d. h. so zu modifizieren, dass die Oberfläche des hydrophobisierten wenigstens einen ersten Stoffes einen Kontaktwinkel von > 90° mit Wasser gegen Luft aufweist.
  • "Selektiv" bedeutet im Rahmen der vorliegenden Erfindung, dass der Verteilungskoeffizient des Hydrophobierungsmittel zwischen der Oberfläche des wenigstens einen ersten Stoffes und der Oberfläche des wenigstens einen zweiten Stoffes, im Allgemeinen > 1, bevorzugt > 100, besonders bevorzugt > 10000, ist, d. h., dass sich das Hydrophobierungsmittel bevorzugt auf der Oberfläche des wenigstens einen ersten Stoffes, und nicht auf der Oberfläche des wenigstens einen zweiten Stoffes, anlagert.
  • Bevorzugt wird in dem erfindungsgemäßen Verfahren wenigstens ein Hydrophobierungsmittel der allgemeinen Formel (I)

            A-(Z)x     (I)

    eingesetzt, die an den wenigstens einen ersten Stoff anbindet, worin
  • A
    ausgewählt ist aus linearem oder verzweigtem C3-C30-Alkyl, C3-C30-Heteroalkyl, gegebenenfalls substituiertes C6-C30-Aryl , gegebenenfalls substituiertes C6-C30-Heteroalkyl, C6-C30-Aralkyl,
    Z
    eine Gruppe ist, mit der die Verbindung der allgemeinen Formel (I) an den wenigstens einen ersten Stoff anbindet und
    x
    1, 2 oder 3 ist.
  • In einer besonders bevorzugten Ausführungsform ist A ein lineares oder verzweigtes C6-C16-Alkyl, beispielsweise 2-Propyl-heptyl. Erfindungsgemäß gegebenenfalls vorhandene Heteroatome sind ausgewählt aus N, O, P, S und Halogenen wie F, Cl, Br und I.
  • In einer weiteren besonders bevorzugten Ausführungsform ist Z ausgewählt aus der Gruppe bestehend aus anionischen Gruppen -(X)n-PO32-, -(X)n-PO2S2-, -(X)n-POS2 2-, -(X)n-PS3 2-, Dithiophosphinat [-(X)n]2PS2 -, -[(X)n]2POS-, Dithiophosphat [-(X)n]2PO2 -, -(X)n-CO2 -, -(X)n-CS2 -, -(X)n-COS-, -(X)n-C(S)NHOH, -(X)n-S- mit X ausgewählt aus der Gruppe bestehend aus O, S, NH, CH2 und n = 0, 1 oder 2, mit gegebenenfalls Kationen ausgewählt aus der Gruppe bestehend aus Wasserstoff, NR4 + mit R gleich unabhängig voneinander Wasserstoff und/oder C1-C8-Alkyl, Alkali- oder Erdalkalimetallen. Die genannten Anionen und die entsprechenden Kationen bilden erfindungsgemäß neutral geladene Verbindungen der allgemeinen Formel (I). Im Fall von Dithiophosphinat [-(X)n]2PS2 -, -[(X)n]2POS- oder Dithiophosphat [-(X)n]2PO2 - liegen an diese funktionellen Gruppen angebunden zwei Reste A vor, die, im Rahmen der oben genannten Bedeutungen für A, gleich oder verschieden sein können, bevorzugt gleich und ausgewählt aus C6-C30, besonders bevorzugt C6-C16-Alkyl, sind.
  • In einer ganz besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens bedeutet Z [-(X)n]2PS2 -, -(X)n-CS2 -, -[(X)n]2PO2 - oder -(X)n-S- mit X gleich O und n gleich 0 oder 1 und einem Kation ausgewählt aus Wasserstoff, Natrium oder Kalium.
  • Für Edelmetalle, beispielsweise Au, Pd, Rh etc., sind besonders bevorzugte Hydrophobierungsmittel Mono-, Di- und Trithiole oder 8-Hydroxychinoline, beispielsweise beschrieben in EP 1200408 B1 .
  • Für Metalloxide, beispielsweise FeO(OH), Fe3O4, ZnO etc., Carbonate, beispielsweise Azurit [Cu(CO3)2(OH)2], Malachit [Cu2[(OH)2CO3]], sind besonders bevorzugte Hydrophobierungsmittel C6-C16-Alkylphosphonsäuren, beispielsweise Octylphosphonsäure (OPS), Mono- und Dialkylester der Phosphorsäure mit einem C6-C20-Alkylrest, Hydroxamate, sowie langkettige Carbonsäuren (Fettsäuren).
  • Für Metallsulfide, beispielsweise Cu2S, MoS2, etc., sind besonders bevorzugte Hydrophobierungsmittel Mono-, Di- und Trithiole, Xanthogenate, Dithiophosphinate oder Mono-, Di- oder Tri-C6-C30-Alkylester der Thiophosphorsäuren der allgemeinen Formel (VII)
    Figure imgb0001
    worin R unabhängig von einander Wasserstoff oder C6-C30-Alkyl und X unabhängig von einander S oder O bedeuten, wobei ein bis drei der vorliegenden X S und die verbleibenden O bedeuten,
  • Ganz besonders bevorzugte oberflächenaktive Substanzen sind 1-Octanthiol, Kaliumoctylxanthat, Octylphosphonsäure, Phosphorsäuremonooctylester oder eine Verbindung der allgemeinen Formel (IV)
    Figure imgb0002
    mit den oben genannten Bedeutungen für A.
  • Das Inkontaktbringen in Schritt (A) des erfindungsgemäßen Verfahrens kann durch alle dem Fachmann bekannte Verfahren geschehen. Beispielsweise werden die zu behandelnde Mischung, das wenigstens eine Hydrophobierungsmittel und das Suspendiermittel in den entsprechenden Mengen zusammen gegeben und vermischt. Das Vermischen kann beispielsweise durch Nassmahlen erfolgen. Geeignete Mischungsapparaturen sind dem Fachmann bekannt, beispielsweise Mühlen, wie Kugelmühle.
  • Das Suspendiermittel wird in Schritt (A) im Allgemeinen in einer Menge zugegeben, dass die erhaltene Suspension einen Feststoffanteil von 0,1 bis 80 Gew.-%, bevorzugt 20 bis 40 Gew.-%, aufweist.
  • Im Allgemeinen können alle dem Fachmann als geeignet bekannten Suspendiermittel in dem erfindungsgemäßen Verfahren eingesetzt werden, d. h. Suspendiermittel, in denen die Mischung aus Schritt (A) nicht vollständig löslich ist. In einer bevorzugten Ausführungsform ist das Suspendiermittel eine wässrige Mischung, d. h. eine Mischung, die wenigstens 80 Gew.-%, bevorzugt wenigstens 95 Gew.-%, Wasser enthält. In einer besonders bevorzugten Ausführungsform ist das Suspendiermittel in Schritt (A) Wasser.
  • Das Suspendiermittel kann neben Wasser weitere Komponenten enthalten, beispielsweise ausgewählt aus der Gruppe bestehend aus wasserlöslichen organischen Verbindungen wie Alkohole mit 1 bis 4 Kohlenstoffatomen, Ketone wie Aceton und Mischungen davon, löslichen Salzen wie NaCl, KCI, MgCl2, CaCl2, Na2CO3, K2CO3, MgCO3, anorganischen Säuren und Basen wie NaOH, KOH, Ca(OH)2, HCl, H2SO4, HNO3, organischen Säuren und Basen wie Ameisensäure oder Essigsäure, usw.
  • Schritt (A) des erfindungsgemäßen Verfahrens wird im Allgemeinen bei einer Temperatur von 1 bis 80 °C, bevorzugt bei 40 bis 60 °C, durchgeführt.
  • Das wenigstens eine Hydrophobierungsmittel wird im Allgemeinen in einer Menge eingesetzt, die ausreicht, um den gewünschten Effekt zu erzielen. In einer bevorzugten Ausführungsform wird das wenigstens eine Hydrophobierungsmittel in einer Menge von 0,01 bis 5 Gew.-% zugegeben, jeweils bezogen auf den in der Mischung vorliegenden wenigstens einen ersten Stoff.
  • Nach Schritt (A) liegt erfindungsgemäß eine Mischung in Suspension vor enthaltend ein Addukt aus wenigstens einem ersten Stoff und wenigstens einem Hydrophobierungsmittel, und wenigstens einen zweiten Stoff.
  • Schritt (B):
  • Schritt (B) des erfindungsgemäßen Verfahrens umfasst das Inkontaktbringen des Adduktes aus Schritt (A) mit wenigstens einem Magnetpartikel, der an der Oberfläche mit wenigstens einer polymeren Verbindung funktionalisiert ist, die eine Übergangstemperatur LCST (Lower Critical Solution Temperature) aufweist, bei einer Temperatur, bei der die polymere Verbindung hydrophoben Charakter aufweist, so dass das Addukt aus Schritt (A) und der wenigstens eine funktionalisierte Magnetpartikel agglomerieren.
  • Als Magnetpartikel können im Allgemeinen alle dem Fachmann bekannten Magnetpartikel eingesetzt werden, die den Anforderungen des erfindungsgemäßen Verfahrens genügen, beispielsweise Suspendierbarkeit in dem gegebenenfalls verwendeten Suspendiermittel und Fähigkeit, mit der wenigstens einen polymeren Verbindung funktionalisiert zu werden.
  • Des Weiteren sollte der Magnetpartikel eine genügend hohe Sättigungsmagnetisierbarkeit, beispielsweise 25 - 300 emu/g, und eine geringe Remanenz aufweisen, damit das Addukt in Schritt (D) des erfindungsgemäßen Verfahrens in ausreichender Menge aus der Suspension abgetrennt werden kann.
  • In einer bevorzugten Ausführungsform ist der wenigstens eine Magnetpartikel ausgewählt aus der Gruppe bestehend aus magnetischen Metallen, beispielsweise Eisen, Cobalt, Nickel und Mischungen davon, ferromagnetischen Legierungen von magnetischen Metallen, magnetischen Eisenoxiden, beispielsweise Magnetit, Maghemit, kubischen Ferriten der allgemeinen Formel (II)

