EP2387805B1 - Verfahren zur herstellung kohlenstoffnanostrukturen auf einem flexiblen substrat und energiespeicher mit flexiblen kohlenstoffnanostruktur-elektroden - Google Patents

Verfahren zur herstellung kohlenstoffnanostrukturen auf einem flexiblen substrat und energiespeicher mit flexiblen kohlenstoffnanostruktur-elektroden Download PDF

Info

Publication number
EP2387805B1
EP2387805B1 EP10700837.7A EP10700837A EP2387805B1 EP 2387805 B1 EP2387805 B1 EP 2387805B1 EP 10700837 A EP10700837 A EP 10700837A EP 2387805 B1 EP2387805 B1 EP 2387805B1
Authority
EP
European Patent Office
Prior art keywords
sheet
metal foil
electrolyte
layer
carbon nanotube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10700837.7A
Other languages
English (en)
French (fr)
Other versions
EP2387805A1 (de
Inventor
Husnu Emrah Unalan
Nalin Lalith Rupesinghe
Gehan Amaratunga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nokia Technologies Oy
Original Assignee
Nokia Technologies Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Technologies Oy filed Critical Nokia Technologies Oy
Publication of EP2387805A1 publication Critical patent/EP2387805A1/de
Application granted granted Critical
Publication of EP2387805B1 publication Critical patent/EP2387805B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0428Chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • H01M50/469Separators, membranes or diaphragms characterised by their shape tubular or cylindrical
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0045Room temperature molten salts comprising at least one organic ion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the claimed invention was made under a joint research agreement between Nokia Corporation, Finland, and University of Cambridge, United Kingdom.
  • the joint research agreement was in effect before the date the claimed invention was made, and the claimed invention was made as a result of activities undertaken within the scope of the joint research agreement.
  • This disclosure relates to a process for producing carbon nanostructure, especially carbon nanotubes, on a flexible metallic substrate. Also the disclosure relates to energy conversion and storage devices, such as batteries and supercapacitors, having charge collectors made with the carbon nanotubes grown on the flexible substrate.
  • Lithium ion batteries are currently one of the most popular types of solid-state batteries for portable electronic devices, with one of the best energy-to-weight ratios, no memory effect, and a slow loss of charge when not in use.
  • the three primary functional components of a lithium ion battery are anode, cathode and electrolyte, for which a variety of materials may be used.
  • the most popular material for the anode is graphite.
  • the cathode may be made with an intercalation lithium compound such as lithium cobalt oxide, lithium iron phosphate, lithium manganese oxide, etc.
  • Lithium metal batteries or lithium metal polymer batteries, are rechargeable batteries that evolved from lithium-ion batteries.
  • a lithium-metal battery structure comprises a lithium metal anode, a polymer composite electrolyte and a cathode.
  • Lithium metal batteries can be produced by stacking thin films of these materials together.
  • the resulting device structure is flexible, tough, and durable.
  • the advantages of lithium metal polymer structure over the traditional lithium ion design include lower cost of manufacturing and being more robust to physical damage.
  • Supercapacitors resemble a regular capacitor with the exception that it offers very high capacitance in a small package. Energy storage is by means of static charge rather than of an electro-chemical process that is inherent to the batteries. Applying a voltage differential on the positive and negative plates charges the supercapacitor. Whereas a regular capacitor consists of conductive foils and a dry separator, the supercapacitor crosses into battery technology by using electrodes and electrolyte that are similar to lithium ion/lithium metal batteries. Hence, a combination of battery and supercapacitor is of great interest for achieving high energy density and power density. For enhanced charge storage capacity, electrode materials suitable for the battery/supercapacitor combination should have a high surface area.
  • Nanostructured carbon such as carbon nanotubes, carbon nanowires, carbon nanohorns and carbon nano-onions are being contemplated for replacing graphite.
  • carbon nanotube CNT
  • Schindall WO2007/131217
  • the conducting plates comprise metals such as aluminium coated with a multi-layer structure.
  • the multi-layer structure may comprise layers such as an aluminium layer, an alumina layer and an iron layer.
  • Carbon nanotubes extend from the conducting plates towards a separator which is disposed between the plates.
  • An electrolyte is also disposed between the plates.
  • CNT is a highly crystallized tubular structure of carbon.
  • One single nanotube is about a few nanometers in diameter and up to a hundred micrometers (microns) long. Millions of nanotubes together may form a cluster of macroscopic material that is practically useful.
  • CNTs have several important properties, including high mechanical strength, high electrical conductivity, high thermal conductivity, being able to carry high current densities, chemically resistant to attacks by strong acids or alkali, and, collectively, extremely high surface area.
  • CNTs may be grown from a smooth substrate to form a layer of densely packed, vertically aligned CNT pile (morphologically similar to a pile of fiber on a carpet).
