ELEMENT EN COUCHES ET DISPOSITIF PHOTOVOLTAÏQUE COMPRENANT UN TEL ELEMENT
La présente invention a trait à un élément en couches, notamment pour un dispositif photovoltaïque. L'invention a également trait à un dispositif photovoltaïque comprenant un tel élément en couches, ainsi qu'à un procédé de fabrication d'un tel élément en couches.
Au sens de l'invention, un dispositif photovoltaïque désigne une cellule photovoltaïque ou un module photovoltaïque. De manière connue, une cellule solaire photovoltaïque à couches minces comprend une couche d'un matériau absorbeur, propre à assurer la conversion de l'énergie lumineuse en énergie électrique, qui est intercalée entre deux couches électriquement conductrices formant respectivement une électrode avant, destinée à être disposée du côté d'incidence de la lumière sur la cellule, et une électrode arrière. La couche d'absorbeur peut notamment être une couche mince de composé chalcopyrite comportant du cuivre, de l'indium et du sélénium, dite couche d'absorbeur CIS, éventuellement additionnée de gallium (couche d'absorbeur CIGS), d'aluminium ou de soufre. En variante, la couche d'absorbeur peut être une couche mince à base de silicium, amorphe ou microcristallin, ou à base de tellurure de cadmium.
L'électrode avant d'une cellule photovoltaïque à couches minces peut être formée à base d'une couche d'oxyde conducteur transparent (Transparent Conductive Oxide ou TCO), par exemple une couche d'oxyde de zinc dopé, notamment à l'aluminium (AZO) ou au bore, ou à base d'une couche métallique transparente (Transparent Conductive Coating ou TCC). Il est connu que les propriétés d'une telle couche formant électrode avant de cellule photovoltaïque sont, pour certaines compositions de couche et en particulier pour une couche comprenant de l'oxyde de zinc, susceptibles d'être dégradées sous l'effet de l'humidité. L'électrode avant d'une cellule photovoltaïque à couches minces est classiquement associée, du côté d'incidence de la lumière sur la cellule, à un substrat à fonction verrière, ou substrat avant, qui peut être constitué en un
verre transparent ou en un polymère thermoplastique transparent, tel que le polyéthylène, notamment le polytétrafluoroéthylène (PTFE), le polyimide, le polycarbonate, le polyuréthane ou le polyméthacrylate de méthyle. Dans le cas d'une cellule photovoltaïque comportant une couche d'absorbeur à base de composé chalcopyrite et un substrat avant en verre, un intercalaire de feuilletage polymère transparent est positionné entre l'électrode avant et le substrat avant, afin de garantir une bonne cohésion de la cellule lors de son assemblage, notamment par laminage. Or, il a été constaté que, lorsqu'une cellule photovoltaïque à couches minces comprend un intercalaire de feuilletage polymère ou un substrat polymère positionné sur une couche sensible à l'humidité formant l'électrode avant de la cellule, notamment une couche à base d'oxyde de zinc, la cellule présente un taux de dégradation important sous l'effet de l'humidité. En effet, la présence de l'intercalaire de feuilletage, qui tend à stocker l'humidité, ou du substrat polymère, qui est perméable à l'humidité, favorise la migration d'humidité vers la couche sensible à l'humidité formant électrode avant, et donc l'altération des propriétés de cette couche.
WO-A-97/36334 décrit une cellule photovoltaïque à couches minces dans laquelle une couche barrière à l'humidité est intercalée entre une couche à base d'oxyde de zinc formant l'électrode avant de la cellule et un intercalaire de feuilletage polymère surmontant l'électrode. Une telle couche barrière permet de limiter la migration d'humidité depuis l'intercalaire de feuilletage polymère vers la couche à base d'oxyde de zinc formant électrode avant. Toutefois, du fait de la présence de cette couche barrière, la transmission de lumière à l'interface entre l'intercalaire de feuilletage polymère et la couche formant électrode avant, qui est déjà limitée du fait d'une forte différence d'indices de réfraction entre l'intercalaire de feuilletage et la couche à base d'oxyde de zinc, est susceptible d'être dégradée. Il en résulte un risque de diminution du flux lumineux atteignant la couche d'absorbeur de la cellule photovoltaïque, et donc un risque de diminution du rendement de la cellule.
C'est à ces inconvénients qu'entend plus particulièrement remédier l'invention en proposant un élément en couches qui, lorsqu'il est intégré dans
un dispositif photovoltaïque à couches minces, confère à ce dispositif une résistance améliorée à l'humidité, sans diminution du rendement du dispositif photovoltaïque, voire même avec une augmentation de ce rendement.
A cet effet, l'invention a pour objet un élément en couches, notamment pour un dispositif photovoltaïque, comprenant une couche polymère, une couche sensible à l'humidité et un revêtement de protection formant barrière à l'humidité intercalé entre la couche polymère et la couche sensible à l'humidité, caractérisé en ce que le revêtement de protection consiste en un empilement antireflet comprenant au moins deux couches minces d'indices de réfraction différents l'un par rapport à l'autre.