            M2+ xFe2+ 1-xFe3+ 2O4     (II)

    mit
  • M
    ausgewählt aus Co, Ni, Mn, Zn und Mischungen davon und
    x
    ≤ 1,
    hexagonalen Ferriten, beispielsweise Barium- oder Strontiumferrit MFe12O19 mit M = Ca, Sr, Ba, und Mischungen davon.
  • In einer besonders bevorzugten Ausführungsform der vorliegenden Anmeldung ist der wenigstens eine magnetische Partikel Magnetit Fe3O4 oder Kobaltferrit Co2+ xFe2+ 1-xFe3+ 2O4 mit x ≤ 1, beispielsweise CO0,25Fe2,75O4.
  • Die Größe der erfindungsgemäß eingesetzten Magnetpartikel liegt bevorzugt bei 10 nm bis 1 µm.
  • Der wenigstens eine magnetische Partikel ist an der Oberfläche mit wenigstens einer polymeren Verbindung funktionalisiert. Die erfindungsgemäß eingesetzten polymeren Verbindungen zeichnen sich dadurch aus, dass sie eine Übergangstemperatur LCST (Lower Critical Solution Temperature) aufweisen. Unterhalb dieser LCST weist die polymere Verbindung hydrophilen Charakter auf da die Polymerkette beispielsweise durch Anlagerung von Wassermolekülen eine Hydrathülle aufweist. Oberhalb der LCST weist die polymere Verbindung hydrophoben Charakter auf, da die Polymerkette beispielsweise nicht mehr von einer Hydrathülle umgeben ist. Abhängig von der polymeren Verbindung ist auch der umgekehrte Fall möglich, nämlich dass die polymere Verbindung unterhalb der LCST hydrophoben Charakter aufweist und oberhalb der LCST hydrophilen Charakter aufweist. Wird eine solche polymere Verbindung von unterhalb der LCST auf eine Temperatur oberhalb der LCST erhitzt, so schaltet die polymere Verbindung bei der LCST von hydrophil auf hydrophob, oder umgekehrt. Somit weisen die erfindungsgemäß einsetzbaren Polymere, abhängig von der Temperatur, hydrophilen oder hydrophoben Charakter auf.
  • Der Wechsel der polymeren Verbindung von hydrophob zu hydrophil bzw. umgekehrt entspricht einem Phasenübergang, welcher in einem geschlossenen System im Allgemeinen in einem schmalen Temperaturbereich von beispielsweise 0,5 °C stattfindet. In einem offenen System kann sich der Phasenübergang beispielsweise durch Änderung der Konzentration der vorliegenden Komponenten, beispielsweise Polymere und/oder Fremdstoffe, Variation des pH-Wertes und/oder des Drucks über einen breiteren Bereich von beispielsweise 15 °C erstrecken. Der Temperaturbereich, in dem sich der Übergang vollzieht, wird im Allgemeinen bei steigender Kettenlänge größer. Beim Wechsel der Moleküleigenschaften von hydrophil zu hydrophob, verbleiben im Allgemeinen zunächst einige Wassermoleküle am Polymer angelagert, die suksezziv freigesetzt werden. Dieser Vorgang ist im Allgemeinen vollständig reversibel, so lange die polymere Verbindung nicht chemisch modifiziert wird, beispielsweise durch Erhöhung des pH-Wertes.
  • Die für die erfindungsgemäß einsetzbaren polymeren Verbindungen beschriebenen Eigenschaften liegen im Wesentlichen entsprechend auch bei den mit diesen polymeren Verbindungen modifizierten Partikeln, insbesondere Magnetpartikeln, vor.
  • In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens ist die polymere Verbindung oberhalb der LCST hydrophob und unterhalb der LCST hydrophil.
  • Erfindungsgemäß können alle polymeren Verbindungen eingesetzt werden, die eine LCST aufweisen, d. h. die bei verschiedenen Temperaturen hydrophilen bzw. hydrophoben Charakter aufweisen. Im Rahmen der vorliegenden Erfindung bedeutet "Polymer" eine, bevorzugt organische, Verbindung mit einem Molekulargewicht von wenigstens 500 g/mol, bevorzugt 500 bis 10000 g/mol, besonders bevorzugt 1000 bis 7000 g/mol.
  • In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens ist die wenigstens eine polymere Verbindung ausgewählt aus der Gruppe bestehend aus Polyvinylethern, beispielsweise Poly-vinylmethylether, Poly-N-alkyl-acrylamiden, beispielsweise Poly-N-C1-C6-alkyl-acrylamide, insbesondere Poly-N-isopropylacrylamid, oder N-alkyl-acrylamid-acrylamid-copolymere, Poly-N-vinyl-caprolactamen, Copolymeren auf Basis von Alkylenoxiden, beispielsweise Copolymere aus Ethylenoxid, Propylenoxid und/oder Butylenoxid, bevorzugt polymere Verbindungen, erhältlich durch Alkoxylierung von C1-C12-Alkoholen mit 1 bis 130 Einheiten Ethylenoxid, Propylenoxid und/oder Butylenoxid, und Mischungen davon. Geeignete polymere Verbindungen und Verfahren zu Ihrer Herstellung sind beispielsweise in Li et al., International Journal of Pharmacology (2006), 2(5), 513-519, und Crespy et al., Polymer International (2007), 56(12), 1461-1468, genannt. Diese polymeren Verbindungen weisen unterhalb der LCST hydrophilen und oberhalb der LCST hydrophoben Charakter auf.
  • Die genannten polymeren Verbindungen, die eine LCST aufweisen, werden erfindungsgemäß durch funktionelle Gruppen an die entsprechenden Magnetpartikel angebunden. Diese funktionellen Gruppen können in den genannten polymeren Verbindungen an sich vorliegen, oder die funktionellen Gruppen können durch dem Fachmann bekannte Verfahren in die polymeren Verbindungen eingeführt werden, d. h. die polymeren Verbindungen werden funktionalisiert. Geeignete funktionelle Gruppen sind solche, die eine genügend starke Bindung zwischen Magnetpartikel und polymerer Verbindung gewährleisten, beispielsweise ausgewählt aus der Gruppe bestehend aus Thiolgruppe -SH, Carbonsäuregruppe -CO2H, gegebenenfalls zumindest teilweise veresterte Phosphonsäuregruppe -PO3R'2 mit R' gleich Wasserstoff oder C1-C6-Alkyl (Va), gegebenenfalls zumindest teilweise veresterte Phosphorsäuregruppe -O-PO3R"2 mit R" gleich Wasserstoff oder C1-C6-Alkyl (Vb), Hydroxamatgruppe (Vc), Xanthogenatgruppe (Vd)
    Figure imgb0003
    und Mischungen davon, besonders bevorzugt ausgewählt aus der Gruppe bestehend aus Thiolgruppe -SH, Carbonsäuregruppe -CO2H, gegebenenfalls zumindest teilweise veresterte Phosphonsäuregruppe -PO3R'2 mit R' gleich Wasserstoff oder C1-C6-Alkyl (Va), gegebenenfalls zumindest teilweise veresterte Phosphorsäuregruppe -O-PO3R"2 mit R" gleich Wasserstoff oder C1-C6-Alkyl (Vb), Hydroxamatgruppe (Vc). Die Xanthogenatgruppe (Vd) ist bevorzugt für die Kupplung an sulfidische Verbindungen geeignet.
  • In einer bevorzugten Ausführungsform ist die wenigstens eine polymere Verbindung wenigstens ein funktionalisiertes Copolymer aus Ethylenoxid, Propylenoxid und/oder Butylenoxid, besonders bevorzugt eine Verbindung der allgemeinen Formel (III)

