EP3662210B1 - Verfahren zum lernen des profils von heisswasserzapfungen in einem warmwasserspeicher - Google Patents

Verfahren zum lernen des profils von heisswasserzapfungen in einem warmwasserspeicher Download PDF

Info

Publication number
EP3662210B1
EP3662210B1 EP18766325.7A EP18766325A EP3662210B1 EP 3662210 B1 EP3662210 B1 EP 3662210B1 EP 18766325 A EP18766325 A EP 18766325A EP 3662210 B1 EP3662210 B1 EP 3662210B1
Authority
EP
European Patent Office
Prior art keywords
loc
tap
acc
withdrawals
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18766325.7A
Other languages
English (en)
French (fr)
Other versions
EP3662210A1 (de
Inventor
Matteo BOARO
Gianluca COACCI
Roberto Paolinelli
Eleonora VECCHIONI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merloni Termosanitari SpA
Original Assignee
Merloni Termosanitari SpA
Ariston Thermo SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merloni Termosanitari SpA, Ariston Thermo SpA filed Critical Merloni Termosanitari SpA
Priority to PL18766325T priority Critical patent/PL3662210T3/pl
Publication of EP3662210A1 publication Critical patent/EP3662210A1/de
Application granted granted Critical
Publication of EP3662210B1 publication Critical patent/EP3662210B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1051Arrangement or mounting of control or safety devices for water heating systems for domestic hot water
    • F24D19/1063Arrangement or mounting of control or safety devices for water heating systems for domestic hot water counting of energy consumption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/144Measuring or calculating energy consumption
    • F24H15/148Assessing the current energy consumption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/156Reducing the quantity of energy consumed; Increasing efficiency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/215Temperature of the water before heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/269Time, e.g. hour or date
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/355Control of heat-generating means in heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/414Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • F24H9/2014Arrangement or mounting of control or safety devices for water heaters using electrical energy supply
    • F24H9/2021Storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/395Information to users, e.g. alarms