Au sens de l'invention, un empilement antireflet est un empilement qui assure une transmission à travers l'élément en couches d'un rayonnement, incident sur l'élément en couches du côté de la couche polymère, supérieure ou égale à la transmission de ce rayonnement obtenue en l'absence d'empilement antireflet. Dans le cadre de l'invention, on entend également par couche mince une couche d'épaisseur inférieure à 1 micromètre.
Dans l'ensemble de cette description, les valeurs numériques d'indices de réfraction sont données à 550 nm sous illuminant D65, dans la norme DIN 67507. Selon d'autres caractéristiques avantageuses d'un élément en couches selon l'invention :
- l'épaisseur géométrique de chaque couche mince de l'empilement antireflet du revêtement de protection est adaptée pour maximiser la transmission d'un rayonnement à travers l'élément en couches ; - chaque couche mince de l'empilement antireflet du revêtement de protection est une couche d'oxyde et/ou de nitrure ;
- le revêtement de protection consiste en un empilement antireflet comprenant au moins trois couches minces, l'indice de réfraction d'une couche mince de chaque paire de couches minces successives de l'empilement antireflet étant différent de l'indice de réfraction de l'autre couche mince de la paire ;
- l'empilement antireflet du revêtement de protection comporte un empilement successif, depuis la couche sensible à l'humidité vers la couche polymère, d'au moins deux couches minces d'indices de réfraction alternativement plus faibles et plus forts les uns par rapport aux autres ; - l'empilement antireflet du revêtement de protection comporte successivement, depuis la couche sensible à l'humidité vers la couche polymère :
- une première couche ayant un premier indice de réfraction compris entre 1 ,3 et 1 ,7 à 550 nm et une première épaisseur géométrique comprise entre 15 et 35 nm, de préférence entre 20 et 30 nm,
- une deuxième couche ayant un deuxième indice de réfraction compris entre 1 ,8 et 2,3 à 550 nm et une deuxième épaisseur géométrique comprise entre 20 et 35 nm, de préférence entre 25 et 30 nm,
- une troisième couche ayant un troisième indice de réfraction compris entre 1 ,3 et 1 ,7 à 550 nm et une troisième épaisseur géométrique comprise entre 5 et 20 nm, de préférence entre 7 et 18 nm,
- une quatrième couche ayant un quatrième indice de réfraction compris entre 1 ,8 et 2,3 à 550 nm et une quatrième épaisseur géométrique comprise entre 5 et 20 nm, de préférence entre 7 et 18 nm ; - l'empilement antireflet du revêtement de protection comporte la séquence de couches minces suivante, depuis la couche sensible à l'humidité vers la couche polymère :
SiO2 / Si3N4 / SiO2 / Si3N4 ;
- l'empilement antireflet du revêtement de protection comporte un empilement successif d'au moins deux couches minces d'indices de réfraction décroissants depuis la couche la plus proche de la couche sensible à l'humidité vers la couche la plus proche de la couche polymère ;
- l'empilement antireflet du revêtement de protection comporte successivement au moins deux couches minces de SiOxNy d'indices de réfraction décroissants depuis la couche la plus proche de la couche sensible à l'humidité vers la couche la plus proche de la couche polymère.
L'invention a également pour objet un dispositif photovoltaïque à couches minces comprenant un élément en couches tel que décrit ci-dessus et une couche de matériau absorbeur positionnée du côté de la couche sensible à l'humidité de l'élément en couches. De manière avantageuse, dans un tel dispositif photovoltaïque, l'épaisseur géométrique de chaque couche mince du revêtement de protection est adaptée pour maximiser la transmission, pondérée sur le spectre solaire et le spectre d'absorption du matériau absorbeur du dispositif, à travers l'élément en couches et en direction de la couche de matériau absorbeur, d'un rayonnement incident sur le dispositif du côté de la couche polymère.
Selon une première variante d'un tel dispositif photovoltaïque, le dispositif comprend un substrat à fonction verrière en verre transparent, la couche polymère étant un intercalaire de feuilletage polymère transparent de liaison avec le substrat. Selon une autre variante, la couche polymère est un substrat à fonction verrière en polymère thermoplastique transparent du dispositif photovoltaïque. Au sens de l'invention, le terme "transparent" désigne une transparence au moins dans les domaines de longueurs d'onde utiles pour le dispositif photovoltaïque.
Enfin, l'invention a pour objet un procédé de fabrication d'un élément en couches tel que décrit ci-dessus, dans lequel on dépose au moins une partie des couches minces de l'empilement antireflet du revêtement de protection par pulvérisation cathodique et/ou par dépôt chimique en phase vapeur assisté par plasma (PECVD).
