EP2366081B1 - Méthode pour minimiser la consommation d'énergie d'un chauffe-eau à accumulation - Google Patents

Méthode pour minimiser la consommation d'énergie d'un chauffe-eau à accumulation Download PDF

Info

Publication number
EP2366081B1
EP2366081B1 EP09774713.3A EP09774713A EP2366081B1 EP 2366081 B1 EP2366081 B1 EP 2366081B1 EP 09774713 A EP09774713 A EP 09774713A EP 2366081 B1 EP2366081 B1 EP 2366081B1
Authority
EP
European Patent Office
Prior art keywords
temperature
water heater
storage water
time
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09774713.3A
Other languages
German (de)
English (en)
Other versions
EP2366081A2 (fr
Inventor
Fausto Fioroni
Carlo Frati
Roberto Sampaolesi
Roberto Paolinelli
Angelo Mancini
Renato Moreci
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merloni Termosanitari SpA
Ariston SpA
Thermowatt SpA
Original Assignee
Merloni Termosanitari SpA
Ariston Thermo SpA
Thermowatt SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merloni Termosanitari SpA, Ariston Thermo SpA, Thermowatt SpA filed Critical Merloni Termosanitari SpA
Priority to PL09774713T priority Critical patent/PL2366081T3/pl
Publication of EP2366081A2 publication Critical patent/EP2366081A2/fr
Application granted granted Critical
Publication of EP2366081B1 publication Critical patent/EP2366081B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • F24H9/2014Arrangement or mounting of control or safety devices for water heaters using electrical energy supply
    • F24H9/2021Storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/172Scheduling based on user demand, e.g. determining starting point of heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/174Supplying heated water with desired temperature or desired range of temperature
    • F24H15/175Supplying heated water with desired temperature or desired range of temperature where the difference between the measured temperature and a set temperature is kept under a predetermined value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/223Temperature of the water in the water storage tank
    • F24H15/225Temperature of the water in the water storage tank at different heights of the tank
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/281Input from user
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/355Control of heat-generating means in heaters
    • F24H15/37Control of heat-generating means in heaters of electric heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/395Information to users, e.g. alarms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/414Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based
    • F24H15/421Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/486Control of fluid heaters characterised by the type of controllers using timers

