EP2366081B1 - Verfahren zur minimierung des energieverbrauchs eines heisswasserspeichers - Google Patents

Verfahren zur minimierung des energieverbrauchs eines heisswasserspeichers Download PDF

Info

Publication number
EP2366081B1
EP2366081B1 EP09774713.3A EP09774713A EP2366081B1 EP 2366081 B1 EP2366081 B1 EP 2366081B1 EP 09774713 A EP09774713 A EP 09774713A EP 2366081 B1 EP2366081 B1 EP 2366081B1
Authority
EP
European Patent Office
Prior art keywords
temperature
water heater
storage water
time
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09774713.3A
Other languages
English (en)
French (fr)
Other versions
EP2366081A2 (de
Inventor
Fausto Fioroni
Carlo Frati
Roberto Sampaolesi
Roberto Paolinelli
Angelo Mancini
Renato Moreci
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merloni Termosanitari SpA
Ariston SpA
Thermowatt SpA
Original Assignee
Merloni Termosanitari SpA
Ariston Thermo SpA
Thermowatt SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merloni Termosanitari SpA, Ariston Thermo SpA, Thermowatt SpA filed Critical Merloni Termosanitari SpA
Priority to PL09774713T priority Critical patent/PL2366081T3/pl
Publication of EP2366081A2 publication Critical patent/EP2366081A2/de
Application granted granted Critical
Publication of EP2366081B1 publication Critical patent/EP2366081B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • F24H9/2014Arrangement or mounting of control or safety devices for water heaters using electrical energy supply
    • F24H9/2021Storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/172Scheduling based on user demand, e.g. determining starting point of heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/174Supplying heated water with desired temperature or desired range of temperature
    • F24H15/175Supplying heated water with desired temperature or desired range of temperature where the difference between the measured temperature and a set temperature is kept under a predetermined value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/223Temperature of the water in the water storage tank
    • F24H15/225Temperature of the water in the water storage tank at different heights of the tank
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/281Input from user
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/355Control of heat-generating means in heaters
    • F24H15/37Control of heat-generating means in heaters of electric heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/395Information to users, e.g. alarms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/414Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based
    • F24H15/421Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/486Control of fluid heaters characterised by the type of controllers using timers