Les caractéristiques et avantages de l'invention apparaîtront dans la description qui va suivre de deux modes de réalisation d'un élément en couches et d'une cellule photovoltaïque selon l'invention, donnée uniquement à titre d'exemple et faite en se référant aux dessins annexés dans lesquels :
- la figure 1 est une coupe transversale schématique d'une cellule solaire photovoltaïque conforme à un premier mode de réalisation de l'invention ; - la figure 2 est une coupe analogue à la figure 1 d'une variante de la cellule solaire photovoltaïque de la figure 1 ; et
- la figure 3 est une coupe analogue à la figure 1 pour une cellule solaire photovoltaïque conforme à un deuxième mode de réalisation de l'invention.
La cellule solaire photovoltaïque 20 selon l'invention, représentée sur la figure 1 , est une cellule à couches minces comprenant un substrat avant 1 à fonction verrière et un substrat arrière 7 à fonction support, entre lesquels est agencé un empilement de couches 2, 3, 4, 5, 6.
Le substrat avant 1 , destiné à être agencé du côté d'incidence de la lumière sur la cellule 20, est constitué en un verre transparent extra-clair, à très faible teneur en oxydes de fer. De tels verres extra-clairs comprennent notamment les verres commercialisés par Saint-Gobain Glass dans la gamme
« DIAMANT » ou dans la gamme « ALBARINO ».
Le substrat arrière 7 est constitué en tout matériau approprié, transparent ou non, notamment en verre, et porte, sur sa face dirigée vers l'intérieur de la cellule 20, c'est-à-dire du côté d'incidence de la lumière sur la cellule 20, une couche 6 électriquement conductrice qui forme une électrode arrière de la cellule 20. A titre d'exemple, la couche 6 est à base de molybdène.
Dans la variante de la cellule 20 représentée sur la figure 2, le substrat arrière 7 est constitué en verre et une couche 8 barrière aux alcalins est intercalée entre le substrat arrière 7 et la couche 6 en molybdène formant électrode arrière. Cette couche 8 barrière aux alcalins est déposée, préalablement au dépôt de la couche 6, sur tout ou partie de la face du substrat arrière 7 qui est dirigée vers l'intérieur de la cellule 20, par exemple par pulvérisation magnétron de type sputter down ou sputter up ou par un procédé
CVD, tel que la PE-CVD (Plasma Enhanced Chemical Vapour Déposition). La couche 8 barrière aux alcalins comprend un matériau diélectrique à base de nitrures, oxydes ou oxynitrures de silicium ou d'aluminium, ou encore à base de nitrures de titane ou de zirconium, utilisés seuls ou en mélange. L'épaisseur géométrique de la couche 8 est comprise entre 3 et 200 nm, préférentiellement comprise entre 20 et 150 nm. A titre d'exemple, la couche 8 barrière aux alcalins peut être à base de Si3N4.
La couche 6 formant électrode arrière est surmontée, de manière classique, par une couche d'absorbeur 5 à composé chalcopyrite, notamment
CIS ou CIGS, propre à assurer la conversion de l'énergie solaire en énergie électrique. La couche d'absorbeur 5 est elle-même surmontée par une couche de sulfure de cadmium CdS, non représentée sur les figures et éventuellement associée à une couche de ZnO intrinsèque non dopé également non représentée, puis par une couche 4 électriquement conductrice qui forme une électrode avant de la cellule 20. La couche 4 est une couche à base d'oxyde de zinc dopé à l'aluminium (AZO). En variante et à titre d'exemples non limitatifs, la couche 4 peut être une couche à base d'oxyde de zinc dopé au bore, une couche à base d'un autre oxyde conducteur transparent dopé sensible à l'humidité, ou une couche métallique transparente sensible à l'humidité telle qu'un empilement à base d'argent.
Afin de protéger la couche 4 en AZO, qui est une couche sensible à l'humidité, la cellule 20 comprend en outre un revêtement 3 de protection contre l'humidité agencé sur la couche 4. De plus, un intercalaire de feuilletage polymère transparent 2 est positionné entre le revêtement de protection 3 et le substrat avant 1 , de manière à assurer le maintien des couches fonctionnelles de la cellule 20 entre les substrats avant 1 et arrière 7. L'intercalaire de feuilletage 2 est une couche de polymère thermodurcissable, par exemple une couche de polybutyral de vinyle (PVB). En variante et à titre d'exemple, l'intercalaire de feuilletage 2 peut également être constitué en éthylène vinylacétate (EVA). L'ensemble de la couche 4, du revêtement 3 et de l'intercalaire de feuilletage 2 superposés forme un élément en couches 10.
Conformément à l'invention, le revêtement de protection 3 de l'élément en couches 10 est un revêtement multicouche consistant en un empilement antireflet d'au moins deux couches minces transparentes d'indices de réfraction différents l'un par rapport à l'autre.