Definitions

  • Object of the present invention in a generic storage water heater controlled by an electronic control, is a new method for learning the user's hot water consumption habits as well as a new method for managing the water maintenance temperature aimed at heating the water only in the quantity and at time foreseen based on said habitual consumptions.
  • An instantaneous water heater can deliver a hot water flow rate strictly proportional to the installed thermal power. Generally, there is difficulty in installing high powers and this sets a limit on the maximum allowed flow rate.
  • Storage water heaters can deliver very high water flows with limited installed thermal power.
  • the amount of water which can be delivered at the temperature of use Tu during a single tapping may be larger than the volume of the storage tank because this is specifically maintained at a storage temperature T.acc greater than said temperature of use Tu and the water withdrawn is then used by mixing it with cold water.
  • T.acc meaning a fictitious temperature, representative of the enthalpy content of the water in the storage tank, not necessarily directly measurable, and equal to the average water temperature in the tank.
  • C the thermal capacity of a mass of water in a storage tank
  • E the thermal energy that such mass can deliver to an environment at 0 °C
  • T.acc the thermal energy that such mass can deliver to an environment at 0 °C
  • the storage tanks are expensive and cumbersome, it is common to have a volume as much as possible small by maintaining, however, the storage temperature T.acc high (generally 60 - 75 °C) whereas the effective temperature of use Tu, normally included between the 35°C and 40°C, is obtained just upstream from the points of use by mixing with cold water; however, water is often distributed at temperatures higher than use temperature Tu to compensate for cooling along the distribution pipes.
  • the volume V of the tank is selected in order to satisfy the largest of the withdrawals foreseeable for a specific user by maintaining the storage temperature T.acc at the maximum possible value while the installed thermal power must be such as to restore a reserve of sufficient water for the following withdrawal.
  • the minimum requirement to guarantee the service is always met is that the water heater is maintained, at least for a part, at a minimum temperature not lower than the usage temperature Tu, in order to withstand unexpected minor withdrawals and that the tank volume is large enough to guarantee the largest water withdrawal required for that user, keeping the temperature at the maximum allowed value.
  • withdrawals have a very uneven pattern during the day, both for times and amount of consumption, tending to gather at specific timings. From here on, said tapping pattern, consisting of the times and amount of withdrawals, will be called withdrawal pattern.
  • each of said repetitive time intervals is herein said as a withdrawal cycle.
  • the cycle of withdrawals generally lasts one week, where each day of the week can be understood as a sub-period of the cycle having its characteristics of withdrawal that differentiate it from the other days, for particular users, such as in the working environments where any difference in behaviour is not correlated to the day of the week, the cycle of withdrawals, however repetitive, may have a duration other than seven days and the sub-periods different from 24 hours.
  • the simple method in use has always been to activate and deactivate the heating element by means of a clock so that the desired temperatures are guaranteed only during the period in which withdrawals are expected.
  • Another simple method, less efficient from the point of view of energy but economically more advantageous for the user, is that of activating the heating element only during lower time tariffs periods; the water may be unnecessarily too hot well in advance of the needs, but in any case, it has been obtained at relatively low costs.
  • the most effective methods for reducing consumption are those methods which allow the storage temperature T.acc to vary over time in a programmed manner. For this to be possible, the withdrawal pattern must be known.
  • the document EP 0 866 282 describes a device in which it is possible to program the desired sequence of withdrawals, that is, the withdrawal pattern.
  • the size of the n withdrawals foreseen in the time sequence t.1, t.2, ... t.k, ... t.n is recorded by setting for each time t.k the temperature T.off.k that it is believed can satisfy the k-th withdrawal Pk.
  • a limitation of the method consists in the difficulty of a correct setting, since the user may not be aware of the actual hot water withdrawal times and the actual T.off.k setting values to obtain the desired amount of hot water at use temperature Tu.
  • the set-up method therefore, involves a series of adjustments for tests and errors with a high probability that the user will quit adjusting the set up as soon as the heating needs are satisfied without knowing if he could have achieved this more efficiently.
  • Another difficulty lies in the fact that the actual time when the desired temperature is reached depends on the heating time, which is difficult to evaluate and however variable over the time for the same water heater for various reasons such as calcareous deposits, seasonal variations of the room temperature in which the water heater is housed or the temperature of inlet water to the storage tank, reduction over the time of the effective heat output of the heating element.
  • the prior art document GB 2 146 797 detects information on the timing and amount of each withdrawal using flow sensors and sets, for each withdrawal, the storage temperature T.acc at a value that is intermediate between the minimum and the maximum allowed and proportional to the expected withdrawal volume.
  • the method has the drawback of requiring the presence of flow sensors to detect the withdrawals; moreover, it has no self-adapting capability, in the sense that it learns the variability of the withdrawals but, by assigning to each size of withdrawal an unchangeable temperature because generated by a pre-set formula, it does not have the possibility to correct it if it is too high or too low.
  • the sequence of the timing of the withdrawals and the corresponding desired storage temperatures T.acc are pre-set in an electronic processor; the computer consequently establishes the control values that the adjustment temperature for the thermostat have to assume for each time interval. Subsequently these adjustment temperatures are adjusted by raising them for the intervals in which the desired storage T.acc have not been reached and decreasing them in the opposite case.
  • a limitation of the method, as in the first document mentioned, is the necessity of having to pre-set the foreseen withdrawals; another limitation, as in the second document cited, is that it works on a fixed pre-set storage temperature T.acc which, however, is not guaranteed to be the best to ensure the desired performance in the most efficient manner.
  • the thermal power to be supplied is calculated taking into account the water temperatures read at intervals of time but also environmental parameters (such as ambient temperature) and / or construction parameters (such as the thermos-physical and / or geometric characteristics of the water heater itself) so that the control software must be customized for each model of water heater.
  • the target temperature for hot water is calculated considering continuously both said external temperature to the inlet pipe and the external temperature to the outlet pipe temperature towards the users as well as considering the amount of water withdrawal in progress, the thermal heat loss and the thermal power available based on formulas containing constants (R, B, C) empirically predefined and characterizing the water heater. This method is also not suitable for guaranteeing the performance for storage water heaters because, as in the previous document, it intervenes belatedly.
  • the document EP 2 362 931 B1 is the first among the documents listed here that identifies and records the water withdrawal pattern exclusively by monitoring the stored water temperatures with one or more sensors placed in areas of the tank most likely to be affected by the entry of cold water which occurs at each withdrawal. A rate of decrease of such temperatures over a certain threshold at a given time indicates that a withdrawal has begun at that time while the amount of temperatures decrease, indicates the amount of the withdrawal itself. In this way it is possible to build the withdrawal cycle. This document therefore indicates how to identify the timing and the amount of the withdrawals exclusively based on the monitoring of water temperatures in the storage.
  • the timing estimate of each withdrawal is very precise, thanks to said positioning of the sensors near the cold water inlet, however the same position makes it difficult to assess, from the temperatures read by the sensors, the real average water temperature at the end of the water withdrawal. This may cause an underestimation of this average water temperature with consequent overestimation of the amount of the withdrawals and therefore a subsequent management of the water heater at higher temperatures than necessary.
  • the activation of the heating element with the correct advance involves the knowledge of the heating speed that most of the aforementioned documents provide for estimating through learning.
  • a common drawback to all the methods described above is that they only aim to satisfy the first of the next scheduled withdrawals, and afterwards they may fail to satisfy a consistent withdrawal occurring shortly after the withdrawal just fulfilled due to lack of sufficient time to restore the temperature T.off to the new needed value.
  • the document EP 2 366 081 B1 can construct a pattern of "fictitious water withdrawals" that allows the water heater to prepare in advance for one or more important withdrawals close to a first withdrawal. For the rest, the document identifies and records the pattern of the withdrawals in a very similar way as the previous EP 2 362 931 B1 of which therefore has the same merits and limits for these aspects.
  • the document EP 2 328 046 B1 assigns to the T.off temperature only four possible predetermined values corresponding to an expected "important", “normal”, “weak” or “minimum” estimated withdrawal. The extent and the time of each withdrawal is not directly detected but by the measurement of the activation time of the heating element, triggered by the decrease of the storage temperature T.acc, within sliding time windows; naturally, longer or shorter activation times for the T.off temperature recovery were caused by more or less important withdrawals.
  • the method has the advantage of acquiring data on withdrawals without additional sensors in addition to that which drives the thermostat but, by its nature, not providing direct and immediate measurements of the occurrence of withdrawals and their amount, nor knowing the speed of heating, requires a recursive learning, by successive approximations, for the development of which many withdrawal cycles are necessary and can necessarily decide and discriminate only among a few predetermined values for T.off. Therefore, the maximum energy saving that the method allows is achievable with delay compared to previous documents and only in a less accurate way. In addition, even a marked change in user behaviour, immediate adaptation to the following cycle is not possible.
  • the document US 2001/020615 A1 discloses a method according to the preamble of claim 1 and describes a water heater controlling software that monitors the water storage temperature and understands that water is being withdrawn when it detects a large negative temperature change, the method described does not allow to estimate the amount of water withdrawn; the heating power to supply is based on pre-stored water heater usage patterns.
