EP2366010B1 - Produit de lavage pour lave-vaisselle - Google Patents

Produit de lavage pour lave-vaisselle Download PDF

Info

Publication number
EP2366010B1
EP2366010B1 EP09799315.8A EP09799315A EP2366010B1 EP 2366010 B1 EP2366010 B1 EP 2366010B1 EP 09799315 A EP09799315 A EP 09799315A EP 2366010 B1 EP2366010 B1 EP 2366010B1
Authority
EP
European Patent Office
Prior art keywords
dishwasher detergent
group
automatic dishwasher
weight
monomers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09799315.8A
Other languages
German (de)
English (en)
Other versions
EP2366010A1 (fr
Inventor
Dorota SENDOR-MÜLLER
Johannes Zipfel
Arnd Kessler
Christian Nitsch
Sven Müller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to PL09799315T priority Critical patent/PL2366010T3/pl
Publication of EP2366010A1 publication Critical patent/EP2366010A1/fr
Application granted granted Critical
Publication of EP2366010B1 publication Critical patent/EP2366010B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3784(Co)polymerised monomers containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2075Carboxylic acids-salts thereof
    • C11D3/2086Hydroxy carboxylic acids-salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/36Organic compounds containing phosphorus
    • C11D3/361Phosphonates, phosphinates or phosphonites
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/14Hard surfaces