            F-[(EO)x-(PO)y-(BuO)z]-B     (III)

    worin
  • F
    funktionelle Gruppe, die selektiv an den wenigstens einen Magnetpartikel bindet,
    B
    Alkylrest mit 1 bis 6 Kohlenstoffatomen,
    EO
    Ethylenoxid,
    PO
    Propylenoxid,
    BuO
    Butylenoxid,
    x
    ganze oder gebrochene Zahl von 0 bis 130, bevorzugt 0 bis 40
    y
    ganze oder gebrochene Zahl von 0 bis 130, bevorzugt 1 bis 35 und
    z
    ganze oder gebrochene Zahl von 0 bis 130, bevorzugt 0 bis 40,
    wobei 1 ≤ x+y+z ≤ 130, bevorzugt 10 ≤ x+y+z ≤ 130 gilt, bedeuten.
  • In der Verbindung der allgemeinen Formel (III) bedeutet F eine funktionelle Gruppe, die selektiv an den wenigstens einen Magnetpartikel bindet. Die Wahl dieser funktionellen Gruppe ist abhängig von dem wenigstens einen magnetischen Partikel, an den die funktionelle Gruppe anbinden soll. Es soll bevorzugt eine dissoziationsstabile Bindung zwischen dem wenigstens einen magnetischen Teilchen und der wenigstens einen polymeren Verbindung der allgemeinen Formel (III) entstehen.
  • In einer bevorzugten Ausführungsform ist F ausgewählt aus der Gruppe bestehend aus Carbonsäuregruppe -CO2H, gegebenenfalls zumindest teilweise veresterte Phosphonsäuregruppe -PO3R'2 mit R' gleich Wasserstoff oder C1-C6-Alkyl (Va), gegebenenfalls zumindest teilweise veresterte Phosphorsäuregruppe -O-PO3R"2 mit R" gleich Wasserstoff oder C1-C6-Alkyl (Vb), Hydroxamatgruppe (Vc), Xanthogenatgruppe (Vd)
    Figure imgb0004
    und Mischungen davon, besonders bevorzugt eine gegebenenfalls zumindest teilweise veresterte Phosphonsäuregruppe (Va) oder eine gegebenenfalls zumindest teilweise veresterte Phosphorsäuregruppe (Vb).
  • Die Bindung der funktionellen Gruppen Va bis Vd an das Polymer erfolgt bevorzugt über freie Elektronenpaare.
  • In der allgemeinen Formel (III) bedeutet B einen Alkylrest mit 1 bis 6 Kohlenstoffatomen, beispielsweise Methyl, Ethyl, Propyl, Butyl, beispielsweise n-Butyl, Pentyl, Hexyl.
  • Die polymeren Verbindungen der allgemeinen Formel (III) weisen eine LCST auf, die im Allgemeinen jeweils von der Menge der einzelnen Alkylenoxide, d. h. Ethylenoxid, Propylenoxid und/oder Butylenoxid, im Polymer abhängig ist. Eine polymere Verbindung, die ausschließlich aus Propylenoxid aufgebaut ist, weist beispielsweise eine LCST von < -10 °C auf. Eine polymere Verbindung, die ausschließlich aus Ethylenoxid aufgebaut ist, weist beispielsweise eine LCST von > 120 °C auf. Durch Wahl der Art und Menge der Alkylenoxide kann somit eine LCST der polymeren Verbindung eingestellt werden, die für das erfindungsgemäße Verfahren geeignet ist.
  • In einer bevorzugten Ausführungsform beträgt die LCST der in dem erfindungsgemäßen Verfahren eingesetzten polymeren Verbindung -10 bis 100 °C, besonders bevorzugt 5 bis 45 °C, ganz besonders bevorzugt 20 bis 40 °C. Im Allgemeinen liegt die LCST einer polymeren Verbindung in einem Temperaturbereich von ca. 5 bis 15 °C. Die Breite dieses Bereiches ist im Allgemeinen abhängig von der Einheitlichkeit, d. h. der Monodispersität, der eingesetzten polymeren Verbindung. Je höher die Monodispersität ist, desto schmaler ist der Bereich der LCST.
  • Verfahren zur Herstellung von polymeren Verbindungen der allgemeinen Formel (III) sind dem Fachmann bekannt.
  • Das Funktionalisieren des wenigstens einen magnetischen Partikels mit der wenigstens einen polymeren Verbindung kann nach allen dem Fachmann bekannten Verfahren erfolgen. In einer bevorzugten Ausführungsform wird der wenigstens eine magnetische Partikel mit der wenigstens einen polymeren Verbindung funktionalisiert, indem zunächst der Magnetpartikel selbst nach bekannten Verfahren hergestellt wird. Dann wird dieser Magnetpartikel durch Inkontaktbringen einer Lösung der funktionalisierten polymeren Verbindung, insbesondere von Verbindungen der allgemeinen Formel (III), in Wasser oder in einem organischen Lösungsmittel, beispielsweise niedermolekulare Alkohole oder Ketone, modifiziert, und das erhaltene Produkt wird zum Entfernen von überschüssiger polymerer Verbindung mit einem entsprechenden Lösungsmittel gewaschen.
  • Das Inkontaktbringen des Adduktes aus Schritt (A) mit wenigstens einem funktionalisierten Magnetpartikel in Schritt (B) kann nach allen dem Fachmann bekannten Verfahren erfolgen. In einer bevorzugten Ausführungsform wird der wenigstens eine funktionalisierte Magnetpartikel zu der Mischung aus Schritt (A) gegeben. In einer bevorzugten Ausführungsform wird Schritt (B) in einer Mühle durchgeführt, besonders bevorzugt in der gleichen Mühle, in der Schritt (A) durchgeführt worden ist. Bevorzugt wird die beim Mahlen der Komponenten in Schritt (B) erzeugte Wärme dazu verwendet, die für Schritt (A) notwendige Temperatur in der Mischung zu erzielen, bevorzugt für den Fall, dass die polymere Verbindung oberhalb ihrer LCST hydrophob ist.
  • Schritt (B) des erfindungsgemäßen Verfahrens wird bei einer Temperatur durchgeführt, bei der die eingesetzte polymere Verbindung hydrophoben Charakter aufweist, damit der schaltbar funktionalisierte Magnetpartikel und der hydrophobisierte wenigstens eine erste Stoff agglomerieren. Abhängig von der polymeren Verbindung kann diese Temperatur oberhalb oder unterhalb der LCST liegen, bevorzugt liegt die Temperatur oberhalb der LCST.
  • Bevorzugt wird Schritt (B) bei einer Temperatur durchgeführt, die größer als die LCST der polymeren Verbindung und kleiner als der Siedepunkt des verwendeten Suspendiermittels ist. Besonders bevorzugt wird Schritt (B) bei einer Temperatur durchgeführt, die 1 bis 20 °C oberhalb der LCST liegt. Somit wird Schritt (B) in einer bevorzugten Ausführungsform bei einer Temperatur von 6 bis 65 °C, besonders bevorzugt 21 bis 60 °C durchgeführt.
  • Für den Fall, dass die polymere Verbindung unterhalb der LCST hydrophoben Charakter aufweist, wird Schritt (B) des erfindungsgemäßen Verfahrens bei einer Temperatur durchgeführt, die oberhalb der Schmelztemperatur des eingesetzten Suspendiermittels und unterhalb der LCST der polymeren Verbindung liegt. Bevorzugt wird in diesem Fall Schritt (B) bei einer Temperatur durchgeführt, die 1 bis 20 °C unterhalb der LCST liegt. Für diesen Fall wird Schritt (B) somit bevorzugt bei einer Temperatur von - 15 bis 44 °C, besonders bevorzugt 0 bis 39 °C durchgeführt.
  • Schritt (B) des erfindungsgemäßen Verfahrens wird bevorzugt so lange durchgeführt, bis eine genügende Menge an Agglomerat aus wenigstens einem hydrophobisierten ersten Stoff und schaltbar funktionalisiertem Magnetpartikel gebildet ist, beispielsweise zu einem Anteil von 80 bis 100%, bevorzugt vollständig (100%).
  • Nach Schritt (B) des erfindungsgemäßen Verfahrens liegen Agglomerate aus an der Oberfläche mit wenigstens einer polymeren Verbindung funktionalisiertem Magnetpartikel und wenigstens einem hydrophobisierten ersten Stoff neben wenigstens einem zweiten Stoff und gegebenenfalls weiteren Stoffen in einem Suspendiermittel vor.
  • Schritt (C)
  • Der optionale Schritt (C) des erfindungsgemäßen Verfahrens umfasst (C) die Zugabe von weiterem Suspendiermittel zu der in Schritt (B) erhaltenen Mischung.
  • Schritt (C) wird bevorzugt dann durchgeführt, wenn in Schritt (A) eine Suspension bereitgestellt worden ist, deren Feststoffanteil für die folgenden Schritte (D) und (E) zu hoch ist, so dass beispielsweise die Beweglichkeit der in Schritt (B) gebildeten Agglomerate in der Suspension nicht ausreichend ist.
  • In Schritt (C) des erfindungsgemäßen Verfahrens sind als Suspendiermittel alle Suspendiermittel geeignet, die bereits bezüglich des Schritts (A) genannt sind. In einer bevorzugten Ausführungsform wird in Schritt (C) eine wässrige Mischung, d. h. eine Mischung, die wenigstens 80 Gew.-%, bevorzugt wenigstens 95 Gew.-%, Wasser enthält. Die wässrige Mischung kann zusätzlich die bezüglich des Schritts (A) genannten Komponenten enthalten. In einer besonders bevorzugten Ausführungsform wird in Schritt (C) des erfindungsgemäßen Verfahrens Wasser zugegeben.
  • Schritt (C) des erfindungsgemäßen Verfahrens wird im Allgemeinen bei einer Temperatur durchgeführt, bei der das in Schritt (B) gebildete Agglomerat aus wenigstens einem hydrophobisierten Stoff und dem funktionalisierten Magnetpartikel nicht gespalten wird.