Definitions

  • the present invention relates to a new method for the management of water preservation temperature in a generic storage water heater controllable by an electronic control.
  • An instant water heater can dispense a hot water flow rate strictly proportional to the thermal power installed. Installing high powers is generally difficult and this poses a limit to the dispensable flow rate.
  • the advantage of water storage heaters is to be able to dispense very high water flow rates while limiting the thermal power installed.
  • the amount of water that can be dispensed at the usage temperature T u during a single drawing may be larger than the volume of the storage tank as this is especially kept at a temperature higher than said usage temperature T u and the water withdrawn is then used mixing it with cold water.
  • the selected storage volume is sufficient for fulfilling the largest of the expectable drawings for that specific utility keeping the storage temperature to the maximum possible value while the thermal power installed must be such as to restore a sufficient water reserve for the next drawing.
  • the minimum requirement for the service to always be met is that the water heater should in any case be kept at a minimum temperature not lower than the usage temperature T u so as to fulfil small unexpected drawings, and the storage volume should be sufficiently large to ensure the largest drawing expected for that utility while keeping the temperature to the value allowed.
  • drawing profile consisting in drawing times and amounts
  • the drawing profile is very uneven during the day, it is highly repetitive during predetermined time cycles that repeat, equal to one another: in particular for the one week interval.
  • utility behaviours are little changing so that a typical drawing profile can be recognised for Mondays, Tuesdays, and so on, with, in particular, clear differences between working days and holidays, as well as, of course, for midweek holidays and for holiday periods.
  • Each of said repetitive time intervals is hereinafter referred to as drawing cycle.
  • small drawings overlap, usually in a quite random manner, especially in small utilities, to this regularity of more important drawings: small water drawings, for example for rinsing a dish or washing hands, which per se do not imply considerable energy consumptions but may have the effect, well known by the man skilled in the art, of tripping the temperature setting thermostat, with the consequence that the latter thus reaches uselessly higher values with a consequent increase of thermal dispersions.
  • the simple method that has always been used is to enable and disable the heating element by a clock so that the desired temperatures are only ensured within the time period when drawings are expected.
  • Another simple method, less effective from the energy point of view for the user but more economically advantageous for the same, is to actuate the heating element only during any time bands with a lower rate; the water may uselessly be too hot with a certain advance compared to the needs, but in any case it was obtained at relatively low cost.
  • thermostat T.set is simply set to a fixed value; however, the storage temperature drops because the heating element is forcedly deactivated.
  • Document EP 0 866 282 provides for a device wherein it is possible to program the desired drawing sequence, that is, the drawing profile.
  • the amount of the n drawings envisaged in the time sequence t.1, t.2, ... t.k, ... t.n is recorded by setting for each time t.k the temperature T set.k deemed able to fulfil the k-th drawing.
  • a limit of the method consists in the difficulty of a correct programming, because the user cannot be aware of the effective drawing times of the hot water or of the effective values T set.k to set to obtain the desired amount of hot water at the usage temperature T u .
  • the programming method therefore implies a series of adjustments for tests and errors with the high probability that the user stops correcting the program when he/she assesses that the services is met, but without knowing whether he/she could obtain this with greater efficiency.
  • Another difficulty lies in the fact that the effective time of achievement of the desired temperature depends on the heating time, difficult to assess and in any case variable over time for the same water heater for various reasons, such as scaling, seasonal temperature variations in the room where the water heater is placed, reduction of the effective thermal power of the heating element over time.
  • the prior document GB 2 146 797 acquires information on the drawing times and amounts through flow and rate sensors for each drawing, the storage temperature at an intermediate value between the minimum and maximum allowed and proportional to the expected drawing volume.
  • the method has the disadvantage of requiring the presence of flow sensors for sensing the drawings; moreover, it does not allow for corrections, meaning that it learns the drawing variability but, assigning an unchangeable temperature to each drawing amount as it is generated by a preset formula, it is not able to correct it if it is too high or too low.
  • the sequence of the drawing times and of the corresponding desired storage temperatures are set in an electronic processor; the processor consequently determines the values that the thermostat adjustment temperature must take in each time interval. Afterwards, such adjustment temperatures are changed rising them for the intervals in which the desired storage temperatures have not been reached, and dropping them in the opposite case.
  • a limit of the method, as in the first document mentioned, is the need of having to preset the times of the expected drawings; another limit, as in the second document mentioned, is that the desired and preset storage temperature is kept, however it may not be the best one for ensuring the service in the most effective manner.
  • a microprocessor in a first cycle, records the activity of the heater (its switching ON/OFF) and then, during the successive cycles, it replicates such activity. If in the first week the thermostat had heat the water at unuseful too high or too low levels, it is not clear how the microprocessor is able to correct this. In fact, the described method, is absolutely unable to optimize the water temperature neither it gives suggestions at this scone. The disclosed method simply replicates the activity performed by the thermostat in the first cycle, i. e. the same activity that said thermostat could continue to perform in the following cycles.
  • Document GB 2 132 791 discloses an apparatus for and a method of controlling a hot water system comprising the phases of sending, with sensing means, the temperature of water within a water heater, of storing a plurality of different desired temperature for the water in memory means, of storing data determining an onset time for a respective variable duration time period in which each desired temperature is required and of regulating the temperature of water so that in a respective variable time period the water temperature is maintained at the particular desired temperature for that time period.
  • An object of the present invention in a water heater is to keep a storage temperature thereof such as to fulfil all the drawings that may be expected by the usual behaviour of the utility while minimising thermal dispersions.
  • a second object of the present invention is to automatically learn and store, at least for cycles of weekly drawings, the drawing profile consisting in times and amounts of the same without needing manual settings or flow detectors.
  • a third object of the present invention is to detect utility behaviour changes changing the learnt and stored drawing profile accordingly.
  • a further object of the present invention is to prevent small random drawings from leading to a change of the drawing profile stored.
  • said regulator 4 is provided with means IN suitable for introducing first data therein from the outside, for example during production through input IN.1 and/or upon installation through input IN.2 and/or at a later time by the user through input IN.3.
  • regulator 4 receives second data from one or more sensors S; S1, S2 that sense one or more corresponding temperatures T, T1, T2 of water in their immediate vicinity inside tank 2.
  • a single sensor S; S1 is provided, it is placed where the thermostat sensor of a water heater 1 is normally placed according to the prior art, that is, substantially 1/3 away from the bottom 2.3.
  • a further sensor S2 is provided, it is connected at a lower point, close to bottom 2.3.
  • sensors are all distributed so as to sense the temperature pattern along the vertical axis with certain accuracy; however, it has been found that only two sensors S1 and S2 are sufficient for a good application of the method according to the invention.
  • sensor S1 arranged at about 30 mm from the bottom and sensor S2 at about 230 mm from the same bottom.
  • regulator 4 is provided with a processing unit UE suitable for processing said first and second data for obtaining said parameters and a clock CLOCK for associating at least some of said parameters to corresponding times.