Definitions

  • the present application describes automatic dishwashing detergents, automatic dishwashing processes using these dishwashing detergents, and the use of these dishwashing detergents for improving the dishwashing of machine dishwashing.
  • automatic dishwashing detergents In order to obtain spotless dishes, bleaching agents are used in automatic dishwashing detergents. In order to activate these bleaching agents and to achieve an improved bleaching effect during cleaning at temperatures of 60 ° C. and below, automatic dishwashing detergents generally also contain bleach activators or bleach catalysts, with the bleach catalysts in particular having proven to be particularly effective.
  • bleaches are limited due to incompatibilities with other detergent or cleaning active ingredients, such as enzymes, or because of stability issues in the storage of bleach-containing detergents and cleaners. This is especially true for liquid detergents or cleaning agents.
  • One technical option for improving the cleaning performance of automatic dishwashing detergents is to increase the alkalinity of these detergents. While, on the one hand, with increasing alkalinity, the cleaning performance of automatic dishwashing detergents increases, on the other hand strongly alkaline cleaners also cause damage in the silicate structure of glasses and can cause strong irritation on contact with the skin.
  • alkali metal phosphates Particularly effective builders for increasing the alkalinity have proved to be the alkali metal phosphates, which for this reason form the main constituent of the vast majority of commercially available automatic dishwashing detergents.
  • the DE102007006630 A1 describes phosphate-free automatic dishwashing detergents containing builder, bleach copolymers comprising, inter alia, monomers containing sulfonic acid groups, nonionic surfactant and salts of mono- or di-phosphonic acids.
  • dishwashing detergent should be characterized by a good cleaning performance despite freedom from phosphates and bleach, with an improved cleaning performance, for example against bleachable stains, being preferred without at the same time causing increased damage to glass or ceramic surfaces.
  • the bleachable stains include, for example, stains caused by tea or vegetable dyes, for example from vegetables or fruits.
  • the automatic dishwashing compositions according to the invention are preferably low-alkaline.
  • Preferred automatic dishwasher detergents according to the invention are characterized in that the automatic dishwasher detergent has a pH (10% solution, 20 ° C.) between 9 and 11.5, preferably between 9.5 and 11.5, in particular between 10.0 and 11.0.
  • a first essential ingredient of the composition of the invention is the citrate.
  • the term "citrate” also includes citric acid as well as its salts, in particular their alkali metal salts.
  • Machine dishwashing detergents according to the invention contain citrate, preferably sodium citrate, in amounts of 12 to 40% by weight, preferably 15 to 40% by weight. and in particular 15 to 30 wt .-%, each based on the total weight of the automatic dishwashing detergent.
  • Citrate or citric acid has proven to be particularly effective over other builders in combination with the anionic copolymer in terms of tea cleaning.
  • Some exemplary automatic dishwashing formulations can be found in Table 1 below: ingredient Formulation 1 [% by weight] (not according to the invention) Formulation 2 [% by weight] (not according to the invention) Formulation 3 [% by weight] (not according to the invention) Formulation 4 [% by weight] (not according to the invention) citrate 12 to 50 15 to 40 15 to 30 15 to 30 polyphosphonic 1.0 to 30 1.0 to 30 1.0 to 30 1.0 to 30 phosphate - * - - - bleach - - - - PH value kA kA kA 9 to 11.5 Misc Add 100 Add 100 Add 100 Add 100 Add 100 * "-" interpreted in this as in all the following tables: the recipe is free of this ingredient
  • the automatic dishwashing compositions according to the invention may contain, in addition to the citrates, additional builders, in particular carbonates or organic cobuilders.
  • Some exemplary automatic dishwashing formulations can be found in Table 2 below: ingredient Formulation 1 [% by weight] (not according to the invention) Formulation 2 [% by weight] (not according to the invention) Formulation 3 [% by weight] (not according to the invention) Formulation 4 [% by weight] (not according to the invention) citrate 12 to 50 15 to 40 15 to 40 15 to 30 polyphosphonic 1.0 to 30 1.0 to 30 1.0 to 30 carbonate 5 to 50 10 to 40 5 to 50 10 to 40 phosphate - - - - bleach - - - - Misc Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100
  • organic co-builders are polycarboxylates / polycarboxylic acids, dextrins and phosphonates. These classes of substances are described below.
  • Useful organic builders are, for example, the polycarboxylic acids which can be used in the form of the free acid and / or their sodium salts, polycarboxylic acids meaning those carboxylic acids which carry more than one acid function.
  • these are adipic acid, succinic acid, glutaric acid, malic acid, tartaric acid, maleic acid, fumaric acid, sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA), if such use is not objectionable for ecological reasons, and mixtures of these.
  • NTA nitrilotriacetic acid
  • the free acids also typically have the property of an acidifying component and thus also serve to set a lower and milder pH of detergents or cleaners.
  • succinic acid, glutaric acid, adipic acid, gluconic acid and any mixtures of these may be mentioned here.
  • the complex-forming phosphonates comprise a number of different compounds such as, for example, diethylenetriaminepenta (methylenephosphonic acid) (DTPMP). Hydroxyalkane or aminoalkane phosphonates are particularly preferred in this application.
  • HEDP 1-hydroxyethane-1,1-diphosphonate
  • HEDP 1-hydroxyethane-1,1-diphosphonate
  • It is preferably used as the sodium salt, the disodium salt neutral and the tetrasodium salt alkaline (pH 9).
  • Preferred aminoalkanephosphonates are ethylenediamine tetramethylenephosphonate (EDTMP), diethylenetriaminepentamethylenephosphonate (DTPMP) and their higher homologs. They are preferably in the form of neutral sodium salts, eg. B. as the hexasodium salt of EDTMP or as hepta- and octa-sodium salt of DTPMP used.
  • the builder used here is preferably HEDP from the class of phosphonates.
  • the aminoalkanephosphonates also have a pronounced heavy metal binding capacity. Accordingly, in particular if the agents also contain bleach, it may be preferable to use aminoalkanephosphonates, in particular DTPMP, or to use mixtures of the phosphonates mentioned.
  • automatic dishwashing detergents which contain as phosphonates 1-hydroxyethane-1,1-diphosphonic acid (HEDP) or diethylenetriaminepenta (methylenephosphonic acid) (DTPMP).
  • HEDP 1-hydroxyethane-1,1-diphosphonic acid
  • DTPMP diethylenetriaminepenta
  • the automatic dishwashing compositions of the invention may contain two or more different phosphonates.
  • the proportion by weight of the phosphonates in the total weight of automatic dishwashing detergents according to the invention is preferably from 1 to 8% by weight, preferably from 1.2 to 6% by weight and in particular from 1.5 to 4% by weight.
  • Some exemplary automatic dishwashing formulations can be found in Table 3 below: ingredient Formulation 1 [% by weight] (not according to the invention) Formulation 2 [% by weight] (not according to the invention) Formulation 3 [% by weight] (not according to the invention) Formulation 4 [% by weight] (not according to the invention) citrate 12 to 50 15 to 40 12 to 50 15 to 40 Polyphosphonic acid 1.0 to 30 1.0 to 30 1.0 to 30 carbonate 5 to 50 10 to 30 5 to 50 10 to 30 phosphonate 1 to 8 1 to 8 1,2 to 6 1,2 to 6 phosphate - - - - bleach - - - - Misc Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100
  • polysulfonates contain, in addition to sulfonic acid-containing (s) monomer (s) at least one monomer from the group of unsaturated carboxylic acids.
  • unsaturated carboxylic acids are acrylic acid, methacrylic acid, ethacrylic acid, ⁇ -chloroacrylic acid, ⁇ -cyanoacrylic acid, crotonic acid, ⁇ -phenyl-acrylic acid, maleic acid, maleic anhydride, fumaric acid, itaconic acid, citraconic acid, methylenemalonic acid, sorbic acid, cinnamic acid or mixtures thereof. It goes without saying that it is also possible to use the unsaturated dicarboxylic acids.
