EP2369152B1 - Haltevorrichtung - Google Patents

Haltevorrichtung Download PDF

Info

Publication number
EP2369152B1
EP2369152B1 EP11154285.8A EP11154285A EP2369152B1 EP 2369152 B1 EP2369152 B1 EP 2369152B1 EP 11154285 A EP11154285 A EP 11154285A EP 2369152 B1 EP2369152 B1 EP 2369152B1
Authority
EP
European Patent Office
Prior art keywords
holding device
component
coupling device
frequency
vibrations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11154285.8A
Other languages
English (en)
French (fr)
Other versions
EP2369152A1 (de
Inventor
Thomas Nording
Joachim Hildebrand
Arnulf Spieth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eberspaecher Exhaust Technology GmbH and Co KG
Original Assignee
Eberspaecher Exhaust Technology GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eberspaecher Exhaust Technology GmbH and Co KG filed Critical Eberspaecher Exhaust Technology GmbH and Co KG
Priority to EP15166890.2A priority Critical patent/EP2949899B1/de
Publication of EP2369152A1 publication Critical patent/EP2369152A1/de
Application granted granted Critical
Publication of EP2369152B1 publication Critical patent/EP2369152B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/18Construction facilitating manufacture, assembly, or disassembly
    • F01N13/1805Fixing exhaust manifolds, exhaust pipes or pipe sections to each other, to engine or to vehicle body
    • F01N13/1811Fixing exhaust manifolds, exhaust pipes or pipe sections to each other, to engine or to vehicle body with means permitting relative movement, e.g. compensation of thermal expansion or vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/18Construction facilitating manufacture, assembly, or disassembly
    • F01N13/1805Fixing exhaust manifolds, exhaust pipes or pipe sections to each other, to engine or to vehicle body
    • F01N13/1811Fixing exhaust manifolds, exhaust pipes or pipe sections to each other, to engine or to vehicle body with means permitting relative movement, e.g. compensation of thermal expansion or vibration
    • F01N13/1822Fixing exhaust manifolds, exhaust pipes or pipe sections to each other, to engine or to vehicle body with means permitting relative movement, e.g. compensation of thermal expansion or vibration for fixing exhaust pipes or devices to vehicle body