En particulier, dans l'exemple représenté sur la figure 1 , le revêtement 3 est un revêtement quadricouche comportant un empilement de quatre couches minces transparentes 31 , 32, 33, 34 d'indices de réfraction alternativement plus faibles et plus forts les uns par rapport aux autres. Plus précisément, l'empilement de couches minces du revêtement 3 comporte successivement,
depuis la couche 4 en AZO formant électrode avant de la cellule 20 vers l'intercalaire de feuilletage 2 en PVB :
- une première couche 31 de Siθ2 ayant un indice de réfraction n3i de 1 ,45-1 ,48 et une épaisseur géométrique e3i comprise entre 15 et 35 nm, de préférence entre 20 et 30 nm,
- une deuxième couche 32 de Si3N4 ayant un indice de réfraction n32 de 1 ,95-2,05 et une épaisseur géométrique e32 comprise entre 20 et 35 nm, de préférence entre 25 et 30 nm,
- une troisième couche 33 de SiO2 ayant un indice de réfraction n33 = n3i de 1 ,45-1 ,48 et une épaisseur géométrique e33 comprise entre 5 et 20 nm, de préférence entre 7 et 18 nm, et
- une quatrième couche 34 de Si3N4 ayant un indice de réfraction n34 = n32 de 1 ,95-2,05 et une épaisseur géométrique e34 comprise entre 5 et 20 nm, de préférence entre 7 et 18 nm. En variante, la troisième couche 33 de SiO2 de l'empilement de couches minces du revêtement 3 peut présenter une épaisseur géométrique e33 comprise entre 35 et 55 nm, de préférence entre 40 et 50 nm.
Selon un autre exemple non représenté de l'invention, le revêtement 3 peut être un revêtement bicouche consistant en un empilement de deux couches minces transparentes, à savoir, depuis la couche 4 en AZO vers l'intercalaire de feuilletage 2 en PVB, une couche mince de SiO2, ayant un indice de réfraction de 1 ,45-1 ,48 et une épaisseur géométrique comprise entre 15 et 35 nm, de préférence entre 20 et 30 nm, et une couche mince de Si3N4, ayant un indice de réfraction de 1 ,95-2,05 et une épaisseur géométrique comprise entre 10 et 30 nm, de préférence entre 15 et 25 nm.
En variante, dans les exemples précités, une ou chaque couche mince à plus fort indice de réfraction du revêtement 3 peut être, au lieu d'une couche de Si3N4, une couche à base de SiN, SnZnSbO, SnO2, ZnO, AIN, NbO, TiO2, TiZnO, SiTiO, TiON. De plus, dans les exemples précités, une ou chaque couche mince à plus faible indice de réfraction du revêtement 3 peut être, au lieu d'une couche de SiO2, une couche à base de AI2O3, MgF2, AIF3, Y2O3.
Un procédé avantageux de fabrication d'un élément en couches conforme à l'invention comprend le dépôt du revêtement de protection multicouche par une technique sous vide, notamment par pulvérisation cathodique assistée par champ magnétique ou par décharge couronne. Dans ce procédé, les différentes couches du revêtement de protection sont déposées successivement à froid, par exemple sur la couche en AZO préalablement préparée.
En particulier, le dépôt des revêtements de protection 3 quadricouche et bicouche décrits ci-dessus, qui comprennent un empilement alterné de couches de SiO2 et de Si3N4, peut être réalisé par pulvérisation cathodique à partir d'une cible en silicium que l'on dope légèrement avec un métal, tel que l'aluminium, de manière à la rendre suffisamment conductrice.
Dans le cas d'un revêtement de protection comprenant des couches à base de nitrures ou d'oxydes métalliques, ces couches peuvent être déposées par pulvérisation réactive du métal en question, respectivement en présence d'azote ou en présence d'oxygène, sous plasma d'argon. De plus, dans le cas de couches à base d'oxydes mixtes de zinc et d'étain dopés à l'antimoine, ces couches peuvent être déposées par un procédé de co-pulvérisation de cibles respectivement en zinc et en étain, en présence d'oxygène, ou par un procédé de pulvérisation d'une cible à base du mélange désiré d'étain et de zinc, également en présence d'oxygène.
Un autre procédé avantageux de fabrication d'un élément en couches conforme à l'invention comprend le dépôt du revêtement de protection multicouche par dépôt chimique en phase vapeur assistée par plasma (PECVD). Cette technique de dépôt sous pression réduite met en œuvre la décomposition de précurseurs sous l'effet d'un plasma, en particulier sous l'effet des collisions entre les espèces excitées ou ionisées du plasma et les molécules du précurseur. De manière particulièrement avantageuse, un dépôt réalisé par PECVD est conforme, c'est-à-dire qu'il épouse les reliefs de la surface de dépôt, de sorte qu'il n'y a pas d'effet d'ombrage dans le cas où le dépôt est réalisé sur une surface présentant un relief accidenté. Un dépôt par PECVD sera donc préféré à un dépôt par pulvérisation dans les cas où la
surface de dépôt du revêtement de protection est irrégulière, afin d'éviter tout effet d'ombrage, et notamment lorsque le revêtement de protection est déposé après les étapes de gravure de la cellule solaire.
Il est possible de déposer par PECVD des revêtements multicouches à indices de réfraction alternés, ainsi que des revêtements multicouches à gradient échelonné d'indices de réfraction.