  • Particularly preferred monomers containing sulfonic acid groups are 1-acrylamido-1-propanesulfonic acid, 2-acrylamido-2-propanesulfonic acid, 2-acrylamido-2-methyl-1-propanesulfonic acid, 2-methacrylamido-2-methyl-1-propanesulfonic acid, 3 Methacrylamido-2-hydroxypropanesulfonic acid, allylsulfonic acid, methallylsulfonic acid, allyloxybenzenesulfonic acid, methallyloxybenzenesulfonic acid, 2-hydroxy-3- (2-propenyloxy) propanesulfonic acid, 2-methyl-2-propene-1-sulfonic acid, styrenesulfonic acid, vinylsulfonic acid, 3-sulfopropyl acrylate, 3-sulfopropyl methacrylate , Sulfomethacrylamide, sulfomethylmethacrylamide and mixtures of said acids or their water-soluble
  • the sulfonic acid groups may be wholly or partly in neutralized form, ie that the acidic acid of the sulfonic acid group in some or all sulfonic acid groups may be exchanged for metal ions, preferably alkali metal ions and especially sodium ions.
  • metal ions preferably alkali metal ions and especially sodium ions.
  • the molar mass of the sulfo copolymers preferably used according to the invention can be varied in order to adapt the properties of the polymers to the desired end use.
  • Preferred automatic dishwashing agents are characterized in that the copolymers have molar masses of from 2000 to 200,000 gmol -1 , preferably from 4000 to 25,000 gmol -1 and in particular from 5000 to 15,000 gmol -1 .
  • the polymeric sulfonates in addition to carboxyl-containing monomer and sulfonic acid-containing monomer further comprise at least one nonionic, preferably hydrophobic monomer.
  • the use of these hydrophobically modified polymers has made it possible in particular to improve the rinse aid performance of automatic dishwashing detergents according to the invention.
  • nonionic monomers are butene, isobutene, pentene, 3-methylbutene, 2-methylbutene, cyclopentene, hexene, hexene-1, 2-methylpentene-1, 3-methylpentene-1, cyclohexene, methylcyclopentene, cycloheptene, methylcyclohexene, 2,4 , 4-trimethylpentene-1, 2,4,4-trimethylpentene-2,3,3-dimethylhexene-1, 2,4-dimethylhexene-1, 2,5-dimethlyhexene-1,3,5-dimethylhexene-1,4 , 4-dimethylhexane-1, ethylcyclohexyne, 1-octene, ⁇ -olefins having 10 or more carbon atoms such as 1-decene, 1-dodecene, 1-hexadecene, 1-octadecene and
  • a second essential ingredient of the invention is the polyphosphonic acid b).
  • the proportion by weight of the polyphosphonate b) in the total weight of automatic dishwashing agents according to the invention is 4 to 26% by weight and in particular 8 to 24% by weight.
  • the homopolymeric polyphosphonic acids have been found to be superior in terms of the scavenging achieved with the compositions as simple homopolymers of unsaturated monocarboxylic acids or copolymers of unsaturated monocarboxylic acids.
  • the dough cleaning of homopolymeric phosphonic acids is surpassed by the dough cleaning performance of copolymeric polyphosphonic acids.
  • Polyphosphonic acids comprising unsaturated monocarboxylic acid (s) A and unsaturated phosphonic acid (s) B are therefore according to the invention.
  • copolymers of acrylic acid or methacrylic acid with a phosphonic acid are particularly suitable.
  • Copolymers of acrylic acid with a phosphonic acid have proven to be particularly suitable, preferred copolymers containing from 50 to 90% by weight of acrylic acid and from 50 to 10 Wt .-% phosphonic acid.
  • the relative molecular weight, based on free acids, is generally from 2000 to 70000 g / mol, preferably from 20,000 to 50,000 g / mol and in particular from 30,000 to 40,000 g / mol.
  • the polyphosphonic acid b) can be used in the machine dishwasher according to the invention, for example as a powder or as an aqueous solution.
  • Some exemplary automatic dishwashing formulations can be found in the following Tables 3a and 3b: ingredient Formulation 1 [% by weight] (not according to the invention) Formulation 2 [% by weight] (not according to the invention) Formulation 3 [% by weight] (not according to the invention) Formulation 4 [% by weight] (not according to the invention) citrate 12 to 50 15 to 40 12 to 50 15 to 40 Polyphosphonic acid 1 2.0 to 28 2.0 to 28 4.0 to 26 8.0 to 24 carbonate 0 to 50 0 to 30 0 to 30 0 to 30 0 to 30 phosphonate 0 to 8 0 to 8 0 to 8 0 to 8 phosphate - - - - bleach - - - - Misc Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add
  • compositions according to the invention may contain further washing or cleaning-active substances, preferably from the group of surfactants, enzymes, organic solvents, glass corrosion inhibitors, corrosion inhibitors, fragrances and perfume carriers. These preferred ingredients will be described in more detail below.
  • nonionic surfactants known to the person skilled in the art can be used as nonionic surfactants.
  • Suitable nonionic surfactants are, for example, alkyl glycosides of the general formula RO (G) x in which R is a primary straight-chain or methyl-branched, in particular 2-methyl-branched aliphatic radical having 8 to 22, preferably 12 to 18 carbon atoms and G is the symbol which is a glycose unit having 5 or 6 C atoms, preferably glucose.
  • the degree of oligomerization x which indicates the distribution of monoglycosides and oligoglycosides, is any number between 1 and 10; preferably x is 1.2 to 1.4.
  • Nonionic surfactants of the amine oxide type for example N-cocoalkyl-N, N-dimethylamine oxide and N-tallowalkyl-N, N-dihydroxyethylamine oxide, and the fatty acid alkanolamides may also be suitable.
  • the amount of these nonionic surfactants is preferably not more than that of the ethoxylated fatty alcohols, especially not more than half thereof.
  • nonionic surfactants used either as the sole nonionic surfactant or in combination with other nonionic surfactants are alkoxylated, preferably ethoxylated or ethoxylated and propoxylated fatty acid alkyl esters, preferably having from 1 to 4 carbon atoms in the alkyl chain.
  • washing or cleaning agents in particular automatic dishwashing detergents, contain nonionic surfactants from the group of the alkoxylated alcohols.
  • the nonionic surfactants used are preferably alkoxylated, advantageously ethoxylated, in particular primary, alcohols having preferably 8 to 18 carbon atoms and on average 1 to 12 moles of ethylene oxide (EO) per mole of alcohol, in which the alcohol radical can be linear or preferably methyl-branched in the 2-position or linear and methyl-branched radicals in the mixture may contain, as they usually present in Oxoalkoholresten.
  • EO ethylene oxide
  • alcohol ethoxylates with linear radicals of alcohols of natural origin having 12 to 18 carbon atoms, for example of coconut, palm, tallow or oleyl alcohol, and on average 2 to 8 moles of EO per mole of alcohol are preferred.
  • the preferred ethoxylated alcohols include, for example, C 12-14 alcohols with 3 EO or 4 EO, C 9-11 alcohols with 7 EO, C 13-15 alcohols with 3 EO, 5 EO, 7 EO or 8 EO, C 12-18 alcohols with 3 EO, 5 EO or 7 EO and mixtures of these, such as mixtures of C 12-14 -alcohol with 3 EO and C 12-18 -alcohol with 5 EO.
  • the stated degrees of ethoxylation represent statistical averages, which may correspond to a particular product of an integer or a fractional number.
  • Preferred alcohol ethoxylates have a narrow homolog distribution (narrow range ethoxylates, NRE).
  • fatty alcohols with more than 12 EO can also be used. Examples include tallow fatty alcohol with 14 EO, 25 EO, 30 EO or 40 EO.
  • ethoxylated nonionic surfactants consisting of C 6-20 monohydroxyalkanols or C 6-20 alkylphenols or C 16-20 fatty alcohols and more than 12 mol, preferably more than 15 mol and in particular more than 20 mol of ethylene oxide per mol Alcohol was used.
  • a particularly preferred nonionic surfactant is obtained from a straight-chain fatty alcohol having 16 to 20 carbon atoms (C 16-20 alcohol), preferably a C 18 -alcohol and at least 12 mol, preferably at least 15 mol and especially at least 20 mol of ethylene oxide.
  • C 16-20 alcohol straight-chain fatty alcohol having 16 to 20 carbon atoms
  • C 18 -alcohol preferably a C 18 -alcohol
  • at least 12 mol preferably at least 15 mol and especially at least 20 mol of ethylene oxide.
  • the so-called “narrow range ethoxylates” are particularly preferred.
  • Nonionic surfactants which have a melting point above room temperature.
  • Nonionic surfactants from the group of alkoxylated alcohols are also used with particular preference.
  • the nonionic surfactant solid at room temperature preferably has propylene oxide units in the molecule.