  • a general problem in determining the energy content and the energy consumption of a water heater is that these are strictly correlated to the value of the storage temperature T.acc while the temperature probes can only measure the local temperature (herein called local temperature T.loc) which is very far from the storage temperature T.acc if the water in the water heater is not in a steady state.
  • a general object of the present invention is at least partly to overcome said these drawbacks.
  • an object of the present invention is that of acquiring, in a more accurate manner than is known today, the time and the size of a water withdrawal with the aid of temperature sensors but without a direct measurement of the storage temperature T.acc at the end of a withdrawal.
  • a further object of the present invention is to detect the heating speed of the water by the heating elements, minimizing the errors of assessment that the temperatures actually and locally read can induce.
  • a further object of at least some variants of the present invention is to detect said water heating speed separately for each of the possible different types of heating elements present and / or for groups thereof.
  • a further object is to construct the withdrawal patterns based on said acquisitions of times and entities of each withdrawal or groups of small withdrawals and on said heating speed.
  • Another possible aim is to store said withdrawal patterns in synthetic form, preserving only the essential data for a possible management method of the storage temperature T.acc in the time which minimizes the heat losses while satisfying the needs of users.
  • the storage temperature T.acc can substantially coincide with the temperatures that can actually be measured locally only when the water is in "steady state", i.e. not subject to turbulence due to, for example, water inlet when the temperature is substantially homogeneous in the storage tank and therefore knowable with a good approximation, anywhere measured.
  • the actual local temperatures can be very different from the storage temperature T.acc, especially because the temperature sensors are usually placed near the cold water inlet and often also near the heating element HE.
  • heating element HE it is meant any known heat source such as a group of one or more electric heaters, exhaust discharge pipes, heat exchanger of the condenser in a heat pump, heat exchanger of a hot water space heating system, etc.
  • the description of the invention is limited initially to the case in which said heating element HE is unique and capable of delivering a thermal power P substantially constant and independent of the level of the target water temperature.
  • the invention will then be generalized to the case in which there are more types of heating elements and / or it is appropriate to take into account a variability of the thermal power when the water temperature varies.
  • FIGS. 1.a and 1.b show a diagram of the tank S of a storage water heater, in the example of the vertical type, with a cold water inlet IN and a hot water outlet OUT and provided with a heating element HE which can be switched from the OFF state to ON and vice versa by a thermo-regulator TR.
  • thermo-regulator TR is of the type suitable for communicating the OFF and ON states of said heating element HE and the current values of at least said switch off temperature T.off to a control unit comprising a microprocessor MP.
  • thermo-regulator TR is integrated in said microprocessor MP and, even more advantageously, can receive by the latter values of the switch off temperature T.off and of switch on T.on to be set at each time according, for instance, to what is decided by any control program for managing the water heater temperature operating while the methods according to the present invention are also active. As it will be shown, such possible variation of the values of said switch off T.off and switch on T.on temperatures does not prevent achieving the goals of the invention.
  • s local temperature sensors S.loc.i are provided (with i from 1 to s and with s ⁇ 1), preferably located near the cold water inlet IN and the heating element HE.
  • said s local temperature sensors S.loc.i are of the NTC type, which ensure reading accuracies far higher than those necessary for the purposes of the invention.
  • one of the said s temperature sensors S.loc.i can coincide with the temperature sensor STR of the thermo-regulator TR.
  • microprocessor MP is capable to perform the following reading, recording, and processing functions, foreseen for the different variants of the invention, including:
  • said local temperatures T.loc.i can be used to calculate at least:
  • microprocessor MP Other durable or temporary memory saving, and processing capabilities of the microprocessor MP may be foreseen and will be apparent with the description of a basic method and many variants according to the invention.
  • the mean value T.loc of said local temperatures T.loc.i is generally relevant, (possibly suitably weighed to give greater relevance to one or the other of them) or, as will be seen, the single T.loc.i value of each of them or of only one of them.
  • each withdrawal is considered represented by the reduction ⁇ T.tap of the storage temperature T.acc caused by the withdrawal; however, this reduction is not directly detectable because the position and the quantity of said sensors S.loc.i is not able to provide valid information for the whole storage tank when there are turbulences and temperature stratifications due to withdrawals in progress or just terminated. In other words, the storage temperature T.acc is not directly measurable in these circumstances.
  • the reduction ⁇ T.tap caused by a withdrawal occurred at a time t2
  • the reduction ⁇ T.tap is calculated a posteriori, once the water withdrawal is completed, at a subsequent time t3 preferably at the end or in any case during a subsequent uninterrupted heating phase triggered by the reduction of the local storage temperature T.loc below the switch on temperature T.on caused by the water withdrawal.
  • Said reduction ⁇ T.tap is considered equal to the difference between the storage temperature T.acc.2 at a time before the starting of the withdrawal and the storage temperature T.acc.3 at the time t3 plus the increase ⁇ T of the storage temperature T.acc caused by the same heating.
  • ⁇ T.loc here called “local temperature decrease” (described in detail below) is a temporary deviation between the temperature T.loc.3 read and the storage temperature T.acc.3 which can optionally be taken into account for more accurate calculations. In this case this is read in a memory and may have a pre-defined experimental value (and also null) or, preferably, determined according to a procedure that will be described later.
  • ⁇ T ⁇ E / C, where C is the heat capacity of said storage tank S full of water.
  • this direct method is often unsatisfactory because the effective thermal power Pe and the thermal capacity C can be different from the nominal ones and also change over time for various factors such as for example: voltage fluctuations, degradation, scale build up, etc. Therefore, more advanced methods are preferred which indirectly and implicitly take into account the actual values of said effective thermal power Pe and heat capacity C as well as any disturbance factors.
  • this procedure for calculating the reduction ⁇ T.tap is applicable only for those withdrawals which are sufficiently important to activate the heating bodies HE, i.e. to bring the local temperature T.loc below the switch on temperature T.on; otherwise, for each smaller consecutive withdrawal, the time when they occur can be detected if they cause a reduction of T.loc, while their sizes are assimilated to that of a single withdrawal which becomes detectable only when the progressive decreases of T.loc finally trigger the activation of the heating body.
  • the first one is when the time t3 coincides with the end of the heating phase following the withdrawal which causes the temperature reduction ⁇ T.tap.1 but this phase is short because the variable switch off temperature T.off is at the time lower than the temperature T.acc.2 at the start of withdrawal and therefore easily reachable, before the steady state.
  • the second one (see Fig. 11 ) is when, during said heating phase triggered by the temperature reduction ⁇ T.tap.1, a further withdrawal occurs, represented by the temperature reduction ⁇ T.tap.2, at a time t3 earlier than the one it would have been necessary to reach again the steady state. It is therefore necessary to take into account the temperature T.loc.3 read at this time t3 in order to ignore the effects of said further withdrawal.
  • the steady state at the time t3 is considered reached if for the corresponding measured temperature T.loc.3, it is: T . loc .3 ⁇ T . loc .2 ⁇ ⁇ T . q
  • ⁇ T.q 0 that is: if T.loc.3 - T.loc.2 ⁇ 0 the water heater is considered in steady state at time t3 otherwise it is considered still in a state of turbulence.
  • ⁇ T.tap T.acc.2 - (T.acc.3 - v.T.rise * ⁇ t.HE.on) loses physical significance.
  • v.T.rise.loc is defined as the angular coefficient of the line tangent the local temperature T.loc rise curve at time t3, where T.loc is detected during the heating phase.
  • v.T.rise.loc represents the temperature rising speed of the water heater "seen” by the S.loc.i. temperature sensors.
  • v.T.rise.loc any computational mathematical technique can be used which allows to calculate the angular coefficient of the tangent at a given point of a continuous curve known for algebraic mathematical function or known by points.
  • the angular coefficient v.T.rise.loc is calculated at predetermined time intervals (e.g. 5 minutes), replaces the previously calculated value in a memory and is considered valid at the current time (between t2 and the time it will be assumed as t3).
  • ⁇ t.on.1 is defined as the time interval between the already defined t2 and t3.
  • T.acc.iniz is the start of withdrawal temperature so far called T.acc.2 and assumed to be equal to T.loc.2, and where, again
  • the time of withdrawal t2 is considered the same as the time of consequent switch on of the heating element, that is to say that the temperature decrease from T.acc.2 to T.on is considered instantaneous.
  • the temperature inside the storage follows a regular pattern typical of the water heater model and therefore known experimentally.
  • the temperatures read by the local temperature sensors S.loc.i are therefore representative of the enthalpy content of the stored water because they allow to assess the storage temperature T.acc.
  • Fig. 2 shows the trend of the local temperature T.loc during a complete water heating phase, in the absence of withdrawals, from an initial phase, at aqueduct temperature, until the switch off of the heating element once the target temperature is reached.
  • the curve which is strictly of the exponential type, or, more generally, an asymptotic slope towards a limiting temperature T.lim, and can be considered to have a linear slope from the beginning to the end of the ON state of the heating element HE at least if this is able to supply a constant power P, substantially independent of the operating temperature, as certainly in the case of electrical resistances.
  • the power delivered P can most often be satisfactorily considered constant in the range of temperatures of interest.
  • cooling curve shown e.g. in figure 3 can be considered linear.
  • the storage temperature T.acc is equal to the local temperature T.loc minus ⁇ T.loc but both increase at the same speed.
  • the storage temperature T.acc reached at the end of the heating is substantially equal to the switch off temperature T.off of the thermostat minus ⁇ T.loc since also the temperature sensor STR of the thermo-regulator TR is affected by its proximity to the heating element HE and is one of the s sensors S.loc.
  • the main goal is to detect all the essential data for the management of the water heater aimed at minimizing energy consumption with the same performance delivered.
  • Each procedure can end with the storage of data that replace previously saved values.