  • Somit wird Schritt (C) bei einer Temperatur durchgeführt, die größer als die LCST der polymeren Verbindung und kleiner als der Siedepunkt des verwendeten Suspendiermittels ist. Besonders bevorzugt wird Schritt (C) bei einer Temperatur durchgeführt, die 1 bis 20 °C oberhalb der LCST liegt. Somit wird Schritt (C) in einer bevorzugten Ausführungsform bei einer Temperatur von 6 bis 65 °C, besonders bevorzugt 21 bis 60 °C, durchgeführt.
  • Für den Fall, dass die polymere Verbindung unterhalb der LCST hydrophoben Charakter aufweist, wird Schritt (C) des erfindungsgemäßen Verfahrens bei einer Temperatur durchgeführt, die oberhalb der Schmelztemperatur des eingesetzten Suspendiermittels und unterhalb der LCST der polymeren Verbindung liegt. Bevorzugt wird in diesem Fall Schritt (C) bei einer Temperatur durchgeführt, die 1 bis 20 °C unterhalb der LCST liegt. Für diesen Fall wird Schritt (C) somit bevorzugt bei einer Temperatur von - 15 bis 44 °C, besonders bevorzugt 0 bis 39 °C durchgeführt.
  • Im Allgemeinen kann die Menge an Suspendiermittel erfindungsgemäß so gewählt werden, dass in Schritt (C) eine Suspension erhalten wird, welche gut rührbar und/oder förderbar ist. In einer bevorzugten Ausführungsform wird ein geeignetes Suspendiermittel zugefügt, so dass ein Feststoffanteil der erhaltenen Suspension von 0,1 bis 80 Gew.-%, besonders bevorzugt 0,1 bis 40 Gew.-% resultiert.
  • Schritt (D)
  • Schritt (D) des erfindungsgemäßen Verfahrens umfasst das Abtrennen des in der Suspension aus Schritt (B) oder (C) vorliegenden Agglomerates durch Anlegen eines magnetischen Feldes.
  • Schritt (D) kann in einer bevorzugten Ausführungsform durchgeführt werden, indem ein Dauermagnet in den Reaktor eingebracht wird, in dem sich die Suspension aus Schritt (B) oder (C) befindet. In einer bevorzugten Ausführungsform befindet sich zwischen Dauermagnet und zu behandelnder Mischung eine Trennwand aus nicht magnetischem Material, beispielsweise die Wandung des Reaktors. In einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird in Schritt (D) ein elektrisch schaltbarer Magnet eingesetzt, der nur dann magnetisch ist, wenn ein elektrischer Strom fließt. Geeignete Vorrichtungen sind dem Fachmann bekannt.
  • Schritt (D) des erfindungsgemäßen Verfahrens wird im Allgemeinen bei einer Temperatur durchgeführt, bei der das in Schritt (B) gebildete Agglomerat aus wenigstens einem hydrophobisierten Stoff und dem funktionalisierten Magnetpartikel nicht gespalten wird.
  • Somit wird Schritt (D) bevorzugt bei einer Temperatur durchgeführt, die größer als die LCST der polymeren Verbindung und kleiner als der Siedepunkt des verwendeten Suspendiermittels ist. Besonders bevorzugt wird Schritt (D) bei einer Temperatur durchgeführt, die 1 bis 20 °C oberhalb der LCST liegt. Somit wird Schritt (D) in einer bevorzugten Ausführungsform bei einer Temperatur von 6 bis 65 °C, besonders bevorzugt 21 bis 60 °C durchgeführt.
  • Für den Fall, dass die polymere Verbindung unterhalb der LCST hydrophoben Charakter aufweist, wird Schritt (D) des erfindungsgemäßen Verfahrens bei einer Temperatur durchgeführt, die oberhalb der Schmelztemperatur des eingesetzten Suspendiermittels und unterhalb der LCST der polymeren Verbindung liegt. Bevorzugt wird in diesem Fall Schritt (D) bei einer Temperatur durchgeführt, die 1 bis 20 °C unterhalb der LCST liegt. Für diesen Fall wird Schritt (D) somit bevorzugt bei einer Temperatur von -15 bis 44 °C, besonders bevorzugt 0 bis 39 °C durchgeführt.
  • Die Schritte (B), (C) und (D) können bei der gleichen Temperatur durchgeführt werden, es ist erfindungsgemäß auch möglich, dass die Schritte bei unterschiedlichen Temperaturen, in den angegebenen Bereichen, durchgeführt werden.
  • Während Schritt (D) wird die Mischung, bevorzugt permanent, mit einer geeigneten Vorrichtung durchmischt.
  • In Schritt (D) können die in der Suspension nach der Behandlung mit einem Magneten verbliebenen Komponenten gegebenenfalls durch alle dem Fachmann bekannten Verfahren abgetrennt werden, beispielsweise durch Ablassen der Anteile der Suspension, die nicht durch den Magneten festgehalten werden, aus dem Bodenventil des für Schritt (D) benutzten Reaktors oder Abpumpen der nicht durch den mindestens einen Magneten festgehaltenen Anteile der Suspension.
  • Nach Schritt (D) des erfindungsgemäßen Verfahrens befindet sich das in Schritt (B) des erfindungsgemäßen Verfahrens gebildete Agglomerat aus wenigstens einem funktionalisierten Magnetpartikel und dem wenigstens einen hydrophobisierten ersten Stoff an dem Magneten bzw. an einer Wandung, die sich zwischen Magnet und Addukt befindet. Bei einem elektrisch schaltbaren Magneten, kann das Addukt von dem Magneten entfernt werden, indem der elektrische Strom abgeschaltet wird, so dass kein Magnetfeldgradient mehr vorhanden ist. Befindet sich zwischen dem Magneten und der Suspension eine Wandung, so kann das Addukt durch dem Fachmann bekannte Verfahren entfernt werden.
  • Schritt (E)
  • Schritt (E) des erfindungsgemäßen Verfahrens umfasst das Spalten des in Schritt (D) abgetrennten Agglomerates durch Einstellen einer Temperatur, bei der die polymere Verbindung hydrophilen Charakter aufweist, um den wenigstens einen ersten Stoff zu erhalten.
  • Abhängig davon, ob in dem erfindungsgemäßen Verfahren eine polymere Verbindung eingesetzt wird, die unterhalb oder oberhalb der LCST hydrophilen Charakter aufweist, wird die Temperatur in Schritt (E) des erfindungsgemäßen Verfahrens eingestellt.
  • Für den bevorzugten Fall, dass die polymere Verbindung unterhalb der LCST hydrophilen Charakter aufweist, wird Schritt (E) des erfindungsgemäßen Verfahrens bei einer Temperatur durchgeführt, die oberhalb der Schmelztemperatur des eingesetzten Suspendiermittels und unterhalb der LCST der polymeren Verbindung liegt. Bevorzugt wird in diesem Fall Schritt (E) bei einer Temperatur durchgeführt, die 1 bis 20 °C unterhalb der LCST liegt. Für diesen Fall wird Schritt (E) somit bevorzugt bei einer Temperatur von -15 bis 44 °C, besonders bevorzugt 0 bis 39 °C durchgeführt.
  • Für den Fall, dass die polymere Verbindung oberhalb der LCST hydrophilen Charakter aufweist, wird Schritt (E) bei einer Temperatur durchgeführt, die größer als die LCST der polymeren Verbindung und kleiner als der Siedepunkt des verwendeten Suspendiermittels ist. Besonders bevorzugt wird Schritt (E) in diesem Fall bei einer Temperatur durchgeführt, die 1 bis 20 °C oberhalb der LCST liegt. Somit wird Schritt (D) in einer bevorzugten Ausführungsform bei einer Temperatur von 6 bis 65 °C, besonders bevorzugt 21 bis 60 °C durchgeführt.
  • Bei der in Schritt (E) des erfindungsgemäßen Verfahrens vorherrschenden Temperatur weist die polymere Verbindung hydrophilen Charakter auf, d.h. es können keine hydrophoben Wechselwirkungen zwischen der polymeren Verbindung auf der Oberfläche des wenigstens einen Magnetpartikels und dem hydrophobisierten ersten Stoff stattfinden, so dass die Agglomerate gespalten werden.
  • Schritt (E) des erfindungsgemäßen Verfahrens wird so lange durchgeführt, bis die vorliegenden Agglomerate möglichst vollständig, beispielsweise zu einem Anteil von 70 bis 99%, bevorzugt 80 bis 98%, gespalten sind.
  • Nach erfolgter Spaltung des Agglomerates liegen der wenigstens eine funktionalisierte Magnetpartikel und der wenigstens eine hydrophobisierte erste Stoff in suspendierter Form vor. Diese beiden Stoffe können nach allen dem Fachmann bekannten Verfahren voneinander und von dem Suspendiermittel getrennt werden.
  • Der wenigstens eine Magnetpartikel wird aus der Suspension enthaltend diesen wenigstens einen Magnetpartikel und den wenigstens einen ersten Stoff bevorzugt durch einen permanenten oder schaltbaren Magneten abgetrennt. Details dieses Abtrennens sind analog zu Schritt (D) des erfindungsgemäßen Verfahrens. Bevorzugt liegt nach dieser Abtrennung der wenigstens eine erste Stoff in suspendierter Form vor, während der wenigstens eine Magnetpartikel am Magneten haftet.
  • Bevorzugt wird der abzutrennende erste Stoff von dem Suspendiermittel durch Abdestillieren des Suspendiermittels oder Filtration getrennt. Der so erhaltene erste Stoff kann durch weitere, dem Fachmann bekannte Verfahren gereinigt werden. Das Suspendiermittel kann, gegebenenfalls nach Aufreinigung, wieder in das erfindungsgemäße Verfahren zurückgeführt werden. Ebenso wird in einer bevorzugten Ausführungsform der wenigstens eine Magnetpartikel in Schritt (A) des erfindungsgemäßen Verfahrens zurückgeführt.
  • Die vorliegende Erfindung betrifft auch funktionalisierte Partikel der allgemeinen Formel (VI)