Definitions

  • the present invention relates to a holding device for holding a component of an exhaust system to a peripheral structure, in particular a vehicle equipped with the exhaust system, having the features of the preamble of claim 1. Furthermore, the present invention relates to an exhaust system provided with such a holding device.
  • vibrations may occur in an exhaust system.
  • Such vibrations can be excited, for example, by the internal combustion engine or by road bumps.
  • so-called motor excitations and road excitations are distinguished from each other.
  • heavier components of the exhaust system such as a catalyst or a particulate filter, crucial for the vibration behavior due to their larger mass.
  • the engine-induced vibration excitation via on the internal combustion engine of the vehicle, for example on the motor housing and / or the transmission housing, fixed components in the vibration system, so the exhaust system registered, so that close-coupled components of the exhaust system are exposed to a much stronger vibration excitation than motorfeme components.
  • a holding device of the type mentioned can be used. This can be attached by means of a first connection point to a component of the exhaust system and with a second connection point to the respective structure of the vehicle.
  • the problem with the use of such a holding device is the fact that the respective component of the exhaust system must be able to move relative to the adjacent structure of the vehicle in order to be able to compensate for thermal expansion effects. Will one Holding device used, which has sufficient elasticity to compensate for such thermal expansion, it also regularly allows undesirable component vibrations.
  • Such oscillations or relative movements represent a large mechanical load on the affected components, ie in particular the exhaust system, the vehicle structure and the holding device.
  • the holding device comprises a first connection point for fastening the holding device to the tube of the exhaust system, a second connection point for fixing the holding device to the support frame and a coupling device arranged between the connection points, which allows reversible relative movements between the connection points, wherein the coupling device is designed such that it at least in a direction of action has a speed-dependent and / or frequency-dependent stiffness, such that the coupling device with slower or low-frequency relative movements a lower stiffness than in faster or high-frequency relative movements.
  • the coupling device has a hydraulic damper.
  • the present invention is concerned with the problem of providing for a holding device of the type mentioned or for an exhaust system equipped therewith an improved embodiment, which is characterized in particular by the fact that the risk of damage to the respective component or component or the respective structure or the holding device is reduced.
  • the invention is based on the general idea to provide the holding device with a coupling device that allows reversible relative movements between the two connection points of the holding device, but it has a stiffness that is dependent on the speed or the frequency of the relative movements.
  • the coupling device For slow or low-frequency relative movements, the coupling device has a relatively low rigidity.
  • the coupling device For faster or high-frequency relative movements, however, the coupling device has a relatively high rigidity.
  • a slow relative motion occurs when the component moves relative to the structure at less than 1 cm / sec.
  • Low-frequency relative movements are oscillations with an oscillation frequency of less than 1 Hz.
  • rapid relative movements are given when the component moves relative to the structure with more than 1 cm / s.
  • the construction presented here makes possible slower or low-frequency movements, as occur, for example, due to thermal expansion effects.
  • the holding device obstructs or dampens faster or high-frequency relative movements which, for example, occur during operation of the vehicle due to the engine-induced and / or road-induced vibration excitation of the respective component of the exhaust system.
  • the coupling device now has at least two coupling elements which act in series, of which the one permits slower or lower-frequency relative movements substantially without force, while the other counteracts faster or high-frequency relative movements.
  • the slower or low-frequency relative movements are triggered by thermal expansion effects and are force-free enabled by the one coupling element, so that there are essentially no distortions within the exhaust system.
  • the motor-induced or road-induced vibration excitations lead in comparison to thermal expansion effects to faster or high-frequency relative movements, which then counteracts the other coupling element with corresponding forces.
  • the other coupling element then acts, for example as a damper and / or spring. It is also conceivable an active coupling element, which counteracts the faster or high-frequency relative movements as absorbers, so with backlashes.
  • the coupling device may comprise at least one hydraulic or pneumatic damper or be formed by such.
  • the damper includes a damping fluid which is displaced in a relative movement between the two connection points of a first chamber of the damper in a second chamber of the damper.
  • the two chambers via a throttle point with each other in Connection.
  • the passage of fluid from one chamber into the other chamber is almost without resistance possible at low flow rates, while at high flow rates, the throttle unfolds its effect and thus slows or throttles the flow of fluid. Accordingly, such a damped damper acts softly for slow movements while being hard against fast movements.
  • the coupling device may comprise at least one elastomeric body, which consists of an electroactive polymer whose elasticity is variable by applying an electrical voltage, and which is connected to an electrical control circuit having a vibration sensor for detecting vibrations of the component or component and a controller for changing the elasticity of the elastomeric body depending on the oscillation frequency.
  • an elastomer body is thus used, the elasticity of which can be changed depending on an electrical voltage applied thereto. This makes it possible, for example, in component vibrations whose vibration frequency is below a predetermined switching frequency to leave the elastomer body energized, whereby it has a comparatively high elasticity and has a soft damping characteristic. However, as soon as the component vibrations reach an oscillation frequency above the predetermined switching frequency, a predetermined electrical voltage is applied to the elastomer body, whereby its elasticity is changed, namely reduced. As a result, a harder damping characteristic results.
  • the controller does not work with a vibration sensor, but with a map in which the elasticity to be set is stored depending on the speed of the internal combustion engine.
  • the controller with a corresponding engine control unit of Internal combustion engine communicate.
  • the speed of the internal combustion engine correlates with the engine-induced vibration excitation, so that the setting of the frequency-dependent elasticity can be realized here with a simplified control effort.
  • the controller may switch the two above-described states, namely, turning off the predetermined voltage and turning on the predetermined voltage.
  • it may be provided to vary the tension on the elastomer body in several stages so as to be able to change the elasticity of the elastomer body in a stepped manner.
  • several different switching frequencies can be predetermined for this purpose, which trigger a stepwise increase in the voltage applied to the elastomer body.
  • the coupling device may have a dilatant material for transmitting motion between the two connection points.
  • a dilatant material is characterized by a dependent on the speed of the force application elasticity, in a solid, or viscosity, in a liquid.
  • there is a malleable dilatant mass that, when thrown onto the ground, springs back like a rubber ball and, when hit with a hammer, breaks like a ceramic body.
  • the Applicant has recognized that such a dilatant material is highly suitable for realizing a speed-dependent or frequency-dependent stiffness in a coupling device. In high-frequency disturbances, the dilatant material reacts hard and shows a high rigidity. In slow disturbances, it reacts softly and can be deformed, depending on the embodiment - elastic or plastic, but especially reversible.
  • At least one spring element may be provided to produce a corresponding restoring force in the case of a change in shape of the dilatant material.
  • this arrangement of dilatant material and at least one spring element acts as a spring.
  • this arrangement of dilatant material and at least one spring element acts as a solid.
  • the coupling device may comprise a piston-cylinder unit whose cylinder is firmly connected to the one connection point and the piston fixed to the other connection point.
  • a chamber In the cylinder is a chamber contain, in which the piston is movable.
  • This chamber is filled with the dilatant material, which may be a liquid or pasty or solid dilatant material.
  • the dilatant material which may be a liquid or pasty or solid dilatant material.
  • the coupling device may comprise a flexurally elastic sheet metal part or be formed by such.
  • This sheet metal part has at least one closed cavity, in which a free-flowing granules is arranged.
  • the volume filled by the granulate is smaller than the total volume of the cavity.
  • relative movements between the connection points lead to elastic deformations of the sheet metal part. With low-frequency relative movements, the granules can follow the movements of the sheet metal part.
  • a movement excitation which absorbs energy from the vibration system, that converts into heat and thereby causes a damping of the vibration.
  • An alternative embodiment is based on the general idea to realize the coupling device by means of at least one electric actuator.
  • An associated electrical control circuit comprises the respective actuator, at least one vibration sensor for detecting vibrations of the component and at least one controller for actuating the actuator as a function of the vibration frequency.
  • the actuator can now change a distance between the connection points depending on its operation. With the help of such an actuator, the coupling device relative movements between Counteract component and structure more or less strongly. For example, low-frequency relative movements can be realized with little resistance, while high-frequency relative movements are realized only against increased resistance and even against oppositely directed movements.
  • the controller can excite the respective actuator with the oscillation frequency at which vibrates the component to oscillate. It is particularly expedient to realize the Aktuatorschwingungen compared to the component vibrations with a phase shift, which is chosen so that adjusts a reduction of the vibration amplitudes on the component.
  • the coupling device works like an anti-vibration generator, which effectively reduces the vibration amplitudes of the component. Ideally, even a vibration cancellation can be realized.
  • the coupling device is operated analogously to an anti-sound generator, which extinguishes or reduces Schwindungsamplituden of sound to be damped in an active silencing system by means of phase-shifted anti-sound.
  • the actuator is equipped with an electroactive polymer that changes its shape by applying an electrical voltage.
  • the actuator can be realized particularly inexpensively.
  • the electroactive polymer can be realized in a wide variety of geometric shapes.
  • a piezo actuator can also be used.
  • FIG. 1 an internal combustion engine 1 in a conventional manner an exhaust system 2, which is connected for example via an exhaust manifold 3 or manifold 3 to the internal combustion engine 1.
  • the exhaust system 2 comprises an exhaust pipe 4, which is connected to the manifold 3 and leads away the exhaust gas collected there.
  • the exhaust system 2 has in the usual way at least one exhaust gas treatment device 5, which is integrated into the exhaust pipe 4. in the Example of Fig. 1 only one such exhaust treatment device 5 is shown, which is integrated into the exhaust pipe 4 relatively close to the internal combustion engine 1.
  • the exhaust gas treatment device 5 is a catalyst. Likewise, it may be a particulate filter.
  • the exhaust system 2 is held or positioned or supported by means of a holding device 6 at its periphery.
  • the holding device 6 cooperates with a peripheral structure 7 of a vehicle, in which the internal combustion engine 1 is arranged.
  • the peripheral structure 7 is in the example of Fig. 1 to a transmission housing 8 of a transmission which is connected to the internal combustion engine 8.
  • the holding device 6 may be connected to an engine block 9 of the internal combustion engine 1.
  • a body of the vehicle can serve as a support for the holding device 6.
  • a component 10 or component 10 of the exhaust system 2 can now be held on said structure 7.
  • Fig. 1 is the component 10 and the component 10 is formed by a portion of the exhaust pipe 4, which is fixed by means of the holding device 6 on the vehicle side.
  • Said pipe section 10 is positioned downstream of the exhaust gas treatment device 5.
  • the connection points mentioned are purely exemplary.
  • the respective holding device 6 has a first connection point 11, by means of which the holding device 6 can be fastened to the respective component 10 of the exhaust system 2, and a second connection point 12, with which the holding device 6 can be attached to the respective peripheral structure 7. Furthermore, the holding device 6 has a coupling device 13 arranged between the connection points 11, 12. This coupling device 13 is designed so that it allows reversible relative movements between the connection points 11,12. Such relative movements For example, in one of the Fig. 2 and 3 effected by a double arrow indicated direction of action 14.
  • the exhaust system 2 can be excited in the region of the first connection point 11 in the operation of the internal combustion engine 1 to vibrations whose vibration directions in Fig. 1 indicated by double arrows and denoted by 15. Shown are longitudinal vibrations and transverse vibrations. Likewise, rotational vibrations are conceivable. In addition to these high-frequency or rapid relative movements between the respective component 10 of the exhaust system 2 and the stationary structure 7 in this regard, there may also be slow or low-frequency relative movements between said components. For example, the thermal expansion of the exhaust system 2 during operation leads to a displacement of the first connection point 11 relative to the internal combustion engine 1 and thus relative to the structure 7. A direction of action of the thermal expansion is in Fig. 1 indicated by a double arrow and designated 16.
  • the coupling device 13 may be configured so that it has a speed-dependent and / or frequency-dependent stiffness at least in its effective direction 14. This has the consequence that the stiffness of the coupling device 13 at slow relative movements between the connection points 11,12 or at low-frequency relative movements between the connection points 11,12 has a comparatively small stiffness, while at faster or high-frequency relative movements between the connection points 11,12 has a relatively high rigidity.
  • the slow or low-frequency relative movements are usually triggered by the thermal expansion 16 relative movements.
  • the faster or high-frequency relative movements are vibrations 15 of the exhaust system 2, which in the Operation of the internal combustion engine 1 in the region of the respective component 10 of the exhaust system 2 occur.
  • the stiffness in the present context is understood to be reciprocal to the elasticity, so that a high rigidity is associated with a small elasticity, while a large elasticity leads to a low rigidity.
  • Such a coupling device 13 with speed-dependent and / or frequency-dependent stiffness can be realized in different ways.
  • Fig. 2 a solution in which the coupling device 13 has a hydraulic or pneumatic damper 17 or is formed by such a damper 17.
  • said damper 17 in the example by a piston-cylinder unit 18, which has a cylinder 19 and a piston 20 which is led out by means of a piston rod 21 from the cylinder 19.
  • the piston 20 separates in the cylinder 19 two spaces 22, 23, which are connected by a throttle point 24 with each other. Through this throttle point 24 fluid can flow from one chamber 22 into the other chamber 23 in a piston movement in the cylinder 19.
  • the hydraulic fluid may be liquid or gaseous or pasty.
  • cylinder 19 and piston 20 and the chambers 22 and 23 may have basically any cross-sections.
  • round cross-sections such as circular, elliptical or oval cross-sections, come into consideration as well as angular cross-sections, such as triangular, quadrangular, hexagonal and octagonal cross-sections.
  • Fig. 3 shows another embodiment of the coupling device 13, which has at least one elastomeric body 25 which consists of an electroactive polymer.
  • an electroactive polymer changes its elasticity by applying an electrical voltage.
  • the holding device 6 also comprises an electrical control circuit 26 for actuating the elastomer body 25.
  • the control circuit 26 comprises a controller 27 and a vibration sensor 28 for this purpose.
  • the vibration sensor 28 can detect vibrations of the component 10 of the exhaust system 2 and transmit them via a signal line 29 of FIG Feed control 27.
  • the controller 27 is connected via control lines 30 to the elastomer body 25 and to the electroactive polymer.
  • the elastomeric body 25 is disposed between two plates 31, in particular fixedly connected thereto, for example glued or vulcanized.
  • the plates 30, 31 are connected via connecting element 32 with the connection points 11, 12 in connection.
  • the connecting elements 32 and the plates 31 serve here as connection electrodes in order to connect the control lines 30 to the elastomer body 25 or to the electroactive polymer.
  • the controller 27 can now change the elasticity of the elastomeric body 25 depending on the detected vibration frequency.
  • the change in the elasticity of the elastomer body 25 can be varied, for example, in at least two stages. Likewise, a continuous adaptation of the elasticity to the oscillation frequency can be realized.
  • the controller 27 may be configured or programmed to vary the elasticity of the elastomeric body 25 at the detected vibration frequency. In particular, it is possible to shift the elasticity oscillations with respect to the component vibrations with respect to their phase, in particular in such a way that this results in a reduction of the vibration amplitudes on the respective component 10.
  • the respective component 10 is the component 10, which by means of the holding device 6 is supported. In the example of Fig. 1 is the component 10, the exhaust pipe 4 and the pipe section 10th
  • the controller 27 operates with a low-pass filter, so that the slow, low-frequency thermal expansions trigger no reaction by the controller 27, namely a driving of the elastomer body 25.
  • the controller 27 takes into account thermally induced expansion effects, which likewise lead to relative movements, by means of a special characteristic in which the thermally induced relative movements are plotted as a function of the current component temperature.
  • the controller 27 can interact with a corresponding temperature sensor. In this way, the slow relative movements can be superimposed on the fast relative movements.
  • the coupling device 13 it is necessary for separate consideration of the thermally induced relative movements on the one hand and the relative movements generated by the component vibrations on the other hand within the coupling device 13 at least two separate coupling elements are provided which act in series.
  • two elastomeric bodies 25 are then provided whose elasticities can be changed independently of each other with the aid of the control 27.
  • the thermally induced strain can be allowed almost force-free, while with the help of the second elastomeric body 25 of the vibration excitation can be counteracted frequency-dependent with corresponding counter forces.
  • the coupling device 13 may include at least one electric actuator 33 and be formed by such.
  • the holding device 6 in this case comprises an electrical control circuit 34 for actuating the actuator 33.
  • This control circuit 34 has a vibration sensor 35, with the aid thereof Vibrations of the respective component 10 can be detected.
  • a signal line 36 supplies the detected vibrations to a controller 37.
  • Control lines 38 connect the controller 37 with the actuator 33.
  • the actuator 33 has in the example two plates 31, which are each connected via a connecting element 32 with the two connection points 11,12. An actuation of the actuator 33 leads to a change in the distance between the two connection points 11, 12.
  • the controller 37 depending on the determined oscillation frequency, the actuator 33 for changing the distance between the connection points 11,12 drive.
  • the actuator 33 is equipped with an electroactive polymer which changes its shape by applying an electrical voltage.
  • the shape of the polymer can be selectively changed by applying an electrical voltage and thus in particular the distance between the connection points 11, 12 can be varied.
  • the controller 37 may preferably be configured or programmed such that it excites the actuator 33 with a frequency to oscillations, which corresponds to the determined by means of the vibration sensor 35 frequency. It is now particularly advantageous to shift the actuator oscillations in terms of their vibration amplitudes in relation to the determined component vibrations in their phase. This phase shift is carried out in a targeted manner so that a reduction of the oscillation amplitudes is established on the respective component.
  • the actuator 33 is operated in this case as an active silencer for structure-borne noise. He works with quasi anti-vibration or counter-vibrations, which at least partially extinguish the vibrations of the component 10 to be damped.
  • the controller 37 operates with a low-pass filter, so that the slow, low-frequency thermal expansions no reaction of the controller 37, namely a Activation of the actuator 33 trigger.
  • the controller 37 takes into account thermally induced expansion effects, which likewise lead to relative movements, by means of a special characteristic in which the thermally induced relative movements are plotted as a function of the current component temperature.
  • the controller 37 may be coupled to a corresponding temperature sensor. In this way, the slow relative movements can be superimposed on the fast relative movements.
  • At least two separate coupling elements are provided within the coupling device 13, which act in series.
  • two actuators 33 are then provided, whose actuating movements can be changed independently with the aid of the controller 37.
  • the thermally induced strain can be allowed almost force-free, while using the second actuator 33der the vibration excitation can be counteracted frequency-dependent with corresponding counter forces.
  • Fig. 5 can be realized for the holding device 6 preferably a mounting, which causes the effective direction 14 of the holding device 6 and the coupling device 13 is substantially parallel to the thermal expansion direction 16, in which the respective component of the exhaust system 2, here the exhaust pipe 4 or the pipe section 10 moves relative to the structure 7.
  • the design of the coupling device 13 with frequency-dependent stiffness or as an actuator is of particular interest.
  • Fig. 6 shows a further embodiment of a coupling device 13 with frequency-dependent or speed-dependent stiffness.
  • the coupling device 13 has a dilatant material 39.
  • This dilatant material 39 may be a liquid or a solid.
  • the viscosity changes with the force introduction velocity.
  • a solid dilatant material changes with the force introduction speed, the elasticity.
  • the dilatant material is low viscosity or highly elastic. With a fast introduction of force, its viscosity increases strongly or has an extremely high rigidity.
  • the dilatant material 39 is arranged within the coupling device 13 so that it serves for the transmission of movement between the two connection points 11,12. In other words, a relative movement between the two connection points 11, 12 is only possible if within the coupling device 13, the dilatant material 39 is deformed or displaced.
  • the coupling device 13 again has a piston-cylinder unit 40, which has a cylinder 41, a piston 42 and a piston rod 43, which is connected to the piston 42 and leads out of the cylinder 41.
  • One connection point 11 is fixedly connected to the cylinder 41, while the other connection point 12 is fixedly connected to the piston 42 via the piston rod 43.
  • the piston 42 is adjustable in a working chamber 44 of the cylinder 41, in which the dilatant material 39 is located.
  • the piston 42 does not have to be guided laterally in the cylinder 41.
  • the piston 42 can be embedded in the dilatant material 39.
  • the piston 42 may be within the dilatant material 39 relative to the cylinder 41st to be moved. However, if fast movements are to be performed, the dilatant material 39 is extremely counteracting.
  • the dilatant material 39 may also be formed into an elastomeric body. Then basically a structure like in Fig. 3 feasible without then a control circuit 26 is required.
  • the dilatant material 39 is in the form of an elastomeric body, optionally at least one spring element can be arranged so that it acts parallel to the elastomeric body.
  • such a spring element can be integrated into the elastomer body or embedded therein.
  • slow relative movements essentially only the spring force then acts, which drives the components coupled to one another with the aid of the coupling device 13 into a starting position.
  • rapid relative movements leads the dilatant material 39 to block the movement or to a strong damping, which superimposes the spring force.
  • Fig. 7 shows a further embodiment for a coupling device 13, which has a plurality of elastomer body 45, 46 and 47.
  • elastomer bodies 45, 46, 47 may consist of an electroactive polymer, but may be arranged differently with respect to their direction of action.
  • the direction of action of the central elastomer body 45 is perpendicular to the effective directions of the two outer elastomeric bodies 46, 47.
  • electric actuators can also be provided here.
  • FIG. 8 and 9 show a first design while the 10 and 11 play a second design.
  • Fig. 12 shows a sectional view, which in principle for both types of 8 to 11 Has validity.
  • the coupling device 13 comprises a bending elastic sheet metal part 48.
  • Said sheet metal part 48 has at least one closed cavity 49 in which Fig. 12 a free-flowing granules 50 is arranged. Visible here is the volume filled by the granules 50 smaller than the total volume of the respective cavity 49. This has the consequence that the granules 50 can move in the cavity 49.
  • a plurality of chambers 51 are formed in the cavity 49, on the one hand restrict the movement of the granules 50 within the cavity 49 to the individual chambers 51 and on the other hand cause a transverse stiffening of the sheet metal body 48.
  • the chambers 51 may be configured honeycomb-shaped.
  • the hollow chambers 49 can be realized in the sheet metal part 48, for example, by the fact that the respective sheet metal part 48 is formed at least in the region of the respective cavity 49 as a double sheet structure 52, which again in Fig. 12 is indicated. Within the respective double sheet structure 52, two individual sheets 53, 54 are provided, each having a recess 55 and 56, which complement each other in the assembled state mirror symmetry to the respective cavity 49.
  • the sheet metal parts 48 have in the examples shown here at their remote ends, the connection points 11 and 12th