  • the reference to the stabilization decrease ⁇ T.loc is very appropriate in order not to confuse, as indicated above, between the "physiological" drop at the end of a heating phase with a small withdrawal; the reference to the speed of decrease is then appropriate in order not to confuse with the decrease due to thermal losses.
  • a preferred method for such verification can follow the steps below:
  • the TAP status registry stores the status [NO_TAPPING] as soon as the water withdrawal has been completed, which enables the calculation of a new stabilization decrement ⁇ T.loc as will be described shortly.
  • a preferred value is 10 sec.
  • predetermined threshold value T.thr a preferred value is 5 °C.
  • velocity v. ⁇ T of temperature variation T.loc.i. ⁇ t a preferred value is 0.1 °C / sec.
  • the stabilization decrement ⁇ T.loc is, as already mentioned, substantially zero otherwise it can be quantified by calculating the decrease of the local temperatures T.loc.i in a 5-minute interval at the end of a heating phase and after having ascertained that this decrease is not due to withdrawals in progress and that the heating element is OFF.
  • the stabilization decrease ⁇ T.loc is equal to the decrease in the local temperature T.loc in those 5 minutes and its value is stored in place of a previous one in memory.
  • a possible value is 5 minutes.
  • the current microprocessors allow to set recalculation time intervals ⁇ .t.ric also in the order of 1 sec.
  • the same recalculation time ⁇ .t.ric can also be used as a sampling interval for data collection and processing of the further sections of the method according to the invention which must be described.
  • the essential characteristic of the invention is to estimate the amount of each withdrawal based on the restoration of the energy taken by the same withdrawal, it is very appropriate that the heating process by the HE heating element is well analysed.
  • v.T.rise indicates the variation speed of the storage temperature T.acc (i.e. the rising slope of the graph of the same temperature) when the heating element HE is in the ON state and no withdrawals are in progress.
  • the rising slope of the local temperature T.loc is substantially identical to said rising slope v.T.rise of the storage temperature T.acc and therefore said slope can be calculated in a predetermined time interval t.samp in which the heating element HE is in the ON state and it has been verified that the local temperature T.loc is growing and in a way substantially conforms to the theoretical rise curve (which, in particular, is substantially linear at least if the heating element HE delivers constant thermal power P as at least in the case of an electrical resistance).
  • the value of said rising slope v.T.rise is equal to the ratio between the difference of the local temperature T.loc values at the end and at the beginning of said interval t.samp divided by the duration of the interval itself.
  • Examples of significant rising slopes are the whole slope of Figure 2 and, in Figure 6 , at least the circled portion of the last illustrated heating step.
  • a preferred method for this verification can be provided in the following initial conditions and recursively can develop in the following steps:
  • step (e) is stored also for which group of heating elements HE in the ON state and for which local temperature range T.loc the calculation has been carried out.
  • the calculation is interrupted if one of the heating elements HE simultaneously in ON status ceases to be in that state.
  • heating elements HE whose rising speed cannot be considered constant throughout the local temperatures range T.loc where these can be operational.
  • the rising slope can be represented by a sequence of several consecutive linear sections (see Figure 9 ).
  • the second section and possibly further again, those following could be identified, by way of example, as follows:
  • Said threshold value scost.rise.max may be as small as precise are the said local temperature sensors S.loc.i. E.g. it can also be equal to 0.1 °C although much higher values, e.g. 2 - 3 °C are more than enough.
  • decrement velocity for thermal losses ⁇ T.loss is calculated with criteria similar to those used for the withdrawal temperature drop ⁇ T.tap.
  • the storage temperature T.acc has the value T.acc.1 (also known).
  • a cooling phase starts up to a time t2, (also known to the microprocessor), in which the HE heating element changes back to ON state.
  • each collected withdrawal could be stored separately at least the time of start of withdrawal t.in.tap and the corresponding drop in temperature of withdrawal ⁇ T.tap if not also the time of end of the t.fin.tap withdrawal, but according to the invention, the following method is preferred which, by aggregating more information, takes up much less memory space while recording sufficient data for any management method aimed at reducing thermal losses while ensuring the performance required by the user.
  • a fictitious withdrawal representing the total of the withdrawals found in the same interval and a corresponding fictitious time of the beginning of the same water withdrawal is calculated, after which said data can be stored as such.
  • the process of clustering and storage of data according to this last variant takes place in the following way.
  • the data thus aggregated can be stored as such and possibly continuously updated during one or more cycles following a first one, then storing the same as such but preferably it is also possible to take into account the consumptions found in the homologous intervals of one or more previous cycles by means of weighted averages or filtering operations so as to attenuate variations of user behaviour that could be occasional and non-definitive. In this case it is envisaged to keep the data relating to a number of cycles immediately preceding the current cycle plus the data of the current cycle stored in a M.cyc memory.
  • the M.cyc memory has a sliding window in the sense that at the end of each cycle all the data flow in the memory registries; the data of the older cycle are lost while the data of the other cycles take the place of those of the cycle to each of them preceding.
  • the number n.cyc.prec of previous cycles reaches up to 5.
  • the set of procedures described so far for the self-learning method is able to get all the information on the water withdrawal pattern and to characterize the water heater as regards heating and cooling speed by the only reading of the temperatures of one or more local temperature sensors S.loc.i, associated with the timings of said readings and with appropriate processing of such data by the microprocessor MP.
  • T.acc.min the minimum usage temperature
  • T.acc.min the minimum usage temperature
  • T.acc.23 the minimum value found for the already defined storage temperature value T.acc at the end of water withdrawal T.acc.23.
  • T.acc.min the minimum usage temperature
  • it is reasonable to assume that a withdrawal is interrupted by the user when the water begins to exit at unsatisfactory temperature. In this way it is possible to periodically replace in memory any predefined value T.acc.min (for example 40 °C) with a value actually measured.
  • said heating elements HE can be of type more energy efficient; e.g. it can be the coil of a space heating system or, much more widely, the condenser of a heat pump HP.
  • a heating element HE consisting of the coil of a room heating system produces a rising slope of the same type towards a temperature limit T.lim which is the one, established in the boiler, of the heat transfer fluid and also here the deliverable thermal power P decreases directly with the temperature difference T.lim - T.acc.
  • heating elements HE can be referred to as “heating elements HE with thermal power P decreasing as the temperature rises” or, more briefly, “with an asymptotic rising slope”.
  • an asymptotic rising slope is also characterized and saved with criteria similar to those already indicated for the linear case.
  • the heating element HE with asymptotic rising slope may simply be equated with a heating element HE with linear slope already dealt with because the range of the storage temperature T.acc in which it is used allows such simplification.
  • the already defined predetermined threshold value scost.rise.max is within predetermined values such as the already indicated 2 - 3 °C. In other words, the method simply ignores that the rising slope is curved and assimilates it to a linear slope.
  • the heating element HE with asymptotic slope is used in such a wide range of temperatures and / or time that the slope cannot be accurately represented by a single line but can still be represented by two or more consecutive linear segments: the first one valid within a first local temperature range T.loc from Tloc.1 to T.loc.2, the second one from Tloc.2 to T.loc.3 and so on.
  • the procedure determined and saved a first value v.T.rise.1 within said sample interval, t.samp, the procedure continues to verify up to which value T.loc.2 the local temperature T.loc rises continuing to stay within the said predetermined threshold value scost.rise.max.
  • the procedure for calculating the rising speed v.T.rise is repeated and a second value T.rise.2 valid starting from this value T.loc.2 is calculated, and so on.
  • v.T.rise.1, v.T.rise.2, etc. are then saved together with the temperature ranges T.loc.1 ⁇ T.loc.2, T.loc2 ⁇ T.loc.3, etc. within which they are valid.
  • Many storage water heaters then provide the co-presence of at least two types of heating elements HE, one of which is usually always a group of electrical resistors, to be used simultaneously and/or sequentially according to various methods established by the control program and aimed at savings (energy or economic), others to assure the service in case of urgency.
  • HE heating elements
  • a complete characterization of the heating process is then obtained by memorizing the various values of rising slopes v.T.rise.i associated with the ON / OFF states of the heating bodies HE and at the temperature ranges for which they have been measured and considered valid.
  • v.T.rise elements HE in ON condition validity v.T.rise.1 electrical resistance all temperatures v.T.rise.2 condenser PC from T.loc.1 to T.loc.2 v.T.rise.3 condenser PC from T.loc.2 to T.loc.3 v.T.rise.4 resist. Electr. + cond. PC from T.loc.1 to T.loc.2 v.T.rise.5 resist. Electr. + cond. PC from T.loc.2 to T.loc.3 .» .... anna........... .. ........................ v.T.rise.i generic combination of HE from T.loc ... to T.loc ... .» .... ........................... .. ................. «
  • Each v.T.rise.i is a value pre-stored and fixed or updated with data measured subsequently, for example starting from an initial learning phase before the water heater becomes operational to the user's service; in this case it is preferable to first characterize v.T.rise.i for the heating bodies with lower operating temperature ranges; the rising curves v.T.rise.i due to the combination of two or more heating bodies HE may simply be the sum of the individual rising curves v.T.rise.i relevant to each HE heating body HE when individually in ON state.
  • the self-learning method described can be used for any optimized management method, which is sufficient to know the extent of the withdrawals (expressed as a reduction in the storage temperature), the time in which they start and the available energy resources.
  • optimized management methods derived from what has been described in the cited documents EP 2362 931 B1 or EP 2 366 081 B1 could be used with which it is possible to establish when and for how long the heating element HE should be set to ON and which it must be the T.off switch off temperature to satisfy the following withdrawal or group of withdrawals.
  • storage water heaters that provide more than one storage tank S; the methods of the invention remain always applicable considering the behaviour inside each storage tank S one by one.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Claims (20)