            P-{F-[(EO)x-(PO)y-(BuO)z]-B}q     (VI),

    worin
  • P
    Partikel, enthaltend wenigstens ein Metall oder Halbmetall,
    F
    funktionelle Gruppe,
    B
    Alkylrest mit 1 bis 6 Kohlenstoffatomen,
    EO
    Ethylenoxid,
    PO
    Propylenoxid,
    BuO
    Butylenoxid,
    x
    ganze oder gebrochene Zahl von 0 bis 130, bevorzugt 0 bis 40,
    y
    ganze oder gebrochene Zahl von 0 bis 130, bevorzugt 1 bis 35,
    z
    ganze oder gebrochene Zahl von 0 bis 130, bevorzugt 0 bis 40, mit 1 ≤ x+y+z ≤ 130, bevorzugt 10 ≤ x+y+z ≤ 130, und
    q
    ganze Zahl von 1 bis 1 * 1015
    bedeuten.
  • In der Verbindung der allgemeinen Formel (VI) bedeutet P im Allgemeinen einen Partikel, der wenigstens ein Metall oder Halbmetall, bevorzugt in oxidischer oder sulfidischer Form, enthält.
  • Beispiele für Partikel, die wenigstens ein Metall in oxidischer Form enthalten, sind beispielsweise ausgewählt aus der Gruppe bestehend aus Neben- oder Hauptgruppenmetalloxiden, beispielsweise CuO, ZnO, Cr2O3, Fe2O3, TiO2, SiO2, CeO2, Titanaten, beispielsweise BaTiO3, SrTiO3 und Mischungen davon.
  • Beispiele für Partikel, die wenigstens ein Metall in sulfidischer Form enthalten, sind beispielsweise ausgewählt aus der Gruppe bestehend aus Nebengruppenmetallsulfiden, beispielsweise CuS, Zn1-xMnxS mit 0 ≤ x ≤ 0,22, Chalkopyrit (Kupferkies) CuFeS2, Bornit Cu5FeS4, Chalkozyt (Kupferglanz) Cu2S oder Mischungen davon, Molybdän(IV)-sulfid Molybdit MoS2, Eisensulfide wie FeS/FeS2, Nickelsulfid wie NiS, Bleisulfid wie PbS, Zinksulfid wie ZnS, CdS, CdSe, CdTe oder Mischungen davon.
  • Beispiele für Metalle, die in dem Partikel P enthalten sind, sind Platin- und Münzmetalle, wie Kupfer, Silber, Gold, Eisen, Cobalt, Nickel und deren Legierungen.
  • Der Partikel P kann auch halbleitende Materialien, ausgewählt aus der Gruppe bestehend aus Ge, Si, α-Sn, C, beispielsweise Fullerene, B, Se, Te, Bi, Ca, Sr, Ba, Yb, P, S, GaP, GaAs, InP, InSb, InAs, GaSb, GaN, AIN, InN, AlxGa1-xAs mit x gleich 0 bis 1, ZnO, ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, Hg1-xCdxTe mit x gleich 0 bis 1, BeSe, BeTe, HgS GaS, GaSe, GaTe, InS, InSe, InTe, CulnSe2, CulnGaSe2, CulnS2, Culn-GaS2 und/oder SiC, enthalten.
  • In einer bevorzugten Ausführungsform ist P ein Partikel ausgewählt aus der Gruppe der Magnetpartikel, insbesonders ausgewählt aus der Gruppe bestehend aus magnetischen Metallen, beispielsweise Eisen, Cobalt, Nickel und Mischungen davon, ferromagnetischen Legierungen von magnetischen Metallen, magnetischen Eisenoxiden, beispielsweise Magnetit, Maghemit, kubischen Ferriten der allgemeinen Formel (II)