  • such PO units make up to 25 wt .-%, more preferably up to 20 wt .-% and in particular up to 15 wt .-% of the total molecular weight of the nonionic surfactant from.
  • Particularly preferred nonionic surfactants are ethoxylated monohydroxyalkanols or alkylphenols which additionally have polyoxyethylene-polyoxypropylene block copolymer units.
  • the alcohol or alkylphenol content of such nonionic surfactant molecules preferably makes up more than 30% by weight, more preferably more than 50% Wt .-% and in particular more than 70 wt .-% of the total molecular weight of such nonionic surfactants.
  • Preferred agents are characterized by being ethoxylated and propoxylated nonionic surfactants contain in which the propylene oxide in the molecule up to 25 wt .-%, preferably up to 20 wt .-% and in particular up to 15 wt .-% of the total molecular weight of the nonionic surfactant make up.
  • surfactants come from the groups of alkoxylated nonionic surfactants, in particular the ethoxylated primary alcohols and mixtures of these surfactants with structurally complicated surfactants such as polyoxypropylene / polyoxyethylene / polyoxypropylene ((PO / EO / PO) surfactants).
  • Such (PO / EO / PO) nonionic surfactants are also characterized by good foam control.
  • More particularly preferred nonionic surfactants having melting points above room temperature contain from 40 to 70% of a polyoxypropylene / polyoxyethylene / polyoxypropylene block polymer blend containing 75% by weight of a reverse block copolymer of polyoxyethylene and polyoxypropylene with 17 moles of ethylene oxide and 44 moles of propylene oxide and 25% by weight. % of a block copolymer of polyoxyethylene and polyoxypropylene initiated with trimethylolpropane and containing 24 moles of ethylene oxide and 99 moles of propylene oxide per mole of trimethylolpropane.
  • nonionic surfactants have been low foaming nonionic surfactants which have alternating ethylene oxide and alkylene oxide units.
  • surfactants with EO-AO-EO-AO blocks are preferred, wherein in each case one to ten EO or AO groups are bonded to each other before a block of the other groups follows.
  • R 1 is a straight-chain or branched, saturated or mono- or polyunsaturated C 6-24 alkyl or alkenyl radical; each group R 2 or R 3 is independently selected from -CH 3 , -CH 2 CH 3 , -CH 2 CH 2 -CH 3 , CH (CH 3 ) 2 and the indices w, x, y, z independently stand for integers from 1 to 6.
  • the preferred nonionic surfactants of the above formula can be prepared by known methods from the corresponding alcohols R 1 -OH and ethylene or alkylene oxide.
  • the radical R 1 in the above formula may vary depending on the origin of the alcohol. If native sources are used, the radical R 1 has an even number of carbon atoms and is usually unbranched, the linear radicals being selected from alcohols of natural origin having 12 to 18 C atoms, for example from coconut, palm, tallow or Oleyl alcohol, are preferred. Alcohols accessible from synthetic sources For example, the Guerbet alcohols or methyl-branched in the 2-position or linear and methyl-branched radicals in the mixture, as they are usually present in Oxoalkoholresten.
  • nonionic surfactants in which R 1 in the above formula is an alkyl radical having 6 to 24, preferably 8 to 20, particularly preferably 9 to 15 and in particular 9 to 11 Carbon atoms.
  • alkylene oxide unit which is contained in the preferred nonionic surfactants in alternation with the ethylene oxide unit, in particular butylene oxide is considered in addition to propylene oxide.
  • R 2 or R 3 are independently selected from -CH 2 CH 2 -CH 3 or -CH (CH 3 ) 2 are suitable.
  • nonionic surfactants having a C 9-15 alkyl group having 1 to 4 ethylene oxide units followed by 1 to 4 propylene oxide units followed by 1 to 4 ethylene oxide units followed by 1 to 4 propylene oxide units.
  • These surfactants have the required low viscosity in aqueous solution and can be used according to the invention with particular preference.
  • R 1 -CH (OH) CH 2 O- (AO) w - (A'O) x - (A "O) y - (A '" O) z -R 2 in which R 1 and R 2 independently of one another represents a straight-chain or branched, saturated or mono- or polyunsaturated C 2-40 alkyl or alkenyl radical;
  • A, A ', A "and A'” independently represent a radical from the group -CH 2 CH 2 , -CH 2 CH 2 -CH 2 , -CH 2 -CH (CH 3 ), -CH 2 -CH 2 -CH 2 -CH 2 , -CH 2 -CH (CH 3 ) -CH 2 -, -CH 2 -CH (CH 2 -CH 3 ); and
  • w, x, y and z are values between 0.5 and 90, where x, y and / or z can also be 0 are preferred according to the invention.
  • end-capped poly (oxyalkylated) nonionic surfactants which, in accordance with the formula R 1 O [CH 2 CH 2 O] x CH 2 CH (OH) R 2 , in addition to a radical R 1 , which is linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having from 2 to 30 carbon atoms, preferably having from 4 to 22 carbon atoms, furthermore having a linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radical R 2 having from 1 to 30 carbon atoms, where x is from 1 to 30 carbon atoms 90, preferably for values between 30 and 80 and in particular for values between 30 and 60.
  • surfactants of the formula R 1 O [CH 2 CH (CH 3 ) O] x [CH 2 CH 2 O] y CH 2 CH (OH) R 2 , in which R 1 is a linear or branched aliphatic hydrocarbon radical with 4 to 18 carbon atoms or mixtures thereof, R 2 is a linear or branched one Hydrocarbon radical having 2 to 26 carbon atoms or mixtures thereof and x is between 0.5 and 1.5 and y is a value of at least 15.
  • nonionic surfactants having a free hydroxyl group on one of the two terminal alkyl radicals By using the above-described nonionic surfactants having a free hydroxyl group on one of the two terminal alkyl radicals, the formation of deposits in machine dishwashing can be markedly improved compared to conventional polyalkoxylated fatty alcohols without a free hydroxyl group.
  • nonionic surfactants are the end-capped poly (oxyalkylated) nonionic surfactants of the formula R 1 O [CH 2 CH (R 3 ) O] x [CH 2 ] k CH (OH) [CH 2 ] j OR 2 in which R 1 and R 2 are linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms, R 3 is H or a methyl, ethyl, n-propyl, iso-propyl, n-butyl, 2 Butyl or 2-methyl-2-butyl radical, x are values between 1 and 30, k and j are values between 1 and 12, preferably between 1 and 5.
  • each R 3 in the above formula R 1 O [CH 2 CH (R 3 ) O] x [ CH 2 ] k CH (OH) [CH 2 ] j OR 2 may be different.
  • R 1 and R 2 are preferably linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 6 to 22 carbon atoms, with radicals having 8 to 18 carbon atoms being particularly preferred.
  • R 3 H, -CH 3 or -CH 2 CH 3 are particularly preferred.
  • Particularly preferred values for x are in the range from 1 to 20, in particular from 6 to 15.
  • each R 3 in the above formula may be different if x ⁇ 2.
  • the alkylene oxide unit in the square bracket can be varied.
  • the value 3 for x has been selected here by way of example and may well be greater, with the variation width increasing with increasing x values and including, for example, a large number (EO) groups combined with a small number (PO) groups, or vice versa ,
  • R 1 , R 2 and R 3 are as defined above and x is from 1 to 30, preferably from 1 to 20 and in particular from 6 to 18.
  • Particularly preferred are surfactants in which the radicals R 1 and R 2 has 9 to 14 C atoms, R 3 is H and x assumes values of 6 to 15.
  • the stated C chain lengths and degrees of ethoxylation or degrees of alkoxylation of the abovementioned nonionic surfactants represent statistical mean values which, for a specific product, may be an integer or a fractional number. Due to the manufacturing process, commercial products of the formulas mentioned are usually not made of an individual representative, but of mixtures, which may result in mean values for the C chain lengths as well as for the degrees of ethoxylation or degrees of alkoxylation and subsequently broken numbers.
  • the proportion by weight of this nonionic surfactant in the total weight of the inventive automatic dishwashing agent in a preferred embodiment is between 0.05 and 10% by weight, preferably between 0.1 and 8% by weight, preferably between 0.5 and 5% by weight. and in particular between 1 and 3 wt .-%.
  • the group of nonionic surfactants of the general formula R 1 O (AlkO) x M (OAlk) y OR 2 comprises a number of particularly preferred compounds.