  1. Verfahren zum Erlernen in Wert und Zeit des Musters von Warmwasserentnahmen aus einem Speicherwassererwärmer, der einen Speichertank (S) des zu erwärmenden Wassers aufweist,
    wobei sich das Muster in vorgegebenen Zeitintervallen zyklisch wiederholt und der Wärmeenergiegehalt als durch die Speichertemperatur (T.acc) dargestellt angesehen wird, die als die Durchschnittstemperatur des Wassers im Speichertank zu verstehen ist,
    und wobei der Wassererwärmer ausgestattet ist mit:
    - einem oder mehreren Heizelementen (HE),
    - einem Thermoregler (TR) vom elektronischen Typ, der geeignet ist, das eine oder die mehreren Heizelemente (HE) von dem OFF-Zustand in den ON-Zustand und umgekehrt zu schalten, wenn ein Temperatursensor (STR) das Erreichen der Ausschalttemperatur ( T.off) beziehungsweise der Einschalttemperatur (T.on) mit T.on = T.off - Δist erfasst, wobei Δist ein Standard-Hysteresewert oder einstellbarer Hysteresewert ist, ein oder mehrere lokale Temperatursensoren (S.loc.i; S.loc.i, STR) vorzugsweise in der Nähe des Kaltwassereinlasses (IN) des Speicherwassererwärmers und des Heizelements (HE) angeordnet sind,
    - einem Mikroprozessor (MP), der geeignet ist, mindestens:
    - die Ausschalttemperatur (T.off) zu kennen,
    - die entsprechenden Signale zu empfangen, die für die lokalen Temperaturen (T.loc.i) von den Temperatursensoren (S.loc.i; S.loc.i, STR) repräsentativ sind,
    - die lokale Temperatur (T.loc) zu berechnen, die gleich dem eventuell gewichteten Mittelwert der lokalen Temperaturen (S.loc.) ist,
    - wobei die Gewichtungen des eventuell gewichteten Mittelwerts auf der Grundlage der Position der lokalen Temperatursensoren S.loc.i und des Modells des Wassererwärmers einzustellen sind,
    - den Ablauf der Zeit zu messen,
    - die Dauern Δt.on der ON-Zustände der Heizelemente (HE) zu speichern,
    - die lokalen Temperaturen (S.loc.i; S.loc.i, STR) in Verbindung mit dem Zeitpunkt ihres Lesens zu speichern,
    - wobei er
    - die aktuellen Zustände [ON] oder [OFF] der Heizelemente (HE) erkennt und in ein spezielles Zustandsregister (HE-ON/OFF) schreibt
    - und den Zustand [NO TAPPING] oder [TAPPING-ON] oder [TAPPING-ALERT] in ein spezielles Zustandsregister (TAP) schreibt, der jeweils das Fehlen, Auftreten oder wahrscheinliche Auftreten von Entnahmen anzeigt, ein Zustand, der durch die Senkung von einer oder mehreren der lokalen Temperaturen (S.loc.i; S.loc.i, STR) über einen vorbestimmten und gespeicherten Schwellenwert (T.thr + Δt.loc) hinaus und/oder die Abnahme einer vorbestimmten Geschwindigkeit (v.δt) erfassbar ist,
    dadurch gekennzeichnet, dass
    eine Reduzierung (ΔT.tap) der Speichertemperatur (T.acc), die als repräsentativ für den Betrag einer Entnahme oder einer Gruppe kleiner aufeinanderfolgender Entnahmen angesehen wird,
    - die die Speichertemperatur (T.acc) auf einen Wert bringt, der niedriger ist als der aktuelle Wert der Einschalttemperatur (T.on) zum Zeitpunkt t2, der als der Anfangszeitpunkt der Entnahme angesehen wird,
    - und die folglich einen Heizschritt mit dem Umschalten von einem oder mehreren der Heizelemente (HE) in den Zustand von [ON] im Wesentlichen zu demselben Anfangszeitpunkt t2 und kontinuierlich mindestens bis zum nachfolgenden Zeitpunkt t3 auslöst,
    gemäß der Formel Δ T . tap = T . acc . iniz T . acc . fin v . T . rise * δt
    Figure imgb0019