Plus précisément, la technique PECVD permet le dépôt de couches minces successives de natures chimiques différentes, en particulier alternées, par la modification de la nature des précurseurs au cours du dépôt. L'introduction de précurseurs différents pendant une phase du dépôt permet en effet d'obtenir une zone de nature chimique différente au sein d'une couche, et donc de former des revêtements multicouches dont les couches minces constitutives sont de compositions chimiques différentes.
La technique PECVD permet également d'obtenir très aisément une variation de la stœchiométrie d'une couche, par la modification d'une ou plusieurs grandeurs, notamment les proportions relatives des précurseurs. Il est donc possible de former des revêtements multicouches dont les couches minces constitutives sont de même nature chimique mais de stœchiométries différentes. D'autres techniques de dépôt sont possibles, mais sont moins préférées, notamment des techniques d'évaporation, ou des procédés de PECVD à pression atmosphérique, en particulier ceux utilisant les technologies de décharge à barrière diélectrique.
Le tableau 1 ci-après montre les résultats de tests d'évaluation de la performance, en tant que barrière à l'humidité, de revêtements de protection 3 différentes compositions, comprenant des revêtements 3 ayant une couche unique de SiO2 ou de Si3N4, ainsi que les revêtements 3 quadricouche et bicouche décrits précédemment à titre d'exemples.
Ces tests de performance ont été conduits en réalisant plusieurs échantillons, obtenus en déposant les différents revêtements de protection 3 sur des systèmes verre/aluminium, en plaçant ensuite chacun des échantillons dans une enceinte présentant une température comprise entre 85°C et 95°C et
un taux d'humidité relative de 95% pendant 311 heures, puis en observant l'état de surface du support en aluminium de chaque échantillon. L'état de surface du support en aluminium à l'issue du test est évalué comme satisfaisant (OK) lorsqu'aucun défaut visuel majeur n'est détecté.
Tableau 1
II ressort du tableau 1 que le revêtement de protection 3 quadricouche de l'élément en couches 10 représenté sur la figure 1 assure une protection efficace du support en aluminium contre l'humidité, en particulier plus efficace qu'un revêtement de protection monocouche en SisN4 et au moins aussi efficace qu'un revêtement de protection monocouche en Siθ2, pour une épaisseur géométrique globale β3 du revêtement de protection inférieure à 100 nm. De même, un revêtement de protection 3 bicouche tel que décrit précédemment, comportant un empilement successif d'une couche mince de SiO2, ayant une épaisseur géométrique de 20 nm, et d'une couche mince de SisN4, ayant une épaisseur géométrique de 22 nm, constitue une barrière efficace contre l'humidité. En particulier, ce revêtement bicouche d'épaisseur géométrique globale β3 de 42 nm est au moins aussi efficace, en tant que barrière à l'humidité, qu'un revêtement de protection monocouche en SiO2 d'épaisseur géométrique globale e3de 100 nm.
Dans le cadre de l'élément en couches 10 selon l'invention, il ressort donc qu'un revêtement de protection 3 multicouche, en particulier quadricouche
ou bicouche tel que décrit précédemment, constitue une barrière efficace contre la migration d'humidité depuis l'intercalaire de feuilletage 2 en PVB, qui tend à stocker l'humidité, vers la couche 4 sensible à l'humidité. L'efficacité d'un tel revêtement 3 multicouche en tant que barrière à l'humidité est même globalement meilleure que celle obtenue avec un revêtement de protection monocouche, pour une même épaisseur géométrique globale β3 du revêtement. En effet, la présence d'une multiplicité d'interfaces au sein du revêtement 3 multicouche, qui résulte, dans les exemples décrits précédemment, de l'empilement en alternance de couches en Siθ2 avec des couches en SisN4 de telle sorte que les couches adjacentes du revêtement 3 sont de natures différentes, augmente le trajet nécessaire aux molécules d'eau stockées dans l'intercalaire de feuilletage 2 pour atteindre la couche 4 sensible à l'humidité.
L'évolution de la transmission, à travers l'élément en couches 10 selon l'invention, d'un rayonnement incident sur le substrat avant 1 a également été évaluée, d'une part, en l'absence de revêtement de protection 3 et, d'autre part, en présence d'un revêtement de protection 3 intercalé entre l'intercalaire de feuilletage 2 en PVB et la couche 4 en AZO de l'élément 10, pour les différentes compositions de revêtements envisagées précédemment dans le tableau 1. Les résultats de cette analyse, réalisée avec une épaisseur géométrique de l'intercalaire de feuilletage 2 en PVB de 0,78 mm et une épaisseur géométrique de la couche 4 en AZO de 1200 nm, sont compilés dans le tableau 2 ci-après. La transmission lumineuse à travers l'élément en couches 10 a été évaluée de manière pondérée sur le spectre solaire, qui peut notamment être déterminé comme une moyenne des spectres solaires correspondant aux différentes incidences obtenues, dans une journée, pour un panneau photovoltaïque utilisé à une latitude donnée, et sur le spectre d'absorption de l'absorbeur de la couche 5, qui dans cet exemple est une couche d'absorbeur CIS, de manière à permettre une estimation du flux lumineux qui est effectivement utilisable par la couche d'absorbeur 5 de la cellule 20 pour la conversion photovoltaïque. Pour chaque composition du revêtement de protection 3, la variation de cette transmission pondérée, notée TSQE(CIS), par rapport à un élément en couches
ne comportant aucun revêtement de protection intercalé entre l'intercalaire de feuilletage 2 en PVB et la couche 4 en AZO est également indiquée.