  • regulator 4 is provided with first means U1 for sending output signals for the ON-OFF or modulating control of the heating element 3 besides any second output means U2 for signalling the system status to the user and/or to the operator.
  • the output means U2 may consist of a display capable of showing the storage temperature, the drawing profile and so on.
  • said regulator 4 is capable of processing data for constructing a profile of the effective drawings carried out by the user, which extends over a predetermined drawing cycle (one week, in particular) after which it is capable of piloting the heating element 3 so that, in the drawing cycles subsequent to the first one, during which the utility behaviour is assumed as substantially equal to that of the previous drawing cycles, the storage temperature is kept to the minimum value required to fulfil the single drawings as much as it is physically possible.
  • regulator 4 is capable of detecting, as the subsequent drawing cycles run, any considerable changes of the utility behaviour that may require a corresponding change of the drawing profile sensed and stored while it disregards the irregularities of minor drawings (small drawings) that are not an indication of changes in behaviour.
  • regulator 4 can carry out for obtaining what described above, upon the first start-up, water heater 1 starts operating keeping the temperature of tank 2 to values stored to memory MEM of regulator 4 after which it is capable of learning the drawing profile (that is, times and amounts of the single drawings) simply by processing data received from the one or more sensors S; S1, S2 during the actual utility operation.
  • regulator 4 by processing the same data coming from said one or more sensors S; S1, S2, regulator 4 is capable of calculating the thermal inertia of water heater 1 or better, the water heating speed characteristic of the thermal system, substantially consisting in tank 2 and in heating element 3.
  • a higher final water temperature at the end of the drawing than the usage temperature T u denotes that the required drawing has been met; on the other hand, if the final temperature is lower, this means that the user has received too cold water, that is, that the required service has not been provided in full.
  • the temperature increase speed allows deducing the time required for changing from any first temperature to a second target temperature without the need of knowing the thermal capacity of tank 2, insulation quality and thermal power of the heating element 3.
  • Water heater 1 therefore, at the end of the learning of its internal features and of the utility features, is capable of maintaining the temperature of tank 2 to values that are variable over time and the lowest possible yet always sufficient for ensuring the single drawings, while the information on said temperature provided from the outside through said first data only serves for operating water heater 1 itself at least during a first period of the first cycle of drawings so that the service to the user is certainly ensured since the first start-up.
  • T m said water temperatures, generically indicate the temperature resulting from the mean of the one or more temperatures T, T1, T2 sensed by the one or more sensors S; S1, S2; such mean is not necessarily an arithmetical mean but it can be a weighed mean to give more importance to one or the other of said one or more temperatures T, T1, T2.
  • T m.eff indicates the effective mean temperature of the water not necessarily coinciding with the water temperature T m read by said S; S1, S2, and exactly determined by laboratory tests only.
  • the effective mean temperature T m.eff is not used by the method according to the invention and shall be hereinafter referred to only for a few explanatory considerations of the method itself.
  • T set.k indicates the K-drawing temperature, and is the temperature to ensure at the beginning of the k-th drawing P k .
  • Said drawing temperatures T set.k have a predetermined initial value T set higher than or equal to the value required for fulfilling the largest drawing expected; afterwards, they take values calculated by regulator 4 for each of the k drawings expected.
  • T set.max indicates the maximum setting temperature (generally 75°C) that for safety reasons ensures that the water does not exceed hazardous values.
  • T stand-by indicates the maintenance temperature to ensure at times far-off the drawings; it has a predetermined value preferably equal to the usage temperature T u and therefore comprised between 35 and 45 °C so as to ensure small unexpected drawings. It is not subject to processing over time but for allowing a manual correction thereof if the preset value does not satisfy the utility or is deemed excessive.
  • T target indicates the target temperature .
  • the target temperature T target is preset equal to T set. Afterwards, it is set by regulator 4 equal to the maintenance temperature T stand-by away from the drawing times but it must reach the value of the drawing temperature T set.k with a heating advance time interval ⁇ t ant before the expected drawing start time t k .
  • ⁇ T hysteresis defines the hysteresis associated to said target temperature T target. Similar to a conventional thermostat, regulator 4 enables the heating element 3 when the water temperature T m drops below the value T target - ⁇ T hysteresis (that is, if T m ⁇ T target - ⁇ T hystocsis ) and disables it when the water temperature T m is higher than T target (that is, if T m >T target ).
  • hysteresis ⁇ T hysteresis is predetermined; it may be very low, as in all electronic temperature regulators (for example 0.5 °C) if the heating element 3 is a group of electrical resistors piloted by regulator 4 through a TRIAC. On the other hand, if regulator 4 pilots the heating element 3 through relays, hysteresis ⁇ T hysteresis has a considerably higher value to prevent an excessive ON-OFF switching frequency of the same relays.
  • the value of hysteresis ⁇ T hysteresis is set equal to 5 °C when the target temperature T target is set equal to the maintenance temperature T stand-by so as to ensure, with good accuracy, that the water temperature T m actually has a useful value for the utility; on the other hand, when the target temperature T target is set equal to the drawing temperature T set the value of hysteresis ⁇ T hysteresis may be higher (for example 8 °C).
  • Hysteresis ⁇ T hysteresis shall not be mentioned anymore hereinafter and is deemed to be implicit in the methods by which regulator 4 pilots the heating element 3.
  • T opt indicates the optimal emptying temperature.
  • all the water in tank 2 substantially achieves the target temperature T target (see fig. 3.a ).
  • T target the target temperature
  • the water undergoes a stratification by virtue of the cold water entering from the bottom so if sensors S; S1 , S2, as usually happens, are in the proximity of the bottom, they do not sense the effective temperature of the output water anymore (see figs. 3.b, 3.c ).
  • the optimal emptying temperature T opt is that sensed at bottom 2.3 when all the water has been drawn from said tank 2 at a temperature T m higher than the usage temperature T u and only the water at dome 2.4 has stayed at the usage temperature T u .
  • the optimal emptying temperature T opt of course depends not only on the usage temperature T u but also on the size and proportions of tank 2.
  • the optimal emptying temperature T opt is comprised between 18 and 24 and more preferably, it may be set equal to 21 °C.
  • VT h indicates the water heating speed when the heating element 3 is active.
  • the heating speed VT h is preferably calculated periodically, for example each time regulator 4 actuates the heating element 3 or, even more preferably, the calculation is repeated continuously with the heating element 3 on; for example, every 15 minutes, setting said predetermined measurement time ⁇ t equal to 15 minutes as well. Sudden variations between the progressively calculated values may be limited using various alternative known mathematical techniques.
  • the moving mean between a predetermined number of the last values calculated may be used, or even more preferably, the last result in order of time may be filtered with a time constant ⁇ preferably of one hour and a half.
  • the drawing profile is recorded during all of a first drawing cycle, called learning cycle, but substantially considered as equal and representative of the following drawing cycles.
  • Said recording may then be repeated during the next cycles so as to keep into account any changes in the utility behaviour.
  • the recording may start at any time t of the cycle and the start times t k of each drawing P k of the n total drawings that will be comprised in the cycle (where k indicates the subsequent values from 1 to n), as well as the values T mik and T mfk the water temperature T m has at the drawing start and end, respectively, are recorded during it.