    berechnet wird, wobei für die Werte T.acc.iniz, T.acc.fin,v.T.rise, δt in der Formel die folgenden Beziehungen gelten:
    - T.acc.iniz = lokale Temperatur T.loc.2, die zum Zeitpunkt t2 des Anfangszeitpunkts der Entnahme gelesen wird,
    - wenn T.loc.3 - T.loc.2 ≥ Δt.q, dann
    T.acc.fin = T.acc.3 und δt = δt.HE.on und v.T.rise * δt die Erhöhung ΔT der Speichertemperatur T.acc auf Grund des Heizens ist, das g δt.HE.on dauert,
    - wenn T.loc.3 - T.loc.2 <Δt.q,, dann
    T.acc.fin = T.acc.2 und δt = (δt.οn.1 + δt.οn1.fict) v.T.rise die Geschwindigkeit der Änderung der Speichertemperatur T.acc durch die Heizelemente (HE) in dem Zustand [ON] ist, der in dem Speicherregister gelesen wird,
    und wobei wiederum
    - T.acc.3 = T.loc - ΔT.loc
    - δt.HE.οn die Dauer der Heizphase zwischen den Zeitpunkten t2 und t3 ist, wenn T.loc.3 - T.loc.2 ≥ ΔT.q
    - δt.on.1 die Dauer der Heizphase zwischen den Zeitpunkten t2 und t3 ist, wenn T.loc.3 - T.loc.2 <ΔT.q
    - δt.on1.fict = (T.acc.2 - T.loc.3) / v.T.rise.loc
    - T.acc.2 als gleich T.loc.2 angenommen wird
    - T.loc.3, die lokale Temperatur ist, die zum Zeitpunkt t3 gelesen wird
    - Δt.loc ein Stabilisierungsdekrement am Ende einer Heizphase ist, die in einem bestimmten Speicher gelesen wird,
    - v.T.rise.loc der Winkelkoeffizient der Tangentenlinie zum Zeitpunkt t3 an der Kurve der ansteigenden Steigung der lokalen Temperatur T.loc ist,
    - ΔT.q Stabilitätsindex ein empirischer Parameter ist, der in Abhängigkeit vom Modell des Wassererwärmers vordefiniert und vorab aufgezeichnet und von einem Fachmann eingestellt wird, wobei die Berechnung als gültig und ausführbar angesehen wird, vorausgesetzt, dass während der gesamten Phase des [ON] Zustands der Zustand [NO_TAPPING] stets in dem Zustandsregister (TAP) gespeichert wird.
  2. Verfahren zum Erlernen des Musters der Entnahmen nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass der Stabilitätsindex ΔT.q gleich 0 ist.
  3. Verfahren zum Erlernen des Musters der Entnahmen mindestens nach Anspruch 1, dadurch gekennzeichnet, dass
    die Erhöhung ΔT der Speichertemperatur (T.acc) in der Heizphase von der Dauer δt.HE.on durch die Summe
    ΔT = ∑i [v.T.rise.i * (ti+1 - ti)] mit i von 1 bis k berechnet wird,
    wobei
    - k die Anzahl der Kombinationen der Heizelemente (HE) ist, die gleichzeitig im ON-Zustand sein können,
    - mit v.T.rise.i jede der k ansteigenden Geschwindigkeiten v.T.rise.i gemeint ist, die spezifisch für die Kombination derjenigen unter den Heizelementen (HE) im ON-Zustand und für den Bereich der lokalen Temperaturen T.loc. sind, die gleichzeitig gelesenen werden,
    - die Summe aufeinanderfolgender Intervalle (ti+1 - ti) gleich der gesamten Heizperiode mit der Dauer Δt.on ist,
    - die ansteigenden Geschwindigkeitswerte v.T.rise.i aus einem Speicher gelesen werden,
    und wobei die Summe ΔT = ∑i [v.T.rise.i * (ti+1 - ti)] auf die Formel ΔT = v.Trise * Δt.on if k = 1, i.e. vereinfacht wird, wenn nur eines der Heizelemente (HE) vorhanden oder aktiv ist.
  4. Verfahren zum Erlernen des Musters der Entnahmen nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass der Wert der k Temperaturschwankungsgeschwindigkeiten vTrise.i kontinuierlich in vorbestimmten Zeitintervallen δ.t.rise einige Minuten lang ab dem Zeitpunkt neu berechnet wird, zu dem die entsprechenden Kombinationen des ON/OFF-Zustands der Heizelemente (HE) erfüllt werden und der Zustand [NO_TAPPING] im Zustandsregister (TAP) gespeichert wird und gemäß dem folgenden Verfahren:
    - die neuesten n.r lokalen Temperaturwerte (T.loc), die in gleichen vordefinierten Zeitintervallen δ.t.rise gemessen werden, in der gleichen Anzahl von Speicherregistern (MR) aufgezeichnet werden,
    - überprüft wird, ob
    - die lokalen Temperaturwerte (T.loc) in dem ausgewählten Abtastzeitintervall 1 t.samp = δ.t.rise * (n.r - 1) innerhalb einer vorgegebenen Abweichung scost.rise.max linear ansteigen,
    - der Zustand [NO_TAPPING] im Zustandsregister (TAP) weiterhin gespeichert wird,
    - der ON/OFF-Zustand der Heizelemente (HE) unverändert bleibt,
    - wenn diese Prüfung positiv ausfällt,
    - das Verhältnis zwischen der Erhöhung der lokalen Temperatur (T.loc) und dem Abtastzeitintervall t.samp = δ.t.rise * (nr - 1) als der Wert v.T.rise.i für die Temperaturschwankungsgeschwindigkeit genommen wird,
    - der letzte gespeicherte Wert v.T.rise.i für die Kombination i der Heizelemente (HE) im ON-Zustand durch einen gewichteten Durchschnitt davon durch den neu berechneten Wert ersetzt wird,
    - wenn diese Prüfung negativ ausfällt,
    - das Verfahren zum Anfang zurückgeht.
  5. Verfahren zum Erlernen des Musters der Entnahmen nach Anspruch 3, dadurch gekennzeichnet, dass
    die ansteigenden Geschwindigkeiten v.T.rise.i speziell für jedes der Heizelemente (HE) im ON-Zustand direkt erfasst werden, während die verbleibenden ansteigenden Geschwindigkeiten v.T.rise.i jeder anderen spezifischen Kombination aus der Summe der v.T.rise.i Geschwindigkeiten erhalten werden, die direkt erfasst werden.
  6. Verfahren zum Erlernen des Musters der Entnahmen nach dem vorhergehenden Anspruch 4 oder 5, dadurch gekennzeichnet, dass
    - nach der voreingestellten Mindestzeit t.samp, die für das Bestimmen einer ersten Heizgeschwindigkeit vTrise.l in Bezug auf einen ersten Abschnitt der Heizkurve als ausreichend angesehen wird, weiter überprüft wird, bis zu welchem Wert T.loc.2 die Erhöhung der lokalen Temperatur (T.loc) weiterhin innerhalb des vorbestimmten Schwellenwertes scost.rise.max bleibt,
    - sobald dies nicht mehr geprüft wird, das beschriebene Verfahren wiederholt wird, um einen neuen Wert v.T.rise.2 in Bezug auf einen zweiten Abschnitt zu ermitteln und so weiter,
    - die Werte v.T.rise.1, v.T.rise.2, etc. zusammen mit den Temperaturintervallen T.loc.1 ÷ T.loc.2, T.loc2 ÷ T.loc.3 usw. gespeichert werden, in denen sie gültig sind.
  7. Verfahren zum Erlernen des Musters der Entnahmen nach einem der vorhergehenden Ansprüche ab Anspruch 4, dadurch gekennzeichnet, dass
    die Zeitintervalle δ.t.rise gleich 1 Minute sind und das Abtastzeitintervall t.samp mindestens gleich 25 Minuten ist.
  8. Verfahren zum Erlernen des Musters der Entnahmen nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass,
    um den Anfangszeitpunkt von jeder Entnahme zu ermitteln,
    - beim Neuberechnen der Zeitintervalle δ.t.ric die lokalen Temperaturen T.loc.i(t) zum aktuellen allgemeinen Zeitpunkt t aufgezeichnet werden,
    - wenn für mindestens eine der lokalen Temperaturen (T.loc.i) eine Abnahme des Stabilisierungsdekrements (ΔT.loc) vorliegt, die um mindestens einen bestimmten vordefinierten Schwellenwert T.thr höher ist,
    - dies dann eine laufende Entnahme anzeigt und der Anfangszeitpunkt t.in.tap der Entnahme gespeichert wird,
    wobei
    - die Werte des Stabilisierungsdekrements (Δt.loc) und des vordefinierten Schwellenwerts T.thr aus spezifischen Speicherregistern gelesen werden.
  9. Verfahren zum Erlernen des Musters der Entnahmen nach dem vorhergehenden Anspruch, ferner dadurch gekennzeichnet, dass
    (a) bei der Installation des Wassererwärmers oder bei einem Neustart nach einer Leerlaufperiode der Zustand [NO_TAPPING] im Zustandsregister (TAP) gespeichert wird,
    (b) beim Neuberechnen der Zeitintervalle der Dauer δ.t.ric die lokalen Temperaturen T.loc.i(t) zum aktuellen allgemeinen Zeitpunkt t gespeichert werden,
    (c) die lokalen Temperaturen T.loc T.loc.i(t + δ.t.tap) zu einem nachfolgenden Zeitpunkt t + δ.t.tap wieder gespeichert werden,
    (d) für jeden dieser lokalen Temperatursensoren (S.loc.i) die Änderung ΔT.loc.i.tap = T.loc.i(t) - T.loc.i (t + δ.t.tap) berechnet wird,
    - wenn für eine dieser Änderungen ΔT.loc.i.tap, ΔT.loc.i.tap/δ.t.tap> v.δt,
    - dann wird dies als eine mögliche aber nicht sichere laufende Entnahme ausgelegt und der Zustand [TAPPING_ALERT] wird in dem Zustandsregister (TAP) gespeichert,
    - anderenfalls wird der Zustand [NO_TAPPING] in dem Zustandsregister (TAP) gespeichert,
    (e) wenn mindestens für eine der Änderungen ΔT.loc.i.tap (für i von 1 bis s) ΔT.loc.i.tap> (T.thr + ΔT.loc),
