EP2366812A1 - Tôle d acier galvanisé et son procédé de production - Google Patents
Tôle d acier galvanisé et son procédé de production Download PDFInfo
- Publication number
- EP2366812A1 EP2366812A1 EP09833249A EP09833249A EP2366812A1 EP 2366812 A1 EP2366812 A1 EP 2366812A1 EP 09833249 A EP09833249 A EP 09833249A EP 09833249 A EP09833249 A EP 09833249A EP 2366812 A1 EP2366812 A1 EP 2366812A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- steel sheet
- aqueous solution
- zinc
- galvanized steel
- oxide layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910001335 Galvanized steel Inorganic materials 0.000 title claims abstract description 35
- 239000008397 galvanized steel Substances 0.000 title claims abstract description 35
- 238000000034 method Methods 0.000 title claims abstract description 34
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 17
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 77
- 239000010959 steel Substances 0.000 claims abstract description 77
- 239000007864 aqueous solution Substances 0.000 claims abstract description 45
- 239000007788 liquid Substances 0.000 claims abstract description 34
- 239000011701 zinc Substances 0.000 claims abstract description 32
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 29
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 claims abstract description 29
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 29
- 238000005406 washing Methods 0.000 claims abstract description 24
- 238000005246 galvanizing Methods 0.000 claims abstract description 8
- 238000001035 drying Methods 0.000 claims abstract description 6
- 229960001763 zinc sulfate Drugs 0.000 claims abstract description 3
- 229910000368 zinc sulfate Inorganic materials 0.000 claims abstract description 3
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 claims abstract 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 15
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 239000000243 solution Substances 0.000 abstract description 12
- 230000000052 comparative effect Effects 0.000 description 38
- 239000010410 layer Substances 0.000 description 33
- 238000012360 testing method Methods 0.000 description 18
- 239000011324 bead Substances 0.000 description 16
- 238000000576 coating method Methods 0.000 description 16
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 15
- 239000011248 coating agent Substances 0.000 description 15
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 12
- 230000000694 effects Effects 0.000 description 12
- 238000005755 formation reaction Methods 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 11
- 239000006174 pH buffer Substances 0.000 description 9
- 238000010828 elution Methods 0.000 description 7
- 230000014759 maintenance of location Effects 0.000 description 7
- 238000003825 pressing Methods 0.000 description 7
- 239000003929 acidic solution Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000007654 immersion Methods 0.000 description 6
- 239000011787 zinc oxide Substances 0.000 description 6
- 238000005275 alloying Methods 0.000 description 5
- 239000010960 cold rolled steel Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000002349 favourable effect Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 238000005096 rolling process Methods 0.000 description 4
- 235000017281 sodium acetate Nutrition 0.000 description 4
- 239000001632 sodium acetate Substances 0.000 description 4
- 238000004090 dissolution Methods 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 230000009257 reactivity Effects 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 101000993059 Homo sapiens Hereditary hemochromatosis protein Proteins 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- 229910001297 Zn alloy Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 239000010687 lubricating oil Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- RZLVQBNCHSJZPX-UHFFFAOYSA-L zinc sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Zn+2].[O-]S([O-])(=O)=O RZLVQBNCHSJZPX-UHFFFAOYSA-L 0.000 description 2
- SKIIKRJAQOSWFT-UHFFFAOYSA-N 2-[3-[1-(2,2-difluoroethyl)piperidin-4-yl]oxy-4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]pyrazol-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound FC(CN1CCC(CC1)OC1=NN(C=C1C=1C=NC(=NC=1)NC1CC2=CC=CC=C2C1)CC(=O)N1CC2=C(CC1)NN=N2)F SKIIKRJAQOSWFT-UHFFFAOYSA-N 0.000 description 1
- LLQHSBBZNDXTIV-UHFFFAOYSA-N 6-[5-[[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]methyl]-4,5-dihydro-1,2-oxazol-3-yl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC1CC(=NO1)C1=CC2=C(NC(O2)=O)C=C1 LLQHSBBZNDXTIV-UHFFFAOYSA-N 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000005244 galvannealing Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000013558 reference substance Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- -1 sulfuric acid ion Chemical class 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
- 238000004876 x-ray fluorescence Methods 0.000 description 1
- 150000003752 zinc compounds Chemical class 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/48—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
- C23C22/53—Treatment of zinc or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1204—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
- C23C18/1208—Oxides, e.g. ceramics
- C23C18/1216—Metal oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1229—Composition of the substrate
- C23C18/1241—Metallic substrates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/322—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
- C23C28/3225—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/345—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
Definitions
- the present invention relates to a method for stably manufacturing a galvanized steel sheet having a low sliding resistance during press forming and excellent press formability and a galvanized steel sheet having excellent press formability.