  • R 1 -CH (OH) CH 2 -O (CH 2 CH 2 O) x CH 2 CHR (OCH 2 CH 2 ) y O-CH 2 CH (OH) -R 2 in which R is a linear, saturated alkyl radical having 8 to 16 carbon atoms, preferably 10 to 14 carbon atoms, and n and m independently of one another have values of 20 to 30.
  • Corresponding compounds can be obtained, for example, by reaction of alkyldiols HO-CHR-CH 2 -OH with ethylene oxide, followed by reaction with an alkyle epoxide to close the free OH functions to form a dihydroxy ether.
  • R 1 -O (CH 2 CH 2 O) x CR 3 R 4 (OCH 2 CH 2) y OR 2 are in which R 3 and R 4 is H, and the subscripts x and y are preferably independently from each other assume values from 1 to 40, preferably from 1 to 15.
  • R 1 -O (CH 2 CH 2 O) x CR 3 R 4 (OCH 2 CH 2) y OR 2 in which the radicals R 1 and R 2 are independently saturated alkyl groups having 4 to 14 Represent carbon atoms and the indices x and y independently of one another assume values of 1 to 15 and in particular of 1 to 12.
  • nonionic surfactants can be used not only as individual substances, but also as surfactant mixtures of two, three, four or more surfactants.
  • Surfactant mixtures are not mixtures of nonionic surfactants which in their entirety fall under one of the abovementioned general formulas, but rather those Mixtures containing two, three, four or more nonionic surfactants which can be described by different of the aforementioned general formulas.
  • the proportion by weight of the nonionic surfactant in the total weight of the automatic dishwashing agent according to the invention is between 0.2 and 10% by weight, preferably between 0.5 and 8% by weight and in particular between 1.0 and 6% by weight.
  • Some exemplary automatic dishwashing formulations can be found in Tables 4a and 4b below: ingredient Formulation 1 [% by weight] (not according to the invention) Formulation 2 [% by weight] (not according to the invention) Formulation 3 [% by weight] (not according to the invention) Formulation 4 [% by weight] (not according to the invention) citrate 12 to 50 15 to 40 12 to 50 15 to 40 polyphosphonic 2.0 to 28 2.0 to 28 4.0 to 26 8.0 to 24 carbonate 0 to 50 0 to 30 0 to 30 0 to 30 phosphonate 0 to 8 0 to 8 0 to 8 0 to 8 Nonionic surfactant 0.1 to 15 0.1 to 15 0.5 to 8 0.5 to 8 phosphate - - - - bleach - - - - Misc Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Add 100
  • dishwashing agents may contain enzyme (s). These include in particular proteases, amylases, lipases, hemicellulases, cellulases, perhydrolases or oxidoreductases, and preferably mixtures thereof. These enzymes are basically of natural origin; starting from the natural molecules are available for use in washing or cleaning agents improved variants available, which are used according to preferred. Detergents or cleaning agents contain enzymes preferably in total amounts of 1 ⁇ 10 -6 to 5 wt .-% based on active protein. The protein concentration can be determined by known methods, for example the BCA method or the biuret method.
  • subtilisin type those of the subtilisin type are preferable.
  • these are the subtilisins BPN 'and Carlsberg and their further developed forms, the protease PB92, the subtilisins 147 and 309, the alkaline protease from Bacillus lentus, subtilisin DY and the enzymes thermitase which can no longer be assigned to the subtilisins in the narrower sense, Proteinase K and the proteases TW3 and TW7.
  • amylases which can be used according to the invention are the ⁇ -amylases from Bacillus licheniformis, B. amyloliquefaciens, B.
  • lipases or cutinases are also usable according to the invention, in particular because of their triglyceride-splitting activities, but also in order to generate in situ peracids from suitable precursors.
  • lipases or cutinases include, for example, the lipases originally obtainable from Humicola lanuginosa ( Thermomyces lanuginosus ) or further developed, in particular those with the amino acid exchange D96L.
  • Oxidoreductases for example oxidases, oxygenases, catalases, peroxidases, such as halo, chloro, bromo, lignin, glucose or manganese peroxidases, dioxygenases or laccases (phenol oxidases, polyphenol oxidases) can be used according to the invention to increase the bleaching effect.
  • a protein and / or enzyme may be particularly vulnerable during storage to damage such as inactivation, denaturation or degradation, such as by physical influences, oxidation or proteolytic cleavage.
  • damage such as inactivation, denaturation or degradation, such as by physical influences, oxidation or proteolytic cleavage.
  • inhibition of proteolysis is particularly preferred, especially if the agents also contain proteases.
  • Detergents may contain stabilizers for this purpose; the provision of such means constitutes a preferred embodiment of the present invention.
  • Washing or cleaning-active proteases and amylases are generally not provided in the form of the pure protein but rather in the form of stabilized, storable and transportable preparations.
  • Such prefabricated preparations include, for example, the solid preparations obtained by granulation, extrusion or lyophilization or, especially in the case of liquid or gel-form detergents, solutions of the enzymes, advantageously as concentrated as possible, low in water and / or added with stabilizers or further auxiliaries.
  • the enzymes may be encapsulated for both the solid and liquid dosage forms, for example by spray-drying or extruding the enzyme solution together with a preferably natural polymer or in the form of capsules, for example those in which the enzymes are entrapped as in a solidified gel or in those of the core-shell type, in which an enzyme-containing core is coated with a water, air and / or chemical impermeable protective layer.
  • further active ingredients for example stabilizers, emulsifiers, pigments, bleaches or dyes, may additionally be applied.
  • Such capsules are applied by methods known per se, for example by shaking or rolling granulation or in fluid-bed processes.
  • such granules for example by applying polymeric film-forming agent, low in dust and storage stable due to the coating.
  • a preferred machine dishwashing detergent according to the invention is characterized in that the dishwashing agent, based on its total weight, enzyme preparation (s) in amounts of 0.1 to 12 wt .-%, preferably from 0.2 to 10 wt .-% and in particular from 0.5 to 8 wt .-% contains.
  • Protease and amylase preparations used according to the invention comprise between 0.1 and 40% by weight, preferably between 0.2 and 30% by weight, more preferably between 0.4 and 20% by weight and in particular between 0.8 and 10% by weight of the enzyme protein.
  • ingredient Formulation 1 [% by weight] (not according to the invention)
  • Formulation 2 [% by weight] (not according to the invention)
  • Formulation 3 [% by weight] (not according to the invention)
  • Formulation 4 [% by weight] (not according to the invention) citrate 12 to 50 15 to 40 12 to 50 15 to 40 polyphosphonic 2.0 to 28 2.0 to 28 4.0 to 26 8.0 to 24 carbonate 0 to 50 0 to 30 0 to 30 0 to 30 phosphonate 0 to 8 0 to 8 0 to 8 0 to 8 Sulfocopolymer 0 to 20 0 to 20 0 to 20 0 to 20 0 to 20
  • Nonionic surfactant 0 to 15 0 to 15 0 to 8 0 to 8
  • Enzyme preparation (s) 0.1 to 12 0.1 to 12 0.5 to 8 0.5 to 8 phosphate - - - - bleach - - - - Misc Add 100 Add 100 Add 100 Add 100 Add 100 Add 100 Ingredient Formulation
  • the automatic dishwasher detergents according to the invention can be present in the ready-to-use form known to the person skilled in the art, that is to say, for example, in solid or liquid form but also as a combination of solid and liquid supply forms.
  • Powder, granules, extrudates or compactates, in particular tablets, are particularly suitable as firm supply forms.
  • the liquid supply forms based on water and / or organic solvents may be thickened, in the form of gels.
  • Inventive agents can be formulated as single-phase or multi-phase products.
  • automatic dishwashing detergents with one, two, three or four phases are preferred.
  • Machine dishwashing detergents characterized in that they are in the form of a prefabricated dosing unit with two or more phases, are particularly preferred.
  • the individual phases of multiphase agents may have the same or different states of matter.
  • Machine dishwashing detergents which have at least two different solid phases and / or at least two liquid phases and / or at least one solid and at least one liquid phase are preferred.
  • Particularly preferred are in particular two- or multi-phase tablets, for example two-layer tablets, in particular two-layer tablets with a trough and a mold body located in the trough.