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Vibration Prevention Devices (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Silencers (AREA)

Description

  • Die vorliegende Erfindung betrifft eine Haltevorrichtung zum Halten eines Bestandteils einer Abgasanlage an einer dazu peripheren Struktur, insbesondere eines mit der Abgasanlage ausgestatteten Fahrzeugs, mit den Merkmalen des Oberbegriffs des Anspruchs 1. Außerdem betrifft die vorliegende Erfindung eine mit einer derartigen Haltevorrichtung versehene Abgasanlage.
  • Im Betrieb eines Kraftfahrzeugs kann es in einer Abgasanlage zu Schwingungen kommen. Derartige Schwingungen können z.B. durch die Brennkraftmaschine oder durch Fahrbahnunebenheiten angeregt werden. Dementsprechend werden sogenannte Motoranregungen und Fahrbahnanregungen voneinander unterschieden. Hierbei sind insbesondere schwerere Bauteile der Abgasanlage, wie z.B. ein Katalysator oder ein Partikelfilter, aufgrund ihrer größeren Masse für das Schwingungsverhalten entscheidend. Des Weiteren wird die motorinduzierte Schwingungsanregung über an der Brennkraftmaschine des Fahrzeugs, z.B. am Motorgehäuse und/oder am Getriebegehäuse, fixierte Komponenten in das Schwingungssystem, also die Abgasanlage, eingetragen, so dass motornahe Bauteile der Abgasanlage einer deutlich stärkeren Schwingungsanregung ausgesetzt sind als motorfeme Bauteile. Um nun ein derartiges Bauteil an der Peripherie der Abgasanlage, also an einer peripheren Struktur des Fahrzeugs abzustützen, kann eine Haltevorrichtung der eingangs genannten Art zum Einsatz kommen. Diese kann mit Hilfe einer ersten Anschlussstelle an einem Bestandteil der Abgasanlage und mit einer zweiten Anschlussstelle an der jeweiligen Struktur des Fahrzeugs befestigt werden. Problematisch ist bei der Verwendung einer derartigen Haltevorrichtung der Umstand, dass sich der jeweilige Bestandteil der Abgasanlage gegenüber der benachbarten Struktur des Fahrzeugs bewegen können muss, um thermische Dehnungseffekte ausgleichen zu können. Wird eine Haltevorrichtung verwendet, die zum Ausgleich derartiger thermischer Wärmedehnungen eine ausreichende Elastizität besitzt, lässt sie regelmäßig auch unerwünschte Bauteilschwingungen zu.
  • Derartige Schwingungen oder Relativbewegungen stellen eine große mechanische Belastung der betroffenen Bauteile, also insbesondere der Abgasanlage, der Fahrzeugstruktur und der Haltevorrichtung dar.
  • Aus der US 4,746,104 ist eine Haltevorrichtung zum Halten eines Rohrs einer Abgasanlage an einem Tragrahmen eines mit der Abgasanlage ausgestatteten Fahrzeugs bekannt. Die Haltevorrichtung umfasst eine erste Anschlussstelle zum Befestigen der Haltevorrichtung am Rohr der Abgasanlage, eine zweite Anschlussstelle zum Befestigen der Haltevorrichtung am Tragrahmen und eine zwischen den Anschlussstellen angeordneten Kopplungseinrichtung, die reversible Relativbewegungen zwischen den Anschlussstellen ermöglicht, wobei die Kopplungseinrichtung so ausgestaltet ist, dass sie zumindest in einer Wirkrichtung eine geschwindigkeitsabhängige und/oder frequenzabhängige Steifigkeit aufweist, derart, dass die Kopplungseinrichtung bei langsameren oder niederfrequenten Relativbewegungen eine kleinere Steifigkeit aufweist als bei schnelleren oder hochfrequenten Relativbewegungen. Bei der bekannten Haltevorrichtung weist die Kopplungseinrichtung einen hydraulischen Dämpfer auf.
  • Weitere Haltevorrichtungen mit hydraulisch gedämpfter Kopplungseinrichtung sind aus der US 5,082,252 und aus der EP 1 160 428 A2 bekannt.
  • Die vorliegende Erfindung beschäftigt sich mit dem Problem, für eine Haltevorrichtung der eingangs genannten Art bzw. für eine damit ausgestattete Abgasanlage eine verbesserte Ausführungsform anzugeben, die sich insbesondere dadurch auszeichnet, dass die Gefahr einer Beschädigung des jeweiligen Bauteils oder Bestandteils bzw. der jeweiligen Struktur bzw. der Haltevorrichtung reduziert ist.
  • Dieses Problem wird erfindungsgemäß durch die Gegenstände der unabhängigen Ansprüche gelöst. Vorteilhafte Ausführungsformen sind Gegenstand der abhängigen Ansprüche.
  • Die Erfindung beruht auf dem allgemeinen Gedanken, die Haltevorrichtung mit einer Kopplungseinrichtung auszustatten, die reversible Relativbewegungen zwischen den beiden Anschlussstellen der Haltevorrichtung zulässt, dabei jedoch eine Steifigkeit aufweist, die von der Geschwindigkeit bzw. von der Frequenz der Relativbewegungen abhängig ist. Bei langsamen oder niederfrequenten Relativbewegungen weist die Kopplungseinrichtung eine relativ kleine Steifigkeit auf. Bei schnelleren oder hochfrequenten Relativbewegungen weist die Kopplungseinrichtung dagegen eine relativ hohe Steifigkeit auf. Eine langsame Relativbewegung liegt beispielsweise vor, wenn sich das Bauteil relativ zur Struktur mit weniger als 1 cm/s bewegt. Niederfrequente Relativbewegungen sind Schwingungen mit einer Schwingungsfrequenz von weniger als 1 Hz. Diesbezüglich sind schnelle Relativbewegungen gegeben, wenn sich das Bauteil relativ zur Struktur mit mehr als 1 cm/s bewegt. Ebenso liegen diesbezüglich hochfrequente Schwingungen vor, wenn das Bauteil relativ zur Struktur mit einer Schwingungsfrequenz von mehr als 1 Hz schwingt. Die Begriffe "langsam", "schnell", "niederfrequent" und "hochfrequent" sind vorwiegend relativ zueinander zu verstehen. Außerdem können sie entsprechend den vorstehenden Zahlenangaben auch absolut verstanden werden. Des Weiteren sind die Begriffe "kleinere Steifigkeit" und "größere Steifigkeit" relativ zueinander zu verstehen. Bei einer kleineren Steifigkeit wirkt die Haltevorrichtung der Relativbewegung mit vergleichsweise kleinen Kräften entgegen. Bei einer größeren Steifigkeit wirkt die Haltevorrichtung der Relativbewegung mit vergleichsweise großen Gegenkräften entgegen.
  • Die hier vorgestellte Bauweise ermöglicht einerseits langsamere bzw. niederfrequente Bewegungen, wie sie beispielsweise aufgrund thermischer Dehnungseffekte auftreten. Andererseits behindert bzw. dämpft die Haltevorrichtung schnellere bzw. hochfrequente Relativbewegungen, die beispielsweise im Betrieb des Fahrzeugs durch die motorinduzierte und/oder fahrbahninduzierte Schwingungsanregung des jeweiligen Bestandteils der Abgasanlage entstehen.
  • Erfindungsgemäß weist die Kopplungseinrichtung nun zumindest zwei in Reihe wirkende Kopplungselemente auf, von denen das eine langsamere oder niederfrequente Relativbewegungen im Wesentlichen kraftfrei zulässt, während das andere schnelleren oder hochfrequenten Relativbewegungen entgegenwirkt. Die langsameren oder niederfrequenten Relativbewegungen werden durch thermische Dehnungseffekte ausgelöst und werden durch das eine Kopplungselement kraftfrei ermöglicht, so dass im Wesentlichen keine Verspannungen innerhalb der Abgasanlage entstehen. Die motorinduzierten bzw. fahrbahninduzierten Schwingungsanregungen führen im Vergleich zu thermischen Dehnungseffekten zu schnelleren bzw. hochfrequenten Relativbewegungen, denen dann das andere Kopplungselement mit entsprechenden Kräften entgegenwirkt. Das andere Kopplungselement wirkt dann beispielsweise als Dämpfer und/oder Feder. Denkbar ist auch ein aktives Kopplungselement, das den schnelleren oder hochfrequenten Relativbewegungen als Tilger entgegenwirkt, also mit Gegenschwingungen.
  • Entsprechend einer vorteilhaften Ausführungsform kann die Kopplungseinrichtung zumindest einen hydraulischen oder pneumatischen Dämpfer aufweisen oder durch einen solchen gebildet sein. Der Dämpfer enthält ein Dämpfungsfluid, das bei einer Relativbewegung zwischen den beiden Anschlussstellen von einer ersten Kammer des Dämpfers in eine zweite Kammer des Dämpfers verdrängt wird. Hierzu stehen die beiden Kammern über eine Drosselstelle miteinander in Verbindung. Der Fluidübertritt von der einen Kammer in die andere Kammer ist bei geringen Volumenströmen nahezu widerstandsfrei möglich, während bei großen Volumenströmen die Drossel ihre Wirkung entfaltet und so den Fluidstrom bremst bzw. drosselt. Dementsprechend wirkt ein derartiger gedrosselter Dämpfer für langsame Bewegungen weich, während er gegenüber schnellen Bewegungen hart ist.
  • Bei einer alternativen Ausgestaltung kann die Kopplungseinrichtung zumindest einen Elastomerkörper aufweisen, der aus einem elektroaktiven Polymer besteht, dessen Elastizität durch Anlegen einer elektrischen Spannung veränderbar ist, und der an einen elektrischen Steuerkreis angeschlossen ist, der einen Schwingungssensor zur Erfassung von Schwingungen des Bauteils oder Bestandteils und eine Steuerung zum Verändern der Elastizität des Elastomerkörpers abhängig von der Schwingungsfrequenz aufweist. Bei dieser Ausführungsform wird somit ein Elastomerkörper verwendet, dessen Elastizität abhängig von einer daran angelegten elektrischen Spannung verändert werden kann. Hierdurch ist es beispielsweise möglich, bei Bauteilschwingungen, deren Schwingungsfrequenz unterhalb einer vorbestimmten Schaltfrequenz liegen, den Elastomerkörper unbestromt zu lassen, wodurch er eine vergleichsweise hohe Elastizität besitzt und eine weiche Dämpfungscharakteristik aufweist. Sobald jedoch die Bauteilschwingungen eine Schwingungsfrequenz oberhalb der vorgegebenen Schaltfrequenz erreichen, wird an den Elastomerkörper eine vorbestimmte elektrische Spannung angelegt, wodurch sich dessen Elastizität verändert, nämlich reduziert. In der Folge ergibt sich eine härtere Dämpfungscharakteristik.