- the galvanized steel sheet has been widely utilized in wide ranging fields focusing on the application to automobile bodies.
- a galvanized steel sheet in such application is press formed for use.
- the galvanized steel sheet has a disadvantage in that the press formability is inferior to that of a cold-rolled steel sheet. This is because the sliding resistance of the galvanized steel sheet in a press die is higher than that of the cold-rolled steel sheet. More specifically, the galvanized steel sheet becomes difficult to flow into a press die in a portion where the sliding resistance between a die and a bead, which easily causes fracture of the steel sheet.
- a galvannealed steel sheet that has been subjected to alloying treatment after hot dip galvanizing treatment among galvanized steel sheets has more excellent weldability and coatability than those of a hot-dip zinc-plated steel sheet that has not been subjected to alloying treatment, and thus has been more preferably used as automobile bodies.
- the galvannealed steel sheet is one in which an Fe-Zn alloy phase is formed by galvanizing a steel sheet, and heating the same so that Fe in the steel sheet and Zn in a plating layer are dispersed to cause an alloying reaction.
- the Fe-Zn alloy phase is a coating film generally containing a F phase, a ⁇ 1 phase, and a ⁇ phase and has a tendency that the hardness and the melting point decrease with a reduction in the Fe concentration, i.e., in the order of F phase ⁇ ⁇ 1 phase ⁇ ⁇ phase. Therefore, a coating film having a high Fe concentration in which the hardness is high, the melting point is high, and adhesion is difficult occur is effective from the viewpoint of slidability.
- a galvannealed steel sheet in which the press formability is emphasized is manufactured in such a manner that the average Fe concentration in the coating film is slightly high.
- the coating film having a high Fe concentration has problems in that the F phase that is hard and brittle is easily formed on the plated-steel sheet interface and a phenomenon of separation from the interface during processing, i.e., a so-called powdering, is likely to occur.
- Patent Document 1 and Patent Document 2 disclose a technique of increasing the weldability and the processability by subjecting the surface of a galvanized steel sheet to electrolysis treatment, immersion treatment, coating oxidation treatment, or heat-treatment to form an oxide film mainly containing ZnO.
- Patent Document 1 and Patent Document 2 when the techniques of Patent Document 1 and Patent Document 2 are applied to a galvannealed steel sheet, the surface reactivity becomes poor due to the presence of an Al oxide and an effect of improving the press formability cannot be stably obtained because the surface irregularities are large. More specifically, since the surface reactivity is low, it is difficult to form a given film on the surface even when the electrolysis treatment, immersion treatment, coating oxidation treatment, heat-treatment, or the like is performed and the film thickness is small in a portion where the reactivity is low, i.e., a portion in which the number of Al oxides is large. Since the surface irregularities are large, the surface convex portions directly contact a press die during press forming. The sliding resistance in contact portions of thin portions of the convex portions and the die becomes large, and thus an effect of improving the press formability is not sufficiently obtained.
- Patent Document 3 discloses a technique of forming an oxide layer on a plated surface layer by hot dip galvanizing a steel sheet, alloying the same by heat treatment, subjecting the resultant steel sheet to temper rolling, bringing the same into contact with an acidic solution having pH buffer action, holding the same for 1 to 30 seconds, and then washing with water.
- Patent Document 4 discloses a method including bringing a hot dip galvanized steel sheet after temper rolling into contact with an acidic solution having pH buffer action, holding the same for a given period of time in a state where a liquid film of the acidic solution is formed on the surface of the steel sheet, and then washing with water and drying the same.
- the present inventors have repeatedly conducted extensive research in order to solve the problems. As a result, the following findings have been obtained.
- the acidic solution for use in the techniques of Patent Document 3 and Patent Document 4 has pH buffer action in order to promote the dissolution of zinc. Therefore, it is considered that an increase in the pH is delayed, and thus the formation of an oxide layer is delayed.
- an elution time of zinc is included in a generation time of the oxide film. As a result, it is considered that generating a thick oxide film in a short time becomes difficult.