  • Said times t, t k may in any case be measured from the time taken as cycle start (for example from hours 0 of Monday if the cycle has a weekly duration, by such time meaning the time of start of the algorithm should the equipment be not provided with user interface for managing the calendar).
  • Said step is divided into an alternating sequence of n first substeps at the end of which, for each drawing P k (with k ranging from 1 to n), the start time t k of the k-th drawing and the corresponding drawing start temperature T mik are detected, followed by as many second substeps at the end of which the corresponding drawing end temperature T mfk is detected, and the amount of the drawing itself is assessed.
  • the water temperature T m is monitored during each of them, at sampling time intervals ⁇ t c .
  • a drawing P k is regarded as started when the following two conditions occur.
  • the first condition is that a higher water cooling speed VT c, in absolute value, than a predetermined cooling speed VT p must occur.
  • sampling time intervals ⁇ t c it is suitable for said sampling time intervals ⁇ t c to be quite short; preferably 60 seconds; correspondingly, said temperature reduction ST pl is preferably equal to 0.33 °C and therefore preferably, said predetermined cooling speed VT p is equal to 0.33 °C/minute.
  • the temperature drop may be due to a small random drawing which should not be taken into account as it is not characterising of the actual cyclic drawing profile, or even to ON-OFF cycles of the heating element during the normal thermostating process, should the temperature probes be close to the heating element itself.
  • the second condition set is that said first condition continues to be verified until the temperature T m has dropped by a predetermined second reduction value ⁇ T p2 , deemed to be indicative of a neither small nor random drawing.
  • Said second reduction value ⁇ T p2 of course depends on the model of water heater 1 and on the type of utility it is intended for.
  • the preferred value for said second reduction value ⁇ T p2 is comprised between 4 and 13 °C; even more preferably, its value is 6.5 °C.
  • said advance interval ⁇ t ant of course depends on the construction features of water heater 1; experimentally it has been found, for standard water heaters 1, that a value comprised between 60 and 180 sec determines the effective drawing start time t k with good accuracy; as a consequence, it was preferred to set said advance interval ⁇ t ant equal to said sampling time interval ⁇ t c this having the preferred value of 60 seconds.
  • temperature T m is monitored until condition T m (t c - ⁇ t c )-T m (tc) ⁇ Tpl (formula 3) is not met anymore.
  • each predetermined drawing corresponds to a precise reduction of the energy contents of water heater I and thus, a precise drop of the effective mean water temperature T m.eff irrespective of the value of such temperature at the drawing start; if said one or more sensors S; S1 and S2 were distributed along the entire height of water heater 1, said calculated temperature drop ⁇ T k would then be an unchanging value for each drawing, irrespective of the initial value of said effective mean water temperature T m.eff .
  • T set.k T opt + ⁇ k
  • Said one or more sensors S; S1 and S2 are preferably arranged in the proximity of bottom 2.3 and , during the drawings, sense quite a different water temperature T m compared to the effective mean temperature T m . eff since (please see figs. 3.b, 3.c ) the cold water in input mixes partly with the hot water almost exclusively at bottom 2.3 in a volume Vp well smaller than volume V.
  • the volume Vp involved in the mixing indirectly depends on the effective mean temperature T m.eff .
  • the lower is the latter the larger will be the amount of water drawn to obtain a water mass drawing Qp at the usage temperature T u , as a consequence, the higher is the volume Vp involved in the mixing and therefore, in practice, the lower is the resulting drop ⁇ T m .
  • the drop ⁇ T m sensed by sensors S; S1, S2 from the start to the end of the drawing is not constant with the same drawing, but decreases as the effective mean temperature T m.eff drops at the drawing start, which however is not sensed if said sensors S; S1, S2 are arranged low.
  • Said rule and threshold value of course depend on the model of water heater 1 and on the utility features, so they must be determined empirically; a general rule is that said predetermined threshold value T s is comprised between 20 and 30 °C and that such corrective term ⁇ T" k is at most 50% of said temperature drop AT k .
  • step of drawing profile recording continues for the entire cycle, alternating said first and second substeps that, ending automatically at the beginning and at the end of each drawing respectively, will total the same number as the drawings.
  • each drawing k is determined by two characteristic parameters, drawing start time t k and temperature drop AT k produced thereby.
  • Such version envisages that if the cycle is weekly, the initial predetermined value T set may be changed, bringing it equal to the maximum drawing temperature T set.g value stored the previous day, provided this does not imply an excessive modification of the initial predetermined value T set (for example comprised within T set ⁇ 3 °C).
  • Fig. 4.a shows some points P1, ... P4 representing as many drawings characterised by the corresponding times t 1 , .. t 4 of drawing start t k and by the corresponding temperatures T set.l , .. T set.4 of drawing T set.k .
  • Fig. 4.b shows, in addition, the course of temperature T m with the rising ramps R1, ... R4 for reaching said drawing temperatures T1, .. T4.
  • Said ramps R1, ... R4 have a course that depends on the heating speed VT h ; the course, as known, is exponential but may be approximated by a rectilinear portion without appreciable errors given the order of size of the time constant of the water heater temperature (for example, well above 10 6 s for a standard water heater 1).
  • drawing P1 is fulfilled but at the end there is no sufficient time for bringing temperature T m which, following the drawing, has dropped to the optimal emptying temperature T opt , to the drawing temperature T 2 required by drawing P 2 .
  • drawing P 3 is not fulfilled either, whereas drawing P4, small and very far-off the previous ones, is.
  • the target temperature T target is set to the fictitious drawing start temperature value T' set.i of the corresponding fictitious drawing P' i , it being understood that said target temperature T target could never exceed the maximum setting temperature T set.max .
  • the process is recursive, repeated at relatively short time intervals, for example 60 seconds, each time moving said time window ⁇ t w forward by an equal amount of time, so that all drawings P are taken into account and fulfilled but within the limits of power of water heater 1.
  • Fig. 4.d shows that ramp R is blocked in its ascent due to the fact that before reaching the drawing start time t 1 , it has reached the maximum setup temperature T set.max .
  • time window ⁇ t w must be sufficiently wide as to include the drawing start time t i of all the drawings P i the fictitious heating start times t' ONi whereof are expected to be prior to the fictitious heating start times t' ON relating to the i-1 prior drawings P 1 ,..., P i-1 .
  • the time window ⁇ t w can cover 24 hours; moreover, the fact that there certainly is a night pause in the drawings ensures that the above set condition is met.
  • the method just described involves, as seen, the construction of said fictitious drawings P' 1 , ..., P' i , ..., P', the calculation of the corresponding fictitious drawing start temperatures T' set , then the calculation of the corresponding heating start times t' ONi and finally, the actuation of the heating element 3 upon reaching the closest of said heating start times t' ONi setting the target temperature T target equal to the fictitious drawing start temperature T set.i .
  • This method ensures the fulfilment of the utility demands as it considers together all the drawings Pi that are so close to each other that there would be no time to fulfil those following the first one P 1 of the group, if the thermal energy required were not stored in advance by actuating the heating element 3.
  • the method of "fictitious drawings” allows supplying the thermal energy strictly required for ensuring the drawings, keeping the water temperature T m , time by time, to the minimum value required for such service and calculating the duration of the actuation periods of the heating element 3 without the need of explicitly knowing the thermal power thereof.
  • said heating start times t' Oni may be advanced by a little (a tolerance advance ⁇ tol for taking into account deviations from the effective drawing start times (t i ) relative to those recorded during the learning drawing cycle).
  • a tolerance advance ⁇ tol for taking into account deviations from the effective drawing start times (t i ) relative to those recorded during the learning drawing cycle.
  • the regulator may learn which value to assign to such tolerance advance ⁇ toll .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Cookers (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Control Of Resistance Heating (AREA)