Tableau 2
II ressort du tableau 2 qu'un revêtement de protection 3 multicouche, en particulier quadricouche ou bicouche tel que décrit précédemment à titre d'exemple, permet d'obtenir une transmission pondérée TSQE(CIS) à travers l'élément en couches 10 supérieure à la transmission pondérée TSQE(CIS) obtenue en l'absence de ce revêtement de protection. En effet, l'empilement de couches du revêtement de protection 3 multicouche, en particulier quadricouche ou bicouche, d'un élément 10 selon l'invention est conçu de sorte que les indices de réfraction des couches sont alternativement plus faibles et plus forts les uns par rapport aux autres depuis la couche 4 vers l'intercalaire de feuilletage 2. Dès lors, pour des épaisseurs géométriques adaptées des couches du revêtement, le revêtement de protection 3 multicouche d'un élément 10 selon l'invention constitue un filtre interférentiel et assure une fonction antireflet à l'interface entre l'intercalaire de feuilletage 2 en PVB et la couche 4 en AZO. Des valeurs adaptées des épaisseurs géométriques des couches du revêtement de protection peuvent notamment être sélectionnées au moyen d'un logiciel d'optimisation.
Il en résulte que le flux lumineux utile pour la conversion photovoltaïque atteignant la couche d'absorbeur 5 de la cellule 20 selon l'invention est
supérieur au flux lumineux utile atteignant la couche d'absorbeur d'une cellule photovoltaïque à couches minces analogue de l'état de la technique dépourvue de revêtement de protection multicouche. Un revêtement de protection 3 multicouche, intercalé entre l'intercalaire de feuilletage polymère 2 et la couche 4 de l'élément en couches 10 conforme à l'invention, permet ainsi d'augmenter le rendement de la cellule 20 par rapport au rendement obtenu en l'absence de revêtement de protection multicouche.
Dans le deuxième mode de réalisation représenté sur la figure 3, les éléments analogues à ceux du premier mode de réalisation portent des références identiques augmentées de 100. La cellule photovoltaïque 120 conforme à ce deuxième mode de réalisation se distingue de la cellule 20 du premier mode de réalisation notamment en ce qu'elle comprend un substrat avant 102 constitué en un polymère thermoplastique transparent, et non en verre. La cellule 120 comprend également un substrat arrière 107 qui porte, sur sa face dirigée vers l'intérieur de la cellule 120, une couche 106 électriquement conductrice formant une électrode arrière de la cellule 120.
La couche 106 est surmontée par une couche 105 de matériau absorbeur propre à assurer la conversion de l'énergie solaire en énergie électrique. Dans ce deuxième mode de réalisation, la couche 105 peut être, au choix, une couche mince d'absorbeur CIS, une couche mince à base de silicium ou une couche mince à base de tellurure de cadmium. De manière connue, dans le cas où la couche 105 est une couche mince d'absorbeur CIS, la cellule 120 est fabriquée en mode substrat, c'est-à-dire par dépôt successif des couches constitutives de la cellule sur le substrat arrière 107. Au contraire, dans le cas où la couche 105 est une couche mince à base de silicium ou une couche mince à base de tellurure de cadmium, la cellule 120 est fabriquée en mode superstrat, c'est-à-dire par dépôt successif des couches constitutives de la cellule à partir du substrat avant 102.
De manière analogue au premier mode de réalisation, la couche d'absorbeur 105 est surmontée par une couche 104 électriquement conductrice et sensible à l'humidité, à base d'oxyde de zinc dopé à l'aluminium (AZO), qui forme une électrode avant de la cellule 120. La cellule 120 comprend en outre
un revêtement de protection 103, qui est intercalé entre la couche 104 sensible à l'humidité et le substrat avant 102 en polymère thermoplastique. Le substrat transparent 102, qui peut notamment être constitué en polyéthylène, par exemple en polytétrafluoroéthylène (PTFE), en polyimide, en polycarbonate, en polyuréthane ou en polyméthacrylate de méthyle, présente, à la différence d'un substrat en verre, une perméabilité à l'humidité. L'ensemble de la couche 104, du revêtement 103 et du substrat 102 superposés forme un élément en couches 110.