- the present inventors have devised a technique of generating an oxide film in a shorter time by omitting an elution time of zinc by blending zinc ion in an aqueous solution for generating an oxide film beforehand.
- the formation of an oxide film has not been promoted merely by blending zinc ion in an aqueous solution beforehand.
- the pH is 2 described in Examples of Patent Document 3 and Patent Document 4
- even when zinc is blended in a treatment liquid even when zinc is blended in a treatment liquid, the formation of an oxide film has not been promoted.
- the present inventors have devised a technique of setting the pH of an aqueous solution to 4 to 6, the pH at which a zinc oxide is likely to generate. Then, the present inventors have found that, by setting the pH of a treatment liquid to 4 to 6, zinc is generated as a hydroxide due to a slight increase in the surface pH caused by slight elution of zinc of a plated coating film.
- the present invention has been accomplished based on the findings, and the gist is as follows.
- the galvanized steel sheet is a plated steel sheet having a coating film containing zinc as the main component formed on the surface and includes a hot dip galvanized steel sheet (abbreviated as a GI steel sheet), a galvannealed Steel Sheet (abbreviated as a GA steel sheet), an electrogalvanized steel sheet (abbreviated as an EG steel sheet), a vapor deposition galvanized steel sheet, an alloy galvanized steel sheet containing an alloy element of Fe, Al, Ni, MgCo, or the like, etc.
- a hot dip galvanized steel sheet abbreviated as a GI steel sheet
- a GA steel sheet a galvannealed Steel Sheet
- an electrogalvanized steel sheet abbreviated as an EG steel sheet
- a vapor deposition galvanized steel sheet an alloy galvanized steel sheet containing an alloy element of Fe, Al, Ni, MgCo, or the like, etc.
- the aqueous solution contains zinc ion in the range of 5 to 100 g/l as the zinc ion concentration, the pH is 4 to 6, and the liquid temperature is 20 to 70°C.
- an aqueous solution containing zinc ion in a given concentration and having a specified pH and a specified liquid temperature as described above as the aqueous solution for use in the contact treatment of the steel sheet is an important requirement and a feature in the invention.
- an oxide layer sufficient for securing favorable press formability can be formed in a short time.
- the “after the termination of the contact treatment” refers to "after the termination of an immersion process” in the case of immersion treatment, "after the termination of a spraying process” in the case of spraying treatment, and “after the termination of a coating process” in the case of roll coating.
- an aqueous solution containing zinc ion as the aqueous solution for use in the contact treatment of the steel sheet allows omission of an elution time of zinc.
- the zinc ion is in the range of 5 to 100 g/l as the zinc ion concentration.
- the zinc ion concentration is lower than 5 g/l, sufficient zinc is not supplied, resulting in a failure of the formation of an oxide layer.
- the zinc ion concentration exceeds 100 g/l, the concentration of sulfuric acid contained in the oxide layer to be formed becomes high, resulting in concern about contamination of a treatment liquid when the oxide dissolves in chemical conversion treatment to be carried out thereafter.
- zinc ion as a sulfate. It is considered that when zinc ion is added as a sulfate, sulfuric acid ion is taken into an oxide layer to be formed to thereby produce an effect of stabilizing the oxide layer.
- the formation of an oxide film is not promoted merely by blending zinc ion in a treatment liquid beforehand.
- the pH needs to be set to 4 to 6, at which a zinc oxide easily generates.
- zinc generates as a hydroxide due to a slight increase in the surface pH caused by slight elution of zinc of a plated coating film.
- the zinc elution time can be omitted and the generation of a zinc oxide can be achieved.
- zinc ion precipitates in the aqueous solution (formation of a hydroxide) and is not formed as an oxide on the surface of the steel sheet.
- the pH is lower than 4
- the formation of the oxide layer is hindered due to the delay of an increase in the pH as described above.
- the temperature of the aqueous solution is 20 to 70°C. Since the oxide layer formation reaction occurs when holding the steel sheet in a given period of time after contacting the aqueous solution, it is effective to control the sheet temperature during holding in the range of 20 to 70°C. When the sheet temperature is lower than 20°C, a long period of time is required for the oxide layer generation reaction, resulting in a reduction in the productivity. In contrast, when the sheet temperature exceeds 70°C, a reaction relatively quickly proceeds but treatment unevenness is likely to occur on the surface of the steel sheet.