  • Bei einer vereinfachten Ausführungsform arbeitet die Steuerung nicht mit einem Schwingungssensor zusammen, sondern mit einem Kennfeld, in dem die einzustellende Elastizität abhängig von der Drehzahl der Brennkraftmaschine abgelegt ist. Hierzu kann die Steuerung mit einem entsprechenden Motorsteuergerät der Brennkraftmaschine kommunizieren. Die Drehzahl der Brennkraftmaschine korreliert mit der motorinduzierten Schwingungsanregung, so dass die Einstellung der frequenzabhängigen Elastizität hier mit einem vereinfachten Steuerungsaufwand realisiert werden kann.
  • Bei einer einfachen Ausführungsform kann die Steuerung die zwei vorbeschriebenen Zustände schalten, nämlich Ausschalten der vorgegebenen Spannung und Einschalten der vorgegebenen Spannung. Bei einer komfortableren Ausführungsform kann vorgesehen sein, die Spannung am Elastomerkörper in mehreren Stufen zu variieren, um so die Elastizität des Elastomerkörpers gestuft verändern zu können. Beispielsweise können hierzu mehrere verschiedene Schaltfrequenzen vorgegeben werden, die eine stufenweise Erhöhung der am Elastomerkörper anliegenden Spannung auslösen. Darüber hinaus ist es ebenso möglich, die Spannung am Elastomerkörper abhängig von der gemessenen Bauteilschwingungsfrequenz stufenlos zu variieren, wodurch eine proportionale Zuordnung zwischen Bauteilfrequenz und Elastizität des Elastomerkörpers und letztlich Steifigkeit der Kopplungseinrichtung realisierbar ist. Die Proportionalität kann dabei degressiv oder progressiv oder linear konzipiert werden.
  • Alternativ ist es ebenso möglich, die Elastizität des Elastomerkörpers mit der Schwingungsfrequenz zu variieren, so dass im Elastomerkörper Elastizitätsschwingungen entstehen. Dabei wird also nicht statisch zwischen zwei oder mehr Zuständen des Elastomerkörpers gewechselt, sondern dynamisch, eben mit der Frequenz der Bauteilschwingungen. Besonders vorteilhaft kann es dabei sein, zwischen den Betätigungsschwingungen, die im Elastomerkörper mit Hilfe der Steuerung erregt werden, eine Phasenverschiebung gegenüber den Bauteilschwingungen vorzusehen, derart, dass sich eine Reduzierung der Schwingungsamplituden am Bauteil einstellt. Hierdurch werden an der Haltevorrichtung quasi Antischwingungen generiert, die zu einer effektiven Dämpfung der Bauteilschwingungen führen.
  • Entsprechend einer anderen vorteilhaften Ausführungsform kann die Kopplungseinrichtung ein dilatantes Material zur Bewegungsübertragung zwischen den beiden Anschlussstellen aufweisen. Ein dilatantes Material charakterisiert sich durch eine von der Geschwindigkeit der Krafteinleitung abhängige Elastizität, bei einem Festkörper, bzw. Viskosität, bei einer Flüssigkeit. Beispielsweise existiert eine knetbare dilatante Masse, die, wenn man sie auf den Boden wirft, wie ein Gummiball zurückspringt und die, wenn man mit einem Hammer daraufschlägt, wie ein Keramikkörper zerbricht. Die Anmelderin hat erkannt, dass ein derartiges dilatantes Material in hohem Maße geeignet ist, um bei einer Kupplungseinrichtung eine geschwindigkeitsabhängige bzw. frequenzabhängige Steifigkeit zu realisieren. Bei hochfrequenten Störungen reagiert das dilatante Material hart und zeigt eine hohe Steifigkeit. Bei langsamen Störungen reagiert es weich und kann verformt werden, und zwar - je nach Ausführungsform - elastisch oder plastisch, insbesondere jedoch reversibel.
  • Parallel wirkend zum dilatanten Material kann zumindest ein Federelement vorgesehen sein, um im Falle einer Formänderung des dilatanten Materials eine entsprechende Rückstellkraft zu erzeugen. Bei niederfrequenten oder langsamen Verstellbewegungen wirkt diese Anordnung aus dilatantem Material und wenigstens einem Federelement wie eine Feder. Bei schnellen oder hochfrequenten Verstellbewegungen wirkt diese Anordnung aus dilatantem Material und wenigstens einem Federelement wie ein Festkörper.
  • Beispielsweise kann die Kopplungseinrichtung ein Kolben-Zylinder-Aggregat aufweisen, dessen Zylinder fest mit der einen Anschlussstelle und dessen Kolben fest mit der anderen Anschlussstelle verbunden ist. Im Zylinder ist eine Kammer enthalten, in welcher der Kolben bewegbar ist. Diese Kammer ist mit dem dilatanten Material befüllt, wobei es sich hierbei um ein flüssiges oder pastöses oder festes dilatantes Material handeln kann. Bei langsamen Bewegungen des Kolbens im Zylinder liegt eine vergleichsweise niedrige Viskosität bzw. Steifigkeit vor, so dass sich der Kolben nahezu widerstandsfrei im Zylinder bewegen kann. Bei raschen Bewegungen erhöht sich die Viskosität bzw. Steifigkeit, wodurch der Widerstand, den das dilatante Material der Relativbewegung zwischen Zylinder und Kolben entgegensetzt, entsprechend zunimmt.
  • Bei einer anderen Ausführungsform kann die Kopplungseinrichtung ein biegeelastisches Blechteil aufweisen oder durch ein solches gebildet sein. Dieses Blechteil weist zumindest einen geschlossenen Hohlraum auf, in dem ein rieselfähiges Granulat angeordnet ist. Dabei ist das vom Granulat befüllte Volumen kleiner als das Gesamtvolumen des Hohlraums. Bei dieser Ausführungsform führen Relativbewegungen zwischen den Anschlussstellen zu elastischen Verformungen des Blechteils. Bei niederfrequenten Relativbewegungen kann das Granulat den Bewegungen des Blechteils folgen. Bei hochfrequenten Relativbewegungen erfolgt auch im Granulat eine Bewegungsanregung, die Energie aus dem Schwingungssystem absorbiert, also in Wärme umwandelt und dadurch eine Dämpfung der Schwingung bewirkt.
  • Eine alternative Ausführungsform beruht auf dem allgemeinen Gedanken, die Kopplungseinrichtung mittels wenigstens eines elektrischen Aktuators zu realisieren. Ein zugehöriger elektrischer Steuerkreis umfasst den jeweiligen Aktuator, zumindest einen Schwingungssensor zur Erfassung von Schwingungen des Bauteils sowie zumindest eine Steuerung zum Betätigen des Aktuators in Abhängigkeit der Schwingungsfrequenz. Der Aktuator kann nun in Abhängigkeit seiner Betätigung einen Abstand zwischen den Anschlussstellen verändern. Mit Hilfe eines derartigen Aktuators kann die Kopplungseinrichtung Relativbewegungen zwischen Bauteil und Struktur mehr oder weniger stark entgegenwirken. Beispielsweise können niederfrequente Relativbewegungen mit wenig Widerstand realisiert werden, während hochfrequente Relativbewegungen nur gegen erhöhten Widerstand und sogar gegen entgegengesetzt gerichtete Bewegungen realisiert werden.
  • Entsprechend einer vorteilhaften Ausführungsform kann die Steuerung den jeweiligen Aktuator mit der Schwingungsfrequenz, mit welcher das Bauteil schwingt, zu Schwingungen anregen. Besonders zweckmäßig ist es dabei, die Aktuatorschwingungen gegenüber den Bauteilschwingungen mit einer Phasenverschiebung zu realisieren, die so gewählt ist, dass sich eine Reduzierung der Schwingungsamplituden am Bauteil einstellt. Die Kopplungseinrichtung arbeitet dabei wie ein Antischwingungserzeuger, der die Schwingungsamplituden des Bauteils effektiv reduziert. Im Idealfall kann sogar eine Schwingungsauslöschung realisiert werden. Die Kopplungseinrichtung wird hierbei analog zu einem Antischallgenerator betrieben, der in einem aktiven Schalldämpfungssystem mittels phasenverschobenem Antischall Schwindungsamplituden von zu bedämpfendem Schall auslöscht oder reduziert.
  • Besonders vorteilhaft ist es dabei, wenn der Aktuator mit einem elektroaktiven Polymer ausgestattet ist, das durch Anlegen einer elektrischen Spannung seine Form ändert. Hierdurch lässt sich der Aktuator besonders preiswert realisieren. Insbesondere lässt sich das elektroaktive Polymer in unterschiedlichsten geometrischen Formen realisieren. Alternativ kann auch ein Piezoaktuator verwendet werden.
  • Weitere wichtige Merkmale und Vorteile der Erfindung ergeben sich aus den Unteransprüchen, aus den Zeichnungen und aus der zugehörigen Figurenbeschreibung anhand der Zeichnungen.
  • Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
  • Bevorzugte Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert, wobei sich gleiche Bezugszeichen auf gleiche oder ähnliche oder funktional gleiche Bauteile beziehen.
  • Es zeigen, jeweils schematisch
  • Fig. 1
    eine stark vereinfachte, schaltplanartige Prinzipdarstellung einer Brennkraftmaschine mit Abgasanlage,
    Fig. 2
    eine stark vereinfachte, prinzipielle Darstellung einer Haltevorrichtung,
    Fig. 3
    eine Ansicht wie in Fig. 2, jedoch bei einer anderen Ausführungsform,
    Fig. 4
    eine Ansicht wie in Fig. 3, jedoch einer alternativen Ausführungsform,
    Fig. 5
    eine Ansicht wie in Fig. 1 mit einer Haltevorrichtung einer weiteren Ausführungsform,
    Fig. 6 und 7
    weitere Ausführungsformen von Haltevorrichtungen,
    Fig. 8 und 9
    verschiedene Ansichten einer weiteren Haltevorrichtung,
    Fig. 10 und 11
    verschiedene Ansicht einer weiteren Haltevorrichtung wie in den Fig. 8 und 9, jedoch bei einer anderen Bauform,
    Fig. 12
    einen Querschnitt der Haltevorrichtung der Fig. 8 bis 11 im Bereich eines Hohlraums.
  • Entsprechend Fig. 1 weist eine Brennkraftmaschine 1 in üblicher Weise eine Abgasanlage 2 auf, die beispielsweise über einen Abgassammler 3 oder Krümmer 3 an die Brennkraftmaschine 1 angeschlossen ist. Die Abgasanlage 2 umfasst ein Abgasrohr 4, das an den Krümmer 3 angeschlossen ist und das dort gesammelte Abgas wegführt. Die Abgasanlage 2 weist in üblicher Weise zumindest eine Abgasbehandlungseinrichtung 5 auf, die in das Abgasrohr 4 eingebunden ist. Im Beispiel der Fig. 1 ist nur eine solche Abgasbehandlungseinrichtung 5 dargestellt, die relativ nahe an der Brennkraftmaschine 1 in das Abgasrohr 4 eingebunden ist. Beispielsweise handelt es sich bei der Abgasbehandlungseinrichtung 5 um einen Katalysator. Ebenso kann es sich um einen Partikelfilter handeln.