    - dann wird dies als eine sichere laufende Entnahme ausgelegt, der Anfangszeitpunkt t.in.tap wird gespeichert und der Zustand [TAPPING_ON] wird in das Zustandsregister (TAP) geschrieben,
    - anderenfalls wird der Zustand [NO_TAPPING] in dem Zustandsregister (TAP) gespeichert.
  10. Verfahren zum Erlernen des Musters der Entnahmen nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Endzeitpunkt t.fin.tap jeder Entnahme als derjenige angesehen wird, zu dem die Senkung jeder der lokalen Temperaturen (T.loc.i) geringer ist als eine vorbestimmte Geschwindigkeit v.δT der Änderung.
  11. Verfahren zum Erlernen des Musters der Entnahmen nach vorhergehenden Ansprüchen, dadurch gekennzeichnet, dass,
    wenn für jede der vorgenannten Änderungen ΔT.loc.i.tap ΔT.loc.i.tap / δ.t.tap<v.δt ist und in dem Zustandsregister TAP der Zustand [NO_TAPPING] noch nicht aufgezeichnet ist,
    dann:
    - der Zeitpunkt t.fin.tap dieser Prüfung, die positiv ausgefallen ist, als das Ende der Entnahme, die im Gange war,
    - und der Zustand [NO_TAPPING] in diesem Zustandsregister (TAP) gespeichert wird.
  12. Verfahren zum Erlernen des Musters der Entnahmen nach einem der vorhergehenden Ansprüche, mit Ausnahme von Anspruch 2, dadurch gekennzeichnet, dass das Stabilisierungsdekrement (Δt.loc) gemäß den folgenden Schritten berechnet und aktualisiert wird:
    (a) Speichern eines vorbestimmten Wertes des Stabilisierungsdekrements (ΔT.loc) bei Inbetriebnahme des Wassererwärmers,
    (b) beim Neuberechnen der Zeitintervalle δ.t.ric Aufzeichnen des Wertes T.loc.i(t) der lokalen Temperaturen (T.loc.i) zum aktuellen allgemeinen Zeitpunkt t,
    (c) nach einem Entnahmezeitintervall δ.t.ril, Aufzeichnen des Wertes T.loc.i value (t + δ.t.ril) der s lokalen Temperaturen (T.loc.i) zum aktuellen allgemeinen Zeitpunkt t +δ.t.ril,
    (d) für jeden dieser lokalen Temperatursensoren (S.loc.i) Berechnen der Differenz ΔT.loc.i = T.loc.i (t) - T.loc.i (t + δ.t.ril),
    (e) wenn
    - die algebraischen Werte ΔT.loc.i negativ sind oder das Zustandsregister (TAP) die Zustände [TAPPING_ON] oder [TAPPING_ALERT] anzeigt, Zurückkehren zu Schritt (b),
    - andernfalls Berechnen des gewichteten Durchschnitts der Differenzen ΔT.loc.i = T.loc.i (t) - T.loc.i (t + δ.t.ril) für i von 1 bis s für das Stabilisierungsdekrement (ΔT.loc),
    (f) Speichern des neuen Wertes des Stabilisierungsdekrements (ΔT.loc) anstelle des entsprechenden Wertes, der sich zuvor im Speicher befand.
  13. Verfahren zum Erlernen des Musters der Entnahmen nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zum Berechnen der Abkühlgeschwindigkeit (v.ΔT.loss) der Speichertemperatur (T.acc), die als repräsentativ für die Wärmeverluste angesehen wird, die folgenden Schritte ausgeführt werden
    (a) Speichern eines Zeitpunkts t1, zu dem das eine oder die mehreren Heizelemente (HE) in den OFF-Zustand übergegangen sind, und des entsprechenden Wertes T.acc.1 der Speichertemperatur (T.acc),
    (b) Speichern des Zeitpunkts t2, zu dem mindestens eines der Heizelemente (HE) in den ON-Zustand zurückkehrt,
    (c) Speichern des Zeitpunkts t3, zu dem das Heizelement (HE) wieder auf OFF zurückkehrt, und den entsprechenden T.acc.3, der für die Speichertemperatur (T. acc) gelesen wird,
    (d) Berechnen von T.acc.2 = T.acc.3 - v.Trise * (t3 - t2), wobei T.acc.2 der Wert ist, der für die Speichertemperatur (T.acc) zum Zeitpunkt t2 angenommen wird,
    (e) Berechnen von v.ΔT.loss = (T.acc.1- T.acc.2) / (t2- tl), wobei v.ΔT.loss der Wert ist, der für die Abkühlgeschwindigkeit des Speichertanks S angenommen wird,
    (f) Berechnen eines gewichteten Durchschnitts zwischen dem Wert v.ΔT.loss, der soeben berechnet worden ist, und dem Wert im Speicher und Speichern des neuen Wertes anstelle des entsprechenden Wertes, der sich zuvor im Speicher befand,
    (g) Zurückkehren zu Schritt (a) während des gesamten Verfahrens, wenn der Zustand [NO_TAPPING] nicht in dem Zustandsregister (TAP) gespeichert wird.
  14. Verfahren zum Erlernen des Musters der Entnahmen nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
    - der Zyklus der Entnahmen mit einer Dauer von nr.d Tagen in eine Anzahl nr.h von vorbestimmten aufeinanderfolgenden Zeitintervallen (Int) gleicher Länge Δ.t.int unterteilt wird,
    - für jedes der Zeitintervalle (Int) von nr.h Stunden für den gesamten Zyklus der Entnahmen eine fiktive Entnahme (ΔT.tap.tot), die die Gesamtheit der Entnahmen, die im gleichen Intervall ermittelt werden, darstellt, und ein entsprechender fiktiver Zeitpunkt (Δ.t.fict) des Beginns der fiktiven Entnahme berechnet und gespeichert wird.
  15. Verfahren zum Erlernen des Musters der Entnahmen nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass die fiktive Entnahme (Δt.tap.tot) gleich der Summe der Reduzierungen der Speichertemperatur (Δt.tap.i) aller k Entnahmen eingestellt wird und der fiktive Zeitpunkt (Δ.t.fict) gleich
    - dem gewichteten Durchschnittswert der tatsächlichen Zeitpunkte (Δ.ti) ist, zu denen jede der Entnahmen (ΔT.tap.i) aufgezeichnet wurde, wenn Entnahmen stattgefunden haben,
    - der Hälfte der Dauer des Zeitintervalls (Δ.t.int) ist, wenn keine Entnahmen stattgefunden haben.
  16. Verfahren zum Erlernen des Musters der Entnahmen nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Erlernen der Entnahmen während eines oder mehrerer Zyklen nach einem ersten Zyklus fortgesetzt wird.
  17. Verfahren zum Erlernen des Musters der Entnahmen mindestens nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass die Daten über die Entnahmen, die in dem laufenden Zyklus ermittelt werden, unter Berücksichtigung auch der Daten gespeichert werden, die in den entsprechenden Intervallen vorheriger Zyklen durch gewichtete Mittelwerte oder Filtervorgänge zwischen den Daten des laufenden Zyklus und den entsprechenden Daten des einen oder der mehreren vorherige Zyklen ermittelt werden.
  18. Verfahren zum Erlernen des Musters der Entnahmen nach einem der Ansprüche 14 bis 15, dadurch gekennzeichnet, dass
    - eine Anzahl n.cyc.prec früherer Speicher (M.cyc.prec) bereitgestellt wird, in denen die Daten über die Entnahmen gespeichert werden, die sich auf n.cyc.prec aufeinanderfolgende Zyklen beziehen, die dem laufenden Zyklus unmittelbar vorangehen,
    - wenn eine der berechneten fiktiven Entnahmen (ΔT.tap.tot)
    - größer als jene ist, die im Speicher zum Zeitpunkt (M.cyc.corr) im entsprechenden Intervall Int vorhanden ist, sowohl die fiktive Entnahme ΔT.tap.tot als auch der fiktive Zeitpunkt Δ.t.fict die Werte ersetzen, die im Speicher zum Zeitpunkt (M.cyc.corr) vorhanden sind,
    - wenn hingegen die fiktive Entnahme ΔT.tap.tot geringer ist als jene, die im Speicher von dem unmittelbar vorhergehenden Zyklus vorhanden ist:
    - der fiktive Wert value ΔT.tap.tot zwar als Größe der Entnahme in dem Speicher aufgezeichnet wird, jedoch mit den Werten gefiltert wird, die in den entsprechenden Intervallen Int der unmittelbar vorhergehenden Zyklen n.cyc gespeichert werden,
    - der gewichtete Durchschnitt zwischen dem neuen fiktiven Zeitpunkt Δ.t.fict und jenem, der in dem Speicher des unmittelbar vorhergehenden Zyklus ermittelt worden ist, als fiktiver Zeitpunkt Δ.t.fict in dem Speicher aufgezeichnet wird,
    - während die n.cyc Anzahl von Zyklen, die in dem Filter verwendet werden, gleich 0 ist, wenn der betreffende Zyklus der erste nach dem Einschalten ist, und sich für jeden nachfolgenden Zyklus um eine Einheit bis zum Maximalwert n.cyc.prec erhöht.
  19. Verfahren zum Erlernen des Musters der Entnahmen nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass für jede der Entnahmen mindestens der Wert des Entnahmezeitpunkts t.in.tap und der entsprechende Entnahmetemperaturabfall ΔT.tap aufgezeichnet werden.
  20. Verfahren zum Erlernen des Musters der Entnahmen nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass der Zeitpunkt des Endes der Entnahme t.fin.tap ferner von jeder der erfassten Entnahmen gespeichert wird.
EP18766325.7A 2017-08-01 2018-07-24 Verfahren zum lernen des profils von heisswasserzapfungen in einem warmwasserspeicher Active EP3662210B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL18766325T PL3662210T3 (pl) 2017-08-01 2018-07-24 Sposób rozpoznawania wzorca pobierania gorącej wody w pojemnościowym podgrzewaczu wody