- the aqueous solution used in Patent Document 3 and Patent Document 4 has a feature in that the aqueous solution is acidic and has pH buffer action.
- the aqueous solution is acidic and has pH buffer action.
- a sufficient oxide layer can be formed even when the dissolution of zinc is not caused by increasing the pH of the aqueous solution.
- a prompt increase in the pH is considered to be advantageous for the formation of an oxide. Therefore, the pH buffer action is not necessarily indispensable.
- an oxide layer excellent in slidability can be stably formed when zinc is contained in the aqueous solution contacting the surface of the steel sheet. Therefore, even when other metal ions, inorganic compounds, and the like are contained as impurities or intentionally contained in the aqueous solution, the effects of the invention are not impaired. Even when N, P, B, Cl, Na, Mn, Ca, Mg, Ba, Sr, Si, and the like are taken into the oxide layer, it can be applied insofar as the effects of the invention are not impaired.
- the aqueous solution is present on the surface of the steel sheet in the form of a thin liquid film.
- the amount of the aqueous solution present on the surface of the steel sheet is large, the pH of the aqueous solution is hard to increase even when the dissolution of zinc occurs, and a long period of time is required for the formation of the oxide layer.
- the liquid film to be formed on the surface of the steel sheet after contacting the aqueous solution is preferably 5 to 30 g/m 2 .
- the adjustment of the amount of the aqueous solution film can be performed by a squeeze roll, air wiping, or the like.
- the time (retention time before washing with water) before washing with water after immersion in the aqueous solution is 1 to 60 seconds.
- the time before washing with water is lower than 1 second, the aqueous solution is washed away before a sufficient oxide layer is formed, and thus an effect of improving the slidability is not obtained.
- the time before washing with water exceeds 60 seconds, the productivity decreases. Since the object of the invention is to stably manufacture a galvanized steel sheet even in a short time, the retention time is 60 seconds or lower for sufficiently demonstrating the effects of the invention.
- an oxide layer mainly containing zinc as a metal component and having an average thickness of 10 nm or more is obtained.
- the "mainly containing zinc” refers to containing zinc in a proportion of 50% by mass or more as a metal component.
- the oxide layer in the invention refers to a layer containing an oxide and/or a hydroxide mainly containing zinc as a metal component.
- the average thickness of the oxide layer is required to be 10 nm or more. When the average thickness of the oxide layer is small, e.g., lower than 10 nm, an effect of reducing sliding resistance becomes insufficient. In contrast, when the average thickness of the oxide layer containing zinc as an essential ingredient exceeds 100 nm, there is a tendency that the coating film breaks during press processing, the sliding resistance increases, and the weldability decreases. Thus, such a thickness is not preferable.
- Methods for bringing the galvanized steel sheet into contact with the aqueous solution containing zinc are not particularly limited.
- a method for immersing the plated steel sheet in the aqueous solution a method for spraying the aqueous solution to the plated steel sheet, a method for applying the aqueous solution to the plated steel sheet with a coating roll, and the like are mentioned.
- the aqueous solution it is preferable for the aqueous solution to be finally present on the surface of the steel sheet in the form of a thin liquid film.
- Al needs to be added into a plating bath but additional element ingredients other than Al are not particularly limited. More specifically, even when Pb, Sb, Si, Sn, Mg, Mn, Ni, Ti, Li, Cu, and the like other than Al are contained or added, the plating bath can be applied insofar as the effects of the invention are not impaired.
- a GI steel sheet was produced by performing hot dip galvanizing in which the deposit amount per surface was 45 g/m 2 and the Al concentration was 0.20% by mass on a cold-rolled steel sheet having a sheet thickness of 0.8 mm, and then performing temper rolling.
- a GA steel sheet was obtained by forming a plated coating film in which the deposit amount per surface was 45 g/m 2 , the Fe concentration was 10% by mass, and the Al concentration was 0.20% by mass on a cold-rolled steel sheet having a sheet thickness of 0.8 mm by a standard galvannealing method, and further performing temper rolling.
- An EG steel sheet was produced by having a plated coating film having a deposit amount per surface of 30 g/m 2 on a cold-rolled steel sheet having a sheet thickness of 0.8 mm by a standard electrogalvanizing method.
- an oxide layer was formed using a treatment facility having a structure shown in Fig. 1 .