Claims (29)

  1. Verfahren zur Steuerung eines Speicher-Wassererwärmers (1),
    wobei Speicherwasser durch ein Heizelement (3) erwärmt wird, das durch einen Regler (4) gesteuert wird, der geeignet ist, die Wassertemperatur (Tm) auf eine änderbare Zieltemperatur (Ttarget) zu regulieren
    und wobei das Verfahren Folgendes aufweist:
    - einen ersten Schritt, wobei Informationen über
    - das Ziehprofil (P1, ..., Pk, ..., Pn), das im Wesentlichen für aufeinander folgende Ziehzyklen unverändert wiederholt wird,
    - und die Eigenschaften der Heizgeschwindigkeit (VTh) des Speicher-Wassererwärmers (1) erworben werden,
    - einen zweiten Schritt, wobei vor dem Zeitpunkt (tk) des Beginns von jeder Ziehung (Pk) aller n Ziehungen (Pn), die in jedem der Ziehzyklen enthalten sind,
    - die Wassertemperatur (Tm) mindestens auf den Wert der Ziehtemperatur (Tset.k; T'set.i) gebracht wird, der ausreichend ist, um die Ziehung bei der Verwendungstemperatur (Tu) zu gewährleisten, die das Heizen bei einer Heizstartzeit (tONk; t'ONi) startet,
    - vorausgesetzt, dass in jedem Fall die Wassertemperatur (Tm) unter oder gleich der maximalen Installationstemperatur (Tset.max) unter gefährlichen Werten gehalten wird,
    - wobei die Ziehtemperatur (Tset.k; T'set.i) und die Heizstartzeit (tONk; t'ONi) von den obengenannten erworbenen Informationen abgeleitet werden,
    dadurch gekennzeichnet, dass
    das Erfassen von Informationen über das Ziehprofil
    - mindestens während eines Lern-Ziehzyklus erfolgt
    - und darin besteht, für jede der n Ziehungen (Pk)
    - den Zeitpunkt des Beginns der Ziehung (tk),
    - die Ziehtemperatur (Tset.k) zu berechnen,
    wobei diese Berechnung nur durch die Verarbeitung der Daten, die aus der Bewertung der Wassertemperatur (Tm) erworben werden, durchgeführt wird, die sich aus dem Durchschnitt von einer oder mehreren Temperaturen (T; T1, T2) ergibt, die in verschiedenen Höhen (S; S1, S2) des Tanks (2) in Zeitintervallen (δtc) gemessen werden,
    und dadurch gekennzeichnet, dass
    das Bestimmen der Heizstartzeit (tONk; t'ONi) zum Sicherstellen der Ziehungen (Pk; Pi) die folgenden Schritte vorsieht:
    - in kurzen Zeitintervallen (δw) werden alle w Ziehungen (P1, ..., Pi, ..., Pw), von denen der Zeitpunkt des Beginns der Ziehung (ti) in ein vorgegebenes Zeitfenster (Δtw) unmittelbar nach dem aktuellen Zeitpunkt fällt, berücksichtigt,
    - wobei das Zeitfenster (Δtw) basierend auf dem Benutzertyp ausgewählt wird, für den der Speicher-Wassererwärmers (1) bestimmt ist, und ausreichend groß ist, um den Zeitpunkt des Beginns der Ziehung (ti) aller Ziehungen (Pi) zu enthalten, wobei fiktive Heizstartzeiten (t'ONi) voraussichtlich vor den fiktiven Heizstartzeiten (t'ON) liegen, die sich auf die i-1 vorherigen Ziehungen (P1, ..., Pi-1) beziehen,
    - zu dem Zeitpunkt des Beginns der Ziehung (ti), der in dem Zeitfenster (Δtw) enthalten ist, werden so viel fiktive Ziehungen (P'1, ..., P'i, ..., P'w) konstruiert, die alle
    - einen Zeitpunkt des Beginns der Ziehung (tw) aufweisen, der jenem der entsprechenden tatsächlichen Ziehung (Pi) gleich ist,
    - eine fiktive Temperatur des Beginns der Ziehung (T'set.i) aufweisen, die durch Addieren der Temperaturen des Beginns der Ziehung (Tset1, Tset2, ..., Tset(i-1)) von allen Ziehungen, die in dem Zeitfenster (Δtw) enthalten sind und der Ziehung Pi selbst vorausgehen, zu der entsprechenden tatsächlichen Temperatur des Beginns der Ziehung (Tset.i) erhalten wird, wobei jede der Temperaturen des Beginns der Ziehung (Tset1, Tset2, ..., Tset(i-1)) von der optimalen Entleerungstemperatur Topt nach der Formel [T'set.i = Tset.i + + (Tset1 - Topt) + (Tset2 - Topt) + ... + (Tset(i-1) - Topt)] abgeleitet worden ist,
    - für jede der fiktiven Ziehungen (P'1, ..., P'i, ..., P'w) wird die fiktive Heizstartzeit (t'ONi) nach der Formel [t'ONi = ti - (T'set.i - Tm) / VTh] berechnet,
    - wenn die frühere der Heizstartzeiten (t'ONi) erreicht wird, wird die Zieltemperatur (Ttarget) auf den Wert der fiktiven Temperatur des Beginns der Ziehung (T'set.i) der entsprechenden fiktiven Ziehung (P'i) eingestellt, wobei jedoch davon auszugehen ist, dass die Zieltemperatur (Ttarget) als obere Grenze die maximale Installationstemperatur (Tset.max) aufweist,
    - während die Zieltemperatur (Ttarget) vor dem Erreichen der früheren Heizstartzeit (t'ONi) der Standby-Temperatur (Tstand-by) gleich gehalten wird, wobei die Standby-Temperatur (Tstand-by) die Temperatur ist, um in fernen Zeiten die Ziehungen zu gewährleisten.
  2. Verfahren zur Steuerung eines Speicher-Wassererwärmers (1) nach dem vorhergehenden Anspruch,
    dadurch gekennzeichnet, dass
    die kurzen Zeitintervalle (δw) gleich 60 Sekunden sind.
  3. Verfahren zur Steuerung eines Speicher-Wassererwärmers (1) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass,
    wenn der Ziehzyklus eine Woche dauert, das Zeitfenster (Δtw) 24 Stunden abdeckt.
  4. Verfahren zur Steuerung eines Speicher-Wassererwärmers (1) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Heizstartzeiten (t'Oni) durch Toleranzvoreinstellungen (Δtol) voreingestellt werden, die geeignet sind, Abweichungen von den tatsächlichen Zeitpunkten des Beginns der Ziehung (ti) in Bezug auf jene, die während des Lern-Ziehzyklus aufgezeichnet worden sind, zu berücksichtigen.
  5. Verfahren zur Steuerung eines Speicher-Wassererwärmers (1) nach dem vorhergehenden Anspruch,
    dadurch gekennzeichnet, dass
    - das Aufzeichnen des Ziehprofils in den Ziehzyklen nach dem ersten Lern-Ziehzyklus fortgesetzt wird
    - und die Toleranzvoreinstellung (Δtol) während der Ziehzyklen nach dem ersten Lern-Ziehzyklus gelernt wird.
  6. Verfahren zur Steuerung eines Speicher-Wassererwärmers (1) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Standby-Temperatur (Tstand-by) gleich der Verwendungstemperatur (Tu) ist.