  • Automatic dishwasher detergents according to the invention are preferably prefabricated to form metering units. These metering units preferably comprise the necessary for a cleaning cycle amount of washing or cleaning-active substances. Preferred metering units have a weight between 12 and 30 g, preferably between 14 and 26 g and in particular between 15 and 22 g.
  • the volume of the aforementioned metering units and their spatial form are selected with particular preference so that a metering of the prefabricated units is ensured via the metering chamber of a dishwasher.
  • the volume of the dosing unit is therefore preferably between 10 and 35 ml, preferably between 12 and 30 ml and in particular between 15 and 25 ml.
  • the automatic dishwasher detergents according to the invention in particular the prefabricated metering units, have a water-soluble coating, with particular preference.
  • disintegration aids so-called tablet disintegrants
  • these substances which are also referred to as “explosives” due to their effect, increase their volume upon ingress of water, on the one hand increasing the intrinsic volume (swelling), and on the other hand creating a pressure via the release of gases which can break the tablet into smaller particles disintegrates.
  • disintegration aids are, for example, carbonate / citric acid systems, although other organic acids can also be used.
  • Swelling disintegration aids are, for example, synthetic polymers such as polyvinylpyrrolidone (PVP) or natural polymers or modified natural substances such as cellulose and starch and their derivatives, alginates or casein derivatives.
  • PVP polyvinylpyrrolidone
  • Disintegration aids are preferably used in amounts of from 0.5 to 10% by weight, preferably from 3 to 7% by weight and in particular from 4 to 6% by weight, based in each case on the total weight of the disintegration assistant-containing agent.
  • Preferred disintegrating agents are cellulosic disintegrating agents, so that preferred washing or cleaning agents comprise such cellulose-based disintegrants in amounts of from 0.5 to 10% by weight, preferably from 3 to 7% by weight and in particular from 4 to 6% by weight. % contain.
  • the cellulose used as a disintegration aid is preferably not used in finely divided form, but converted into a coarser form, for example granulated or compacted, before it is added to the premixes to be tabletted.
  • the particle sizes of such disintegrating agents are usually above 200 .mu.m, preferably at least 90 wt .-% between 300 and 1600 .mu.m and in particular at least 90 wt .-% between 400 and 1200 microns.
  • Preferred disintegration aids preferably a disintegration aid based on cellulose, preferably in granular, cogranulated or compacted form, are in the disintegrating agent-containing agents in amounts of from 0.5 to 10% by weight, preferably from 3 to 7% by weight and in particular from 4 to 6 wt .-%, each based on the total weight of the disintegrating agent-containing agent.
  • gas-evolving effervescent systems can furthermore be used as tablet disintegration auxiliaries.
  • preferred effervescent systems consist of at least two components which react with one another to form gas, for example alkali metal carbonate and / or bicarbonate and an acidifying agent which is suitable for liberating carbon dioxide from the alkali metal salts in aqueous solution.
  • An acidifying agent that releases carbon dioxide from the alkali salts in aqueous solution is, for example, citric acid.
  • organic solvents are derived, for example, from the groups of the monoalcohols, diols, triols or polyols, the ethers, esters and / or amides. Particular preference is given to organic solvents which are water-soluble, "water-soluble" solvents in the context of the present application being solvents which are completely water-soluble at room temperature, ie. without miscibility, are miscible.
  • Organic solvents which can be used in the compositions according to the invention preferably originate from the group of monohydric or polyhydric alcohols, alkanolamines or glycol ethers, provided they are miscible with water in the given concentration range.
  • the solvents are preferably selected from ethanol, n- or i-propanol, butanols, glycol, propane- or butanediol, glycerol, diglycol, propyl- or butyldiglycol, hexylene glycol, ethylene glycol methyl ether, ethylene glycol ethyl ether, ethylene glycol propyl ether, etheylene glycol mono-n-butyl ether, diethylene glycol methyl ether, di ethylene glycol ethyl ether, propylene glycol methyl, ethyl or propyl ether, dipropylene glycol methyl or ethyl ether, methoxy, ethoxy or butoxy trig
  • the organic solvents from the group of the organic amines and / or the alkanolamines have proved to be particularly effective with regard to the cleaning performance and again with regard to the cleaning performance of bleachable soiling, in particular on tea stains.
  • Particularly preferred organic amines are the primary and secondary alkylamines, the alkyleneamines and mixtures of these organic amines.
  • the group of preferred primary alkylamines include monomethylamine, monoethylamine, monopropylamine, monobutylamine, monopentylamine and cyclohexylamine.
  • the group of preferred secondary alkylamines includes in particular dimethylamine.
  • Preferred alkanolamines are in particular the primary, secondary and tertiary alkanolamines and mixtures thereof.
  • Particularly preferred primary alkanolamines are monoethanolamine (2-aminoethanol, MEA), monoisopropanolamine, diethylethanolamine (2- (diethylamino) ethanol).
  • Particularly preferred secondary alkanolamines are diethanolamine (2,2'-iminodiethanol, DEA, bis (2-hydroxyethyl) amine), N-methyl-diethanolamine, N-ethyl-diethanolamine. Diisopropanolamine and morpholine.
  • Particularly preferred tertiary alkanolamines are triethanolamine and triisopropanolamine.
  • Combination products characterized in that they contain an organic solvent, wherein the organic solvent is an organic amine and / or an alkanolamine, preferably monoethanolamine, are particularly preferred according to the invention.
  • a further subject of this application is a machine dishwashing detergent according to the invention, characterized in that the automatic dishwashing agent, based on its total weight, organic amine and / or an alkanolamine, preferably ethanolamine, in amounts of 0.1 to 15 wt .-%, preferably 0.2 to 10 wt .-%, particularly preferably 0.5 to 8 wt .-% and in particular from 1.0 to 6 wt .-%.
  • Some example formulations for liquid automatic dishwashing detergents can be found in the following Tables 5a and 5b: ingredient Formulation 1 [% by weight] (not according to the invention) Formulation 2 [% by weight] (not according to the invention) Formulation 3 [% by weight] (not according to the invention) Formulation 4 [% by weight] (not according to the invention) citrate 12 to 50 15 to 40 12 to 50 15 to 40 polyphosphonic 2.0 to 28 2.0 to 28 4.0 to 26 8.0 to 24 carbonate 0 to 50 0 to 30 0 to 30 0 to 30 0 to 30 phosphonate 0 to 8 0 to 8 0 to 8 0 to 8 Sulfocopolymer 0 to 20 0 to 20 0 to 20 0 to 20 0 to 20 Nonionic surfactant 0 to 15 0 to 15 0 to 8 0 to 8 Enzyme preparation (s) 0 to 12 0 to 12 0 to 8 0 to 8 Org.
  • these agents preferably contain from 20 to 80% by weight, preferably from 30 to 70% by weight and in particular from 40 to 60% by weight, of water.
  • the metering units of these liquid supply forms preferably comprise the amount of washing or cleaning-active substances necessary for a cleaning cycle.
  • Preferred liquid metering units have a weight between 25 and 60 g, preferably between 30 and 55 g and in particular between 55 and 50 g.
  • the dishwasher detergents according to the invention exhibit their advantageous cleaning and drying properties, in particular also in low-temperature cleaning processes.
  • Preferred dishwashing processes using agents according to the invention are therefore characterized in that the dishwashing processes are carried out at a liquor temperature below 60 ° C., preferably below 50 ° C.
  • agents according to the invention are distinguished from conventional automatic dishwasher detergents by improved tea cleaning.
  • Another object of the present application is therefore the use of a machine dishwashing detergent according to the invention for improving the dough cleaning in automatic dishwashing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Detergent Compositions (AREA)