Conformément à l'invention, le revêtement de protection 103 de l'élément en couches 110 est un revêtement multicouche consistant en un empilement antireflet d'au moins deux couches minces transparentes. En particulier, tel que représenté sur la figure 3, le revêtement 103 est un revêtement quadricouche comportant un empilement de quatre couches minces transparentes 131 , 132, 133, 134 d'indices de réfraction alternativement plus faibles et plus forts les uns par rapport aux autres, à savoir successivement, depuis la couche 104 vers le substrat polymère 102 :
- une première couche 131 de Siθ2 ayant un indice de réfraction ni3i de 1 ,45-1 ,48 et une épaisseur géométrique βi3i comprise entre 15 et 35 nm, de préférence entre 20 et 30 nm, - une deuxième couche 132 de Si3N4 ayant un indice de réfraction ni32 de
1 ,95-2,05 et une épaisseur géométrique ei32 comprise entre 20 et 35 nm, de préférence entre 25 et 30 nm,
- une troisième couche 133 de Siθ2 ayant un indice de réfraction ni33 = ni3i de 1 ,45-1 ,48 et une épaisseur géométrique ei33 comprise entre 5 et 20 nm, de préférence entre 7 et 18 nm, et
- une quatrième couche 134 de Si3N4 ayant un indice de réfraction ni34 = ni32 de 1 ,95- 2,05 et une épaisseur géométrique ei34 comprise entre 5 et 20 nm, de préférence entre 7 et 18 nm.
En variante, de manière analogue au premier mode de réalisation, la troisième couche 133 de SiO2 de l'empilement de couches minces du revêtement 103 peut présenter une épaisseur géométrique ei33 comprise entre 35 et 55 nm, de préférence entre 40 et 50 nm.
Comme dans le premier mode de réalisation, les couches minces du revêtement de protection 103 multicouche intercalé entre le substrat polymère 102 et la couche sensible à l'humidité 104 de l'élément en couches 110 ont des indices de réfraction qui sont alternativement plus faibles et plus forts les uns par rapport aux autres, depuis la couche 104 vers le substrat 102. Le revêtement 103 multicouche permet ainsi, par rapport à ce qui est obtenu avec un revêtement de protection de l'état de la technique, à la fois d'améliorer la protection de la couche 104 en AZO contre l'humidité qui est susceptible de passer vers l'intérieur de la cellule 120 à travers le substrat polymère 102 perméable, grâce à la multiplicité des interfaces entre les différentes couches constitutives du revêtement 103, et d'améliorer la transmission de lumière utile à travers l'élément 110 vers la couche d'absorbeur 105, par un effet antireflet à l'interface entre la couche 104 en AZO et le substrat polymère 102. Comme dans le premier mode de réalisation, il en résulte une augmentation du rendement de la cellule photovoltaïque 120 intégrant l'élément 110 par rapport aux cellules photovoltaïques de l'état de la technique dépourvues de revêtement de protection multicouche.
Les exemples précédents illustrent les avantages d'un élément en couches selon l'invention, comprenant un revêtement de protection multicouche, qui, lorsqu'il est intégré dans une cellule photovoltaïque à couches minces, confère à cette cellule une résistance à l'humidité et un rendement améliorés.
De manière plus générale, ces avantages peuvent être obtenus au moyen d'un revêtement de protection, intercalé entre la couche sensible à l'humidité et la couche polymère d'un élément en couches selon l'invention, comportant un empilement antireflet formé par au moins deux couches superposées d'indices de réfraction différents. Un empilement antireflet du revêtement de protection intercalé entre la couche sensible à l'humidité et la couche polymère est un empilement qui assure une transmission d'un rayonnement à travers l'élément en couches supérieure ou égale à la transmission dudit rayonnement obtenue en l'absence d'empilement antireflet.
En particulier, les différentes couches de l'empilement antireflet du revêtement de protection d'un élément en couches selon l'invention peuvent être disposées de telle sorte que les indices de réfraction des couches sont alternativement plus faibles et plus forts les uns par rapport aux autres, comme dans les exemples décrits précédemment.
Selon une variante non représentée de l'invention, les différentes couches de l'empilement antireflet du revêtement de protection d'un élément en couches selon l'invention peuvent également être disposées de telle sorte que les indices de réfraction des couches sont décroissants depuis la couche la plus proche de la couche sensible à l'humidité vers la couche la plus proche de la couche polymère. Le revêtement de protection multicouche crée alors un gradient échelonné d'indices de réfraction, qui décroît depuis la couche sensible à l'humidité, dont l'indice de réfraction est supérieur à celui de la couche polymère, vers la couche polymère. Un tel revêtement multicouche à gradient échelonné d'indices de réfraction peut notamment être formé par un empilement successif de couches de SiOxNy d'indices de réfraction décroissants depuis la couche sensible à l'humidité vers la couche polymère, les couches extrêmes étant par exemple, respectivement, une couche de Si3N4 au voisinage de la couche sensible à l'humidité et une couche de SiÛ2 au voisinage de la couche polymère. Les différentes couches de SiOxNy d'indices de réfraction décroissants présentent des proportions relatives d'azote et d'oxygène qui sont différentes d'une couche à une autre.