  • Die Abgasanlage 2 ist mit Hilfe einer Haltevorrichtung 6 an ihrer Peripherie festgehalten bzw. positioniert oder abgestützt. Beispielsweise wirkt die Haltevorrichtung 6 hierzu mit einer peripheren Struktur 7 eines Fahrzeugs zusammen, in dem die Brennkraftmaschine 1 angeordnet ist. Bei der peripheren Struktur 7 handelt es sich im Beispiel der Fig. 1 um ein Getriebegehäuse 8 eines Getriebes, das an die Brennkraftmaschine 8 angeschlossen ist. Ebenso kann die Haltevorrichtung 6 an einen Motorblock 9 der Brennkraftmaschine 1 angeschlossen sein. Ferner kann auch eine Karosserie des Fahrzeugs als Abstützung für die Haltevorrichtung 6 dienen. Mit Hilfe der Haltevorrichtung 6 kann nun ein Bestandteil 10 oder Bauteil 10 der Abgasanlage 2 an besagter Struktur 7 gehalten werden. Im Beispiel der Fig. 1 ist das Bauteil 10 bzw. der Bestandteil 10 durch einen Abschnitt des Abgasrohrs 4 gebildet, der mit Hilfe der Haltevorrichtung 6 fahrzeugseitig befestigt ist. Besagter Rohrabschnitt 10 ist dabei stromab der Abgasbehandlungseinrichtung 5 positioniert. Die genannten Anbindungsstellen sind jedoch rein exemplarisch.
  • Entsprechend den Fig. 2 und 3 besitzt die jeweilige Haltevorrichtung 6 eine erste Anschlussstelle 11, mit deren Hilfe die Haltevorrichtung 6 am jeweiligen Bestandteil 10 der Abgasanlage 2 befestigt werden kann, sowie eine zweite Anschlussstelle 12, mit der die Haltevorrichtung 6 an der jeweiligen peripheren Struktur 7 befestigt werden kann. Ferner weist die Haltevorrichtung 6 eine zwischen den Anschlussstellen 11, 12 angeordnete Kopplungseinrichtung 13 auf. Diese Kopplungseinrichtung 13 ist so ausgestaltet, dass sie reversible Relativbewegungen zwischen den Anschlussstellen 11,12 ermöglicht. Derartige Relativbewegungen können beispielsweise in einer in den Fig. 2 und 3 durch einen Doppelpfeil angedeuteten Wirkrichtung 14 erfolgen.
  • Gemäß Fig. 1 kann die Abgasanlage 2 im Bereich der ersten Anschlussstelle 11 im Betrieb der Brennkraftmaschine 1 zu Schwingungen angeregt werden, deren Schwingungsrichtungen in Fig. 1 durch Doppelpfeile angedeutet und mit 15 bezeichnet sind. Gezeigt sind dabei Längsschwingungen und Querschwingungen. Ebenso sind Rotationsschwingungen denkbar. Neben diesen hochfrequenten oder schnellen Relativbewegungen zwischen dem jeweiligen Bestandteil 10 der Abgasanlage 2 und der diesbezüglich stationären Struktur 7 kann es auch zu langsamen bzw. niederfrequenten Relativbewegungen zwischen den besagten Komponenten kommen. Beispielsweise führt die thermische Dehnung der Abgasanlage 2 im Betrieb zu einer Verschiebung der ersten Anschlussstelle 11 relativ zur Brennkraftmaschine 1 und somit relativ zur Struktur 7. Eine Wirkrichtung der thermischen Dehnung ist in Fig. 1 durch einen Doppelpfeil angedeutet und mit 16 bezeichnet.
  • Gemäß einer ersten erfindungsgemäßen Lösung kann die Kopplungseinrichtung 13 so ausgestaltet sein, dass sie zumindest in ihrer Wirkrichtung 14 eine geschwindigkeitsabhängige und/oder frequenzabhängige Steifigkeit aufweist. Dies hat zur Folge, dass die Steifigkeit der Kopplungseinrichtung 13 bei langsamen Relativbewegungen zwischen den Anschlussstellen 11,12 bzw. bei niederfrequenten Relativbewegungen zwischen den Anschlussstellen 11,12 eine vergleichsweise kleine Steifigkeit aufweist, während sie bei schnelleren oder hochfrequenten Relativbewegungen zwischen den Anschlussstellen 11,12 eine relativ große Steifigkeit aufweist. Die langsamen bzw. niederfrequenten Relativbewegungen sind in der Regel die durch die thermische Wärmedehnung 16 ausgelösten Relativbewegungen. Im Unterschied dazu sind die schnelleren oder hochfrequenten Relativbewegungen Schwingungen 15 der Abgasanlage 2, die im Betrieb der Brennkraftmaschine 1 im Bereich des jeweiligen Bestandteils 10 der Abgasanlage 2 auftreten.
  • Die Steifigkeit wird im vorliegenden Zusammenhang reziprok zur Elastizität verstanden, so dass eine hohe Steifigkeit mit einer kleinen Elastizität einhergeht, während eine große Elastizität zu einer niedrigen Steifigkeit führt.
  • Eine derartige Kopplungseinrichtung 13 mit geschwindigkeitsabhängiger und/oder frequenzabhängiger Steifigkeit kann auf unterschiedliche Weise realisiert werden. Beispielsweise zeigt Fig. 2 eine Lösung, bei welcher die Kopplungseinrichtung 13 einen hydraulischen oder pneumatischen Dämpfer 17 aufweist bzw. durch einen solchen Dämpfer 17 gebildet ist. Realisiert ist besagter Dämpfer 17 im Beispiel durch ein Kolben-Zylinder-Aggregat 18, das einen Zylinder 19 und einen Kolben 20 aufweist, der mittels einer Kolbenstange 21 aus dem Zylinder 19 herausgeführt ist. Der Kolben 20 trennt im Zylinder 19 zwei Räume 22, 23, die durch eine Drosselstelle 24 miteinander verbunden sind. Durch diese Drosselstelle 24 kann bei einer Kolbenbewegung im Zylinder 19 Fluid von der einen Kammer 22 in die andere Kammer 23 überströmen. Abhängig von der Geschwindigkeit der Kolbenbewegung kommt es zu einer mehr oder weniger starken Drosselwirkung. Das Hydraulikfluid kann flüssig sein oder gasförmig oder pastös.
  • Innerhalb des Kolben-Zylinder-Aggregats 18 können Zylinder 19 und Kolben 20 sowie die Kammern 22 und 23 grundsätzlich beliebige Querschnitte aufweisen. Beispielsweise kommen runde Querschnitte, wie z.B. kreisförmige, eliptische oder ovale Querschnitte, ebenso in Betracht wie eckige Querschnitte, wie z.B. dreieckige, viereckige, sechseckige und achteckige Querschnitte. Bevorzugt sind jedoch kreisförmige Querschnitte.
  • Fig. 3 zeigt eine andere Ausführungsform der Kopplungseinrichtung 13, die zumindest einen Elastomerkörper 25 aufweist, der aus einem elektroaktiven Polymer besteht. Ein derartiges elektroaktives Polymer verändert seine Elastizität durch Anlegen einer elektrischen Spannung. Die Haltevorrichtung 6 umfasst in diesem Fall außerdem einen elektrischen Steuerkreis 26 zum Betätigen des Elastomerkörpers 25. Der Steuerkreis 26 umfasst hierzu eine Steuerung 27 sowie einen Schwingungssensor 28. Der Schwingungssensor 28 kann Schwingungen des Bestandteils 10 der Abgasanlage 2 erfassen und diese über eine Signalleitung 29 der Steuerung 27 zuführen. Die Steuerung 27 ist über Steuerleitungen 30 mit dem Elastomerkörper 25 bzw. mit dem elektroaktiven Polymer verbunden. Im Beispiel ist der Elastomerkörper 25 zwischen zwei Platten 31 angeordnet, insbesondere fest mit diesen verbunden, beispielsweise verklebt oder vulkanisiert. Die Platten 30, 31 stehen über Verbindungselement 32 mit den Anschlussstellen 11, 12 in Verbindung. Die Verbindungselemente 32 und die Platten 31 dienen hier als Anschlusselektroden, um die Steuerleitungen 30 mit dem Elastomerkörper 25 bzw. mit dem elektroaktiven Polymer zu verbinden.
  • Die Steuerung 27 kann nun die Elastizität des Elastomerkörper 25 abhängig von der erfassten Schwingungsfrequenz verändern. Die Veränderung der Elastizität des Elastomerkörpers 25 kann beispielsweise in wenigstens zwei Stufen variiert werden. Ebenso ist eine stufenlose Adaption der Elastizität an die Schwingungsfrequenz realisierbar. Des Weiteren kann die Steuerung 27 so ausgestaltet bzw. programmiert sein, dass sie die Elastizität des Elastomerkörpers 25 mit der erfassten Schwingungsfrequenz variiert. Insbesondere ist es dabei möglich, die Elastizitätsschwingungen gegenüber den Bauteilschwingungen hinsichtlich ihrer Phase zu verschieben, und zwar insbesondere derart, dass sich dadurch eine Reduzierung der Schwingungsamplituden am jeweiligen Bauteil 10 einstellt. Beim jeweiligen Bauteil 10 handelt es sich um den Bestandteil 10, der mit Hilfe der Haltevorrichtung 6 abgestützt ist. Im Beispiel der Fig. 1 ist das Bauteil 10 das Abgasrohr 4 bzw. der Rohrabschnitt 10.
  • Die Steuerung 27 arbeitet mit einem Tiefpassfilter, so dass die langsamen, niederfrequenten Wärmedehnungen keine Reaktion durch die Steuerung 27, nämlich ein Ansteuern des Elastomerkörpers 25 auslösen. Optional kann außerdem vorgesehen sein, dass die Steuerung 27 thermisch bedingte Dehnungseffekte, die ebenfalls zu Relativbewegungen führen, mittels einer speziellen Kennlinie berücksichtigt, in welcher die thermisch bedingten Relativbewegungen abhängig von der aktuellen Bauteiltemperatur aufgetragen sind. Hierzu kann die Steuerung 27 mit einem entsprechenden Temperatursensor zusammenwirken. Auf diese Weise können die langsamen Relativbewegungen den schnellen Relativbewegungen überlagert werden. Erfindungsgemäß ist es notwendig, dass zur getrennten Berücksichtigung der thermisch bedingten Relativbewegungen einerseits und der durch die Bauteilschwingungen erzeugten Relativbewegungen andererseits innerhalb der Kopplungseinrichtung 13 zumindest zwei separate Kopplungselemente vorgesehen sind, die in Reihe wirken. Beispielsweise sind dann zwei Elastomerkörper 25 vorgesehen, deren Elastizitäten unabhängig voneinander mit Hilfe der Steuerung 27 verändert werden können. Somit kann dann insbesondere über eine entsprechende Ansteuerung des einen Elastomerkörpers 25 die thermisch bedingte Dehnung nahezu kraftfrei zugelassen werden, während mit Hilfe des zweiten Elastomerkörpers 25 der Schwingungsanregung mit entsprechenden Gegenkräften frequenzabhängig entgegengewirkt werden kann.