Claims (13)

  1. Détergent pour lave-vaisselle sans phosphate et agent de blanchiment contenant :
    a) 10 à 40% en poids de citrate,
    b) 4 à 26% en poids d'acide polyphosphoniques,
    c) 0,1 à 8% en poids de composition enzymatique à base d'amylase et/ou de protéase contenant 0.1 à 40% en poids de protéine enzymatique, par rapport au poids total de la composition enzymatique,
    d) 2,0 à 20% en poids de copolymère anionique comprenant
    i) des monomères monoinsaturés ou polyinsaturés du groupe des acides carboxylique
    ii) des monomères monoinsaturés ou polyinsaturés du groupe des acides sulfoniques
    iii) éventuellement d'autres monomères ioniques ou non ioniques
    e) 0,2 à 10% en poids de tensioactif non ionique,
    le détergent pour lave-vaisselle contenant un acide polyphosphonique, comprenant
    i) des monomères monoinsaturés ou polyinsaturés du groupe des acides carboxyliques
    ii) des monomères monoinsaturés ou palyinsaturés du groupe des acides phosphoniques
    iii) éventuellement d'autres monomères ioniques ou non ioniques.
  2. Détergent pour lave-vaisselle selon la revendication 1, caractérisé en ce que le détergent pour lave-vaisselle contient, sur la base de son poids total, de 15 à 40% en poids et de préférence de 15 à 30% en poids de citrate.
  3. Détergent pour lave-vaisselle selon l'une des revendications précédentes, caractérisé en ce le détergent pour lave-vaisselle contient, sur la base de son poids total, de 8 à 24% en poids d'acide polyphosphonique.
  4. Détergent pour lave-vaisselle selon l'une des revendications précédentes, caractérisé en ce que le détergent pour lave-vaisselle contient, sur la base de son poids total, de 2,5 à 15% en poids et en particulier de 2,5 à 10% en poids de copolymère anionique, comprenant
    i) des monomères monoinsaturés ou polyinsaturés du groupe des acides carboxyliques
    ii) des monomères monoinsaturés ou polyinsaturés du groupe des acides sulfoniques
    iii) éventuellement d'autres monomères ioniques ou non ioniques.
  5. Détergent pour lave-vaisselle selon l'une des revendications précédentes, caractérisé en ce que le détergent pour lave-vaisselle contient, sur la base de son poids total, de 1 à 8% en poids, de préférence de 1,2 à 6% en poids et en particulier 1,5 à 4% en poids.
  6. Détergent pour lave-vaisselle selon l'une des revendications précédentes, caractérisé en ce que le détergent pour lave-vaisselle contient, sur la base de son poids total, un tensioactif non ionique dans des quantités de 0,5 à 8% en poids et en particulier de 1,0 à 6% en poids.
  7. Détergent pour lave-vaisselle selon l'une des revendications précédentes, caractérisé en ce que le détergent pour lave-vaisselle contient un tensioactif non ionique A de la formule générale R1O(AlkO)xM(OAlk)yOR2 dans laquelle
    - R1 et R2 représentent indépendamment l'un de l'autre un radical alkyle ramifié ou non ramifié, saturé ou insaturé, éventuellement hydroxylé, ayant de 4 à 22 atomes de carbone ;
    - Alk représente un radical alkyle, ramifié ou non ramifié, ayant de 2 à 4 atomes de carbone ;
    x et y représentent indépendamment l'un de l'autre des valeurs comprises entre 1 et 70 ; et
    - M représente un radical alkyle du groupe CH2, CHR3, CR3R4, CH2CHR3 et CHR3CHR4, R3 et R4 représentant indépendamment l'un de l'autre un radical alkyle ramifié ou non ramifié, saturé ou insaturé, ayant de 1 à 18 atomes de carbone.
  8. Détergent pour lave-vaisselle selon l'une des revendications précédentes, caractérisé en ce que le détergent pour lave-vaisselle contient, sur la base de son poids total, une amine organique et/ou une alcanolamine, de préférence une éthanolamine, dans des quantités de 0,1 à 15% en poids, de préférence de 0,2% à 10% en poids, de façon particulièrement préférée de 0,5 à 8% en poids et en particulier de 1,0 à 6% en poids.
  9. Détergent pour lave-vaisselle selon l'une des revendications précédentes, caractérisé en ce que le détergent pour lave-vaisselle contient, sur la base de son poids total, des compositions enzymatiques dans des quantités de 0,1 à 12% en poids, de préférence de 0,2 à 10% en poids et en particulier de 0,5 et 8% en poids.
  10. Détergent liquide pour lave-vaisselle selon l'une des revendications précédentes, contenant
    a) 10 à 40% en poids de citrate
    b) de 4 à 26% en poids d'acide polyphosphonique
    c) de 0,1 à 8% en poids de composition enzymatique à base d'amylase et/ou de protéase, contenant de 0,1 à 40% en poids de protéine enzymatique, par rapport au poids total de la composition enzymatique,
    d) 2,0 à 20% en poids de copolymère anionique, comprenant
    i) des monomères monoinsaturés ou polyinsaturés du groupe des acides carboxyliques
    ii) des monomères monoinsaturés ou polyinsaturés du groupe des acides sulfoniques
    iii) éventuellement d'aures monomères ioniques ou non ioniques
    e) de 0,2 à 10% en poids de tensioactif non ionique
    f) de 20 à 70% en poids d'eau,
    le détergent pour lave-vaisselle contenant un acide polyphosphonique, comprenant
    i) des monomères monoinsaturés ou polyinsaturés du groupe des acides carboxyliques
    ii) des monomères monoinsaturés ou polyinsaturés du groupe des acides phosphonigues
    iii) éventuellement d'autres monomères ioniques ou non ioniques.
  11. Procédé de nettoyage de la vaisselle dans un lave-vaisselle, à l'aide d'un détergent pour lave-vaisselle selon l'une des revendications précédentes.
  12. Procédé selon la revendication 11, caractérisé en ce que le procédé de lavage est effectué à une température de bain inférieure à 60°C.
  13. Utilisation d'un détergent pour lave-vaisselle selon l'une des revendications précédentes pour améliorer le nettoyage du the dans le lave-vaisselle.
EP09799315.8A 2008-12-15 2009-12-14 Produit de lavage pour lave-vaisselle Not-in-force EP2366010B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL09799315T PL2366010T3 (pl) 2008-12-15 2009-12-14 Środek do maszynowego zmywania naczyń