  • a well-arranged nanostructure has an extremely high surface area.
  • the CNT layer can store significantly more electrical charge (e.g. lithium ions) than those electrodes made with conventional materials such as graphite.
  • the use of the CNT technology not only enables the energy storage unit to provide long and stable power as in a conventional battery, but also enables the quick burst of high energy that is typical of a supercapacitor.
  • a process for producing highly packed and vertically aligned CNT structure on a flexible substrate is described.
  • the flexible CNT structure thus resulted can be directly used in making batteries and supercapacitors.
  • the process is suitable for mass productions of the nanostructured carbon material and mass production of the energy storage units comprising the nanostructured carbon material.
  • a device structure in a first aspect of the invention, comprises a first sheet of a conductive material; a sheet of a substance disposed on the first sheet of the conductive material, the substance being able to conduct free ions therein; and a second sheet of same or different conductive material disposed on the sheet of the substance.
  • At least one of the first sheet and second sheet comprises a metal foil layer and a carbon nanotube layer, the carbon nanotube layer being arranged to face the sheet of the substance.
  • the carbon nanotube layer is directly grown on the metal foil layer.
  • the first sheet, the sheet of the substance and the second sheet may form a multi-layered stack, and the device may further comprise a first insulating sheet and a second insulating sheet disposed on outer surfaces of the multi-layered stack, respectively.
  • the device may have much larger width and length than thickness.
  • the device may be rolled up or folded and then hermetically sealed to form an energy storage unit.
  • the energy storage unit may be a rechargeable battery or a capacitor, and the first and the second conductive sheets are configured to engage with an external energy source or drain.
  • the metal foil may be one of the following: aluminum, copper, iron, and alloys of aluminum, copper or iron.
  • the metal foil may have a thickness of 5 to 100 micrometers (microns).
  • the carbon nanotube layer is directly grown on the metal foil by a process that comprises; coating a catalyst on a surface of the metal foil by low temperature evaporation of the catalyst; annealing the catalyst coated metal foil in ammonia gas at a first temperature; and growing the carbon nanotubes directly on the catalyst coated surface of the metal foil in a hydrocarbon gas atmosphere at a second temperature.
  • the first temperature is lower than the second temperature and the second temperature is no higher than 550[deg.] C.
  • the sheet of the substance may comprise a sheet of microperforated plastic film and an electrolyte disposed on surfaces of the plastic film.
  • the microperforated plastic film may be a membrane made of polyethylene (PE)-polypropylene (PP).
  • the electrolyte may a composite of a lithium salt and one of the following polymers: ethylene carbonate (EC), diethylene carbonate (DC) and propylene carbonate (PC).
  • the electrolyte may be a room temperature ionic liquid electrolyte.
  • the room temperature ionic liquid electrolyte may comprise 1-butyl, 3-methylimidazolium chloride ([BMIM] [Cl]), 1-25% of cellulose and a lithium salt.
  • the carbon nanotubes in the carbon nanotube layer are at least partially aligned in a direction.
  • the direction may be at least nearly perpendicular to the surface of the metal foil.
  • a process for forming a layer of carbon nanotubes on a flexible metal foil comprises coating a catalyst on a surface of the metal foil by low temperature evaporation of the catalyst; annealing the catalyst coated metal foil in ammonia gas at a first temperature; and growing the carbon nanotubes directly on the catalyst coated surface of the metal foil in a hydrocarbon gas atmosphere at a second temperature.
  • the first temperature is lower than the second temperature and the second temperature is no higher than 550[deg.] C.
  • the metal foil may be one of the following: aluminum, copper, iron, and alloys of aluminum, copper or iron.
  • the metal foil may have a thickness of 5 to 100 micrometers (microns).
  • the catalyst may comprise one of the following: iron, nickel and cobalt.
  • the catalyst may have a particle size of no more than 50 nanometers.
  • the carbon nanotubes may be grown to a length of 10 to 100 micrometers (microns).
  • the carbon nanotubes grown on the metal foil may be at least partially aligned in a direction. The direction may be at least nearly perpendicular to the surface of the metal foil, The process is carried out in a chemical vapor deposition system.
  • a method comprises providing a first sheet of a conductive material; disposing a sheet of a substance on the first sheet of the conductive material, the substance being able to conduct free ions therein; and disposing a second sheet of same or different conductive material on the sheet of the substance.
  • At least one of the first sheet and the second sheet comprises a metal foil layer and a carbon nanotube layer, the carbon nanotube layer being arranged to face the sheet of the substance.
  • the carbon nanotube layer is directly grown on the metal foil layer.
  • the first sheet, the sheet of the substance and the second sheet may form a multi-layered stack, and the method further comprises disposing a first insulating sheet and a second insulating sheet on outer surfaces of the multi-layered stack, respectively.