Definitions

  • the present invention relates to a new method for the management of water preservation temperature in a generic storage water heater controllable by an electronic control.
  • An instant water heater can dispense a hot water flow rate strictly proportional to the thermal power installed. Installing high powers is generally difficult and this poses a limit to the dispensable flow rate.
  • the advantage of water storage heaters is to be able to dispense very high water flow rates while limiting the thermal power installed.
  • the amount of water that can be dispensed at the usage temperature T u during a single drawing may be larger than the volume of the storage tank as this is especially kept at a temperature higher than said usage temperature T u and the water withdrawn is then used mixing it with cold water.
  • the selected storage volume is sufficient for fulfilling the largest of the expectable drawings for that specific utility keeping the storage temperature to the maximum possible value while the thermal power installed must be such as to restore a sufficient water reserve for the next drawing.
  • the minimum requirement for the service to always be met is that the water heater should in any case be kept at a minimum temperature not lower than the usage temperature T u so as to fulfil small unexpected drawings, and the storage volume should be sufficiently large to ensure the largest drawing expected for that utility while keeping the temperature to the value allowed.
  • drawing profile consisting in drawing times and amounts
  • the drawing profile is very uneven during the day, it is highly repetitive during predetermined time cycles that repeat, equal to one another: in particular for the one week interval.
  • utility behaviours are little changing so that a typical drawing profile can be recognised for Mondays, Tuesdays, and so on, with, in particular, clear differences between working days and holidays, as well as, of course, for midweek holidays and for holiday periods.
  • Each of said repetitive time intervals is hereinafter referred to as drawing cycle.
  • small drawings overlap, usually in a quite random manner, especially in small utilities, to this regularity of more important drawings: small water drawings, for example for rinsing a dish or washing hands, which per se do not imply considerable energy consumptions but may have the effect, well known by the man skilled in the art, of tripping the temperature setting thermostat, with the consequence that the latter thus reaches uselessly higher values with a consequent increase of thermal dispersions.
  • the simple method that has always been used is to enable and disable the heating element by a clock so that the desired temperatures are only ensured within the time period when drawings are expected.
  • Another simple method, less effective from the energy point of view for the user but more economically advantageous for the same, is to actuate the heating element only during any time bands with a lower rate; the water may uselessly be too hot with a certain advance compared to the needs, but in any case it was obtained at relatively low cost.
  • thermostat T.set is simply set to a fixed value; however, the storage temperature drops because the heating element is forcedly deactivated.
  • Document EP 0 866 282 provides for a device wherein it is possible to program the desired drawing sequence, that is, the drawing profile.
  • the amount of the n drawings envisaged in the time sequence t.1, t.2, ... t.k, ... t.n is recorded by setting for each time t.k the temperature T set.k deemed able to fulfil the k-th drawing.
  • a limit of the method consists in the difficulty of a correct programming, because the user cannot be aware of the effective drawing times of the hot water or of the effective values T set.k to set to obtain the desired amount of hot water at the usage temperature T u .
  • the programming method therefore implies a series of adjustments for tests and errors with the high probability that the user stops correcting the program when he/she assesses that the services is met, but without knowing whether he/she could obtain this with greater efficiency.
  • Another difficulty lies in the fact that the effective time of achievement of the desired temperature depends on the heating time, difficult to assess and in any case variable over time for the same water heater for various reasons, such as scaling, seasonal temperature variations in the room where the water heater is placed, reduction of the effective thermal power of the heating element over time.
  • the prior document GB 2 146 797 acquires information on the drawing times and amounts through flow and rate sensors for each drawing, the storage temperature at an intermediate value between the minimum and maximum allowed and proportional to the expected drawing volume.
  • the method has the disadvantage of requiring the presence of flow sensors for sensing the drawings; moreover, it does not allow for corrections, meaning that it learns the drawing variability but, assigning an unchangeable temperature to each drawing amount as it is generated by a preset formula, it is not able to correct it if it is too high or too low.
  • the sequence of the drawing times and of the corresponding desired storage temperatures are set in an electronic processor; the processor consequently determines the values that the thermostat adjustment temperature must take in each time interval. Afterwards, such adjustment temperatures are changed rising them for the intervals in which the desired storage temperatures have not been reached, and dropping them in the opposite case.
  • a limit of the method, as in the first document mentioned, is the need of having to preset the times of the expected drawings; another limit, as in the second document mentioned, is that the desired and preset storage temperature is kept, however it may not be the best one for ensuring the service in the most effective manner.
  • a microprocessor in a first cycle, records the activity of the heater (its switching ON/OFF) and then, during the successive cycles, it replicates such activity. If in the first week the thermostat had heat the water at unuseful too high or too low levels, it is not clear how the microprocessor is able to correct this. In fact, the described method, is absolutely unable to optimize the water temperature neither it gives suggestions at this scone. The disclosed method simply replicates the activity performed by the thermostat in the first cycle, i. e. the same activity that said thermostat could continue to perform in the following cycles.
  • Document GB 2 132 791 discloses an apparatus for and a method of controlling a hot water system comprising the phases of sending, with sensing means, the temperature of water within a water heater, of storing a plurality of different desired temperature for the water in memory means, of storing data determining an onset time for a respective variable duration time period in which each desired temperature is required and of regulating the temperature of water so that in a respective variable time period the water temperature is maintained at the particular desired temperature for that time period.
  • An object of the present invention in a water heater is to keep a storage temperature thereof such as to fulfil all the drawings that may be expected by the usual behaviour of the utility while minimising thermal dispersions.
  • a second object of the present invention is to automatically learn and store, at least for cycles of weekly drawings, the drawing profile consisting in times and amounts of the same without needing manual settings or flow detectors.
  • a third object of the present invention is to detect utility behaviour changes changing the learnt and stored drawing profile accordingly.
  • a further object of the present invention is to prevent small random drawings from leading to a change of the drawing profile stored.
  • said regulator 4 is provided with means IN suitable for introducing first data therein from the outside, for example during production through input IN.1 and/or upon installation through input IN.2 and/or at a later time by the user through input IN.3.
  • regulator 4 receives second data from one or more sensors S; S1, S2 that sense one or more corresponding temperatures T, T1, T2 of water in their immediate vicinity inside tank 2.
  • a single sensor S; S1 is provided, it is placed where the thermostat sensor of a water heater 1 is normally placed according to the prior art, that is, substantially 1/3 away from the bottom 2.3.
  • a further sensor S2 is provided, it is connected at a lower point, close to bottom 2.3.
  • sensors are all distributed so as to sense the temperature pattern along the vertical axis with certain accuracy; however, it has been found that only two sensors S1 and S2 are sufficient for a good application of the method according to the invention.
  • sensor S1 arranged at about 30 mm from the bottom and sensor S2 at about 230 mm from the same bottom.
  • regulator 4 is provided with a processing unit UE suitable for processing said first and second data for obtaining said parameters and a clock CLOCK for associating at least some of said parameters to corresponding times.