  7. Verfahren zur Steuerung eines Speicher-Wassererwärmers (1) nach Anspruch 1,
    dadurch gekennzeichnet, dass
    die Ziehung (Pk) als begonnen angesehen wird, wenn eine erste und eine zweite Bedingung in einer Reihenfolge eintreten,
    - wobei die erste Bedingung darin besteht, dass zu dem Zeitpunkt (tc) am Ende eines Abtastintervalls (δtc) festgestellt wird, dass die Wassertemperatur (Tm(tc)), die zu dem Zeitpunkt (tc) abgelesen wird, im Vergleich zu dem Wert (Tm(tc - δtc)), der zu dem vorangegangenen Zeitpunkt (tc - δtc) abgelesen worden ist, um einen Betrag gesunken ist, der größer als oder gleich einem vorgegebenen Wert der Temperaturreduktion δTp1) ist, das heißt, darin, dass die Bedingung Tm (tc - δtc) - Tm (tc) ≥ δTp1 eingetreten ist,
    - wobei der erste Wert der Temperaturreduktion (δTp1) derart ausgewählt wird, um ein Abkühlen durch Wärmedispersionen auszuschließen,
    - wobei die zweite Bedingung darin besteht, dass die erste Bedingung weiter überprüft wird, bis die Temperatur (Tm) um einen vorgegebenen zweiten Wert der Reduktion (δTp2) gesunken ist,
    - wobei der zweite Wert der Reduktion (δTp2) derart ausgewählt wird, um auszuschließen, dass die erste Bedingung durch kleine Ziehungen oder Thermostatisierung überprüft wird, die nicht berücksichtigt werden sollen,
    und wobei
    die folgenden Schritte durchgeführt werden, um die Ziehtemperatur (Tset.k) zu bestimmen,
    - die Temperatur (Tm), die zum Zeitpunkt des Beginns der Ziehung (tk) abgelesen wird, wird als Temperatur des Beginns der Ziehung (Tmik) gespeichert,
    - die Temperatur, die zum Zeitpunkt abgelesen wird, wenn die Wassertemperatur (Tm) zu sinken aufhört, das heißt zum Zeitpunkt, wenn die Bedingung [Tm (tc - δtc) - Tm (tc) ≥ δTp1] aufhört, erfüllt zu werden, wird als Temperatur des Endes der Ziehung (Tmfk) gespeichert,
    - der Temperaturabnahme (ΔTk) der Wassertemperatur (Tm) wird der Wert der Differenz zwischen den Temperaturen des Beginns und des Endes der Ziehung (Tmik, Tmfk) zugeordnet, und zwar [ΔTk = Tmik - Tmfk],
    - wenn einer oder mehrere Sensoren (S; S1, S2) in der Nähe des Bodens (2.3) des Speicher-Wassererwärmers (1) angeordnet sind und die Temperatur des Endes der Ziehung (Tmfk) niedriger als ein vorgegebener Schwellenwert (Ts; Topt) ist, wird der Wert der Temperaturabnahme (ΔTk) modifiziert, indem zu seinem wie oben berechneten Wert eine Korrekturgröße (ΔT"k), die für jeden Speicher-Wassererwärmer (1) und jeden damit verbundenen Benutzertyp empirisch gewonnen wird, hinzugefügt wird, und zwar [ΔTk = Tmik - Tmfk + ΔT"k],
    - die Ziehtemperatur (Tset.k) wird schließlich erhalten, indem der Wert der Temperaturabnahme (ΔTk), wie oben optisch modifiziert, zu der optimalen Entleerungstemperatur (Topt) addiert wird, und zwar [Tset.k = Topt + ΔTk],
    - wobei die optimale Entleerungstemperatur (Topt) jene ist, die am Boden (2.3) des Speicher-Wassererwärmers (1) gemessen wird, wenn das gesamte Wasser bei einer Temperatur (Tm) gezogen worden ist, die höher als die Verwendungstemperatur (Tu) ist, und nur das Wasser an der Kuppel (2.4) bei der Verwendungstemperatur (Tu) geblieben ist.
  8. Verfahren zur Steuerung eines Speicher-Wassererwärmers (1) nach einem der vorhergehenden Ansprüche ab Anspruch 7,
    dadurch gekennzeichnet, dass
    das Abtastintervall (δtc) gleich 60 Sekunden ist
    und der erste Wert der Temperaturreduktion (δTp1) gleich 0,33 °C ist.
  9. Verfahren zur Steuerung eines Speicher-Wassererwärmers (1) nach einem der vorhergehenden Ansprüche ab Anspruch 7,
    dadurch gekennzeichnet, dass
    der Wert der Reduktion (δTp2) zwischen 4 und 13 °C beträgt.
  10. Verfahren zur Steuerung eines Speicher-Wassererwärmers (1) nach dem vorhergehenden Anspruch,
    dadurch gekennzeichnet, dass
    der zweite Wert der Reduktion (δTp2) gleich 6,5 °C ist.
  11. Verfahren zur Steuerung eines Speicher-Wassererwärmers (1) nach einem der vorhergehenden Ansprüche ab Anspruch 7,
    dadurch gekennzeichnet, dass
    der Zeitpunkt des Beginns der Ziehung (tk) als vor einem Voraus-Intervall (δtadv) in Bezug auf den Zeitpunkt (tc) angesehen wird, wobei die erste Bedingung eintritt, und zwar in Formeln [tk = tc - δtadv].
  12. Verfahren zur Steuerung eines Speicher-Wassererwärmers (1) nach einem der vorhergehenden Ansprüche ab Anspruch 7,
    dadurch gekennzeichnet, dass
    - der Schwellenwert (Ts; Topt) zwischen 20 und 30 °C beträgt
    - und die Korrekturgröße (ΔT"k) gleich 50 % der Temperaturabnahme (ΔTk) ist.
  13. Verfahren zur Steuerung eines Speicher-Wassererwärmers (1) nach einem der vorhergehenden Ansprüche ab Anspruch 7, mit Ausnahme von Anspruch 12, dadurch gekennzeichnet, dass
    - der Schwellenwert (Ts; Topt) gleich der optimalen Entleerungstemperatur (Topt) ist
    - und die Korrekturgröße (ΔT"k) gleich der Differenz zwischen der optimalen Entleerungstemperatur (Topt) und der Temperatur des Endes der Ziehung (Tmfk) ist.
  14. Verfahren zur Steuerung eines Speicher-Wassererwärmers (1) nach den Ansprüchen ab Anspruch 11,
    dadurch gekennzeichnet, dass
    das Voraus-Intervall (δtadv) zwischen 0 un 180 s beträgt.
  15. Verfahren zur Steuerung eines Speicher-Wassererwärmers (1) nach den Ansprüchen ab Anspruch 11, mit Ausnahme von Anspruch 14,
    dadurch gekennzeichnet, dass
    das Voraus-Intervall (δtadv) gleich dem Abtastintervall (δtc) ist.
  16. Verfahren zur Steuerung eines Speicher-Wassererwärmers (1) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    das Erfassen von Informationen über die Heizgeschwindigkeit (VTh)
    - mindestens während des Lern-Ziehzyklus in einem Zeitraum erfolgt, in dem die Wassertemperatur (Tm) ununterbrochen ansteigt,
    - und die folgenden Schritten vorsieht:
    - der Wert Tm1 der Wassertemperatur (Tm) zu einem vorbestimmten Zeitpunkt gespeichert wird,
    - der Wert Tm2, den die Wassertemperatur (Tm) nach einer vorbestimmten Messzeit(Δt) erreicht hat, gespeichert wird,