  • the multi-layered stack may have much larger width and length than thickness, and the method further comprises rolling up or folding the multi-layered stack; and hermetically. sealing the rolled-up or folded multi-layered stack to form an energy storage unit.
  • the energy storage unit may be a rechargeable battery or a capacitor, and the first and the second conductive sheets are configured to engage with an external energy source or drain.
  • the carbon nanotube layer may be grown directly on the metal foil layer by a process that comprises: coating a catalyst on a surface of the metal foil by low temperature evaporation of the catalyst; annealing the catalyst coated metal foil in ammonia gas at a first temperature; and growing the carbon nanotubes directly on the catalyst coated surface of the metal foil in a hydrocarbon gas atmosphere at a second temperature.
  • the first temperature is lower than the second temperature and the second temperature is no higher than 550°C.
  • the process for growing the carbon nanotube layer may be carried out in a chemical vapor deposition system.
  • Fig. 1 shows, schematically, a sheet of densely packed, vertically aligned carbon nanotubes 10 grown on a metal foil substrate 20.
  • a CNT sheet should have CNTs densely packed (one nanotube next to another with gaps between the nanotubes about the same size as the Li ion) and aligned perpendicular or nearly perpendicular to the surface of the substrate.
  • the carbon nanotubes are multiwalled carbon nanotubes.
  • the growth of the CNTs on the substrate is preferably carried out by a low temperature plasma enhanced chemical vapor deposition (PECVD) method.
  • PECVD low temperature plasma enhanced chemical vapor deposition
  • the deposition process utilizes nanoparticles of a metal catalyst to react with a hydrocarbon gas.
  • the catalyst decomposes the hydrocarbon gas to produce carbon and hydrogen.
  • the carbon dissolves into the particle and precipitates out from its circumference as the carbon nanotube.
  • the catalyst acts as a 'template' from which the carbon nanotube is formed, and by controlling the catalyst particle size and reaction time, one can tailor the nanotube diameter and length respectively to suit.
  • CNTs in contrast to solid carbon nanowires, tend to form when the catalyst particle is ⁇ 50 nm or less.
  • the CVD growth temperature is higher than 700°C, which prohibits the use of many thin and flexible substrates.
  • aligned carbon nanotubes are grown directly on thin and flexible metal foils at a temperature no higher than 550°C.
  • a metal foil is cut to size and cleaned consecutively by acetone and by isopropanol in an ultrasonic bath for 5 minutes each, followed by rinsing with de-ionized water and drying in a nitrogen flow.
  • the metal foil may be made of various metals or alloys such as Al, Cu or stainless steel, preferably Al or Cu. Conventional metal foils can be manufactured by various methods known in the art, so normally these foils are commercially available.
  • the thickness of the metal foil can be from 5 to 100 ⁇ m so long as it has sufficient mechanical strength and desired flexibility. Impurities in the metal foil should be sufficiently low so that they do not inhibit the CNT growth and contaminate the growth equipment.
  • a layer of the catalyst is deposited on the surface of the substrate by low temperature evaporation technique in a DC sputtering system (e.g. at a base pressure of 2.1 ⁇ 10 -6 atm, 20 sccms of argon flow with 50W plasma power for 20 seconds).
  • the thickness of the catalyst layer is less than 5 nanometers.
  • Suitable catalysts include iron (Fe), nickel (Ni) and cobalt (Co).
  • CNT growth is carried out in a quartz vacuum chamber of a chemical vapor deposition (CVD) system.
  • CVD chemical vapor deposition
  • One example of a commercially available CVD system is Aixtron Nanoinstruments Plasma Enhanced Chemical Vapor Deposition system.
  • One or more catalyst-coated substrates are placed on a resistively heated graphite stage in the quartz chamber. Growth temperature is controlled by a thermocouple attached to the surface of the graphite stage.
  • the metal foil substrates are heated up in an ammonia gas (NH 3 ) atmosphere to 450°C and annealed at 450°C for a predetermined period.
  • NH 3 ammonia gas
  • the temperature of the graphite stage is ramped up to 520°C (for Al foil) or to 540°C (for Cu foil) and acetylene (C 2 H 2 ) was supplied as the carbon feedstock for the CNT growth.
  • C 2 H 2 acetylene
  • the substrates are cooled to room temperature. Nitrogen gas (N 2 ) was supplied at the end of the growth. It is observed that 15 minutes of growth time may yield 30 to 40 ⁇ m long CNTs on an Al foil and 70-80 ⁇ m long CNTs on a Cu foil.
  • Figure 2 shows a Raman scattering spectrum of the CNTs grown on an Al foil.
  • the multiwalled nanotube structure is confirmed by the D and G bands in the spectrum.
  • a basic structure of a multi-layered energy storage device 100 comprises a first sheet of a conductive material 110 , a sheet of a free ion conductive electrolyte/separator 120 disposed on the first sheet of the conductive material 110 , and a second sheet of same or different conductive material 130 disposed on the sheet of the electrolyte 120 .
  • the first sheet 110 , the sheet of the electrolyte 120 and the second sheet 130 form a basic multi-layered stack.
  • the first and the second conductive sheets 110 and 130 are used as electrodes (anode and cathode, respectively).
  • the sheet of the electrolyte 120 may have different constructions.