  • regulator 4 is provided with first means U1 for sending output signals for the ON-OFF or modulating control of the heating element 3 besides any second output means U2 for signalling the system status to the user and/or to the operator.
  • the output means U2 may consist of a display capable of showing the storage temperature, the drawing profile and so on.
  • said regulator 4 is capable of processing data for constructing a profile of the effective drawings carried out by the user, which extends over a predetermined drawing cycle (one week, in particular) after which it is capable of piloting the heating element 3 so that, in the drawing cycles subsequent to the first one, during which the utility behaviour is assumed as substantially equal to that of the previous drawing cycles, the storage temperature is kept to the minimum value required to fulfil the single drawings as much as it is physically possible.
  • regulator 4 is capable of detecting, as the subsequent drawing cycles run, any considerable changes of the utility behaviour that may require a corresponding change of the drawing profile sensed and stored while it disregards the irregularities of minor drawings (small drawings) that are not an indication of changes in behaviour.
  • regulator 4 can carry out for obtaining what described above, upon the first start-up, water heater 1 starts operating keeping the temperature of tank 2 to values stored to memory MEM of regulator 4 after which it is capable of learning the drawing profile (that is, times and amounts of the single drawings) simply by processing data received from the one or more sensors S; S1, S2 during the actual utility operation.
  • regulator 4 by processing the same data coming from said one or more sensors S; S1, S2, regulator 4 is capable of calculating the thermal inertia of water heater 1 or better, the water heating speed characteristic of the thermal system, substantially consisting in tank 2 and in heating element 3.
  • a higher final water temperature at the end of the drawing than the usage temperature T u denotes that the required drawing has been met; on the other hand, if the final temperature is lower, this means that the user has received too cold water, that is, that the required service has not been provided in full.
  • the temperature increase speed allows deducing the time required for changing from any first temperature to a second target temperature without the need of knowing the thermal capacity of tank 2, insulation quality and thermal power of the heating element 3.
  • Water heater 1 therefore, at the end of the learning of its internal features and of the utility features, is capable of maintaining the temperature of tank 2 to values that are variable over time and the lowest possible yet always sufficient for ensuring the single drawings, while the information on said temperature provided from the outside through said first data only serves for operating water heater 1 itself at least during a first period of the first cycle of drawings so that the service to the user is certainly ensured since the first start-up.
  • T m said water temperatures, generically indicate the temperature resulting from the mean of the one or more temperatures T, T1, T2 sensed by the one or more sensors S; S1, S2; such mean is not necessarily an arithmetical mean but it can be a weighed mean to give more importance to one or the other of said one or more temperatures T, T1, T2.
  • T m.eff indicates the effective mean temperature of the water not necessarily coinciding with the water temperature T m read by said S; S1, S2, and exactly determined by laboratory tests only.
  • the effective mean temperature T m.eff is not used by the method according to the invention and shall be hereinafter referred to only for a few explanatory considerations of the method itself.
  • T set.k indicates the K-drawing temperature, and is the temperature to ensure at the beginning of the k-th drawing P k .
  • Said drawing temperatures T set.k have a predetermined initial value T set higher than or equal to the value required for fulfilling the largest drawing expected; afterwards, they take values calculated by regulator 4 for each of the k drawings expected.
  • T set.max indicates the maximum setting temperature (generally 75°C) that for safety reasons ensures that the water does not exceed hazardous values.
  • T stand-by indicates the maintenance temperature to ensure at times far-off the drawings; it has a predetermined value preferably equal to the usage temperature T u and therefore comprised between 35 and 45 °C so as to ensure small unexpected drawings. It is not subject to processing over time but for allowing a manual correction thereof if the preset value does not satisfy the utility or is deemed excessive.
  • T target indicates the target temperature .
  • the target temperature T target is preset equal to T set. Afterwards, it is set by regulator 4 equal to the maintenance temperature T stand-by away from the drawing times but it must reach the value of the drawing temperature T set.k with a heating advance time interval ⁇ t ant before the expected drawing start time t k .
  • ⁇ T hysteresis defines the hysteresis associated to said target temperature T target. Similar to a conventional thermostat, regulator 4 enables the heating element 3 when the water temperature T m drops below the value T target - ⁇ T hysteresis (that is, if T m ⁇ T target - ⁇ T hystocsis ) and disables it when the water temperature T m is higher than T target (that is, if T m >T target ).
  • hysteresis ⁇ T hysteresis is predetermined; it may be very low, as in all electronic temperature regulators (for example 0.5 °C) if the heating element 3 is a group of electrical resistors piloted by regulator 4 through a TRIAC. On the other hand, if regulator 4 pilots the heating element 3 through relays, hysteresis ⁇ T hysteresis has a considerably higher value to prevent an excessive ON-OFF switching frequency of the same relays.
  • the value of hysteresis ⁇ T hysteresis is set equal to 5 °C when the target temperature T target is set equal to the maintenance temperature T stand-by so as to ensure, with good accuracy, that the water temperature T m actually has a useful value for the utility; on the other hand, when the target temperature T target is set equal to the drawing temperature T set the value of hysteresis ⁇ T hysteresis may be higher (for example 8 °C).
  • Hysteresis ⁇ T hysteresis shall not be mentioned anymore hereinafter and is deemed to be implicit in the methods by which regulator 4 pilots the heating element 3.
  • T opt indicates the optimal emptying temperature.
  • all the water in tank 2 substantially achieves the target temperature T target (see fig. 3.a ).
  • T target the target temperature
  • the water undergoes a stratification by virtue of the cold water entering from the bottom so if sensors S; S1 , S2, as usually happens, are in the proximity of the bottom, they do not sense the effective temperature of the output water anymore (see figs. 3.b, 3.c ).
  • the optimal emptying temperature T opt is that sensed at bottom 2.3 when all the water has been drawn from said tank 2 at a temperature T m higher than the usage temperature T u and only the water at dome 2.4 has stayed at the usage temperature T u .
  • the optimal emptying temperature T opt of course depends not only on the usage temperature T u but also on the size and proportions of tank 2.
  • the optimal emptying temperature T opt is comprised between 18 and 24 and more preferably, it may be set equal to 21 °C.
  • VT h indicates the water heating speed when the heating element 3 is active.
  • the heating speed VT h is preferably calculated periodically, for example each time regulator 4 actuates the heating element 3 or, even more preferably, the calculation is repeated continuously with the heating element 3 on; for example, every 15 minutes, setting said predetermined measurement time ⁇ t equal to 15 minutes as well. Sudden variations between the progressively calculated values may be limited using various alternative known mathematical techniques.
  • the moving mean between a predetermined number of the last values calculated may be used, or even more preferably, the last result in order of time may be filtered with a time constant ⁇ preferably of one hour and a half.
  • the drawing profile is recorded during all of a first drawing cycle, called learning cycle, but substantially considered as equal and representative of the following drawing cycles.
  • Said recording may then be repeated during the next cycles so as to keep into account any changes in the utility behaviour.
  • the recording may start at any time t of the cycle and the start times t k of each drawing P k of the n total drawings that will be comprised in the cycle (where k indicates the subsequent values from 1 to n), as well as the values T mik and T mfk the water temperature T m has at the drawing start and end, respectively, are recorded during it.
  • Said times t, t k may in any case be measured from the time taken as cycle start (for example from hours 0 of Monday if the cycle has a weekly duration, by such time meaning the time of start of the algorithm should the equipment be not provided with user interface for managing the calendar).