- steel sheets S such as the GI steel sheet, the GA steel sheet, and the EG steel sheet obtained above were immersed in aqueous solutions in which the treatment liquid composition, the temperature, and the pH were different from each other as shown in Tables 1-1 and 1-2 in a solution bath 2.
- the amount of liquid films on the surface of the steel sheets was adjusted with a squeeze roll 3. The adjustment of the amount of liquid films was performed by changing the pressure of the squeeze roll.
- a washing bath 1 can be provided before the solution bath 2.
- aqueous solution for use in the immersion treatment in the solution bath 2 an aqueous solution was used to which a given amount of zinc sulfate heptahydrate was added in order to add zinc ion.
- a solution containing 20 g/L of sodium acetate whose pH was adjusted with sulfuric acid was also used in some cases.
- the retention time before washing with water was the time before washing in the washing bath 7 was started after adjusting the amount of liquid films with the squeeze roll 3 and was adjusted by changing the line speed. Some of the steel sheets were produced by washing immediately after squeezing using a shower washing device 4 at the exit side of the squeeze roll 3.
- the steel sheets produced as described above were judged whether or not they have an appearance sufficient as an exterior panel for automobiles, and also the measurement of a friction coefficient as a method for simply evaluating the press formability and a spherical head bulging test was carried out in order to simulate the actual formability in detail were carried out.
- the measurement methods are as follows.
- Fig. 2 is a schematic front view showing a friction coefficient measuring device.
- a friction coefficient measuring sample 11 extracted from the test piece is fixed to a sample stand 12.
- the sample stand 12 is fixed to the upper surface of a horizontally movable slide table 13.
- a vertically movable slide table support stand 15 having a roller 14 contacting the lower surface of the slide table 13.
- a first load cell 17 for measuring a pressing load N to the friction coefficient measuring sample 11 by a bead 16 is attached to the slide table support stand 15.
- a second load cell 18 is attached to one end of the slide table 13.
- a cleaning oil for pressing Preton R352L manufactured by Sugimura Chemical Industrial Co., Ltd., was applied onto the surface of the friction coefficient measuring sample 11, and thus a test was carried out.
- Figs. 3 and 4 are schematic perspective view showing the shape and the size of the used bead.
- the bead 16 slides while the lower surface of the bead 16 being pressed against the surface of the sample 11.
- the width is 10 mm
- the length in the sliding direction of the sample is 12 mm
- each end in the sliding direction of the lower surface of the bead 16 is curved with a curvature of 4.5 mmR.
- the lower surface of the bead 16 against which the sample is pressed has a plane with a width of 10 mm and a length in the sliding direction of 3 mm.
- the width is 10 mm
- the length in the sliding direction of the sample is 69 mm
- each end in the sliding direction of the lower surface of the bead 16 is curved with a curvature of 4.5 mmR.
- the lower surface of the bead 16 against which the sample is pressed has a plane with a width of 10 mm and a length in the sliding direction of 60 mm.
- the bead shown in Fig. 3 was used, the pressing load N was 400 kgf, and the sample drawing rate (horizontal movement rate of the slide table 13) was 100 cm/min.
- the bead shown in Fig. 4 was used, the pressing load N was 400 kgf, and the sample drawing rate (horizontal movement rate of the slide table 13) was 20 cm/min.
- a test piece having a size of 200 ⁇ 200 mm was subjected to bulge forming using a 150 mm ⁇ punch by a liquid pressure bulge testing machine. Then, the maximum forming height when the test piece was broken was measured. During the test, a wrinkle pressing force of 100 Ton was applied in order to prevent inflow of materials, and a lubricating oil was applied only to the surface which the punch contacted. The used lubricating oil is the same as that of the friction coefficient measurement test described above.
- An Si wafer on which a thermal oxidation SiO 2 film having a film thickness of 96 nm was formed was used as a reference substance, and the average thickness of the oxide layer in terms of SiO 2 was determined by measuring the O ⁇ K ⁇ X rays by an x-ray fluorescence spectrometer.
- the analysis area is 30 mm ⁇ .
- Tables 1-1 and 1-2 The test results obtained in the above are shown in Tables 1-1 and 1-2.