  • the separator 126 may be a thin sheet of micro-perforated plastic such as a polymer-based membrane, e.g. a 25 ⁇ m thick polyethylene (PE) - polypropylene (PP) (trade name CELGARD), or any suitable material such as paper.
  • PE polyethylene
  • PP polypropylene
  • the separator is an ionic conductor but electric insulator that separates the first and the second conductive sheets while allowing the free ions to pass through.
  • the separator 126 may further filled with or applied thereon an electrolyte (electrolyte layers 122 and 124 on both surfaces of the separator layer 126 are shown).
  • An electrolyte is any substance containing free ions that behaves as an electrically conductive medium.
  • organic electrolytes such as ethylene carbonate (EC), diethylene carbonate (DC) and propylene carbonate (PC)
  • a room temperature ionic liquid (RTIL) electrolyte for example, 1-butyl, 3-methylimidazolium chloride ([BMIM][Cl]) composing of 1-25% cellulose and a lithium salt, can be preferably used as a gel electrolyte for the fabrication of a fully solid state rechargeable battery.
  • RTIL gels are non-flammable, flexible and environmentally safe.
  • the first conductive sheet 110 and/or the second conductive sheet 130 may further comprise a metal foil base layer (acting as a charge collector) and a charge storage or charge supply layer.
  • the charge storages layer may be composed of the carbon nanotube structure and it may be grown on the base layer as shown in Fig. 1 .
  • the charge supply layer may be composed of a compound, such as a lithium metal oxide, or lithium metal, depending on the type of the device.
  • the charge storage layer and charge supply layer face the electrolyte layer 120 .
  • the device structure 100 further comprises a first insulator sheet 140 and a second insulator sheet 150 disposed on outer surfaces of the multiplayer stack.
  • Lithium ion battery structure 1. Lithium ion battery structure
  • FIGS 4a and 4b show respectively the charge and discharge mechanisms of a lithium ion battery 200 according to the present invention.
  • the anode 210 negative electrode
  • the cathode 220 positive electrode
  • lithium metal oxide layer 222 and a metal foil charge collector layer 224 .
  • lithium metal oxide include lithium cobalt oxide (LiCoO 2 ), lithium manganese oxide (LiMnO 4 ) and lithium nickel oxide (LiNiO 2 ).
  • a more advanced cathode may be made with LiFePO 4 .
  • FIG. 5 shows a structure of a rechargeable lithium metal battery 300 according to the present invention.
  • the cathode 310 is made of a CNT layer 312 directly grown on a metal foil substrate 314
  • the anode 320 is made of a layer of lithium metal 322 and a metal foil charge collector layer 324 .
  • the lithium ions diffuse through the electrolyte/separator 330 .
  • supercapacitors Like regular capacitors, supercapacitors use the surface of the conductive plates for charge storage. The higher the surface area, generally the higher charge storage capacity. Therefore, high-surface-area CNTs are inherently suitable for use in the supercapacitors. In fact, many of the same materials as used in lithium metal/lithium ion batteries may be used in superpacitors.
  • FIG. 6 shows schematically a supercapacitor structure 400 according to the present invention.
  • the structure comprises charge plates 410 and 420 , separated by a separator/electrolyte 430 .
  • One or both of the charge plates 410 and 420 are composed of CNTs grown on a flexible metal foil for providing extremely high surface areas.
  • FIG. 7 shows a particular example of the multi-layered energy storage structure of Fig. 3 , in which, according to the present invention, at least one of the layers is a layer of CNTs grown on a metal foil.
  • the structure 500 comprises a first layer of insulator 510, a metal foil charge collector 520 , a layer of Li metal foil or lithium metal oxide 530, a layer of separator integrated with solid state lithium electrolyte 540 as mentioned above, a layer of metal foil 550 with CNT structure directly grown thereon, wherein the CNT layer facing the electrolyte, and a second layer of insulator 560 .
  • the width and length of the stack are much larger than its thickness.
  • a practical energy storage unit is made by folding or rolling up the stacked sheets.
  • the multi layer stack 500 is rolled into a cylindrical shape.
  • the roll is then hermetically sealed.
  • the fabrication process takes place in an inert gas environment that is oxygen-free (e.g. oxygen level not exceeding 5 ppm).
  • Figure 8 is exemplary cyclic voltammetry data of a supercapacitor made with CNTs grown on flexible Al foil, compared with the same supercapacitor made with a graphite plate. The data show that the supercapacitor made with the CNT layer can achieve much higher discharge current density.
  • the present invention provides a process for growing CNT nanostructure on a flexible metal foil substrate.
  • the CNT nanostructure can be directly used in fabrication energy conversion and storage units suitable for portable electronic devices. Due to the extremely large surface area, aligned CNTs on a metal foils is very advantageous over traditional graphite electrodes.
  • the application can also be extended to photovoltaic devices and fuel cells which use the same electrode structure.
  • other carbon nanostructured materials such as carbon nanohorns and carbon nano-onions can also be deposited directly on such flexible metal substrates. This process can further enable the roll-to-roll fabrication of nanostructured electrodes for industrialized mass production.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Claims (15)