  • Bei einer zweiten erfindungsgemäßen Lösung, die in Fig. 4 dargestellt ist, kann die Kopplungseinrichtung 13 zumindest einen elektrischen Aktuator 33 aufweisen bzw. durch einen solchen gebildet sein. Ferner umfasst die Haltevorrichtung 6 in diesem Fall einen elektrischen Steuerkreis 34 zum Betätigen des Aktuators 33. Dieser Steuerkreis 34 weist einen Schwingungssensor 35 auf, mit dessen Hilfe Schwingungen des jeweiligen Bauteils 10 erfasst werden können. Eine Signalleitung 36 leitet die erfassten Schwingungen einer Steuerung 37 zu. Steuerleitungen 38 verbinden die Steuerung 37 mit dem Aktuator 33. Der Aktuator 33 weist im Beispiel zwei Platten 31 auf, die je über ein Verbindungselement 32 mit den beiden Anschlussstellen 11,12 verbunden sind. Eine Betätigung des Aktuators 33 führt zu einer Veränderung des Abstands zwischen den beiden Anschlussstellen 11, 12. Somit kann die Steuerung 37 abhängig von der ermittelten Schwingungsfrequenz den Aktuator 33 zum Verändern des Abstands zwischen den Anschlussstellen 11,12 ansteuern. Von besonderem Vorteil ist eine Ausführungsform, bei welcher der Aktuator 33 mit einem elektroaktiven Polymer ausgestattet ist, das durch Anlegen einer elektrischen Spannung seine Form ändert. Somit kann durch Anlegen einer elektrischen Spannung gezielt die Form des Polymers verändert und somit insbesondere der Abstand zwischen den Anschlussstellen 11, 12 variiert werden.
  • Die Steuerung 37 kann vorzugsweise so ausgestaltet bzw. programmiert sein, dass sie den Aktuator 33 mit einer Frequenz zu Schwingungen anregt, welche der mit Hilfe des Schwingungssensors 35 ermittelten Frequenz entspricht. Besonders vorteilhaft ist es nun, die Aktuatorschwingungen hinsichtlich ihrer Schwingungsamplituden gegenüber den ermittelten Bauteilschwingungen in ihrer Phase zu verschieben. Diese Phasenverschiebung wird gezielt so durchgeführt, dass sich am jeweiligen Bauteil eine Reduzierung der Schwingungsamplituden einstellt. Der Aktuator 33 wird in diesem Fall wie ein aktiver Schalldämpfer für Körperschall betrieben. Er arbeitet quasi mit Antischwingungen oder Gegenschwingungen, welche die zu bedämpfenden Schwingungen des Bauteils 10 zumindest teilweise auslöschen.
  • Die Steuerung 37 arbeitet mit einem Tiefpassfilter, so dass die langsamen, niederfrequenten Wärmedehnungen keine Reaktion der Steuerung 37, nämlich eine Ansteuerung des Aktuators 33 auslösen. Optional kann außerdem vorgesehen sein, dass die Steuerung 37 thermisch bedingte Dehnungseffekte, die ebenfalls zu Relativbewegungen führen, mittels einer speziellen Kennlinie berücksichtigt, in welcher die thermisch bedingten Relativbewegungen abhängig von der aktuellen Bauteiltemperatur aufgetragen sind. Hierzu kann die Steuerung 37 mit einem entsprechenden Temperatursensor gekoppelt sein. Auf diese Weise können die langsamen Relativbewegungen den schnellen Relativbewegungen überlagert werden. Erfindungsgemäß ist es notwendig, dass zur getrennten Berücksichtigung der thermisch bedingten Relativbewegungen einerseits und der durch die Bauteilschwingungen erzeugten Relativbewegungen andererseits innerhalb der Kopplungseinrichtung 13 zumindest zwei separate Kopplungselement vorgesehen sind, die in Reihe wirken. Beispielsweise sind dann zwei Aktuatoren 33 vorgesehen, deren Stellbewegungen unabhängig voneinander mit Hilfe der Steuerung 37 verändert werden können. Somit kann dann insbesondere über eine entsprechende Ansteuerung des einen Aktuators 33 die thermisch bedingte Dehnung nahezu kraftfrei zugelassen werden, während mit Hilfe des zweiten Aktuator 33der Schwingungsanregung mit entsprechenden Gegenkräften frequenzabhängig entgegengewirkt werden kann.
  • Gemäß Fig. 5 kann für die Haltevorrichtung 6 vorzugsweise eine Montage realisiert werden, die dazu führt, dass die Wirkrichtung 14 der Haltevorrichtung 6 bzw. der Kopplungseinrichtung 13 weitgehend parallel zur Wärmedehnungsrichtung 16 verläuft, in welcher sich das jeweilige Bauteil der Abgasanlage 2, hier das Abgasrohr 4 bzw. der Rohrabschnitt 10 relativ zur Struktur 7 bewegt. Für eine derartige Anwendung ist die Ausgestaltung der Kopplungseinrichtung 13 mit frequenzabhängiger Steifigkeit bzw. als Aktuator von besonderem Interesse.
  • Fig. 6 zeigt eine weitere Ausführungsform für eine Kopplungseinrichtung 13 mit frequenzabhängiger bzw. geschwindigkeitsabhängiger Steifigkeit. Bei dieser Ausführungsform weist die Kopplungseinrichtung 13 ein dilatantes Material 39 auf. Hierbei handelt es sich um einen Kunststoff, der auf Krafteinleitung abhängig von der Geschwindigkeit, mit welcher die Krafteinleitung erfolgt, unterschiedlich reagiert. Bei diesem dilatanten Material 39 kann es sich um eine Flüssigkeit oder um einen Festkörper handeln. Bei einem flüssigen dilatanten Material ändert sich mit der Krafteinleitungsgeschwindigkeit die Viskosität. Bei einem festen dilatanten Material ändert sich mit der Krafteinleitungsgeschwindigkeit die Elastizität. Bei langsamer Krafteinleitung ist das dilatante Material niederviskos bzw. hochelastisch. Bei schneller Krafteinleitung wächst seine Viskosität stark an bzw. weist es eine extrem hohe Steifigkeit auf.
  • Das dilatante Material 39 ist dabei innerhalb der Kopplungseinrichtung 13 so angeordnet, dass es zur Bewegungsübertragung zwischen den beiden Anschlussstellen 11,12 dient. Mit anderen Worten, eine Relativbewegung zwischen den beiden Anschlussstellen 11, 12 ist nur dann möglich, wenn innerhalb der Kopplungseinrichtung 13 das dilatante Material 39 deformiert oder verdrängt wird.
  • Im Beispiel der Fig. 6 weist die Kopplungseinrichtung 13 wieder ein Kolben-Zylinder-Aggregat 40 auf, das einen Zylinder 41, einen Kolben 42 sowie eine Kolbenstange 43 aufweist, die mit dem Kolben 42 verbunden ist und aus dem Zylinder 41 herausführt. Die eine Anschlussstelle 11 ist fest mit dem Zylinder 41 verbunden, während die andere Anschlussstelle 12 über die Kolbenstange 43 mit dem Kolben 42 fest verbunden ist. Der Kolben 42 ist in einem Arbeitsraum 44 des Zylinders 41 verstellbar, in dem sich auch das dilatante Material 39 befindet. Der Kolben 42 muss hierbei nicht im Zylinder 41 seitlich geführt sein. Insbesondere bei einem als Festkörper ausgestalteten dilatanten Material 39 kann der Kolben 42 in das dilatante Material 39 eingebettet sein. Bei langsamen Bewegungen kann der Kolben 42 innerhalb des dilatanten Materials 39 relativ zum Zylinder 41 bewegt werden. Sollen jedoch schnelle Bewegungen durchgeführt werden wirkt das dilatante Material 39 extrem entgegen.
  • Bei einer anderen Ausführungsform kann das dilatante Material 39 auch zu einem Elastomerkörper geformt sein. Dann ist grundsätzlich ein Aufbau wie in Fig. 3 realisierbar, ohne dass dann ein Steuerkreis 26 erforderlich ist. Insbesondere für den Fall, dass das dilatante Material 39 in Form eines Elastomerkörpers vorliegt, kann optional zumindest ein Federelement so angeordnet sein, dass es parallel zum Elastomerkörper wirkt. Insbesondere kann ein derartiges Federelement in den Elastomerkörper integriert sein bzw. darin eingebettet sein. Bei langsamen Relativbewegungen wirkt dann im Wesentlichen nur die Federkraft, welche die mit Hilfe der Kopplungseinrichtung 13 miteinander gekoppelten Komponenten in eine Ausgangsstellung antreibt. Bei schnellen Relativbewegungen führt dann das dilatante Material 39 zu einem Blockieren der Bewegung bzw. zu einer starken Dämpfung, welche die Federkraft überlagert.
  • Fig. 7 zeigt eine weitere Ausführungsform für eine Kopplungseinrichtung 13, die mehrere Elastomerkörper 45, 46 und 47 aufweist. Diese Elastomerkörper 45, 46, 47 können dabei aus einem elektroaktiven Polymer bestehen, jedoch hinsichtlich ihrer Wirkrichtung unterschiedlich angeordnet sein. Beispielsweise steht die Wirkrichtung des mittleren Elastomerkörpers 45 senkrecht zu den Wirkrichtungen der beiden äußeren Elastomerkörpern 46, 47. Anstelle von Elastomerkörpern aus elektroaktivem Polymer können auch hier elektrische Aktuatoren vorgesehen sein. Durch die Bereitstellung einer derartigen Anordnung aus mehreren elektroaktiven Elastomerkörpern oder elektrischen Aktuatoren können unterschiedlich orientierte Relativbewegungen mit Hilfe der Haltevorrichtung 6 bedämpft werden.
  • Mit Bezug auf die Fig. 8 bis 12 wird eine weitere Ausführungsform für eine Kopplungseinrichtung 13 bzw. für die Haltevorrichtung 6 näher erläutert, wobei die Fig. 8 und 9 eine erste Bauform zeigen, während die Fig. 10 und 11 eine zweite Bauform wiedergeben. Fig. 12 zeigt eine Schnittdarstellung, die im Prinzip für beide Bauformen der Fig. 8 bis 11 Gültigkeit hat.
  • Entsprechend den Fig. 8 bis 12 umfasst die Kopplungseinrichtung 13 ein biegeelastisches Blechteil 48. Bei den hier gezeigten Ausführungsformen ist quasi die gesamte Haltevorrichtung 6 durch dieses biegeelastische Blechteil 48 bildet. Besagtes Blechteil 48 weist zumindest einen geschlossenen Hohlraum 49 auf, in dem gemäß Fig. 12 ein rieselfähiges Granulat 50 angeordnet ist. Erkennbar ist dabei das vom Granulat 50 befüllte Volumen kleiner als das Gesamtvolumen des jeweiligen Hohlraums 49. Dies hat zur Folge, dass sich das Granulat 50 im Hohlraum 49 bewegen kann. Bei der in Fig. 12 gezeigten besonderen Ausführungsform, sind im Hohlraum 49 mehrere Kammern 51 ausgebildet, die einerseits die Bewegung des Granulats 50 innerhalb des Hohlraums 49 auf die einzelnen Kammern 51 beschränken und andererseits eine Queraussteifung des Blechkörpers 48 bewirken. Beispielsweise können die Kammern 51 wabenförmig konfiguriert sein.
  • Die Hohlkammern 49 können im Blechteil 48 beispielsweise dadurch realisiert werden, dass das jeweilige Blechteil 48 zumindest im Bereich des jeweiligen Hohlraums 49 als Doppelblechstruktur 52 ausgebildet ist, was wieder in Fig. 12 angedeutet ist. Innerhalb der jeweiligen Doppelblechstruktur 52 sind zwei Einzelbleche 53, 54 vorgesehen, die jeweils eine Vertiefung 55 bzw. 56 aufweisen, die sich im zusammengesetzten Zustand spiegelsymmetrisch zum jeweiligen Hohlraum 49 ergänzen. Die Blechteile 48 besitzen bei den hier gezeigten Beispielen an ihren voneinander entfernten Enden die Anschlussstellen 11 und 12.