- Table 1-1 No. Test piece Used solution pH Solution Temperature Liquid film amount (g/m 2 ) Time beforewater Washing (second) Oxide film thickness (nm) Friction coefficient Maxium forming height (mm) Steel sheet appearance Remarks pH buffer Zn concentratio Condition 1 Condition 2 1 GA - - - - - 8 0.180 0.223 35.0 ⁇ Comparative example 1 2 Sodium acetate (20g/L) - 2.0 sulfuric acid added 35°C 10 10 15 0.149 0.190 36.5 ⁇ Comparative example 2 3 10 30 30 0.128 0.165 38.1 ⁇ Comparative example 3 4 10 60 42 0.120 0.163 39.3 ⁇ Comparative example 4 5 - 5.0 sulfuric acid added 35°C 10 10 8 0.183 0.219 35.6 ⁇ Comparative example 5 6 10 30 8 0.179 0.221 35.9 ⁇ Comparative example 6 7 10 60 8 0.180 0.217 35.9 ⁇ Compar
- Fig. 5 is a view showing the influence of the zinc ion concentration on the oxide film thickness using Nos. 8 to 22 and Nos. 44 to 46 of Tables 1-1 and 1-2.
- Fig. 5 shows that the oxide film has a sufficient thickness even when the retention time is short (e.g., 10 seconds) in the case where the zinc concentration is 5 g/l or more, and the problem of the invention that the oxide film thickness becomes small when the retention time is short is solved.
- a galvanized steel sheet having a low sliding resistance during press forming and excellent press formability can be stably manufactured at a saved space even under short-time manufacturing conditions. For example, even when a high strength galvanized steel sheet which has a high forming load and is likely to cause die galling, the sliding resistance during press forming is low and excellent press formability can be achieved. Since the press formability is excellent, the invention can be applied to wide ranging fields focusing on the application to automobile bodies.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Ceramic Engineering (AREA)
- Chemical Treatment Of Metals (AREA)
- Coating With Molten Metal (AREA)
- Electroplating Methods And Accessories (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008319131A JP5354165B2 (ja) | 2008-01-30 | 2008-12-16 | 亜鉛系めっき鋼板の製造方法 |
PCT/JP2009/058426 WO2010070942A1 (fr) | 2008-12-16 | 2009-04-22 | Tôle d’acier galvanisé et son procédé de production |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2366812A1 true EP2366812A1 (fr) | 2011-09-21 |
EP2366812A4 EP2366812A4 (fr) | 2012-04-25 |
EP2366812B1 EP2366812B1 (fr) | 2019-08-14 |
Family
ID=42269468
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09833249.7A Active EP2366812B1 (fr) | 2008-12-16 | 2009-04-22 | Procédé de production d'une tôle d' acier galvanisé |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP2366812B1 (fr) |
KR (1) | KR20110073573A (fr) |
CN (1) | CN102216493A (fr) |
CA (1) | CA2742354C (fr) |
TW (1) | TWI516638B (fr) |
WO (1) | WO2010070942A1 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019073273A1 (fr) * | 2017-10-12 | 2019-04-18 | Arcelormittal | Procédé de traitement de feuille métallique et feuille métallique traitée avec ce procédé |
WO2019073274A1 (fr) * | 2017-10-12 | 2019-04-18 | Arcelormittal | Procédé de traitement de feuille métallique et feuille métallique traitée à l'aide de ce procédé |
EP2683848B1 (fr) * | 2011-03-08 | 2020-11-04 | ThyssenKrupp Steel Europe AG | Utilisation d'un produit en acier plat à l'aide d'un formage à chaud pour former un composant et procédé de fabrication d'un objet formé à chaud |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150014517A (ko) * | 2012-07-18 | 2015-02-06 | 제이에프이 스틸 가부시키가이샤 | 화성 처리성 및 내형골링성이 우수한 강판의 제조 방법 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1288325A1 (fr) * | 2000-04-24 | 2003-03-05 | Nkk Corporation | Tole d'acier recuit apres galvanisation et procede de production correspondant |
US20050139291A1 (en) * | 2003-04-18 | 2005-06-30 | Jfe Steel Corporation | Zinc hot dip galvanized steel plate excellent in press formability and method for production thereof |
FR2864552A1 (fr) * | 2003-12-24 | 2005-07-01 | Usinor | Traitement de surface par hydroxysulfate |
EP1666624A1 (fr) * | 2003-08-29 | 2006-06-07 | JFE Steel Corporation | Tole d'acier plaquee de zinc par immersion a chaud et procede de production de cette tole |