  1. Vorrichtung (100), umfassend:
    eine erste Lage aus einem leitfähigen Material (110);
    eine Lage aus einem Elektrolyten (120), die auf der ersten Lage des leitfähigen Materials (110) angeordnet ist; und
    eine zweite Lage aus leitfähigem Material (130), die auf der Lage des Elektrolyten (120) angeordnet ist,
    wobei wenigstens eine von der ersten Lage (110) und der zweiten Lage (130) eine Metallfolienschicht und eine Kohlenstoff-Nanoröhrchen-Schicht (10) umfasst, wobei die Kohlenstoff-Nanoröhrchen-Schicht (10) der Lage des Elektrolyten (120) zugewandt angeordnet ist und wobei die Kohlenstoff-Nanoröhrchen-Schicht (10) direkt auf der Metallfolienschicht (20) gewachsen ist.
  2. Vorrichtung (100) gemäß Anspruch 1, wobei die erste Lage (110), die Lage des Elektrolyten (120) und die zweite Lage (130) einen mehrschichtigen Stapel bilden und die Vorrichtung (100) ferner eine erste isolierende Lage und eine zweite isolierende Lage umfasst, die jeweils an Außenoberflächen des mehrschichtigen Stapels angeordnet sind.
  3. Vorrichtung (100) gemäß Anspruch 1 oder 2, wobei die Vorrichtung (100) eine viel größere Breite und Länge als Dicke aufweist, wobei die Vorrichtung (100) aufgerollt oder gefaltet und dann luftdicht verschlossen ist, um eine Energiespeichereinheit zu bilden.
  4. Vorrichtung (100) gemäß Anspruch 3, wobei die Energiespeichereinheit eine wiederaufladbare Batterie oder ein Kondensator ist und die erste und die zweite Lage leitfähige dafür gestaltet sind, mit einer externen Energiequelle oder -senke verbunden zu werden.
  5. Vorrichtung (100) gemäß einem der vorstehenden Ansprüche, wobei die Metallfolie (20) eines der folgenden ist: Aluminium, Kupfer, Eisen und Legierungen von Aluminium, Kupfer oder Eisen und/oder wobei die Metallfolie (20) eine Dicke von 5 bis 100 Mikrometer aufweist.
  6. Vorrichtung (100) gemäß einem der vorstehenden Ansprüche, wobei die Lage aus dem Elektrolyten (120) eine Lage aus einem mikroperforierten Kunststofffilm und den Elektrolyten (120) auf Oberflächen des Kunststofffilms angeordnet umfasst.
  7. Vorrichtung (100) gemäß Anspruch 6, wobei der mikroperforierte Kunststofffilm eine Membran bestehend aus Polyethylen(PE)-Polypropylen(PP) ist.
  8. Vorrichtung (100) gemäß Anspruch 5 oder 6, wobei der Elektrolyt (120) ein Verbundstoff aus einem Lithiumsalz und einem der folgenden Polymere ist: Ethylencarbonat (EC), Diethylencarbonat (DC) und Propylencarbonat (PC), oder der Elektrolyt (120) ein bei Raumtemperatur ionischer, flüssiger Elektrolyt ist.
  9. Vorrichtung (100) gemäß einem der vorstehenden Ansprüche, wobei die Kohlenstoff-Nanoröhrchen in der Kohlenstoff-Nanoröhrchen-Schicht (10) wenigstens teilweise in eine Richtung ausgerichtet sind, wobei die Richtung wenigstens beinahe senkrecht auf die Oberfläche der Metallfolie (20) steht.
  10. Vorrichtung (100) gemäß einem der vorstehenden Ansprüche, wobei die Kohlenstoff-Nanoröhrchen-Schicht (10) auf der Metallfolienschicht angeordnet ist und der Elektrolyt (120) auf der Kohlenstoff-Nanoröhrchen-Schicht (10) angeordnet ist.
  11. Verfahren, umfassend:
    Bereitstellen einer ersten Lage aus einem leitfähigen Material (110);
    Anordnen einer Lage aus einem Elektrolyten (120) auf der ersten Lage des leitfähigen Materials (110); und
    Anordnen einer zweiten Lage aus leitfähigem Material (130) auf der Lage des Elektrolyten (120),
    wobei wenigstens eine von der ersten Lage (110) und der zweiten Lage (130) eine Metallfolienschicht (20) und eine Kohlenstoff-Nanoröhrchen-Schicht (10) umfasst, wobei die Kohlenstoff-Nanoröhrchen-Schicht (10) der Lage des Elektrolyten (120) zugewandt angeordnet ist und wobei die Kohlenstoff-Nanoröhrchen-Schicht (10) direkt auf der Metallfolienschicht (20) gewachsen ist.
  12. Verfahren gemäß Anspruch 11, wobei die Kohlenstoff-Nanoröhrchen-Schicht (10) durch ein Verfahren direkt auf der Metallfolienschicht (20) gewachsen ist, das umfasst:
    Aufschichten eines Katalysators auf eine Oberfläche der Metallfolie (20) durch Tieftemperaturverdampfen des Katalysators;
    Tempern der katalysatorbeschichteten Metallfolie (20) in Ammoniakgas bei einer ersten Temperatur; und
    Aufwachsen der Kohlenstoff-Nanoröhrchen (10) direkt auf die katalysatorbeschichtete Oberfläche der Metallfolie (20) in einer Kohlenwasserstoffgas-Atmosphäre bei einer zweiten Temperatur,
    wobei die erste Temperatur tiefer ist als die zweite Temperatur und die zweite Temperatur nicht höher ist als 550 °C.
  13. Verfahren gemäß Anspruch 12, wobei die Metallfolie (20) eines der folgenden ist: Aluminium, Kupfer, Eisen und Legierungen von Aluminium, Kupfer oder Eisen und/oder wobei die Metallfolie (20) eine Dicke von 5 bis 100 Mikrometer aufweist.
  14. Verfahren gemäß Anspruch 12 oder 13, wobei der Katalysator eines der folgenden umfasst: Eisen, Nickel und Kobalt und/oder eine Partikelgröße von nicht mehr als 50 Nanometer aufweist.
  15. Verfahren gemäß einem der Ansprüche 12 bis 14, wobei die Kohlenstoff-Nanoröhrchen-Schicht (10) in einem chemischen Dampfabscheidungssystem gewachsen ist; wobei die Kohlenstoff-Nanoröhrchen (10) auf eine Länge von 10 bis 100 Mikrometer gewachsen sind und/oder wobei die Kohlenstoff-Nanoröhrchen (10), die auf der Metallfolie (20) gewachsen sind, wenigstens teilweise in eine Richtung ausgerichtet sind, wobei die Richtung wenigstens beinahe senkrecht auf die Oberfläche der Metallfolie (20) steht.
EP10700837.7A 2009-01-13 2010-01-08 Verfahren zur herstellung kohlenstoffnanostrukturen auf einem flexiblen substrat und energiespeicher mit flexiblen kohlenstoffnanostruktur-elektroden Not-in-force EP2387805B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/319,933 US20100178568A1 (en) 2009-01-13 2009-01-13 Process for producing carbon nanostructure on a flexible substrate, and energy storage devices comprising flexible carbon nanostructure electrodes
PCT/EP2010/050165 WO2010081769A1 (en) 2009-01-13 2010-01-08 A process for producing carbon nanostructure on a flexible substrate, and energy storage devices comprising flexible carbon nanostructure electrodes