Claims (14)

  1. Haltevorrichtung zum Halten eines Bestandteils (10) einer Abgasanlage (2) an einer peripheren Struktur (7), insbesondere eines mit der Abgasanlage (2) ausgestatteten Fahrzeugs,
    - mit einer ersten Anschlussstelle (11) zum Befestigen der Haltevorrichtung (6) am Bestandteil (10) der Abgasanlage (2),
    - mit einer zweiten Anschlussstelle (12) zum Befestigen der Haltevorrichtung (6) an der Struktur (7),
    - mit einer zwischen den Anschlussstellen (11, 12) angeordneten Kopplungseinrichtung (13), die reversible Relativbewegungen zwischen den Anschlussstellen (11, 12) ermöglicht,
    - wobei die Kopplungseinrichtung (13) so ausgestaltet ist, dass sie zumindest in einer Wirkrichtung (14) eine geschwindigkeitsabhängige und/oder frequenzabhängige Steifigkeit aufweist, derart, dass die Kopplungseinrichtung (13) bei langsameren oder niederfrequenten Relativbewegungen eine kleinere Steifigkeit aufweist als bei schnelleren oder hochfrequenten Relativbewegungen,
    dadurch gekennzeichnet,
    dass die Kopplungseinrichtung (13) zumindest zwei in Reihe wirkende Kopplungselemente aufweist, von denen das eine langsamere oder niederfrequente Relativbewegungen im wesentlichen kraftfrei zulässt, während das andere schnelleren oder hochfrequenten Relativbewegungen entgegenwirkt.
  2. Haltevorrichtung nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Kopplungseinrichtung (13) zumindest einen hydraulischen oder pneumatischen Dämpfer (17) aufweist oder durch einen solchen gebildet ist.
  3. Haltevorrichtung nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Kopplungseinrichtung (13) zumindest einen Elastomerkörper (25) aufweist, der aus einem elektroaktiven Polymer besteht, dessen Elastizität durch Anlegen einer elektrischen Spannung veränderbar ist und der an einen elektrischen Steuerkreis (26) angeschlossen ist, der eine Steuerung (27) zum Verändern der Elastizität des Elastomerkörpers (25) abhängig von der Schwingungsfrequenz aufweist, wobei vorgesehen sein kann,dass die Steuerung (27) so ausgestaltet und/oder programmiert ist, dass sie die Elastizität des Elastomerkörpers (25) in wenigstens zwei Stufen variiert oder eine stufenlos Adaption der Elastizität an die Schwingungsfrequenz ermöglicht.
  4. Haltevorrichtung nach Anspruch 3,
    dadurch gekennzeichnet,
    dass die Steuerung (27) so ausgestaltet und/oder programmiert ist, dass sie die Elastizität des Elastomerkörpers (25) mit der Schwingungsfrequenz variiert, wobei insbesondere vorgesehen sein kann, dass die Steuerung (27) so ausgestaltet und/oder programmiert ist, dass die Elastizitätsschwingungen gegenüber den Bestandteilschwingungen soweit phasenverschoben sind, dass sich eine Reduzierung der Schwingungsamplituden am Bestandteil (10) einstellt.
  5. Haltevorrichtung nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Kopplungseinrichtung (13) zumindest ein dilatantes Material (39) zur Bewegungsübertragung zwischen den Anschlussstellen (11) aufweist.
  6. Haltevorrichtung nach Anspruch 5,
    dadurch gekennzeichnet,
    dass die Kopplungseinrichtung (13) ein Kolben-Zylinder-Aggregat (40) aufweist, dessen Zylinder (/41) fest mit der einen Anschlussstelle (11) und dessen Kolben (42) fest mit der anderen Anschlussstelle (12) verbunden ist, wobei das dilatante Material (39) in einen Arbeitsraum (44) des Zylinders (41) angeordnet ist, in dem der Kolben (42) verstellbar ist.
  7. Haltevorrichtung nach Anspruch 5 oder 6,
    dadurch gekennzeichnet,
    dass das dilatante Material (39) zu einem Elastomerkörper geformt ist, wobei insbesondere vorgesehen sein kann, dass, insbesondere im Elastomerkörper, zumindest ein Federelement parallel wirkend zum dilatanten Material (39) angeordnet ist.
  8. Haltevorrichtung nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Kopplungseinrichtung (13) zumindest ein biegeelastisches Blechteil (48) aufweist oder durch ein solches gebildet ist, wobei das Blechteil (48) zumindest einen geschlossenen Hohlraum (49) aufweist, in dem ein rieselfähiges Granulat (50) angeordnet ist, wobei das vom Granulat befüllte Volumen kleiner ist als das Gesamtvolumen des Hohlraums (49).
  9. Haltevorrichtung nach Anspruch 8,
    dadurch gekennzeichnet,
    dass das Blechteil (48) zumindest im Bereich des jeweiligen Hohlraums (49) als Doppelblechstruktur (52) ausgestaltet ist, wobei jedes Einzelblech (53, 54) der Doppelblechstruktur (52) eine Vertiefung (55, 56) aufweist, die sich spiegelsymmetrisch zum jeweiligen Hohlraum (49) ergänzen.
  10. Haltevorrichtung nach einem der Ansprüche 1 bis 9,
    dadurch gekennzeichnet,
    dass die Kopplungseinrichtung (13) zumindest einen elektrischen Aktuator (33) aufweist oder durch eine solchen gebildet ist, wobei ein elektrischer Steuerkreis (34) vorgesehen ist, an den der elektrische Aktuator (33) angeschlossen ist, der einen Schwingungssensor (35) zur Erfassung von Schwingungen des Bestandteils (10) sowie eine Steuerung (37) zum Betätigen des Aktuators (33) in Abhängigkeit der Schwingungsfrequenz aufweist, wobei der Aktuator (33) bei seiner Betätigung einen Abstand zwischen den Anschlussstellen (11, 12) verändert.
  11. Haltevorrichtung nach Anspruch 10,
    dadurch gekennzeichnet,
    dass die Steuerung (37) so ausgestaltet und/oder programmiert ist, dass sie den Aktuator (33) mit der Schwingungsfrequenz zu Schwingungen anregt, wobei die Aktuatorschwingungen insbesondere gegenüber den Bestandteilschwingungen soweit phasenverschoben sind, dass sich eine Reduzierung der Schwingungsamplituden am Bestandteil (10) einstellt.
  12. Haltevorrichtung nach Anspruch 10 oder 11,
    dadurch gekennzeichnet,
    dass der Aktuator (33) mit einem elektroaktiven Polymer ausgestattet ist, das durch Anlegen einer elektrischen Spannung seine Form ändert.
  13. Haltevorrichtung nach einem der Ansprüche 1 bis 12,
    dadurch gekennzeichnet,
    dass die Wirkrichtung (14) der Kopplungseinrichtung (13) parallel zu einer Wärmedehnungsrichtung (16) orientiert ist, in der sich der jeweilige Bestandteil (10) relativ zur Struktur (7) aufgrund thermischer Wärmedehnung bewegt.
  14. Abgasanlage für eine Brennkraftmaschine (1), bei der ein Bestandteil (10) der Abgasanlage (2) mit wenigstens einer Haltevorrichtung (6) nach einem der Ansprüche 1 bis 13 an einer peripheren Struktur (7) der Abgasanlage (2) gehalten ist.
EP11154285.8A 2010-03-24 2011-02-14 Haltevorrichtung Active EP2369152B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP15166890.2A EP2949899B1 (de) 2010-03-24 2011-02-14 Haltevorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010012663 2010-03-24
DE102010034313A DE102010034313A1 (de) 2010-03-24 2010-08-13 Haltevorrichtung