            M2+ xFe2+ 1-xFe3+ 2O4     (II)

    mit
  • M
    ausgewählt aus Co, Ni, Mn, Zn und Mischungen davon und
    x
    ≤ 1,
    hexagonalen Ferriten, beispielsweise Barium- oder Strontiumferrit MFe12O19 mit M = Ca, Sr, Ba, und Mischungen davon.
  • In einer besonders bevorzugten Ausführungsform der vorliegenden Anmeldung ist P ausgewählt aus der Gruppe bestehend aus Magnetit Fe3O4, Kobaltferrit Co2+ xFe2+ 1-xFe3+ 2O4 mit x ≤ 1, beispielsweise Co0,25Fe2,75O4, und Mischungen davon.
  • Die Größe des in dem erfindungsgemäßen Addukt der allgemeinen Formel (IV) vorliegenden Partikels liegt bevorzugt bei 5 nm bis 100 µm, besonders bevorzugt 10 nm bis 50 µm.
  • In der allgemeinen Formel (VI) ist F eine funktionelle Gruppe die, bevorzugt selektiv, an den Partikel P anbindet. F ist beispielsweise ausgewählt aus der Gruppe bestehend aus Thiolgruppe -SH, Carbonsäuregruppe -CO2H, gegebenenfalls zumindest teilweise veresterte Phosphonsäuregruppe -PO3R'2 mit R' gleich Wasserstoff oder C1-C6-Alkyl (Va), gegebenenfalls zumindest teilweise veresterte Phosphorsäuregruppe -O-PO3R"2 mit R" gleich Wasserstoff oder C1-C6-Alkyl (Vb), Hydroxamatgruppe (Vc), Xanthogenatgruppe (Vd)
    Figure imgb0005
    und Mischungen davon, besonders bevorzugt eine gegebenenfalls zumindest teilweise veresterte Phosphonsäuregruppe (Va) oder gegebenenfalls zumindest teilweise veresterte Phosphorsäuregruppe (Vb).
  • Für oxidische Partikel P sind insbesonders funktionelle Gruppen ausgewählt aus Carbonsäuregruppe -CO2H, gegebenenfalls zumindest teilweise veresterte Phosphonsäuregruppe -PO3R'2 mit R' gleich Wasserstoff oder C1-C6-Alkyl (Va), gegebenenfalls zumindest teilweise veresterte Phosphorsäuregruppe -O-PO3R"2 mit R" gleich Wasserstoff oder C1-C6-Alkyl (Vb) oder Hydroxamatgruppe (Vc) geeignet.
  • Für sulfidische Partikel P sind insbesonders funktionelle Gruppen ausgewählt aus Thiolgruppe -SH und Xanthogenatgruppe (Vd) geeignet.
  • Für Platin- und Münzmetalle ist insbesondere die Thiolgruppe -SH geeignet.
  • B bedeutet in der Verbindung der allgemeinen Formel (VI) Alkylrest mit 1 bis 6 Kohlenstoffatomen, beispielsweise Methyl, Ethyl, Propyl, Butyl, beispielsweise n-Butyl, Pentyl oder Hexyl.
  • q bedeutet in der Verbindung der allgemeinen Formel (VI) eine ganze Zahl von 1 bis 1· 1015, bevorzugt 1· 103 bis 1· 1012. q beschreibt in der allgemeinen Formel (VI) die Anzahl der Moleküle der polymeren Verbindung, die an einen Partikel P gebunden sind. Diese Werte entsprechen einer maximalen Belegungsdichte des Partikels P von 1,67· 10-6 mol/m2, bevorzugt 1 bis 100% der maximalen Belegungsdichte. Die Anzahl der Polymermoleküle, die an einen Partikel P angebunden sind, kann durch die Menge an polymerer Verbindung im Herstellungsverfahren gesteuert werden. Die Anzahl der Polymermoleküle pro Partikel P kann durch dem Fachmann bekannte Verfahren, beispielsweise Elemeritaranalyse, bestimmt werden.
  • Funktionalisierte Partikel der allgemeinen Formel (VI) können nach dem Fachmann bekannten Verfahren hergestellt werden, beispielsweise durch Inkontaktbringen einer Lösung der polymeren Verbindung gemäß der allgemeinen Formel (III) in Wasser oder einem organischen Lösungsmittel, bevorzugt Wasser, niedermolekulare Alkohole oder Ketone und Waschen des erhaltenen Produktes mit dem entsprechenden Lösungsmittel, um überschüssige polymere Verbindung zu entfernen.
  • Funktionalisierte Partikel gemäß der allgemeinen Formel (VI) können dazu verwendet werden, wenigstens einen ersten Stoff aus einem Stoffgemisch enthaltend den wenigstens einen ersten Stoff und wenigstens einen zweiten Stoff abzutrennen, beispielsweise durch das erfindungsgemäße Verfahren. Die vorliegende Erfindung betrifft daher auch die Verwendung eines funktionalisierten Partikels gemäß der allgemeinen Formel (VI) zur Trennung von Stoffgemischen. Bezüglich der Stoffgemische und der weiteren Parameter der Stofftrennung gilt das oben Gesagte.
  • Beispiele: Beispiel 1: Herstellung des hydrophil/hydrophob schaltbaren Modifizierungsmittels
  • Das Funktionalisierungsmittel wird durch Umsetzung eines Alkoxylates der Formel n-Bu-(PO)22-OH (Pluriol A1350P, BASF SE) mit Polyphosphorsäure (Fa. thermPhos) nach dem Fachmann bekannten Methoden hergestellt. Der Umschlagbereich von hydrophil zu hydrophob wird bei 15 - 26 °C gefunden.
  • Das verwendete Alkoxylat n-Bu-(PO)22-OH weist eine OH-Zahl (OHZ) von 46,3 und ein Molekulargewicht von 1213 g/mol auf.
  • Alkoxylat und Polyphosphonsäure werden für 31,7 h bei 80°C umgesetzt. Nach 29 h wird ein Umsatz von 72% mittels Titration ermittelt, die Säurezahl beträgt 102 mg KOH/g.
  • Beispiel 2: Herstellung des hydrophil/hydrophob schaltbaren Magnetpartikels
  • Es wird eine Suspension von 100 mg des in Beispiel 1 erhaltenen Produktes in 10 mL Wasser (ca. 10°C) hergestellt. 2 g Magnetit (Magnetic Black 345, BASF; 0 4 µm) werden mit der Suspension 15 min gerührt, abfiltriert, mit 50 mL kaltem Wasser (T <10°C) gewaschen und im Vakuum bei 80°C getrocknet
  • Beispiel 3: Trennungsexperiment
  • Eine Suspension von 54 g Quarzmehl (SiO2, Microsil Typ S8 von Euroquarz), 2 g Cu2S, (325 mesh, Aldrich) und 1000 g Betriebswasser wird unter Rühren in einem Becherglas vorgelegt. 0,13 g Kalium-1-octylxanthat und 0,08 g Shellsol 40 werden zur Suspension hinzugefügt. Die Suspension wird 1 h mit einem Flügelrührer (35 rpm) gerührt und anschließend unter Rühren auf 45°C erwärmt. 2 g des hydrophil/hydrophob schaltbaren Magnetits aus Beispiel 2 werden unter Rühren hinzugegeben. Die Suspension wird weitere 30 min bei 45°C gerührt.
  • Anschließend wird die Suspension an mehreren Permanentmagneten hinter Glas vorbeigeleitet. Die magnetischen Bestandteile werden an den Magneten festgehalten, der Rest der Suspension wird aufgefangen, abfiltriert, getrocknet und auf Cu-Gehalt analysiert (Fraktion A1).
  • Die magnetischen Bestandteile werden nach der Entfernung der Permanentmagnete in kaltem Wasser (10 °C) suspendiert und erneut an den Magneten vorbeigeleitet. Der Austrag wird aufgefangen, abfiltriert, getrocknet und auf Cu-Gehalt analysiert (Fraktion A2).
  • Die an den Magneten festgehaltene Fraktion wird auf die gleiche Weise untersucht (Fraktion R). Dabei kann festgestellt werden, dass die gesamte gefundene Kupfermenge (= 100 Gew.-%) sich wie folgt auf die Fraktionen verteilt:
    A1 A2 R
    15,5 Gew.-% 39,5 Gew.-% 45,0 Gew.-%
  • Hingegen kann in der Fraktion A1 95% des eingesetzten Quarzmehls gefunden werden. Damit liegt eine eindeutige Anreicherung des Kupfers in der Fraktion A2 vor.