    - der Wert der Heizgeschwindigkeit (VTh) von der Formel [VTh = (Tm2 - Tm1/Δt] erhalten wird.
  17. Verfahren zur Steuerung eines Speicher-Wassererwärmers (1) nach dem vorhergehenden Anspruch,
    dadurch gekennzeichnet, dass
    das Erfassen von Informationen über die Heizgeschwindigkeit (VTh) immer wiederholt wird, wenn der Regler (4) das Heizelement (3) betätigt.
  18. Verfahren zur Steuerung eines Speicher-Wassererwärmers (1) nach Anspruch 16,
    dadurch gekennzeichnet, dass
    das Erfassen von Informationen über die Heizgeschwindigkeit (VTh) ständig wiederholt wird, solange das Heizelement (3) in Zeitintervallen aktiviert bleibt, die gleich dem vorbestimmten Messintervall (Δt) sind.
  19. Verfahren zur Steuerung eines Speicher-Wassererwärmers (1) nach einem der vorhergehenden Ansprüche ab Anspruch 16,
    dadurch gekennzeichnet, dass
    das vorbestimmten Messintervall (Δt) gleich 15 Minuten ist.
  20. Verfahren zur Steuerung eines Speicher-Wassererwärmers (1) nach einem der vorhergehenden Ansprüche ab Anspruch 16,
    dadurch gekennzeichnet, dass
    das Erfassen von Informationen über die Heizgeschwindigkeit (VTh) auch in den Ziehzyklen ausgeführt wird.
  21. Verfahren zur Steuerung eines Speicher-Wassererwärmers (1) nach einem der vorhergehenden Ansprüche ab Anspruch 17,
    dadurch gekennzeichnet, dass
    die schrittweise berechneten Werte der Heizgeschwindigkeit (VTh) neu bearbeitet werden, um das Ausmaß von Schwankungen zwischen den gefundenen Werten zu reduzieren.
  22. Verfahren zur Steuerung eines Speicher-Wassererwärmers (1) nach Anspruch 21,
    dadurch gekennzeichnet, dass
    der Wert, der für die Heizgeschwindigkeit (VTh) verwendet wird, gleich dem gleitenden Mittelwert unter einer vorbestimmten Anzahl der zuletzt berechneten Werte eingestellt wird.
  23. Verfahren zur Steuerung eines Speicher-Wassererwärmers (1) nach Anspruch 21,
    dadurch gekennzeichnet, dass
    der Wert, der für die Heizgeschwindigkeit (VTh) verwendet wird, das letzte in chronologischer Reihenfolge erzielte Ergebnis ist, das mit einer Zeitkonstante (τ) von vorzugsweise anderthalb Stunden gefiltert wird, wobei der Filter, der verwendet wird, ein Rekursive Filter (IIR) ist.
  24. Verfahren zur Steuerung eines Speicher-Wassererwärmers (1) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass,
    wenn der Ziehzyklus wöchentlich ist, zu Beginn von jedem Tag nach dem ersten, der vorbestimmte Anfangswert der Ziehtemperatur (Tset) um höchstens 3 °C erhöht oder verringert wird, um ihn näher zu dem maximalen Wert der Ziehtemperatur zu bringen, der an dem vorherigen Tag (Tset.g) gespeichert worden ist.
  25. Regler (4) für einen Speicher-Wassererwärmer (1),
    dadurch gekennzeichnet, dass er versehen ist mit
    - Mitteln (IN, IN.1, IN.2, IN.3), die geeignet sind, erste Daten darin von außen während der Herstellung und/oder bei der Installation und/oder zu einem späteren Zeitpunkt durch den Benutzer einzugeben,
    - Mitteln (IN, IN.4), die geeignet sind, darin zweite Temperaturdaten (T, T1, T2) des Wassers, das in dem Tank (2) erwärmt und von einem oder mehreren Sensoren (S; S1; S2) erfasst wird, einzugeben,
    - einem Speicher (MEM), der geeignet ist, die ersten von außen empfangenen Daten, die zweiten von dem einen oder mehreren Sensoren (S, S1, S2) empfangenen Daten sowie weitere Parameter, die von den ersten und zweiten Daten verarbeitet werden, zu speichern,
    - einer Verarbeitungseinheit (UE), die geeignet ist, die ersten und zweiten Daten zu verarbeiten, um die Parameter zu erhalten,
    - einer Uhr (CLOCK), um mindestens einige der Parameter entsprechenden Zeiten zuzuordnen,
    - ersten Mittel (U1), um Ausgangssignale für die Ein-Aus-Regelung oder modulierende Regelung eines Heizelements (3) zu senden, das geeignet ist, Wasser in dem Tank (2) zu erwärmen,
    - beliebigen zweiten Outputmitteln (U2), um dem Benutzer und /oder dem Betreiber den Systemstatus zu signalisieren,
    wobei der Regler (4) konfiguriert ist, um die Informationen zu erwerben, diese zu verarbeiten und das Heizelement (3) nach den Verfahren nach einem oder mehreren Ansprüchen 1 bis 24 zu steuern.
  26. Speicher-Wassererwärmer (1), der ausgestattet ist mit
    - einem Regler (4) nach dem Anspruch 25,
    - einem Heizelement (3)
    - einem oder mehrere Sensoren (S; S1, S2), die geeignet sind, um die entsprechenden Temperaturen (T, T1, T2) in dem Tank zu messen,
    dadurch gekennzeichnet, dass
    - er mit dem Regler (4) nach Anspruch 25 ausgestattet ist,
    - er geeignet ist, aus den Verfahren nach einem oder mehreren der Ansprüche 1 bis 24 Nutzen zu ziehen.
  27. Speicher-Wassererwärmer (1) nach dem vorhergehenden Anspruch,
    dadurch gekennzeichnet, dass
    der eine oder die mehreren Sensoren (S; S1, S2) aus einem einzigen Sensor (S; S1) bestehen, der dort angeordnet ist, wo der Thermostatsensor eines Speicher-Wassererwärmers (1) normalerweise nach dem Stand der Technik angeordnet ist.
  28. Speicher-Wassererwärmer (1) nach dem Anspruch 26,
    dadurch gekennzeichnet, dass
    der Speicher-Wassererwärmer das Standardmodell ist und der eine oder die mehreren Sensoren (S; S1, S2) aus einem ersten und einem zweiten Sensor (S1, S2) bestehen, die jeweils bei etwa 30 mm und etwa 230 mm von dem Boden (2.3) angeordnet sind.
  29. Wassererwärmer (1) nach dem Anspruch 26,
    dadurch gekennzeichnet, dass
    mehr als zwei Sensoren (S; S1, S2) derart verteilt bereitgestellt sind, um das Wärmemuster (T, T1, T2) entlang der vertikalen Achse mit einem gewissen Genauigkeitsgrad zu erfassen.
EP09774713.3A 2008-11-28 2009-11-17 Verfahren zur minimierung des energieverbrauchs eines heisswasserspeichers Active EP2366081B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL09774713T PL2366081T3 (pl) 2008-11-28 2009-11-17 Sposób minimalizowania zużycia energii pojemnościowego podgrzewacza wody