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP15166890.2A Division EP2949899B1 (de) 2010-03-24 2011-02-14 Haltevorrichtung
EP15166890.2A Division-Into EP2949899B1 (de) 2010-03-24 2011-02-14 Haltevorrichtung

Publications (2)

Publication Number Publication Date
EP2369152A1 EP2369152A1 (de) 2011-09-28
EP2369152B1 true EP2369152B1 (de) 2015-07-15

Family

ID=44170196

Family Applications (2)

Application Number Title Priority Date Filing Date
EP15166890.2A Active EP2949899B1 (de) 2010-03-24 2011-02-14 Haltevorrichtung
EP11154285.8A Active EP2369152B1 (de) 2010-03-24 2011-02-14 Haltevorrichtung

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP15166890.2A Active EP2949899B1 (de) 2010-03-24 2011-02-14 Haltevorrichtung

Country Status (5)

Country Link
US (1) US8485302B2 (de)
EP (2) EP2949899B1 (de)
JP (1) JP5725920B2 (de)
CN (1) CN102200045B (de)
DE (1) DE102010034313A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009015420A1 (de) * 2009-03-27 2010-09-30 Emitec Gesellschaft Für Emissionstechnologie Mbh Wabenkörper für ein Abgasreinigungssystem
DE102010020032A1 (de) * 2010-05-11 2011-11-17 J. Eberspächer GmbH & Co. KG Schwingungstilger
DE102012219373A1 (de) * 2011-10-27 2013-05-02 Schaeffler Technologies AG & Co. KG Ausrücksystem
CN103217331A (zh) * 2013-04-27 2013-07-24 江苏大学 一种金相镶嵌机镶嵌薄板试样的方法和夹片辅助装置
CN109112503B (zh) * 2017-06-23 2021-01-08 北京北方华创微电子装备有限公司 反应腔室的排气装置及反应腔室
US11242934B2 (en) 2018-03-09 2022-02-08 Fujikin Incorporated Valve device
US20220082176A1 (en) * 2019-01-31 2022-03-17 Fujikin Incorporated Valve device, flow control method, fluid control device, semiconductor manufacturing method, and semiconductor manufacturing apparatus
KR102605036B1 (ko) * 2019-09-04 2023-11-22 삼성중공업 주식회사 스크러버
CN113685473B (zh) * 2021-08-19 2022-09-16 奇瑞汽车股份有限公司 减振结构

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5643028A (en) 1979-09-18 1981-04-21 Nissan Motor Co Ltd Low noise vehicle
JPS5820U (ja) * 1981-06-25 1983-01-05 カヤバ工業株式会社 自動車マフラ−等の懸垂装置
US4746104A (en) 1986-12-08 1988-05-24 General Motors Corporation Hydraulic exhaust pipe hanger mount
JPH0183944U (de) 1987-11-25 1989-06-05
JPH02179738A (ja) * 1988-12-30 1990-07-12 Aichi Steel Works Ltd 制振性複合金属板
DE4116270C2 (de) 1990-05-18 2002-01-17 Toyo Tire & Rubber Co Dämpfungseinrichtung
FR2674800B1 (fr) 1991-04-08 1993-07-30 Hutchinson Dispositif de suspension de tubulure d'echappement pour vehicule.
JPH05820U (ja) * 1991-06-20 1993-01-08 ミサワホーム株式会社 小屋裏換気機能を有する化粧母屋
FR2678221A1 (fr) 1991-06-27 1992-12-31 Hutchinson Dispositif de suspension d'une tubulure d'echappement sur la caisse d'un vehicule.
JPH06109068A (ja) * 1992-09-28 1994-04-19 Mazda Motor Corp 車両の振動低減装置
JPH06129462A (ja) * 1992-10-13 1994-05-10 Bridgestone Corp 防振装置
DE4340034C1 (de) * 1993-11-24 1995-02-02 Freudenberg Carl Fa Lagerung
DE19621271A1 (de) 1995-06-21 1997-01-09 Witzenmann Metallschlauchfab Flexibles Leitungselement für Abgasleitungen von Kraftfahrzeugen
US6882086B2 (en) * 2001-05-22 2005-04-19 Sri International Variable stiffness electroactive polymer systems
US7034432B1 (en) 1997-02-07 2006-04-25 Sri International Electroactive polymer generators
DE19734499C2 (de) * 1997-08-08 2002-02-14 Daimler Chrysler Ag Elastische Aufhängevorrichtung für eine Auspuffanlage
DE19812699A1 (de) 1998-03-23 1999-09-30 Volkswagen Ag Abgasanlage für ein Kraftfahrzeug
JP2001187534A (ja) 1999-12-28 2001-07-10 Isuzu Motors Ltd エンジンのアクティブマウント装置
DE10026527B4 (de) * 2000-05-27 2008-08-28 Eras Entwicklung Und Realisation Adaptiver Systeme Gmbh Verwendung eines elastischen Lagers für eine schwingungsisolierte Lagerung einer Abgasanlage an einem Fahrzeugboden
US6439556B1 (en) * 2001-02-15 2002-08-27 Delphi Technologies, Inc. Active decoupler hydraulic mount
DE102004001060A1 (de) 2004-01-02 2005-08-04 Wilhelm Karmann Gmbh Kraftfahrzeug
DE102005029234B4 (de) 2005-06-23 2012-09-20 Anvis Deutschland Gmbh System zum dämpfenden und/oder kompensierenden Lagern eines Aggregats und Verfahren zum dämpfenden und/oder kompensierenden Lagern
DE102006021641B4 (de) 2006-05-08 2013-05-16 J. Eberspächer GmbH & Co. KG Befestigungsvorrichtung

Also Published As

Publication number Publication date
EP2949899B1 (de) 2016-11-02
DE102010034313A1 (de) 2011-09-29
US20110232986A1 (en) 2011-09-29
US8485302B2 (en) 2013-07-16
JP5725920B2 (ja) 2015-05-27
CN102200045A (zh) 2011-09-28
JP2011201531A (ja) 2011-10-13
CN102200045B (zh) 2014-12-10
EP2949899A1 (de) 2015-12-02
EP2369152A1 (de) 2011-09-28

Similar Documents

Publication Publication Date Title
EP2369152B1 (de) Haltevorrichtung
EP1975455B1 (de) Vorrichtung zur Schwingungsdämpfung
DE3034246C2 (de) Schwingungsdämpfer für eine Fahrzeug-Brennkraftmaschine
DE102011000656B4 (de) Schwingungsfreie Lagerung eines Objekts an einer schwingenden Struktur
DE19642827B4 (de) Aktuator zur Schwingungsbedämpfung
DE102015211891B4 (de) Frequenzabhängige Dämpfventilanordnung
WO2005100816A1 (de) Schnittstelle mit schubableitung zum dämpfen mechanischer schwingungen
DE102009021994B4 (de) Hydrolager
EP1160483A2 (de) Hydrolager
EP2615325A1 (de) Aktives Lager
EP1528281B1 (de) Adaptiver Schwingungstilger
DE102011120095A1 (de) Wellenanordnung sowie Verfahren zum Weiterleiten von um eine Drehachse wirkenden Drehmomenten
DE102011112405B4 (de) Dämpferlager zur Abstützung einer Fahrwerkskomponente an einer Kraftfahrzeugkarosserie
DE102004001098A1 (de) Piezoelektrisches Material zum Dämpfen von Vibrationen eines Armaturenbretts und/oder einer Lenksäule
DE102005033528B3 (de) Schaltbarer Tilger
DE202006008811U1 (de) Schwingungstilger
DE102006054263B4 (de) Anordnung zum Tilgen von Schwingungen in einem Kraftfahrzeug
EP1683988B1 (de) Hydrobuchse
DE102008052424B4 (de) Vibrationstilgersystem
EP2623813A1 (de) Elastische Wellenkupplung mit adaptiver Charakteristik
DE10330877B4 (de) Fahrwerkslager
DE102008050192A1 (de) Fahrzeugschwingungsdämpfungssystem
DE4230799C1 (de) Aktiver Schwingungstilger
EP0462510B1 (de) Dämpfungseinheit, für Radaufhängungssystem in Kraftfahrzeugen
DE102018205737B4 (de) Aggregatelagerung für ein Antriebsaggregat eines Fahrzeugs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20120328

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EBERSPAECHER EXHAUST TECHNOLOGY GMBH & CO. KG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150313

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 736931

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011007320

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20150715

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151016

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151015

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151116

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011007320

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

26N No opposition filed

Effective date: 20160418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160214

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160214

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 736931

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110214

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180221

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190214

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011007320

Country of ref document: DE

Owner name: PUREM GMBH, DE

Free format text: FORMER OWNER: EBERSPAECHER EXHAUST TECHNOLOGY GMBH & CO. KG, 66539 NEUNKIRCHEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20220221

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230217

Year of fee payment: 13

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230215

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240216

Year of fee payment: 14

Ref country code: GB

Payment date: 20240222

Year of fee payment: 14