Claims (10)

  1. Verfahren zum Abtrennen wenigstens eines ersten Stoffes ausgewählt aus der , Gruppe bestehend aus sulfidischen Erzen, oxidischen und/oder carbonathaltigen Erzen und Mischungen davon oder Edelmetallen und deren Verbindungen, aus einer Mischung enthaltend diesen wenigstens einen ersten Stoff und wenigstens einen zweiten Stoff, umfassend die folgenden Schritte:
    (A) Inkontaktbringen der Mischung enthaltend den wenigstens einen ersten Stoff und wenigstens einen zweiten Stoff mit wenigstens einem selektiven Hydrophobierungsmittel in Gegenwart eines Suspendiermittels, so dass sich aus dem wenigstens einen Hydrophobierungsmittels und dem wenigstens einen ersten Stoff, nicht aber mit dem wenigstens einen zweiten Stoff, ein Addukt bildet,
    (B) Inkontaktbringen des Adduktes aus Schritt (A) mit wenigstens einem Magnetpartikel, der an der Oberfläche mit wenigstens einer polymeren Verbindung funktionalisiert ist, die eine Übergangstemperatur LCST (Lower Critical Solution Temperature) aufweist, bei einer Temperatur, bei der die polymere Verbindung hydrophoben Charakter aufweist, so dass das Addukt aus Schritt (A) und der wenigstens eine funktionalisierte Magnetpartikel agglomerieren,
    (C) gegebenenfalls Zugabe von weiterem Suspendiermittel zu der in Schritt (B) erhaltenen Mischung,
    (D) Abtrennen des in der Suspension aus Schritt (B) oder (C) vorliegenden Agglomerates durch Anlegen einen magnetisches Feldes,
    (E) Spalten des in Schritt (D) abgetrennten Agglomerates durch Einstellen einer Temperatur, bei der die polymere Verbindung hydrophilen Charakter aufweist, um den wenigstens einen ersten Stoff zu erhalten.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die wenigstens eine polymere Verbindung ausgewählt ist aus der Gruppe bestehend aus Polyvinylethern, Poly-N-alkyl-acrylamiden, Poly-N-vinyl-caprolactamen, Copolymeren auf Basis von Alkylenoxiden und Mischungen davon.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die wenigstens eine polymere Verbindung eine Verbindung der allgemeinen Formel (III)

            F-[(EO)x-(PO)y-(BuO)z]-B     (III)

    ist, worin
    F funktionelle Gruppe, die selektiv an den wenigstens einen Magnetpartikel bindet,
    B Alkylrest mit 1 bis 6 Kohlenstoffatomen,
    EO Ethylenoxid,
    PO Propylenoxid,
    BuO Butylenoxid,
    x ganze oder gebrochene Zahl von 0 bis 130,
    y ganze oder gebrochene Zahl von 0 bis 130 und
    z ganze oder gebrochene Zahl von 0 bis 130,
    wobei 1 ≤ x+y+z ≤ 130 gilt, bedeuten.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der wenigstens eine zweite Stoff ausgewählt ist aus der Gruppe bestehend aus oxidischen Metallverbindungen, hydroxidischen Metallverbindungen und Mischungen davon.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der wenigstens eine Magnetpartikel ausgewählt ist aus der Gruppe bestehend aus magnetischen Metallen, ferromagnetischen Legierungen von magnetischen Metallen, magnetischen Eisenoxiden, kubischen Ferriten der allgemeinen Formel (II)

            "M2+ xFe2+ 1-xFe3+ 2O4     (II)

    mit
    M ausgewählt aus Co, Ni, Mn, Zn und Mischungen davon und
    x ≤ 1,
    hexagonalen Ferriten und Mischungen davon.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die LCST der eingesetzten polymeren Verbindung -10 bis 100 °C beträgt.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass Schritt (B) bei einer Temperatur durchgeführt wird, die größer als die LCST der polymeren Verbindung und kleiner als der Siedepunkt des verwendeten Suspendiermittels ist.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass Schritt (E) bei einer Temperatur durchgeführt wird, die oberhalb der Schmelztemperatur des eingesetzten Suspendiermittels und unterhalb der LCST der polymeren Verbindung liegt.
  9. Funktionalisierte Partikel der allgemeinen Formel (VI)

            P-{F-[(EO)x-(PO)y-(BuO)z]-B}q     (VI),

    worin
    P Partikel, enthaltend wenigstens ein Metall oder Halbmetall,
    F funktionelle Gruppe,
    B Alkylrest mit 1 bis 6 Kohlenstoffatomen,
    EO Ethylenoxid,
    PO Propylenoxid,
    BuO Butylenoxid,
    x ganze oder gebrochene Zahl von 0 bis 130,
    y ganze oder gebrochene Zahl von 0 bis 130,
    z ganze oder gebrochene Zahl von 0 bis 130, mit 1 ≤ x+y+z ≤ 130, und
    q ganze Zahl von 1 bis 1 * 1015
    bedeuten.
  10. Verwendung eines funktionalisierten Partikels gemäß Anspruch 9 zur Trennung von Stoffgemischen.
EP09780763A 2008-07-18 2009-07-17 Anorganische partikel mit einer durch temperatur hydrophil/hydrophob schaltbaren organischen beschichtung Not-in-force EP2313200B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09780763A EP2313200B1 (de) 2008-07-18 2009-07-17 Anorganische partikel mit einer durch temperatur hydrophil/hydrophob schaltbaren organischen beschichtung
PL09780763T PL2313200T3 (pl) 2008-07-18 2009-07-17 Cząstki nieorganiczne z powłoką organiczną o właściwościach hydrofilowych/hydrofobowych, które mogą ulegać zmianie pod wpływem temperatury

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08160685 2008-07-18
PCT/EP2009/059215 WO2010007157A1 (de) 2008-07-18 2009-07-17 Anorganische partikel mit einer durch temperatur hydrophil/hydrophob schaltbaren organischen beschichtung
EP09780763A EP2313200B1 (de) 2008-07-18 2009-07-17 Anorganische partikel mit einer durch temperatur hydrophil/hydrophob schaltbaren organischen beschichtung

Publications (2)

Publication Number Publication Date
EP2313200A1 EP2313200A1 (de) 2011-04-27
EP2313200B1 true EP2313200B1 (de) 2012-06-27

Family

ID=41130357

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09780763A Not-in-force EP2313200B1 (de) 2008-07-18 2009-07-17 Anorganische partikel mit einer durch temperatur hydrophil/hydrophob schaltbaren organischen beschichtung

Country Status (7)

Country Link
US (1) US8434623B2 (de)
EP (1) EP2313200B1 (de)
AU (1) AU2009272672A1 (de)
CL (1) CL2011000112A1 (de)
PE (1) PE20110528A1 (de)
PL (1) PL2313200T3 (de)
WO (1) WO2010007157A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2714248A1 (de) * 2011-05-25 2014-04-09 CiDRA Corporate Services, Inc. Mineralienabscheidung mittels funktionalisierter filter und membranen

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7981688B2 (en) 2007-03-08 2011-07-19 University Of Washington Stimuli-responsive magnetic nanoparticles and related methods
US8377311B2 (en) * 2008-07-18 2013-02-19 Basf Se Selective materials separation using modified magnetic particles
AU2009324379A1 (en) 2008-12-11 2011-07-28 Basf Se Enrichment of valuable ores from mine waste (tailings)
CA2753486C (en) 2009-02-24 2016-11-01 Basf Se Cu-mo separation
UA103077C2 (uk) 2009-03-04 2013-09-10 Басф Се Магнітні гідрофобні агломерати
EP2403648B1 (de) 2009-03-04 2013-09-04 Basf Se Magnetische trennung von buntmetallerzen durch mehrstufige konditionierung
US8426214B2 (en) 2009-06-12 2013-04-23 University Of Washington System and method for magnetically concentrating and detecting biomarkers
US9080933B2 (en) 2009-11-09 2015-07-14 University Of Washington Through Its Center For Commercialization Stimuli-responsive polymer diagnostic assay comprising magnetic nanoparticles and capture conjugates
US20110117668A1 (en) * 2009-11-09 2011-05-19 University Of Washington Through Its Center For Commercialization Self-powered smart diagnostic devices
PE20131009A1 (es) * 2010-06-11 2013-09-19 Basf Se Proceso para separar al menos un primer material de una mezcla que comprende al menos el primer material, al menos un segundo material y particulas magneticas
US8865000B2 (en) 2010-06-11 2014-10-21 Basf Se Utilization of the naturally occurring magnetic constituents of ores
EA201390789A1 (ru) 2010-11-29 2013-12-30 Басф Се Магнитное извлечение ценных компонентов из шлакового материала
CN103476504B (zh) 2011-02-01 2016-11-16 巴斯夫欧洲公司 用于连续分离磁性成分和清洗磁性部分的装置
US9731221B2 (en) 2011-05-25 2017-08-15 Cidra Corporate Services, Inc. Apparatus having polymer surfaces having a siloxane functional group
GB201115823D0 (en) 2011-09-13 2011-10-26 Novel Polymer Solutions Ltd Mineral processing
PE20142378A1 (es) 2012-05-09 2015-01-29 Basf Se Aparato para la separacion con poco uso de recursos de particulas magneticas a partir de particulas no magneticas
US9216420B2 (en) 2012-05-09 2015-12-22 Basf Se Apparatus for resource-friendly separation of magnetic particles from non-magnetic particles
WO2014029715A1 (en) 2012-08-21 2014-02-27 Basf Se Magnetic arrangement for transportation of magnetized material
WO2014068142A1 (en) 2012-11-05 2014-05-08 Basf Se Apparatus for the continuous separation of magnetic constituents
PL3126053T3 (pl) 2014-03-31 2023-07-17 Basf Se Urządzenie oddzielające namagnesowany materiał
WO2016083575A1 (en) 2014-11-27 2016-06-02 Basf Se Energy input during agglomeration for magnetic separation
CA2967215A1 (en) 2014-11-27 2016-06-02 Basf Se Improvement of concentrate quality
EP3181230A1 (de) 2015-12-17 2017-06-21 Basf Se Ultraflotation mit magnetisch ansprechbaren trägerpartikeln
EP3600590A4 (de) * 2017-03-27 2020-12-30 Cidra Corporate Services LLC Entfernung hydrophober teilchen unter verwendung von kohlendioxid
CA3208646A1 (en) 2021-03-05 2022-09-09 Oliver Kuhn Magnetic separation of particles supported by specific surfactants