  • Said step is divided into an alternating sequence of n first substeps at the end of which, for each drawing P k (with k ranging from 1 to n), the start time t k of the k-th drawing and the corresponding drawing start temperature T mik are detected, followed by as many second substeps at the end of which the corresponding drawing end temperature T mfk is detected, and the amount of the drawing itself is assessed.
  • the water temperature T m is monitored during each of them, at sampling time intervals ⁇ t c .
  • a drawing P k is regarded as started when the following two conditions occur.
  • the first condition is that a higher water cooling speed VT c, in absolute value, than a predetermined cooling speed VT p must occur.
  • sampling time intervals ⁇ t c it is suitable for said sampling time intervals ⁇ t c to be quite short; preferably 60 seconds; correspondingly, said temperature reduction ST pl is preferably equal to 0.33 °C and therefore preferably, said predetermined cooling speed VT p is equal to 0.33 °C/minute.
  • the temperature drop may be due to a small random drawing which should not be taken into account as it is not characterising of the actual cyclic drawing profile, or even to ON-OFF cycles of the heating element during the normal thermostating process, should the temperature probes be close to the heating element itself.
  • the second condition set is that said first condition continues to be verified until the temperature T m has dropped by a predetermined second reduction value ⁇ T p2 , deemed to be indicative of a neither small nor random drawing.
  • Said second reduction value ⁇ T p2 of course depends on the model of water heater 1 and on the type of utility it is intended for.
  • the preferred value for said second reduction value ⁇ T p2 is comprised between 4 and 13 °C; even more preferably, its value is 6.5 °C.
  • said advance interval ⁇ t ant of course depends on the construction features of water heater 1; experimentally it has been found, for standard water heaters 1, that a value comprised between 60 and 180 sec determines the effective drawing start time t k with good accuracy; as a consequence, it was preferred to set said advance interval ⁇ t ant equal to said sampling time interval ⁇ t c this having the preferred value of 60 seconds.
  • temperature T m is monitored until condition T m (t c - ⁇ t c )-T m (tc) ⁇ Tpl (formula 3) is not met anymore.
  • each predetermined drawing corresponds to a precise reduction of the energy contents of water heater I and thus, a precise drop of the effective mean water temperature T m.eff irrespective of the value of such temperature at the drawing start; if said one or more sensors S; S1 and S2 were distributed along the entire height of water heater 1, said calculated temperature drop ⁇ T k would then be an unchanging value for each drawing, irrespective of the initial value of said effective mean water temperature T m.eff .
  • T set.k T opt + ⁇ k
  • Said one or more sensors S; S1 and S2 are preferably arranged in the proximity of bottom 2.3 and , during the drawings, sense quite a different water temperature T m compared to the effective mean temperature T m . eff since (please see figs. 3.b, 3.c ) the cold water in input mixes partly with the hot water almost exclusively at bottom 2.3 in a volume Vp well smaller than volume V.
  • the volume Vp involved in the mixing indirectly depends on the effective mean temperature T m.eff .
  • the lower is the latter the larger will be the amount of water drawn to obtain a water mass drawing Qp at the usage temperature T u , as a consequence, the higher is the volume Vp involved in the mixing and therefore, in practice, the lower is the resulting drop ⁇ T m .
  • the drop ⁇ T m sensed by sensors S; S1, S2 from the start to the end of the drawing is not constant with the same drawing, but decreases as the effective mean temperature T m.eff drops at the drawing start, which however is not sensed if said sensors S; S1, S2 are arranged low.
  • Said rule and threshold value of course depend on the model of water heater 1 and on the utility features, so they must be determined empirically; a general rule is that said predetermined threshold value T s is comprised between 20 and 30 °C and that such corrective term ⁇ T" k is at most 50% of said temperature drop AT k .
  • step of drawing profile recording continues for the entire cycle, alternating said first and second substeps that, ending automatically at the beginning and at the end of each drawing respectively, will total the same number as the drawings.
  • each drawing k is determined by two characteristic parameters, drawing start time t k and temperature drop AT k produced thereby.
  • Such version envisages that if the cycle is weekly, the initial predetermined value T set may be changed, bringing it equal to the maximum drawing temperature T set.g value stored the previous day, provided this does not imply an excessive modification of the initial predetermined value T set (for example comprised within T set ⁇ 3 °C).
  • Fig. 4.a shows some points P1, ... P4 representing as many drawings characterised by the corresponding times t 1 , .. t 4 of drawing start t k and by the corresponding temperatures T set.l , .. T set.4 of drawing T set.k .
  • Fig. 4.b shows, in addition, the course of temperature T m with the rising ramps R1, ... R4 for reaching said drawing temperatures T1, .. T4.
  • Said ramps R1, ... R4 have a course that depends on the heating speed VT h ; the course, as known, is exponential but may be approximated by a rectilinear portion without appreciable errors given the order of size of the time constant of the water heater temperature (for example, well above 10 6 s for a standard water heater 1).
  • drawing P1 is fulfilled but at the end there is no sufficient time for bringing temperature T m which, following the drawing, has dropped to the optimal emptying temperature T opt , to the drawing temperature T 2 required by drawing P 2 .
  • drawing P 3 is not fulfilled either, whereas drawing P4, small and very far-off the previous ones, is.
  • the target temperature T target is set to the fictitious drawing start temperature value T' set.i of the corresponding fictitious drawing P' i , it being understood that said target temperature T target could never exceed the maximum setting temperature T set.max .
  • the process is recursive, repeated at relatively short time intervals, for example 60 seconds, each time moving said time window ⁇ t w forward by an equal amount of time, so that all drawings P are taken into account and fulfilled but within the limits of power of water heater 1.
  • Fig. 4.d shows that ramp R is blocked in its ascent due to the fact that before reaching the drawing start time t 1 , it has reached the maximum setup temperature T set.max .
  • time window ⁇ t w must be sufficiently wide as to include the drawing start time t i of all the drawings P i the fictitious heating start times t' ONi whereof are expected to be prior to the fictitious heating start times t' ON relating to the i-1 prior drawings P 1 ,..., P i-1 .
  • the time window ⁇ t w can cover 24 hours; moreover, the fact that there certainly is a night pause in the drawings ensures that the above set condition is met.
  • the method just described involves, as seen, the construction of said fictitious drawings P' 1 , ..., P' i , ..., P', the calculation of the corresponding fictitious drawing start temperatures T' set , then the calculation of the corresponding heating start times t' ONi and finally, the actuation of the heating element 3 upon reaching the closest of said heating start times t' ONi setting the target temperature T target equal to the fictitious drawing start temperature T set.i .
  • This method ensures the fulfilment of the utility demands as it considers together all the drawings Pi that are so close to each other that there would be no time to fulfil those following the first one P 1 of the group, if the thermal energy required were not stored in advance by actuating the heating element 3.
  • the method of "fictitious drawings” allows supplying the thermal energy strictly required for ensuring the drawings, keeping the water temperature T m , time by time, to the minimum value required for such service and calculating the duration of the actuation periods of the heating element 3 without the need of explicitly knowing the thermal power thereof.
  • said heating start times t' Oni may be advanced by a little (a tolerance advance ⁇ tol for taking into account deviations from the effective drawing start times (t i ) relative to those recorded during the learning drawing cycle).
  • a tolerance advance ⁇ tol for taking into account deviations from the effective drawing start times (t i ) relative to those recorded during the learning drawing cycle.
  • the regulator may learn which value to assign to such tolerance advance ⁇ toll .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Cookers (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Control Of Resistance Heating (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Claims (29)