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ITAN2008A000051A IT1394462B1 (it) 2008-11-28 2008-11-28 Metodo atto alla minimizzazione dei consumi energetici di uno scaldaacqua ad accumulo
PCT/IB2009/007524 WO2010061268A2 (en) 2008-11-28 2009-11-17 Method for minimising energy consumption of a storage water heater

Publications (2)

Publication Number Publication Date
EP2366081A2 EP2366081A2 (de) 2011-09-21
EP2366081B1 true EP2366081B1 (de) 2016-11-23

Family

ID=41185667

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09774713.3A Active EP2366081B1 (de) 2008-11-28 2009-11-17 Verfahren zur minimierung des energieverbrauchs eines heisswasserspeichers

Country Status (7)

Country Link
EP (1) EP2366081B1 (de)
ES (1) ES2609769T3 (de)
IT (1) IT1394462B1 (de)
PL (1) PL2366081T3 (de)
PT (1) PT2366081T (de)
RU (1) RU2525812C2 (de)
WO (1) WO2010061268A2 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010024100A1 (de) * 2010-06-17 2011-12-22 Stiebel Eltron Gmbh & Co. Kg Verfahren zur Temperatursteuerung eines Warmwasserspeichers und Warmwasserspeicher
ES2469946B1 (es) * 2012-12-18 2015-03-31 Fagor, S.Coop. Acumulador de agua caliente
WO2016189416A1 (en) * 2015-05-27 2016-12-01 Stellenbosch University System and method for determining a customised heating schedule for a water heater
RU2643945C1 (ru) * 2016-11-02 2018-02-06 Олег Владимирович Кабанов Способ определения оптимального времени разогрева объекта
CN112856570B (zh) * 2021-01-18 2022-04-15 中电惠特热力设计技术服务邯郸有限公司 一种基于终端的动态供暖方法及供暖系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2132791A (en) * 1982-12-23 1984-07-11 Colin Baker Apparatus for and a method of controlling a hot water system
US4522333A (en) * 1983-09-16 1985-06-11 Fluidmaster, Inc. Scheduled hot water heating based on automatically periodically adjusted historical data
DE58903512D1 (de) * 1988-08-31 1993-03-25 Landis & Gyr Betriebs Ag Sollwertgeber fuer einen brauchwasserspeicher-regler.
DE19710772A1 (de) * 1997-03-17 1998-09-24 Bosch Gmbh Robert Bedienvorrichtung für eine Brauchwassererwärmung
DE19734361A1 (de) * 1997-08-08 1999-03-04 Bosch Gmbh Robert Vorrichtung zum Betreiben einer Heizungsanlage
US6375087B1 (en) * 2000-06-14 2002-04-23 International Business Machines Corporation Method and apparatus for self-programmable temperature and usage control for hot water heaters
GB2387671A (en) * 2002-04-19 2003-10-22 Gasforce Ltd A water-heating system controller

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2010061268A3 (en) 2011-03-17
RU2011126003A (ru) 2013-01-10
IT1394462B1 (it) 2012-07-05
EP2366081A2 (de) 2011-09-21
WO2010061268A2 (en) 2010-06-03
PT2366081T (pt) 2016-12-22
PL2366081T3 (pl) 2017-05-31
ITAN20080051A1 (it) 2010-05-29
RU2525812C2 (ru) 2014-08-20
ES2609769T3 (es) 2017-04-24

Similar Documents

Publication Publication Date Title
US6560409B2 (en) Hot water heater stacking reduction control
US9989266B2 (en) Automatic set point detection for water heaters operating in a demand response
EP2366081B1 (de) Verfahren zur minimierung des energieverbrauchs eines heisswasserspeichers
EP3477218B1 (de) Wassererhitzer und wassertemperatureinstellverfahren und vorrichtung dafür
CA2492003C (en) System and method for controlling temperature of a liquid residing within a tank
CN102625896B (zh) 住宅热泵热水器
US20120054123A1 (en) Hot water heater with an integrated flow meter
EP3662210B1 (de) Verfahren zum lernen des profils von heisswasserzapfungen in einem warmwasserspeicher
US20210063053A1 (en) Method for Monitoring the Energy Content of a Water Storage Tank System
WO1993017611A1 (en) Self-optimizing detergent controller
US8407015B2 (en) Method and apparatus for monitoring and controlling an electrical boiler
GB2518365A (en) Apparatus and method for volumetric estimation of heated water
EP2362931B1 (de) Verfahren zur minimierung vom energieverbrauch in einem heisswasserspeicher durch adaptiven lernen logik
US20170276406A1 (en) Method to heat water in an electrical boiler, corresponding device and electrical boiler
EP2453334A1 (de) Verfahren zur Minimierung des täglichen Energieverbrauchs eines Warmwasserspeichers durch vereinfachte logische Prozesse
WO2006079123A2 (en) Temperature control
WO2008132570A2 (en) Delaying method for the management of water temperature in a storage water heater
GB2387671A (en) A water-heating system controller
JP5032225B2 (ja) ガス漏れ警報器の制御装置及びガス漏れ警報器
US20230341150A1 (en) Reheat scheduling for water heaters
KR940004175B1 (ko) 급탕기의 온도제어장치
GB2528072A (en) Central heating system
CA3176872A1 (en) Reheat scheduling for water heaters
NZ802884B2 (en) Methods and systems and apparatus to support reduced energy and water usage
JPH0638001B2 (ja) 貯湯式電気温水器

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110614

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160729

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 848273

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161215

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 2366081

Country of ref document: PT

Date of ref document: 20161222

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20161213

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009042642

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161123

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 848273

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161123

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2609769

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170224

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009042642

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170223

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602009042642

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171117

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180602

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170323

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: ARISTON THERMO ITALIA S.P.A.

Effective date: 20210826

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: ARISTON THERMO S.P.A.

Effective date: 20220517

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: ARISTON S.P.A.

Effective date: 20220907

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20230808

Year of fee payment: 15

Ref country code: PL

Payment date: 20230706

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240228

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240409

Year of fee payment: 16