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3425549A (en) * 1966-03-04 1969-02-04 Petrolite Corp Flotation process
US4078993A (en) * 1975-03-06 1978-03-14 Allied Colloids Limited Processes for flotation of mineral substances
US4657666A (en) * 1981-10-26 1987-04-14 W.S.R. Pty. Ltd. Magnetic flotation
GB8726857D0 (en) 1987-11-17 1987-12-23 Fospur Ltd Froth floatation of mineral fines
US4834898A (en) * 1988-03-14 1989-05-30 Board Of Control Of Michigan Technological University Reagents for magnetizing nonmagnetic materials
DE19516323C2 (de) 1995-04-27 1997-02-27 Dirk Dipl Chem Guenther Verfahren zur Herstellung von magnetisierbaren Dispersionen und deren Verwendung
EP1316599B1 (de) 2000-08-21 2014-03-26 National Institute of Advanced Industrial Science and Technology Magnetische teilchen und verfahren zur herstellung derselben
AUPR319001A0 (en) 2001-02-19 2001-03-15 Ausmelt Limited Improvements in or relating to flotation
US6686202B2 (en) * 2001-08-08 2004-02-03 Placer Dome, Inc. Methods for detecting and extracting gold
US7563748B2 (en) 2003-06-23 2009-07-21 Cognis Ip Management Gmbh Alcohol alkoxylate carriers for pesticide active ingredients
JP2007528784A (ja) * 2004-02-11 2007-10-18 マサチューセッツ・インスティチュート・オブ・テクノロジー 多層ポリマー被覆磁性ナノクラスタ
DE102007020220B3 (de) * 2007-04-28 2008-11-13 Forschungszentrum Karlsruhe Gmbh Verfahren zur magnetisch unterstützten Extraktion
US8377311B2 (en) * 2008-07-18 2013-02-19 Basf Se Selective materials separation using modified magnetic particles
CA2753486C (en) * 2009-02-24 2016-11-01 Basf Se Cu-mo separation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2714248A1 (de) * 2011-05-25 2014-04-09 CiDRA Corporate Services, Inc. Mineralienabscheidung mittels funktionalisierter filter und membranen
EP2714248A4 (de) * 2011-05-25 2015-04-22 Cidra Corporate Services Inc Mineralienabscheidung mittels funktionalisierter filter und membranen

Also Published As

Publication number Publication date
AU2009272672A1 (en) 2010-01-21
PE20110528A1 (es) 2011-08-11
EP2313200A1 (de) 2011-04-27
US20110120919A1 (en) 2011-05-26
PL2313200T3 (pl) 2012-11-30
WO2010007157A1 (de) 2010-01-21
CL2011000112A1 (es) 2011-06-24
US8434623B2 (en) 2013-05-07

Similar Documents

Publication Publication Date Title
EP2313200B1 (de) Anorganische partikel mit einer durch temperatur hydrophil/hydrophob schaltbaren organischen beschichtung
EP2212027B1 (de) Magnetische trennung von substanzen basierend auf ihren unterschiedlichen oberflächenladungen
EP2190584B1 (de) Aufbereitung von werterzen durch magnetpartikel
EP2403649B1 (de) Magnetische hydrophobe agglomerate
EP2313201B1 (de) Selektive stofftrennung mit modifizierten magnetpartikeln
EP2376230B1 (de) Anreicherung von werterzen aus minenabfall (tailings)
EP2401084B1 (de) Cu-mo-trennung
EP2403648B1 (de) Magnetische trennung von buntmetallerzen durch mehrstufige konditionierung
EP2498913B1 (de) Verfahren zur effizienzsteigerung beim erztrennungsprozess mittels hydrophober magnetischer partikel durch gezielten eintrag mechanischer energie
EP2171106B1 (de) Verfahren zur erzanreicherung mittels hydrophober, fester oberflächen
WO2011058033A1 (de) Verfahren zur aufkonzentrierung magnetisch abgetrennter bestandteile aus erzsuspensionen und zur verlustarmen ausschleusung dieser bestandteile aus einem magnetseparator
EP0249229A2 (de) Superparamagnetische Feststoffteilchen
DE2800117A1 (de) Verfahren zum abtrennen von feststoffteilchen und vorrichtung zur durchfuehrung des verfahrens
EP2579987B1 (de) Nutzung der natürlich vorkommenden magnetischen bestandteile von erzen
WO2014154517A1 (de) Verfahren zur abtrennung von seltenerdmetallpartikeln aus einem seltenerdmetalle enthaltenden gemenge
WO2012084448A1 (de) Verfahren und vorrichtung zur trennung von öl und wasser mit hydrophobe und hydrophile funktionale feststoffpartikeln
DE19938372A1 (de) Verfahren und Vorrichtung zur Trennung magnetischer Teilchen
EP2877289A1 (de) Verfahren zur magnetischen abtrennung von fällungsprodukten aus fluiden mit hilfe von wiederverwendbaren, superparamagnetischen kompositpartikeln
DE102008013942A1 (de) Beschichtete Kunststofffolie
CA2869226A1 (en) Magnetic separation of particles including one-step-conditioning of a pulp

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110218

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DOMKE, IMME

Inventor name: HIBST, HARTMUT

Inventor name: TROPSCH, JUERGEN

Inventor name: STUTZ, SUSANNE

Inventor name: MICHAILOVSKI, ALEXEJ

Inventor name: MRONGA, NORBERT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

Owner name: BASF SE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 563846

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009003950

Country of ref document: DE

Effective date: 20120823

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20120627

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120627

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120627

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120627

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120627

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120928

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120627

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121027

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120627

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120627

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121029

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120627

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

Owner name: BASF SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120627

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121008

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20130328

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009003950

Country of ref document: DE

Effective date: 20130328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120927

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120627

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120717

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090717

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20140625

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20140728

Year of fee payment: 6

Ref country code: CZ

Payment date: 20140711

Year of fee payment: 6

Ref country code: CH

Payment date: 20140728

Year of fee payment: 6

Ref country code: NO

Payment date: 20140707

Year of fee payment: 6

Ref country code: FI

Payment date: 20140723

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20140708

Year of fee payment: 6

Ref country code: FR

Payment date: 20140731

Year of fee payment: 6

Ref country code: GB

Payment date: 20140729

Year of fee payment: 6

Ref country code: AT

Payment date: 20140627

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140729

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140930

Year of fee payment: 6

Ref country code: BE

Payment date: 20140828

Year of fee payment: 6

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009003950

Country of ref document: DE

REG Reference to a national code

Ref country code: NO

Ref legal event code: MMEP

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 563846

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150717

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150717

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20150801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150717

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160202

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150717

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150717

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150718

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150717

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150717

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731