  1. Méthode de gestion d'un chauffe-eau à accumulation (1),
    dans lequel l'eau accumulée est chauffée par un élément chauffant (3) piloté par un régulateur (4) adapté à la régulation de la température de l'eau (Tm) à une température cible modifiable (Ttarget)
    et dans lequel ladite méthode comprend,
    - une première étape d'acquisition des informations
    - en ce qui concerne le profil de tirage (P1..., Pk..., Pn), qui est répété sensiblement et sans changement pour les cycles de tirage ultérieurs
    - et la vitesse de chauffage (VTh) caractéristique dudit chauffe-eau à accumulation (1)
    - une seconde étape dans laquelle, avant l'heure (tk) de démarrage de chaque tirage (Pk) parmi les n tirages (Pn) composant chacun desdits cycles de tirage,
    - la température de l'eau (Tm) est portée au moins à celle du tirage (Tset.k ; T'set.i) suffisante pour assurer ledit tirage à la température d'utilisation (Tu) qui initialise le chauffage à l'heure de démarrage du chauffage (tOnk ; t'ONi)
    - à condition que, dans tous les cas, ladite température de l'eau (Tm) soit maintenue inférieure ou égale à la température de réglage maximale (Tset.max), soit en dessous des valeurs dangereuses,
    - lesdites valeurs de température de tirage (Tset.k ; T'set.i et heure de démarrage de chauffage (tOnk ; t'ONi) étant déduites des informations acquises ci-dessus,
    caractérisée par le fait que
    ladite acquisition d'informations sur le profil de tirage
    - a lieu au moins pendant un cycle de tirage d'apprentissage
    - et consiste à calculer, pour chacun desdits n tirages (Pk),
    - l'heure de démarrage du tirage (tk),
    - la température de tirage (Tset.k)
    ce calcul étant effectué uniquement par traitement des données tirées de l'évaluation de la température de l'eau (Tm) résultant de la moyenne d'une ou de plusieurs températures (T ; T1, T2) mesurées à différentes hauteurs (S ; S1, S2) du réservoir (2) et à des intervalles de temps (δtc)
    et caractérisée par le fait que
    la détermination de ladite heure de démarrage de chauffage (tOnk ; t'ONi) pour assurer lesdits tirages (Pk ; Pi) envisage les étapes suivantes :
    - à intervalles de temps courts (δw), tous les w tirages (P1, ..., Pi, ..., Pw) dont l'heure de démarrage du tirage (ti) se trouve dans une fenêtre temporelle prédéterminée (Δtw) immédiatement après le moment actuel sont pris en compte,
    - où ladite fenêtre temporelle (Δtw) est sélectionnée en fonction de l'utilisation à laquelle ledit chauffe-eau à accumulation (1) est destiné et est suffisamment large pour inclure l'heure de démarrage (ti) de tous les tirages (Pi), parmi lesquelles des heures de démarrage de chauffage fictives (t'ONi) sont susceptibles de survenir avant les heures de démarrage de chauffage fictives (t'ON) des tirages i-1 précédents (P1, ..., Pi-1),
    - à ladite heure de démarrage de tirage (ti) comprises dans la même fenêtre temporelle (Δtw) que celle où de nombreux tirages fictifs effectués (P'1, ..., P'i, ..., P'w) possèdent chacun,
    - une heure de démarrage de tirage (tw) égale à celle du tirage réel correspondant (Pi),
    - une température de démarrage de tirage fictive (T'set.i) obtenue en additionnant les températures de démarrage de tirage (Tset1, Tset2, ..., Tset(i-1)) de tous les tirages compris dans ladite fenêtre temporelle (Δtw) et avant le tirage Pi lui-même à la température de démarrage de tirage réelle correspondante (Tset.i), d'où chacune des températures de démarrage de tirage (Tset1, Tset2 ..., Tset(i-1)) a été déduite de la température optimale de vidange Topt selon la formule suivante : [T'set.i = Tset.i + + (Tset1 - Topt) + (Tset2 - Topt) +... + (Tset(i-1) - Topt)]
    - pour chacun desdits tirages fictifs (P'1, ..., P'i, ..., P'w), l'heure de démarrage du chauffage fictive (t'ONi) est calculée selon la formule [t'ONi = ti - (T'set.i - Tm) / VTh],
    - lorsque la plus proche desdites heures de démarrage de chauffage est atteinte (t'ONi), la température cible (Ttarget) est réglée à la valeur de la température de démarrage de tirage fictive (T'set.i) du tirage fictif correspondant (P'i), étant entendu que ladite température cible (Ttarget) a comme limite supérieure la température de réglage maximum (Tset.max)
    - peu avant d'atteindre cette heure de démarrage de chauffage proche (t'ONi), la température cible (Ttarget) est maintenue égale à la température d'entretien (Tstand-by), ladite température d'entretien (Tstand-by) étant la température à maintenir bien après les tirages.
  2. Méthode de gestion d'un chauffe-eau à accumulation (1) selon la revendication précédente,
    caractérisée par le fait que
    lesdits courts intervalles de temps (δw) ont une durée égale de 60 secondes.
  3. Méthode de gestion d'un chauffe-eau à accumulation (1) selon l'une quelconque des revendications précédentes,
    caractérisée par le fait que
    si le cycle de tirage dure une semaine, ladite fenêtre temporelle (Δtw) couvre 24 heures.
  4. Méthode de gestion d'un chauffe-eau à accumulation (1) selon l'une quelconque des revendications précédentes,
    caractérisé par le fait que
    lesdites heures de démarrage de chauffage (t'Oni) sont avancées par une avance de tolérance (Δtol) adaptée pour prendre en compte les écarts des heures effectives de démarrage de tirage (ti) par rapport à celles enregistrées au cours du cycle de tirage d'apprentissage.
  5. Méthode de gestion d'un chauffe-eau à accumulation (1) selon la revendication précédente,
    caractérisée par le fait que
    - l'enregistrement du profil de tirage se poursuit dans les cycles de tirage ultérieurs au premier cycle d'apprentissage,
    - et ladite avance de tolérance (Δtol) est apprise au cours desdits cycles de tirage ultérieurs au premier cycle d'apprentissage.
  6. Méthode de gestion d'un chauffe-eau à accumulation (1) selon l'une quelconque des revendications précédentes,
    caractérisée par le fait que
    ladite température d'entretien (Tstand-by) est égale à la température d'utilisation (Tu).