Publications (2)

Publication Number Publication Date
EP2387805A1 EP2387805A1 (de) 2011-11-23
EP2387805B1 true EP2387805B1 (de) 2017-06-21

Family

ID=41720609

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10700837.7A Not-in-force EP2387805B1 (de) 2009-01-13 2010-01-08 Verfahren zur herstellung kohlenstoffnanostrukturen auf einem flexiblen substrat und energiespeicher mit flexiblen kohlenstoffnanostruktur-elektroden

Country Status (4)

Country Link
US (1) US20100178568A1 (de)
EP (1) EP2387805B1 (de)
CN (1) CN102282705B (de)
WO (1) WO2010081769A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111146009A (zh) * 2019-12-11 2020-05-12 广西大学 一种电致变色超级电容器材料的制备方法及其应用

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9005755B2 (en) 2007-01-03 2015-04-14 Applied Nanostructured Solutions, Llc CNS-infused carbon nanomaterials and process therefor
US8951631B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused metal fiber materials and process therefor
US8951632B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused carbon fiber materials and process therefor
US9406985B2 (en) * 2009-01-13 2016-08-02 Nokia Technologies Oy High efficiency energy conversion and storage systems using carbon nanostructured materials
US20100216023A1 (en) * 2009-01-13 2010-08-26 Di Wei Process for producing carbon nanostructure on a flexible substrate, and energy storage devices comprising flexible carbon nanostructure electrodes
US20100224129A1 (en) 2009-03-03 2010-09-09 Lockheed Martin Corporation System and method for surface treatment and barrier coating of fibers for in situ cnt growth
CN102388171B (zh) * 2009-04-10 2015-02-11 应用纳米结构方案公司 用于在连续移动的基底上生产碳纳米管的设备和方法
KR101089860B1 (ko) * 2009-06-09 2011-12-05 삼성전기주식회사 슈퍼캐패시터 및 그 제조방법
US9786444B2 (en) * 2009-06-25 2017-10-10 Nokia Technologies Oy Nano-structured flexible electrodes, and energy storage devices using the same
US9005806B2 (en) * 2009-10-15 2015-04-14 Nokia Corporation Nano-structured lithium-sulfur battery and method of making same
US8817452B2 (en) * 2009-12-21 2014-08-26 Ultora, Inc. High performance carbon nanotube energy storage device
EP2558623A4 (de) * 2010-01-15 2014-03-05 Applied Nanostructured Sols Vorrichtung und verfahren zur herstellung von kohlenstoffnanoröhrchen auf einem kontinuierlich bewegten substrat
CN103210525B (zh) * 2010-11-26 2015-11-25 株式会社爱发科 锂硫二次电池用正极及其形成方法
US9245694B2 (en) * 2011-05-12 2016-01-26 The Regents Of The University Of California Solid-state supercapacitor
US9324508B2 (en) 2011-06-15 2016-04-26 Nokia Technologies Oy Substrate for electrode capable of undergoing reversible deformation
US9001322B2 (en) * 2011-08-30 2015-04-07 Cornell University Surface enhanced raman scattering (SERS) apparatus, methods and applications
CN103187573B (zh) * 2011-12-28 2016-01-20 清华大学 锂离子电池电极
US10734166B2 (en) 2013-03-15 2020-08-04 Zapgo Ltd Structure for electric energy storage using carbon nanotubes
US10546698B2 (en) 2013-03-15 2020-01-28 Zapgo Ltd Structure for electric energy storage using carbon nanotubes
US10380471B2 (en) * 2013-07-23 2019-08-13 Capital One Services, Llc Dynamic transaction card power management
US11270850B2 (en) 2013-12-20 2022-03-08 Fastcap Systems Corporation Ultracapacitors with high frequency response
WO2015138038A2 (en) * 2013-12-20 2015-09-17 Fastcap Systems Corporation Ultracapacitors with high frequency response
US9251778B2 (en) 2014-06-06 2016-02-02 Industrial Technology Research Institute Metal foil with microcracks, method of manufacturing the same, and sound-absorbing structure having the same
WO2016160703A1 (en) 2015-03-27 2016-10-06 Harrup Mason K All-inorganic solvents for electrolytes
CN107949853A (zh) 2015-04-14 2018-04-20 第资本服务公司 防篡改动态交易卡和提供防篡改动态交易卡的方法
JP6693226B2 (ja) * 2016-03-30 2020-05-13 Tdk株式会社 全固体型二次電池
CN106229556A (zh) * 2016-09-05 2016-12-14 南方科技大学 柔性电池及柔性电池的制备方法
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
KR20190083368A (ko) 2016-12-02 2019-07-11 패스트캡 시스템즈 코포레이션 복합 전극
US11557765B2 (en) 2019-07-05 2023-01-17 Fastcap Systems Corporation Electrodes for energy storage devices
CN111276334A (zh) * 2020-02-05 2020-06-12 沈新平 纳米电容电池

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007131217A2 (en) * 2006-05-05 2007-11-15 Massachusetts Institute Of Technology Engineered structure for charge storage and method of making