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008061858A DE102008061858A1 (de) 2008-12-15 2008-12-15 Maschinelles Geschirrspülmittel
PCT/EP2009/067039 WO2010076165A1 (fr) 2008-12-15 2009-12-14 Produit de lavage pour lave-vaisselle

Publications (2)

Publication Number Publication Date
EP2366010A1 EP2366010A1 (fr) 2011-09-21
EP2366010B1 true EP2366010B1 (fr) 2016-10-05

Family

ID=41803308

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09799315.8A Not-in-force EP2366010B1 (fr) 2008-12-15 2009-12-14 Produit de lavage pour lave-vaisselle

Country Status (4)

Country Link
EP (1) EP2366010B1 (fr)
DE (1) DE102008061858A1 (fr)
PL (1) PL2366010T3 (fr)
WO (1) WO2010076165A1 (fr)

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112012024674B1 (pt) 2010-04-26 2019-07-02 Novozymes A/S Grânulo, e, composição de detergente granular
WO2012175401A2 (fr) 2011-06-20 2012-12-27 Novozymes A/S Composition particulaire
US20140206594A1 (en) 2011-06-24 2014-07-24 Martin Simon Borchert Polypeptides Having Protease Activity and Polynucleotides Encoding Same
BR112013033524A2 (pt) 2011-06-30 2017-02-07 Novozymes As método para rastrear alfa-amilases, método para selecionar variantes de uma alfa-amilase genitora, polipeptídeo e alfa-amilase variantes, variante, composição detergente, e, utilização de uma alfa-amilase variante
EP2732018B1 (fr) 2011-07-12 2017-01-04 Novozymes A/S Granules d'enzyme stables au stockage
US9000138B2 (en) 2011-08-15 2015-04-07 Novozymes A/S Expression constructs comprising a Terebella lapidaria nucleic acid encoding a cellulase, host cells, and methods of making the cellulase
ES2628190T3 (es) 2011-09-22 2017-08-02 Novozymes A/S Polipéptidos con actividad de proteasa y polinucleótidos que codifican los mismos
US20140342433A1 (en) 2011-11-25 2014-11-20 Novozymes A/S Subtilase Variants and Polynucleotides Encoding Same
WO2013092635A1 (fr) 2011-12-20 2013-06-27 Novozymes A/S Variants de subtilase et polynucléotides codant pour ceux-ci
CN104350149A (zh) 2012-01-26 2015-02-11 诺维信公司 具有蛋白酶活性的多肽在动物饲料和洗涤剂中的用途
CN104114698A (zh) 2012-02-17 2014-10-22 诺维信公司 枯草杆菌蛋白酶变体以及编码它们的多核苷酸
CN104704102A (zh) 2012-03-07 2015-06-10 诺维信公司 洗涤剂组合物和洗涤剂组合物中光增亮剂的取代
AR090971A1 (es) 2012-05-07 2014-12-17 Novozymes As Polipeptidos que tienen actividad de degradacion de xantano y polinucleotidos que los codifican
AU2013279440B2 (en) 2012-06-20 2016-10-06 Novozymes A/S Use of polypeptides having protease activity in animal feed and detergents
US9551042B2 (en) 2012-12-21 2017-01-24 Novozymes A/S Polypeptides having protease activity and polynucleotides encoding same
WO2014106593A1 (fr) 2013-01-03 2014-07-10 Novozymes A/S Variants d'alpha-amylase et polynucléotides les codant
CN105209613A (zh) 2013-05-17 2015-12-30 诺维信公司 具有α淀粉酶活性的多肽
EP3004315A2 (fr) 2013-06-06 2016-04-13 Novozymes A/S Variants d'alpha-amylase et polynucléotides les codant
CN105874067A (zh) 2013-06-27 2016-08-17 诺维信公司 枯草杆菌酶变体以及编码它们的多核苷酸
EP3013955A1 (fr) 2013-06-27 2016-05-04 Novozymes A/S Variants de subtilase et polynucléotides codant pour ceux-ci
US20160152925A1 (en) 2013-07-04 2016-06-02 Novozymes A/S Polypeptides Having Anti-Redeposition Effect and Polynucleotides Encoding Same
WO2015014790A2 (fr) 2013-07-29 2015-02-05 Novozymes A/S Variants de protéase et polynucléotides les codant
WO2015014803A1 (fr) 2013-07-29 2015-02-05 Novozymes A/S Variants de protéases et polynucléotides les codant
EP2832853A1 (fr) 2013-07-29 2015-02-04 Henkel AG&Co. KGAA Composition détergente comprenant des variantes de protéases
WO2015049370A1 (fr) 2013-10-03 2015-04-09 Novozymes A/S Composition détergente et utilisation de celle-ci
US10030239B2 (en) 2013-12-20 2018-07-24 Novozymes A/S Polypeptides having protease activity and polynucleotides encoding same
WO2015134729A1 (fr) 2014-03-05 2015-09-11 Novozymes A/S Compositions et procédés destinés à améliorer les propriétés de matériaux textiles non-cellulosiques par l'utilisation d'endo-xyloglucane transférase
WO2015134737A1 (fr) 2014-03-05 2015-09-11 Novozymes A/S Compositions et procédés pour améliorer les propriétés de matières textiles cellulosiques avec une xyloglucane endotransglycosylase
EP3126479A1 (fr) 2014-04-01 2017-02-08 Novozymes A/S Polypeptides présentant une activité alpha-amylase
EP3155097A1 (fr) 2014-06-12 2017-04-19 Novozymes A/S Variants d'alpha-amylase et polynucléotides codant pour ces derniers
EP3161115B1 (fr) * 2014-06-27 2019-02-20 Henkel AG & Co. KGaA Détergent pour lave-vaisselle comprenant des polymères contenant du phosphate
WO2016001450A2 (fr) 2014-07-04 2016-01-07 Novozymes A/S Variants de subtilase et polynucléotides codant pour ceux-ci
BR112017000102B1 (pt) 2014-07-04 2023-11-07 Novozymes A/S Variantes de subtilase de uma subtilase progenitora, composição detergente, uso da mesma e método para a produção de uma variante de subtilase que tem atividade de protease
US10287562B2 (en) 2014-11-20 2019-05-14 Novoszymes A/S Alicyclobacillus variants and polynucleotides encoding same
CN107075493B (zh) 2014-12-04 2020-09-01 诺维信公司 枯草杆菌酶变体以及编码它们的多核苷酸
US10760036B2 (en) 2014-12-15 2020-09-01 Henkel Ag & Co. Kgaa Detergent composition comprising subtilase variants
WO2016202839A2 (fr) 2015-06-18 2016-12-22 Novozymes A/S Variants de subtilase et polynucléotides codant pour ceux-ci
EP3106508B1 (fr) 2015-06-18 2019-11-20 Henkel AG & Co. KGaA Composition détergente comprenant des variantes de subtilase
US20180171318A1 (en) 2015-10-14 2018-06-21 Novozymes A/S Polypeptides Having Protease Activity and Polynucleotides Encoding Same
WO2017064269A1 (fr) 2015-10-14 2017-04-20 Novozymes A/S Variants polypeptidiques
WO2017207762A1 (fr) 2016-06-03 2017-12-07 Novozymes A/S Variants de subtilase et polynucléotides codant pour ceux-ci
WO2018011276A1 (fr) 2016-07-13 2018-01-18 The Procter & Gamble Company Variants dnase de bacillus cibi et leurs utilisations
US10781408B2 (en) 2017-10-27 2020-09-22 The Procter & Gamble Company Detergent compositions comprising polypeptide variants
US11441136B2 (en) 2017-10-27 2022-09-13 Novozymes A/S DNase variants
CN112262207B (zh) 2018-04-17 2024-01-23 诺维信公司 洗涤剂组合物中包含碳水化合物结合活性的多肽及其在减少纺织品或织物中的褶皱的用途
US20220235341A1 (en) 2019-03-21 2022-07-28 Novozymes A/S Alpha-amylase variants and polynucleotides encoding same
EP3953462A1 (fr) 2019-04-10 2022-02-16 Novozymes A/S Variants polypeptidiques
US20220325204A1 (en) 2019-08-27 2022-10-13 Novozymes A/S Detergent composition
WO2021053127A1 (fr) 2019-09-19 2021-03-25 Novozymes A/S Composition détergente
WO2021064068A1 (fr) 2019-10-03 2021-04-08 Novozymes A/S Polypeptides comprenant au moins deux domaines de liaison aux hydrates de carbone
EP3892708A1 (fr) 2020-04-06 2021-10-13 Henkel AG & Co. KGaA Compositions de nettoyage comprenant des variantes de dispersine
EP4225905A2 (fr) 2020-10-07 2023-08-16 Novozymes A/S Variants d'alpha-amylase
WO2022171780A2 (fr) 2021-02-12 2022-08-18 Novozymes A/S Variants d'alpha-amylase
EP4359518A1 (fr) 2021-06-23 2024-05-01 Novozymes A/S Polypeptides d'alpha-amylase

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH673033A5 (en) * 1987-10-26 1990-01-31 Cosmina Ag Powder dishwashing agents for dishwashing machines - contg. combination of sodium citrate and sodium salt(s) of hydroxy-ethane di:phosphonic acid with sodium silicate
DE19618725A1 (de) * 1996-05-09 1997-11-13 Weigert Chem Fab Verfahren und Kit zum Reinigen von Geschirr
GB2382342A (en) * 2001-11-27 2003-05-28 Reckitt Benckiser Nv Water-softening tablet
DE102007006630A1 (de) * 2007-02-06 2008-08-07 Henkel Ag & Co. Kgaa Reinigungsmittel
DE102008028229A1 (de) * 2008-06-16 2009-12-17 Fit Gmbh Zusammensetzung zur Herstellung von Reinigungsmitteln, Tablettiermischung, Polymerkombination, Reinigunsmittel-Formkörper und Verfahren zur deren Herstellung

Also Published As

Publication number Publication date
DE102008061858A1 (de) 2010-06-17
PL2366010T3 (pl) 2017-07-31
WO2010076165A1 (fr) 2010-07-08
EP2366010A1 (fr) 2011-09-21

Similar Documents

Publication Publication Date Title
EP2366010B1 (fr) Produit de lavage pour lave-vaisselle
EP2366007B1 (fr) Agent de lavage pour lave-vaisselle
EP2367920B1 (fr) Détergent pour lave-vaisselle
EP2350249B1 (fr) Agent de lavage pour lave-vaisselle
EP2185674B1 (fr) Détergents
EP2115112B1 (fr) Détergents
EP2118254B1 (fr) Détergents
EP2364351B1 (fr) Détergents
EP2185677B1 (fr) Détergents
DE102011084934A1 (de) Klarspül- und Geschirrspülmittel
EP2814932B1 (fr) Produit de nettoyage liquide contenant un polymère sulfonique et présentant une faible teneur en eau
EP3080242B1 (fr) Lessive liquide pour lave-vaisselle, exempte de phosphates
EP2576753B1 (fr) Détergent pour lave-vaisselle
WO2008095554A2 (fr) Détergents
DE102012209506A1 (de) Geschirrspülmittel
EP3481936B1 (fr) Produit vaisselle contenant de l'ose acide et de l'acide aminocarboxylique
DE102008054116A1 (de) Maschinelles Geschirrspülmittel
DE102008062773A1 (de) Maschinelles Geschirrspülmittel
EP2115109A2 (fr) Détergents

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110203

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20120918

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160510

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 834677

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009013190

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161005

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170106

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170205

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170206

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009013190

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170105

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

26N No opposition filed

Effective date: 20170706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161214

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20171211

Year of fee payment: 9

Ref country code: FR

Payment date: 20171221

Year of fee payment: 9

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 834677

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161214

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20171221

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161214

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091214

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20171221

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20181123

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009013190

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190702

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191214