  7. Méthode de gestion d'un chauffe-eau à accumulation (1) selon la revendication 1,
    caractérisée par le fait que
    ledit tirage (Pk) est considéré comme commencé si une première et une seconde condition se produisent en séquence,
    - ladite première condition étant qu'à un instant (tc), à la fin d'un intervalle d'échantillonnage (δtc), on constate que la température de l'eau (Tm(tc)) lue audit instant (tc) a diminuée par rapport à la valeur (Tm(tc - δtc)) lue à l'instant précédent (tc- δtc) d'une quantité supérieure ou égale à une première valeur de réduction de température prédéterminée (δTp1), ce qui veut dire que la condition Tm (tc - δtc) - Tm (tc) ≥ δTp1 s'est produite,
    - ladite première valeur de réduction de température (δTp1) étant choisie de manière à exclure le refroidissement dû aux dispersions thermiques,
    - ladite seconde condition étant que la première condition continue d'être vraie jusqu'à ce que la température (Tm) soit réduite d'une seconde valeur de réduction prédéterminée (δTp2),
    - ladite seconde valeur de réduction (δTp2) étant choisie de manière à exclure la première condition vérifiée par l'effet des petits tirages ou de la thermostatisation qui n'est pas à prendre en compte,
    et par le fait que
    les étapes suivantes sont effectuées pour déterminer la valeur de la température de tirage (Tset.k)
    - la température (Tm) lue à l'heure de démarrage de tirage (tk) est stockée sous forme de température de démarrage de tirage (Tmik)
    - la température lue au moment où la température de l'eau (Tm) arrête de chuter, c'est-à-dire au moment où la condition [Tm (tc - δtc) - Tm (tc) ≥ δTp1] arrête d'être satisfaite, est stockée sous forme de température de fin de tirage (Tmfk)
    - la différence de température (ΔTk) observée dans la température de l'eau (Tm) se voit attribuer la valeur de la différence entre les températures de tirage de début et de fin (Tmik, Tmfk), qui est [ΔTk = Tmik - Tmfk]
    - si un ou plusieurs capteurs (S; S1, S2) sont disposés non loin du fond (2.3) du chauffe-eau à accumulation (1) et ladite température de fin de tirage (Tmfk) est inférieure à une valeur de seuil prédéterminée (Ts ; Topt), la valeur de diminution de la température (ΔTk) est modifiée en ajoutant à sa valeur calculée ci-dessus un terme correctif (ΔT"k) empiriquement obtenu pour chaque chauffe-eau à accumulation (1) et le type d'utilisateurs qui y sont associés, soit [ΔTk = Tmik - Tmfk + ΔT"k],
    - la température de tirage (Tset.k) est finalement obtenue en ajoutant la valeur de diminution de la température (ΔTk) telle que modifiée optiquement ci-dessus à la température de vidange optimale (Topt), soit [Tset.k = Topt + ΔTk]
    - où ladite température de vidange optimale (Topt) est celle détectée au fond (2.3) du chauffe-eau à accumulation (1) lorsque toute l'eau a été puisée à une température (Tm) supérieure à la température d'utilisation (Tu) et seule l'eau du dôme (2.4) est restée à ladite température d'utilisation (Tu).
  8. Méthode de gestion d'un chauffe-eau à accumulation (1) selon l'une quelconque des revendications précédentes à partir de la revendication 7,
    caractérisée par le fait que
    ledit intervalle d'échantillonnage (δtc) a une durée de 60 secondes,
    et la première valeur de réduction de température (δTp1) est égale à 0,33 °C.
  9. Méthode de gestion d'un chauffe-eau à accumulation (1) selon l'une quelconque des revendications précédentes à partir de la revendication 7,
    caractérisée par le fait que
    ladite deuxième valeur de réduction (δTp2) est comprise entre 4 et 13 °C.
  10. Méthode de gestion d'un chauffe-eau à accumulation (1) selon la revendication précédente,
    caractérisée par le fait que
    ladite deuxième valeur de réduction (δTp2) est égale à 6,5 °C.
  11. Méthode de gestion d'un chauffe-eau à accumulation (1) selon l'une quelconque des revendications précédentes à partir de la revendication 7,
    caractérisée par le fait que
    l'heure de démarrage de tirage (tk) de chaque tirage (Pk) est considérée comme antérieure à un intervalle d'avance (δtadv) par rapport à ladite heure (tc) où ladite première condition se produit et qui est déterminée par la formule [tk = tc - δtadv].
  12. Méthode de gestion d'un chauffe-eau à accumulation (1) selon l'une quelconque des revendications précédentes à partir de la revendication 7, caractérisée par le fait que
    - ladite valeur de seuil (Ts ; Topt) est comprise entre 20 et 30 °C
    - et ledit terme correctif (ΔT"k) est égal à 50 % de la diminution de la température (ΔTk).
  13. Méthode de gestion d'un chauffe-eau à accumulation (1) selon l'une quelconque des revendications précédentes à partir de la revendication 7 et à l'exception de la 12,
    caractérisée par le fait que
    - ladite valeur de seuil (Ts ; Topt) est égale à ladite température de vidange optimale (Topt)
    - et ledit terme correctif (ΔT"k) est égal à la différence entre ladite vidange optimale (Topt) et les températures de fin de tirage (Tmfk).
  14. Méthode de gestion d'un chauffe-eau à accumulation (1) selon les revendications 11 et les revendications ultérieures,
    caractérisée par le fait que
    ledit intervalle d'avance (δtadv) est compris entre 0 et 180 sec.
  15. Méthode de gestion d'un chauffe-eau à accumulation (1) selon la revendication 11 et les revendications ultérieures, à l'exception de la 14,
    caractérisée par le fait que
    ledit intervalle d'avance (δtadv) est égal à intervalle d'échantillonnage (δtc).
  16. Méthode de gestion d'un chauffe-eau à accumulation (1) selon l'une quelconque des revendications précédentes,
    caractérisée par le fait que
    ledit moyen d'acquisition d'informations sur ladite vitesse de chauffage (VTh)
    - a lieu au moins pendant ledit cycle de tirage d'apprentissage dans une période où la température de l'eau (Tm) est en augmentation constante
    - et envisage les étapes suivantes :
    - la valeur Tm1 de la température de l'eau (Tm) à un moment prédéterminé est enregistrée,