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IT102017000088388A IT201700088388A1 (it) 2017-08-01 2017-08-01 Metodo di caratterizzazione di uno scaldaacqua ad accumulo e di apprendimento del profilo dei prelievi
PCT/IB2018/000777 WO2019025850A1 (en) 2017-08-01 2018-07-24 CHARACTERIZATION METHOD OF ACCUMULATING WATER HEATER AND TRACING LEARNING OF PROFILES

Publications (2)

Publication Number Publication Date
EP3662210A1 EP3662210A1 (de) 2020-06-10
EP3662210B1 true EP3662210B1 (de) 2021-09-15

Family

ID=60628075

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18766325.7A Active EP3662210B1 (de) 2017-08-01 2018-07-24 Verfahren zum lernen des profils von heisswasserzapfungen in einem warmwasserspeicher

Country Status (5)

Country Link
EP (1) EP3662210B1 (de)
ES (1) ES2901106T3 (de)
IT (1) IT201700088388A1 (de)
PL (1) PL3662210T3 (de)
WO (1) WO2019025850A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110017611A (zh) * 2019-02-27 2019-07-16 广东万家乐燃气具有限公司 一种电热水器内胆剩余热水量计算方法及电热水器
CN110469893B (zh) * 2019-08-26 2021-02-09 中国计量大学 一种基于比例压力调节的循环泵自适应控制方法
DE102020112587A1 (de) * 2020-05-08 2021-11-11 Stiebel Eltron Gmbh & Co. Kg Verfahren zur Zapfmengenbestimmung an einer Warmwasserspeichervorrichtung
CN112113269A (zh) * 2020-09-02 2020-12-22 天津大学 基于楼栋用户分类的综合室内温度计算方法
CN112651384B (zh) * 2021-01-15 2022-08-16 芜湖美的厨卫电器制造有限公司 用于零冷水燃气热水器的方法、装置、存储介质及处理器
CN112947097B (zh) * 2021-01-29 2023-06-16 青岛海尔科技有限公司 用于绘制家居设备运行状态曲线的方法、装置和显示终端

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6455820B2 (en) * 1999-07-27 2002-09-24 Kenneth A. Bradenbaugh Method and apparatus for detecting a dry fire condition in a water heater
ITTO20070602A1 (it) * 2007-08-16 2009-02-17 Merloni Termosanitari Spa "procedimento per la produzione di acqua calda sanitaria e acqua per riscaldamento ambiente, e relativo sistema a caldaia
AU2012262613B2 (en) * 2011-06-03 2015-07-09 Rheem Australia Pty Limited A water heater controller or system
GB2518365B (en) * 2013-09-18 2015-08-05 Exergy Devices Ltd Apparatus and method for volumetric estimation of heated water

Also Published As

Publication number Publication date
WO2019025850A1 (en) 2019-02-07
ES2901106T3 (es) 2022-03-21
PL3662210T3 (pl) 2022-01-31
EP3662210A1 (de) 2020-06-10
IT201700088388A1 (it) 2019-02-01

Similar Documents

Publication Publication Date Title
EP3662210B1 (de) Verfahren zum lernen des profils von heisswasserzapfungen in einem warmwasserspeicher
US6478233B1 (en) Thermal comfort controller having an integral energy savings estimator
US6375087B1 (en) Method and apparatus for self-programmable temperature and usage control for hot water heaters
CA2833233C (en) Self-adjusting thermostat for floor warming control systems and other applications
CN103363670B (zh) 空气能热水器及其控制方法和装置
CN107228693B (zh) 用于测定气体的系统和方法
CN109737560B (zh) 一种空调化霜控制方法、装置及空调器
EP2722601A2 (de) Verfahren und Vorrichtungen zur Anzeige der Energieeinsparungen eines HVAC-Systems
CN110398070A (zh) 热水器及其控制方法和计算机可读存储介质
GB2518365A (en) Apparatus and method for volumetric estimation of heated water
EP2366081B1 (de) Verfahren zur minimierung des energieverbrauchs eines heisswasserspeichers
EP2362931B1 (de) Verfahren zur minimierung vom energieverbrauch in einem heisswasserspeicher durch adaptiven lernen logik
CN107975920B (zh) 膨胀阀控制方法及多联机系统
US4564141A (en) Apparatus and method for domestic hot water control
EP2453334A1 (de) Verfahren zur Minimierung des täglichen Energieverbrauchs eines Warmwasserspeichers durch vereinfachte logische Prozesse
CN109416192A (zh) 空气调节控制装置、空气调节控制方法、空气调节系统以及带空气调节的住宅
CN115406119A (zh) 热水器的温度异常处理方法、系统、热水器和介质
EP3276266B1 (de) Verfahren zur steuerung eines heiz- oder kühlsystems und heiz- oder kühlsystem
EP1995533A2 (de) Ein Boilerüberwachungsgerät
JP5169049B2 (ja) 流量計測装置
JP3980862B2 (ja) 給湯機制御装置
JP2020165608A (ja) 流出量推定装置、需要量予測装置、制御装置、流入量推定装置、流入量推定モデル作成装置、流出量推定方法及びプログラム
JP3963745B2 (ja) ガス消費量推定方法及びシステム
CN114294800B (zh) 一种空调制热达温停机控制方法、装置及空调器
EP2544068A1 (de) Gesteuerte Ventileinrichtung für Wärmetauscher

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200127

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ARISTON THERMO S.P.A.

INTG Intention to grant announced

Effective date: 20210413

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018023665

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1430798

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211015

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211215

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211215

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1430798

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211216

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2901106

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220115

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220117

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018023665

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

26N No opposition filed

Effective date: 20220616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: ARISTON S.P.A.

Effective date: 20220907

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602018023665

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220724

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220724

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220724

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230201

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220724

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230412

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20230718

Year of fee payment: 6

Ref country code: ES

Payment date: 20230927

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230714

Year of fee payment: 6

Ref country code: FR

Payment date: 20230726

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180724