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3621032A (en) * 1969-03-06 1971-11-16 Uniroyal Inc Tricyclic polysulfur compounds and process for their preparation
US4315163A (en) * 1980-09-16 1982-02-09 Frank Bienville Multipower electrical system for supplying electrical energy to a house or the like
US5346683A (en) * 1993-03-26 1994-09-13 Gas Research Institute Uncapped and thinned carbon nanotubes and process
JP3298735B2 (ja) * 1994-04-28 2002-07-08 科学技術振興事業団 フラーレン複合体
US6017651A (en) * 1994-11-23 2000-01-25 Polyplus Battery Company, Inc. Methods and reagents for enhancing the cycling efficiency of lithium polymer batteries
US5780101A (en) * 1995-02-17 1998-07-14 Arizona Board Of Regents On Behalf Of The University Of Arizona Method for producing encapsulated nanoparticles and carbon nanotubes using catalytic disproportionation of carbon monoxide
WO1997019208A1 (en) * 1995-11-22 1997-05-29 Northwestern University Method of encapsulating a material in a carbon nanotube
US5726524A (en) * 1996-05-31 1998-03-10 Minnesota Mining And Manufacturing Company Field emission device having nanostructured emitters
JP3183845B2 (ja) * 1997-03-21 2001-07-09 財団法人ファインセラミックスセンター カーボンナノチューブ及びカーボンナノチューブ膜の製造方法
US6110619A (en) * 1997-12-19 2000-08-29 Moltech Corporation Electrochemical cells with cationic polymers and electroactive sulfur compounds
KR20010074667A (ko) * 1998-06-19 2001-08-08 추후보정 자립 정렬형 탄소 나노튜브 및 그 합성방법
JP4234812B2 (ja) * 1998-07-25 2009-03-04 独立行政法人科学技術振興機構 単層カーボンナノホーン構造体とその製造方法
US6283812B1 (en) * 1999-01-25 2001-09-04 Agere Systems Guardian Corp. Process for fabricating article comprising aligned truncated carbon nanotubes
KR100376197B1 (ko) * 1999-06-15 2003-03-15 일진나노텍 주식회사 탄소 소오스 가스 분해용 촉매금속막을 이용한탄소나노튜브의 저온 합성 방법
JP3885100B2 (ja) * 2000-08-12 2007-02-21 エルジー・ケミカル・カンパニー・リミテッド 多成分系複合フィルム及びその製造方法
CA2426156C (en) * 2000-10-20 2011-04-05 Massachusetts Institute Of Technology Reticulated and controlled porosity battery structures
WO2002075831A1 (fr) * 2001-03-19 2002-09-26 Nec Corporation Électrode de pile à combustible, et pile à combustible pourvue de cette électrode
GB0122300D0 (en) * 2001-09-14 2001-11-07 Univ Cambridge Tech Method of producing nanoparticles
AUPR977301A0 (en) * 2001-12-28 2002-01-31 Energy Storage Systems Pty Ltd An electrode for an energy storage device
KR20040081186A (ko) * 2002-02-07 2004-09-20 후지 주코교 카부시키카이샤 레독스 활성 가역 전극 및 이를 사용한 신규한 전지
JP3913573B2 (ja) * 2002-02-26 2007-05-09 本田技研工業株式会社 燃料電池
JP3877302B2 (ja) * 2002-06-24 2007-02-07 本田技研工業株式会社 カーボンナノチューブの形成方法
KR20040017094A (ko) * 2002-08-20 2004-02-26 삼성에스디아이 주식회사 안전변을 구비한 파우치형 이차전지
TWI236778B (en) * 2003-01-06 2005-07-21 Hon Hai Prec Ind Co Ltd Lithium ion battery
US20040160156A1 (en) * 2003-02-19 2004-08-19 Matsushita Electric Industrial Co., Ltd. Electrode for a battery and production method thereof
KR100584671B1 (ko) * 2004-01-14 2006-05-30 (주)케이에이치 케미컬 황 또는 금속 나노입자를 접착제로 사용하는 탄소나노튜브또는 탄소나노파이버 전극의 제조방법 및 이에 의해제조된 전극
US20060233692A1 (en) * 2004-04-26 2006-10-19 Mainstream Engineering Corp. Nanotube/metal substrate composites and methods for producing such composites
JP4843908B2 (ja) * 2004-05-18 2011-12-21 富士ゼロックス株式会社 二次電池及び発電方法
US7638230B2 (en) * 2004-09-03 2009-12-29 Panasonic Corporation Lithium ion secondary battery
FR2880198B1 (fr) * 2004-12-23 2007-07-06 Commissariat Energie Atomique Electrode nanostructuree pour microbatterie
KR100696621B1 (ko) * 2005-05-11 2007-03-19 삼성에스디아이 주식회사 연료전지용 전극기재, 이의 제조방법 및 이를 포함하는막-전극 어셈블리
FR2885913B1 (fr) * 2005-05-18 2007-08-10 Centre Nat Rech Scient Element composite comprenant un substrat conducteur et un revetement metallique nanostructure.
JP2006339093A (ja) * 2005-06-06 2006-12-14 Matsushita Electric Ind Co Ltd 巻回型非水電解液二次電池およびその負極
JP5040042B2 (ja) * 2005-11-24 2012-10-03 トヨタ自動車株式会社 燃料電池
FR2895572B1 (fr) * 2005-12-23 2008-02-15 Commissariat Energie Atomique Materiau a base de nanotubes de carbone et de silicium utilisable dans des electrodes negatives pour accumulateur au lithium
US20070190422A1 (en) * 2006-02-15 2007-08-16 Fmc Corporation Carbon nanotube lithium metal powder battery
JP5121710B2 (ja) * 2006-07-05 2013-01-16 独立行政法人物質・材料研究機構 液状フラーレン誘導体、その製造方法およびそれを用いた素子
US20080212261A1 (en) * 2006-07-05 2008-09-04 Rensselaer Polytechnic Institute Energy storage devices and composite articles associated with the same
CN100591613C (zh) * 2006-08-11 2010-02-24 清华大学 碳纳米管复合材料及其制造方法
JP5239311B2 (ja) * 2006-11-27 2013-07-17 株式会社デンソー 集電体、電極および蓄電装置
CN101256427A (zh) * 2007-02-26 2008-09-03 鸿富锦精密工业(深圳)有限公司 笔记本电脑
CN101315974B (zh) * 2007-06-01 2010-05-26 清华大学 锂离子电池负极及其制备方法
US7816031B2 (en) * 2007-08-10 2010-10-19 The Board Of Trustees Of The Leland Stanford Junior University Nanowire battery methods and arrangements
KR20090038309A (ko) * 2007-10-15 2009-04-20 삼성전자주식회사 이차전지용 전극, 그 제조방법 및 이를 채용한 이차전지
CN101465434B (zh) * 2007-12-19 2010-09-29 清华大学 燃料电池膜电极及其制备方法
CN101635362B (zh) * 2008-07-25 2012-03-28 清华大学 膜电极及采用该膜电极的燃料电池
US20100216023A1 (en) * 2009-01-13 2010-08-26 Di Wei Process for producing carbon nanostructure on a flexible substrate, and energy storage devices comprising flexible carbon nanostructure electrodes
US9406985B2 (en) * 2009-01-13 2016-08-02 Nokia Technologies Oy High efficiency energy conversion and storage systems using carbon nanostructured materials
US9005806B2 (en) * 2009-10-15 2015-04-14 Nokia Corporation Nano-structured lithium-sulfur battery and method of making same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007131217A2 (en) * 2006-05-05 2007-11-15 Massachusetts Institute Of Technology Engineered structure for charge storage and method of making

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111146009A (zh) * 2019-12-11 2020-05-12 广西大学 一种电致变色超级电容器材料的制备方法及其应用
CN111146009B (zh) * 2019-12-11 2021-12-31 广西大学 一种电致变色超级电容器材料的制备方法及其应用