EP2014783A1 (fr) * | 2006-05-02 | 2009-01-14 | JFE Steel Corporation | Tole d'acier zinguee trempee a chaud et alliee et son procede de production |
EP2186925A1 (fr) * | 2007-09-04 | 2010-05-19 | JFE Steel Corporation | Tole d'acier galvanise |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6043428B2 (ja) | 1976-11-10 | 1985-09-27 | 新日本製鐵株式会社 | 溶接性に優れた合金化亜鉛鉄板 |
JPH02190483A (ja) | 1989-01-19 | 1990-07-26 | Nippon Steel Corp | プレス成形性に優れた亜鉛めっき鋼板 |
US6528182B1 (en) * | 1998-09-15 | 2003-03-04 | Sollac | Zinc coated steel plates coated with a pre-lubricating hydroxysulphate layer and methods for obtaining same |
JP3346338B2 (ja) * | 1999-05-18 | 2002-11-18 | 住友金属工業株式会社 | 亜鉛系めっき鋼板およびその製造方法 |
JP4329387B2 (ja) | 2002-04-18 | 2009-09-09 | Jfeスチール株式会社 | プレス成形性に優れた溶融亜鉛めっき鋼板とその製造方法 |
JP3807341B2 (ja) * | 2002-04-18 | 2006-08-09 | Jfeスチール株式会社 | 合金化溶融亜鉛めっき鋼板の製造方法 |
-
2009
- 2009-04-22 CA CA2742354A patent/CA2742354C/fr not_active Expired - Fee Related
- 2009-04-22 EP EP09833249.7A patent/EP2366812B1/fr active Active
- 2009-04-22 KR KR1020117010906A patent/KR20110073573A/ko not_active Application Discontinuation
- 2009-04-22 WO PCT/JP2009/058426 patent/WO2010070942A1/fr active Application Filing
- 2009-04-22 CN CN2009801454920A patent/CN102216493A/zh active Pending
- 2009-04-28 TW TW098113978A patent/TWI516638B/zh not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1288325A1 (fr) * | 2000-04-24 | 2003-03-05 | Nkk Corporation | Tole d'acier recuit apres galvanisation et procede de production correspondant |
US20050139291A1 (en) * | 2003-04-18 | 2005-06-30 | Jfe Steel Corporation | Zinc hot dip galvanized steel plate excellent in press formability and method for production thereof |
EP1666624A1 (fr) * | 2003-08-29 | 2006-06-07 | JFE Steel Corporation | Tole d'acier plaquee de zinc par immersion a chaud et procede de production de cette tole |
FR2864552A1 (fr) * | 2003-12-24 | 2005-07-01 | Usinor | Traitement de surface par hydroxysulfate |
EP2014783A1 (fr) * | 2006-05-02 | 2009-01-14 | JFE Steel Corporation | Tole d'acier zinguee trempee a chaud et alliee et son procede de production |
EP2186925A1 (fr) * | 2007-09-04 | 2010-05-19 | JFE Steel Corporation | Tole d'acier galvanise |
Non-Patent Citations (1)
Title |
---|
See also references of WO2010070942A1 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2683848B1 (fr) * | 2011-03-08 | 2020-11-04 | ThyssenKrupp Steel Europe AG | Utilisation d'un produit en acier plat à l'aide d'un formage à chaud pour former un composant et procédé de fabrication d'un objet formé à chaud |
WO2019073273A1 (fr) * | 2017-10-12 | 2019-04-18 | Arcelormittal | Procédé de traitement de feuille métallique et feuille métallique traitée avec ce procédé |
WO2019073274A1 (fr) * | 2017-10-12 | 2019-04-18 | Arcelormittal | Procédé de traitement de feuille métallique et feuille métallique traitée à l'aide de ce procédé |
WO2019073320A1 (fr) * | 2017-10-12 | 2019-04-18 | Arcelormittal | Procédé de traitement de feuille métallique et feuille métallique traitée par ce procédé |
WO2019073319A1 (fr) * | 2017-10-12 | 2019-04-18 | Arcelormittal | Procédé de traitement de tôle métallique et tôle métallique traitée avec ce procédé |
RU2755906C1 (ru) * | 2017-10-12 | 2021-09-22 | Арселормиттал | Способ обработки листового металла и листовой металл, подвергнутый обработке при использовании данного способа |
RU2755907C1 (ru) * | 2017-10-12 | 2021-09-22 | Арселормиттал | Способ обработки листового металла и листовой металл, подвергнутый обработке при использовании данного способа |
US11319631B2 (en) | 2017-10-12 | 2022-05-03 | Arcelormittal | Metal sheet treatment method and metal sheet treated with this method |
US11319633B2 (en) | 2017-10-12 | 2022-05-03 | Arcelormittal | Metal sheet treatment method and metal sheet treated with this method |
Also Published As
Publication number | Publication date |
---|---|
EP2366812B1 (fr) | 2019-08-14 |
KR20110073573A (ko) | 2011-06-29 |
TW201024461A (en) | 2010-07-01 |
CA2742354C (fr) | 2014-02-25 |