    - la valeur Tm2 que la température de l'eau (Tm) a atteint après un temps de mesure prédéterminé (Δt) est enregistrée,
    - la valeur de la vitesse de chauffage (VTh) est obtenue à partir de la formule [VTh = (Tm2 - Tm1/Δt].
  17. Méthode de gestion d'un chauffe-eau à accumulation (1) selon la revendication précédente,
    caractérisée par le fait que
    ladite acquisition d'informations sur ladite vitesse de chauffage (VTh) est répétée chaque fois que le régulateur (4) actionne l'élément chauffant (3).
  18. Méthode de gestion d'un chauffe-eau à accumulation (1) selon la revendication 16,
    caractérisée par le fait que
    ladite acquisition d'information sur ladite vitesse de chauffage (VTh) est répétée de façon continue aussi longtemps que l'élément chauffant (3) reste activé à des intervalles égaux à la période de mesure prédéterminée (Δt).
  19. Méthode de gestion d'un chauffe-eau à accumulation (1) selon l'une quelconque des revendications à partir de la revendication 16 et ultérieures,
    caractérisée par le fait que
    ledit intervalle de mesure prédéterminé (Δt) est égal à 15 minutes.
  20. Méthode de gestion d'un chauffe-eau à accumulation (1) selon l'une quelconque des revendications à partir de la revendication 16 et ultérieures,
    caractérisée par le fait que
    ladite acquisition d'informations sur la vitesse de chauffage (VTh) est également effectuée dans les cycles de tirage.
  21. Méthode de gestion d'un chauffe-eau à accumulation (1) selon l'une quelconque des revendications à partir de la revendication 17 et ultérieures,
    caractérisée par le fait que
    les valeurs de vitesse de chauffage (VTh) calculées sont progressivement traitées pour réduire l'étendue des variations entre les valeurs trouvées.
  22. Méthode de gestion d'un chauffe-eau à accumulation (1) selon la revendication 21,
    caractérisée par le fait que
    la valeur prise pour la vitesse de chauffage (VTh) est égale à la moyenne mobile d'un nombre prédéterminé des dernières valeurs calculées.
  23. Méthode de gestion d'un chauffe-eau à accumulation (1) selon la revendication 21,
    caractérisée par le fait que
    la valeur prise pour la vitesse de chauffage (VTh) est le dernier résultat obtenu dans l'ordre chronologique, filtré avec une constante de temps (τ) de préférence d'une heure et demie, le filtre utilisé étant de type récursif (IIR).
  24. Méthode de gestion d'un chauffe-eau à accumulation (1) selon l'une des revendications précédentes,
    caractérisée par le fait que
    si le cycle de tirage est hebdomadaire, au début de chaque jour suivant le premier, la valeur de la température de tirage (Tset) initiale prédéterminée est diminuée ou augmentée d'une valeur maximale de 3 °C pour la rapprocher de la valeur maximale de la température de tirage stockée le jour précédent (Tset.g).
  25. Régulateur (4) pour chauffe-eau à accumulation (1),
    caractérisé par le fait qu'il est muni de
    - moyens (IN, IN.1, IN.2, IN.3) adaptés à l'introduction des premières données externes pendant la production et/ou lors de l'installation et/ou à un moment ultérieur par l'utilisateur
    - moyens (IN, IN.4) adaptés à l'introduction des secondes données de température (T, T1, T2) de l'eau chauffée dans le réservoir (2) et détectées par un ou plusieurs capteurs (S ; S1 ; S2)
    - une mémoire (MEM) adaptée au stockage desdites premières données externes reçues, des deuxièmes données reçues à partir du ou des capteurs (S, S1, S2), ainsi que d'autres paramètres traités par les premières et deuxièmes données,
    - unité de traitement (UE) adaptée au traitement desdites premières et deuxièmes données pour obtenir lesdits paramètres,
    - une horloge (HORLOGE) pour associer au moins certains desdits paramètres à des instants correspondants
    - premier moyen (U1) d'envoi de signaux de sortie pour la mise en marche ou l'arrêt ou l'appareil modulant d'un élément chauffant (3) adapté au chauffage dans ledit réservoir (2)
    - un quelconque deuxième moyen de sortie (U2) pour la signalisation de l'état du système à l'utilisateur et/ou à l'opérateur
    ledit régulateur (4) étant configuré pour l'acquisition des informations, le traitement de ces dernières et la régulation dudit élément chauffant (3) selon les méthodes d'une ou de plusieurs des procédures de 1 à 24.
  26. Chauffe-eau à accumulation (1) pourvu de
    - régulateur (4) selon la revendication 25
    - élément chauffant (3)
    - un ou plusieurs capteurs (S ; S1, S2) adaptés à la détection de la température correspondante (T, T1, T2) à l'intérieur du réservoir (2),
    caractérisé par le fait que
    - il est fourni avec le régulateur (4) selon la revendication 25
    - il est compatible aux méthodes d'une ou de plusieurs des revendications de 1 à 24.
  27. Chauffe-eau à accumulation (1) selon la revendication précédente,
    caractérisé par le fait que
    un ou plusieurs capteurs (S ; S1, S2) sont un seul capteur (S, S1) placé là où le capteur thermostatique d'un chauffe-eau à accumulation (1) est normalement placé selon l'article précédent.
  28. Chauffe-eau à accumulation (1) selon la revendication 26,
    caractérisé par le fait que
    ledit chauffe-eau à accumulation (1) est le modèle standard et un ou plusieurs capteurs (S ; S1, S2) sont composés d'un premier et d'un deuxième capteur (S1, S2), placés respectivement à environ 30 mm et 230 mm du fond (2.3)
  29. Chauffe-eau (1) selon la revendication 26,
    caractérisé par le fait que
    plus de deux capteurs (S ; S 1, S2) sont disposés de façon à détecter le diagramme des températures (T, T1, T2) le long de l'axe vertical et avec une certaine précision.
EP09774713.3A 2008-11-28 2009-11-17 Méthode pour minimiser la consommation d'énergie d'un chauffe-eau à accumulation Active EP2366081B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL09774713T PL2366081T3 (pl) 2008-11-28 2009-11-17 Sposób minimalizowania zużycia energii pojemnościowego podgrzewacza wody