Also Published As

Publication number Publication date
EP2387805A1 (de) 2011-11-23
WO2010081769A1 (en) 2010-07-22
CN102282705B (zh) 2014-11-12
US20100178568A1 (en) 2010-07-15
CN102282705A (zh) 2011-12-14

Similar Documents

Publication Publication Date Title
EP2387805B1 (de) Verfahren zur herstellung kohlenstoffnanostrukturen auf einem flexiblen substrat und energiespeicher mit flexiblen kohlenstoffnanostruktur-elektroden
EP2387806B1 (de) Hocheffiziente energieumwandlungseinrichtung und energiespeicher unter verwendung von kohlenstoffnanostrukturiertem material
US20100216023A1 (en) Process for producing carbon nanostructure on a flexible substrate, and energy storage devices comprising flexible carbon nanostructure electrodes
US11244791B2 (en) Rechargeable power source for mobile devices which includes an ultracapacitor
EP1903628A2 (de) Negativ-Elektrodenaktivmaterial für eine Stromspeicherungsvorrichtung und Herstellungsverfahren dafür
WO2016201101A1 (en) Sulfur-containing carbon nanotube arrays as electrodes
WO2017011052A2 (en) Vertically aligned carbon nanotube arrays as electrodes
JP2016528678A (ja) セパレータフリー型シリコン‐硫黄電池用カーボンナノチューブ‐グラフェンハイブリッド構造
WO2010068651A2 (en) Three-dimensional battery with hybrid nano-carbon layer
US20140126112A1 (en) Carbon nanotubes attached to metal foil
WO2017034650A2 (en) Germanium-containing carbon nanotube arrays as electrodes
KR20160068990A (ko) 하이브리드 탄소 나노튜브 및 그래핀 나노구조
US10546698B2 (en) Structure for electric energy storage using carbon nanotubes
US10734166B2 (en) Structure for electric energy storage using carbon nanotubes
WO2020080520A1 (ja) キャパシタ及びキャパシタ用電極
KR102423246B1 (ko) 그래핀층을 포함하는 집전체, 이를 포함하는 리튬이온전지 및 슈퍼커패시터
US20220328830A1 (en) Graphene Nanoribbons as Electrode Materials in Energy Storage Devices
CN116097383A (zh) 用于超级电容器应用的在微结构化的金属基底上的直接生长的交联的碳纳米管
TR2023016816T2 (tr) Enerji̇ depolama ci̇hazlarinda elektrot malzemeleri̇ olarak grafen nanoşeri̇tler

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110811

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20120921

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NOKIA CORPORATION

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NOKIA TECHNOLOGIES OY

RIC1 Information provided on ipc code assigned before grant

Ipc: B82Y 30/00 20110101ALI20161201BHEP

Ipc: H01M 10/0525 20100101ALI20161201BHEP

Ipc: H01M 10/0565 20100101ALI20161201BHEP

Ipc: H01M 10/0587 20100101ALI20161201BHEP

Ipc: H01M 10/0567 20100101ALI20161201BHEP

Ipc: H01M 2/16 20060101ALI20161201BHEP

Ipc: H01M 4/133 20100101ALI20161201BHEP

Ipc: H01M 4/1393 20100101ALI20161201BHEP

Ipc: H01M 4/587 20100101ALN20161201BHEP

Ipc: H01M 4/66 20060101AFI20161201BHEP

Ipc: H01G 11/36 20130101ALI20161201BHEP

Ipc: H01M 10/0566 20100101ALI20161201BHEP

Ipc: B82Y 40/00 20110101ALI20161201BHEP

Ipc: H01M 4/04 20060101ALI20161201BHEP

Ipc: C01B 31/02 00000000ALI20161201BHEP

Ipc: H01M 2/18 20060101ALN20161201BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H01M 2/18 20060101ALN20161220BHEP

Ipc: H01M 10/0587 20100101ALI20161220BHEP

Ipc: H01M 10/0565 20100101ALI20161220BHEP

Ipc: B82Y 40/00 20110101ALI20161220BHEP

Ipc: H01G 11/36 20130101ALI20161220BHEP

Ipc: H01M 10/0525 20100101ALI20161220BHEP

Ipc: B82Y 30/00 20110101ALI20161220BHEP

Ipc: H01M 2/16 20060101ALI20161220BHEP

Ipc: H01M 4/04 20060101ALI20161220BHEP

Ipc: H01M 4/66 20060101AFI20161220BHEP

Ipc: C01B 31/02 00000000ALI20161220BHEP

Ipc: H01M 4/1393 20100101ALI20161220BHEP

Ipc: H01M 4/133 20100101ALI20161220BHEP

Ipc: H01M 4/587 20100101ALN20161220BHEP

INTG Intention to grant announced

Effective date: 20170118

RIC1 Information provided on ipc code assigned before grant

Ipc: H01M 4/04 20060101ALI20170109BHEP

Ipc: H01M 10/0587 20100101ALI20170109BHEP

Ipc: H01M 10/0565 20100101ALI20170109BHEP

Ipc: H01M 2/16 20060101ALI20170109BHEP

Ipc: B82Y 40/00 20110101ALI20170109BHEP

Ipc: B82Y 30/00 20110101ALI20170109BHEP

Ipc: H01M 4/587 20100101ALN20170109BHEP

Ipc: H01M 4/66 20060101AFI20170109BHEP

Ipc: H01G 11/36 20130101ALI20170109BHEP

Ipc: H01M 4/133 20100101ALI20170109BHEP

Ipc: H01M 10/0525 20100101ALI20170109BHEP

Ipc: H01M 2/18 20060101ALN20170109BHEP

Ipc: H01M 4/1393 20100101ALI20170109BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 903676

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010043087

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170922

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170921

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 903676

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170921

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171021

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010043087

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

26N No opposition filed

Effective date: 20180322

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602010043087

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20180201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180801

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180108

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180928

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180201

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170621

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621