TWI516638B (zh) | 2016-01-11 |
CN102216493A (zh) | 2011-10-12 |
CA2742354A1 (fr) | 2010-06-24 |
EP2366812A4 (fr) | 2012-04-25 |
WO2010070942A1 (fr) | 2010-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3807341B2 (ja) | 合金化溶融亜鉛めっき鋼板の製造方法 | |
EP2186925B1 (fr) | Tôle d'acier recuite après galvanisation | |
US20110226387A1 (en) | Galvanized steel sheet and method for manufacturing the same | |
US8268095B2 (en) | Method of manufacturing hot dip galvannealed steel sheet and hot dip galvannealed steel sheet | |
EP2947180B1 (fr) | Procédé de fabrication pour une feuille d'acier plaquée par du zinc | |
EP2366812B1 (fr) | Procédé de production d'une tôle d' acier galvanisé | |
EP3428315B1 (fr) | Procédé de fabrication d'une tôle d'acier galvanisé | |
JP5347295B2 (ja) | 亜鉛系めっき鋼板およびその製造方法 | |
CA2745332C (fr) | Tole d'acier galvanise et son procede de production | |
JP4525252B2 (ja) | 合金化溶融亜鉛めっき鋼板の製造方法 | |
JP2005097742A (ja) | 合金化溶融亜鉛めっき鋼板の製造方法および合金化溶融亜鉛めっき鋼板。 | |
JP5386842B2 (ja) | 亜鉛系めっき鋼板およびその製造方法 | |
JP5593601B2 (ja) | 合金化溶融亜鉛めっき鋼板およびその製造方法 | |
JP4826486B2 (ja) | 合金化溶融亜鉛めっき鋼板の製造方法 | |
JP5163218B2 (ja) | 亜鉛系めっき鋼板の製造方法 | |
US20110236677A1 (en) | Galvanized steel sheet and method for producing the same | |
JP4604712B2 (ja) | 溶融亜鉛めっき鋼板の製造方法および溶融亜鉛めっき鋼板 | |
JP5163217B2 (ja) | 亜鉛系めっき鋼板の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20110513 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20120326 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C23C 28/00 20060101AFI20120320BHEP Ipc: C23C 2/40 20060101ALI20120320BHEP Ipc: C23C 22/53 20060101ALI20120320BHEP Ipc: C23C 2/26 20060101ALI20120320BHEP Ipc: C23C 18/12 20060101ALI20120320BHEP |
|
17Q | First examination report despatched |
Effective date: 20160314 |
|
TPAC | Observations filed by third parties |
Free format text: ORIGINAL CODE: EPIDOSNTIPA |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602009059500 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: C23C0028000000 Ipc: C23C0002060000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C23C 22/53 20060101ALI20190226BHEP Ipc: C23C 2/40 20060101ALI20190226BHEP Ipc: C23C 2/06 20060101AFI20190226BHEP Ipc: C23C 18/12 20060101ALI20190226BHEP Ipc: C23C 28/00 20060101ALI20190226BHEP Ipc: C23C 2/26 20060101ALI20190226BHEP |
|
INTG | Intention to grant announced |
Effective date: 20190328 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1167120 Country of ref document: AT Kind code of ref document: T Effective date: 20190815 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602009059500 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190814 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191114 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191216 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191114 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1167120 Country of ref document: AT Kind code of ref document: T Effective date: 20190814 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191115 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191214 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200224 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602009059500 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG2D | Information on lapse in contracting state deleted |
Ref country code: IS |
|
26N | No opposition filed |
Effective date: 20200603 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200430 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200430 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200422 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200430 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200422 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200422 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200422 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20210309 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20210323 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602009059500 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220430 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221103 |