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ITAN2008A000051A IT1394462B1 (it) 2008-11-28 2008-11-28 Metodo atto alla minimizzazione dei consumi energetici di uno scaldaacqua ad accumulo
PCT/IB2009/007524 WO2010061268A2 (fr) 2008-11-28 2009-11-17 Procede pour minimiser la consommation d'energie d'un chauffe-eau a accumulation

Publications (2)

Publication Number Publication Date
EP2366081A2 EP2366081A2 (fr) 2011-09-21
EP2366081B1 true EP2366081B1 (fr) 2016-11-23

Family

ID=41185667

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09774713.3A Active EP2366081B1 (fr) 2008-11-28 2009-11-17 Méthode pour minimiser la consommation d'énergie d'un chauffe-eau à accumulation

Country Status (7)

Country Link
EP (1) EP2366081B1 (fr)
ES (1) ES2609769T3 (fr)
IT (1) IT1394462B1 (fr)
PL (1) PL2366081T3 (fr)
PT (1) PT2366081T (fr)
RU (1) RU2525812C2 (fr)
WO (1) WO2010061268A2 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010024100A1 (de) * 2010-06-17 2011-12-22 Stiebel Eltron Gmbh & Co. Kg Verfahren zur Temperatursteuerung eines Warmwasserspeichers und Warmwasserspeicher
ES2469946B1 (es) * 2012-12-18 2015-03-31 Fagor, S.Coop. Acumulador de agua caliente
WO2016189416A1 (fr) * 2015-05-27 2016-12-01 Stellenbosch University Système et procédé de détermination d'une programmation de chauffage personnalisée pour un réchauffeur d'eau
RU2643945C1 (ru) * 2016-11-02 2018-02-06 Олег Владимирович Кабанов Способ определения оптимального времени разогрева объекта
CN112856570B (zh) * 2021-01-18 2022-04-15 中电惠特热力设计技术服务邯郸有限公司 一种基于终端的动态供暖方法及供暖系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2132791A (en) * 1982-12-23 1984-07-11 Colin Baker Apparatus for and a method of controlling a hot water system
US4522333A (en) * 1983-09-16 1985-06-11 Fluidmaster, Inc. Scheduled hot water heating based on automatically periodically adjusted historical data
DE58903512D1 (de) * 1988-08-31 1993-03-25 Landis & Gyr Betriebs Ag Sollwertgeber fuer einen brauchwasserspeicher-regler.
DE19710772A1 (de) * 1997-03-17 1998-09-24 Bosch Gmbh Robert Bedienvorrichtung für eine Brauchwassererwärmung
DE19734361A1 (de) * 1997-08-08 1999-03-04 Bosch Gmbh Robert Vorrichtung zum Betreiben einer Heizungsanlage
US6375087B1 (en) * 2000-06-14 2002-04-23 International Business Machines Corporation Method and apparatus for self-programmable temperature and usage control for hot water heaters
GB2387671A (en) * 2002-04-19 2003-10-22 Gasforce Ltd A water-heating system controller

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2010061268A3 (fr) 2011-03-17
PL2366081T3 (pl) 2017-05-31
EP2366081A2 (fr) 2011-09-21
ES2609769T3 (es) 2017-04-24
RU2011126003A (ru) 2013-01-10
PT2366081T (pt) 2016-12-22
IT1394462B1 (it) 2012-07-05
ITAN20080051A1 (it) 2010-05-29
RU2525812C2 (ru) 2014-08-20
WO2010061268A2 (fr) 2010-06-03

Similar Documents

Publication Publication Date Title
US6560409B2 (en) Hot water heater stacking reduction control
US7574120B2 (en) System and method for estimating and indicating temperature characteristics of temperature controlled liquids
US9989266B2 (en) Automatic set point detection for water heaters operating in a demand response
EP2366081B1 (fr) Méthode pour minimiser la consommation d'énergie d'un chauffe-eau à accumulation
EP3477218B1 (fr) Chauffe-eau et procédé et dispositif associés de réglage de température d'eau
CA2492003C (fr) Procede et systeme de regulation de la temperature d'un liquide stocke dans un reservoir
US20120054123A1 (en) Hot water heater with an integrated flow meter
EP3662210B1 (fr) Procédé d'apprentissage de profil de prélèvements d'eau dans un chauffe-eau à accumulation
US20210063053A1 (en) Method for Monitoring the Energy Content of a Water Storage Tank System
US8407015B2 (en) Method and apparatus for monitoring and controlling an electrical boiler
GB2518365A (en) Apparatus and method for volumetric estimation of heated water
EP2362931B1 (fr) Methode pour minimiser la consommation d'energie d'un chauffe-eau a accumulation a travers de la logique a apprentissage adaptatif
EP3186686B1 (fr) Procédé pour chauffer de l'eau dans un chauffe-eau électrique, dispositif correspondant et chauffe-eau électrique
EP2140209B1 (fr) Amélioration d'un procédé permettant de gérer la température de l'eau dans un chauffe-eau à accumulation et contrôle
EP2453334A1 (fr) Procédé pour minimiser la consommation d'énergie journalière d'un chauffe-eau à accumulation par des processus logiques simplifiés
GB2387671A (en) A water-heating system controller
US20200025417A1 (en) Method for Monitoring the Energy Content of a Water Storage Tank System
JP5032225B2 (ja) ガス漏れ警報器の制御装置及びガス漏れ警報器
US20230341150A1 (en) Reheat scheduling for water heaters
JPH05280806A (ja) 電気温水器
KR940004175B1 (ko) 급탕기의 온도제어장치
GB2528072A (en) Central heating system
CA3176872A1 (fr) Planification de rechauffage de chauffe-eau
JPH0638001B2 (ja) 貯湯式電気温水器
JPH0546567B2 (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110614

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160729

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 848273

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161215

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 2366081

Country of ref document: PT

Date of ref document: 20161222

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20161213

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009042642

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161123

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 848273

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161123

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2609769

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170224

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009042642

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170223

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602009042642

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171117

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180602

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170323

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: ARISTON THERMO ITALIA S.P.A.

Effective date: 20210826

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: ARISTON THERMO S.P.A.

Effective date: 20220517

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: ARISTON S.P.A.

Effective date: 20220907

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230412

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20230808

Year of fee payment: 15

Ref country code: PL

Payment date: 20230706

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240228

Year of fee payment: 15