Ces couches peuvent être déposées successivement à froid sur la couche sensible à l'humidité par pulvérisation cathodique, sous plasma d'argon, à partir d'une cible en silicium que l'on dope légèrement avec un métal, de manière à la rendre suffisamment conductrice, et en présence d'azote et/ou d'oxygène. De manière avantageuse, les couches successives de SiOxNy d'indices de réfraction décroissants sont alors obtenues en faisant varier, par paliers, les proportions d'azote et d'oxygène au cours de la pulvérisation cathodique, en particulier en faisant diminuer la proportion d'azote et augmenter la proportion d'oxygène.
En variante, ces couches peuvent être déposées successivement par PECVD en modifiant la stœchiométrie entre une couche mince et la couche mince suivante du revêtement de protection, notamment en faisant varier, par paliers, les proportions relatives des précurseurs. Un revêtement multicouche à gradient échelonné d'indices de réfraction permet, de même qu'un revêtement multicouche à indices de réfraction alternés, à la fois d'améliorer la protection de la couche sensible à l'humidité, grâce à la multiplicité des interfaces entre les différentes couches constitutives du revêtement de protection, et d'améliorer la transmission de lumière utile à travers l'élément en couches intégrant le revêtement de protection, par un effet antireflet à l'interface entre la couche sensible à l'humidité et la couche polymère.
Quel que soit le mode d'empilement des couches constitutives du revêtement de protection, à indices de réfraction alternés ou à gradient échelonné d'indices de réfraction, l'invention fournit un élément en couches doublement avantageux, en terme de protection contre l'humidité et en terme de transmission lumineuse. Ce double avantage a été obtenu, d'une part, en détectant la possibilité d'améliorer l'effet barrière à l'humidité d'un revêtement de protection grâce à la présence d'une pluralité de couches de natures différentes au sein du revêtement et, d'autre part, en tirant profit de la présence de cette pluralité de couches pour mettre en place, à l'interface entre la couche polymère et la couche sensible à l'humidité, un empilement antireflet multicouche. La présence d'un tel empilement antireflet à l'interface entre l'intercalaire de feuilletage, ou le substrat polymère, et l'électrode avant sensible à l'humidité d'une cellule photovoltaïque à couches minces est d'autant plus efficace pour améliorer la transmission lumineuse, et donc le rendement de la cellule, que, du fait d'une forte différence d'indices de réfraction entre les matériaux constitutifs de l'intercalaire de feuilletage, ou du substrat, et de l'électrode avant, une perte non négligeable du flux lumineux incident sur la cellule se produit à cette interface par réflexion.
L'invention n'est pas limitée aux exemples décrits et représentés. En particulier, comme déjà évoqué, un élément en couches selon l'invention peut
comporter un revêtement de protection comportant un nombre quelconque, supérieur ou égal à deux, de couches superposées, les compositions et épaisseurs de ces couches pouvant être différentes de celles décrites précédemment. En particulier, l'empilement antireflet du revêtement de protection peut comprendre indifféremment un nombre pair ou impair de couches minces, l'indice de réfraction d'une couche mince de chaque paire de couches minces successives de l'empilement antireflet étant différent de l'indice de réfraction de l'autre couche mince de la paire. Pour une composition donnée des couches du revêtement de protection, les épaisseurs géométriques respectives des couches sont avantageusement sélectionnées, par exemple au moyen d'un logiciel d'optimisation, de manière à maximiser la transmission lumineuse pondérée à travers l'élément en couches.
Quel que soit le mode d'empilement des couches constitutives du revêtement de protection, à indices de réfraction alternés ou à gradient échelonné d'indices de réfraction, un empilement tricouche ou quadricouche est avantageux car il fournit un nombre satisfaisant d'interfaces pour la fonction barrière à l'humidité. Dans le cas d'un revêtement de protection à indices de réfraction alternés, un empilement quadricouche tel que montré sur les figures 1 , 2 et 3 est particulièrement avantageux, dans la mesure où il fournit non seulement un nombre satisfaisant d'interfaces pour la fonction barrière à l'humidité, mais également un nombre satisfaisant de couches pour la fonction filtre interférentiel du revêtement de protection.
De même, la couche polymère et la couche sensible à l'humidité d'un élément en couches selon l'invention peuvent être de natures et d'épaisseurs différentes de celles décrites précédemment. En particulier, la couche sensible à l'humidité peut être formée au moins partiellement par une couche métallique. A titre d'exemple, dans le cas d'une cellule photovoltaïque à couche d'absorbeur à base de composé chalcopyrite et à substrat en verre, la couche sensible à l'humidité peut être formée en partie par la couche de molybdène formant électrode arrière, dans le cas où des portions de cette couche de molybdène sont mises directement en contact avec l'intercalaire de feuilletage polymère par gravure de certaines parties de la cellule.
Par ailleurs, un élément en couches selon l'invention peut être utilisé dans une cellule photovoltaïque de type « tandem », dans laquelle la couche d'absorbeur est formée par un empilement de plusieurs couches de matériaux absorbeurs différents. Un élément en couches selon l'invention peut également être utilisé dans une cellule photovoltaïque à absorbeur organique, la couche d'absorbeur organique formant alors, au moins en partie, la couche sensible à l'humidité.