EP2364070B1 - Elektrode mit Kühlrohr für eine Plasmaschneidvorrichtung - Google Patents

Elektrode mit Kühlrohr für eine Plasmaschneidvorrichtung Download PDF

Info

Publication number
EP2364070B1
EP2364070B1 EP10015592.8A EP10015592A EP2364070B1 EP 2364070 B1 EP2364070 B1 EP 2364070B1 EP 10015592 A EP10015592 A EP 10015592A EP 2364070 B1 EP2364070 B1 EP 2364070B1
Authority
EP
European Patent Office
Prior art keywords
electrode body
stop
electrode
face
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10015592.8A
Other languages
English (en)
French (fr)
Other versions
EP2364070A2 (de
EP2364070A3 (de
Inventor
Manfred Hollberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOLLBERG, MANFRED
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP2364070A2 publication Critical patent/EP2364070A2/de
Publication of EP2364070A3 publication Critical patent/EP2364070A3/de
Application granted granted Critical
Publication of EP2364070B1 publication Critical patent/EP2364070B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3436Hollow cathodes with internal coolant flow

Definitions

  • the invention relates to a spacer for the cooling tube of an electrode of a plasma cutting device.
  • Plasma cutters are used to separate all electrically conductive materials.
  • the plasma cutter consists for example of an inverter, a handpiece, a ground cable, a power supply line and a compressed air supply line.
  • a plasma is an electrically conductive gas in which an arc is ignited almost exclusively with high-frequency ignition and is pinched at the outlet by an insulated, usually water-cooled, copper nozzle.
  • the high energy density melts the metal.
  • the molten metal is blown away by a gas jet, creating the kerf.
  • the electrode of a plasma cutting apparatus has an elongate hollow body with an open end and a closed end. It is preferably formed of copper, but other materials such as copper and silver alloys are possible. At the bottom of the electrode is a cylindrical insert made of a material with high thermionic center Emissivity pressed in a hole. This material represents the electrode core and is preferably made of z. Hafnium, zirconium or tungsten.
  • the internal cooling tube requires a relatively fixed position relative to the electrode in order to make good use of the characteristic of the circulating cooling flow. This is an important point in terms of increasing the life of the electrode.
  • the EP 2 082 622 shows an internal, cylindrically shaped cooling tube that has a predetermined position relative to the electrode body. This is achieved by a radially projecting shoulder on the peripheral surface of the cooling tube in conjunction with a mating stop on the electrode housing side. The cooling tube is thus held in the upper region and so selectively positioned relative to the electrode body.
  • the invention is therefore based on the task of a simple and universal stop for the cooling tube ready.
  • the invention is characterized by the technical teaching of claim 1.
  • An essential feature of the invention is that at least one axial stop for the cooling tube is formed on the inside of the electrode body.
  • the electrode body has a central bore in the lower region, which accommodates an electrode core.
  • the electrode core extends in the direction of the interior of the electrode body and is held by a cylindrically shaped receptacle in the electrode body.
  • the receptacle of the electrode core is surrounded by an annular recess in the interior of the electrode body, in which the cooling liquid can circulate. This allows good heat dissipation and thus extends the life of the electrode.
  • the cooling tube is spaced by a stop in the annular recess on the side of the electrode. This allows a good circulation of the cooling liquid in the lower region of the electrode body.
  • the invention provides to displace the axial movement of the cooling tube limiting stop in the inside of the electrode body and that in the vicinity of the end face of the electrode body.
  • the stop is thus laid in the circumferential annular recess in the vicinity of the end face of the electrode body inside.
  • the stop is thus located on the electrode side and may preferably be formed as a rectangular or round, extending in the axial direction tooth. It is crucial that the size of the stop largely does not affect the flow of the cooling liquid.
  • the front end side of the cooling tube is now on the front side of the dipping into the cooling liquid, pointing in the axial direction tooth.
  • the electrode can be produced by a pressing process.
  • the pressing process the special design of the electrode can be produced without cutting, together with the axially aligned stop, thus reducing the need for costly, post-machining machining. It is also possible to attach the stop for the cooling tube in a second process to the electrode body.
  • the tooth-shaped stop can also be achieved by a machining of the annular recess on the inside of the electrode body.
  • an axially aligned end mill travels into the central inner bore of the electrode body and progressively mills the bottom of the annular recess in the circumferential direction by a circumferential angle of e.g. 355 degrees, so that in the remaining angular range of 5 degrees, the tooth-shaped stop stops as material increase.
  • a plurality of stops or stop teeth are present in the annular recess on the electrode body, which position the cooling tube on the front side stop limiting with respect to the electrode.
  • the stop is not located on the bottom of the annular recess in the electrode body, but instead on the side walls of the annular recess, which then in a radial direction in the interior of the annular recess protruding tooth results.
  • the stop is made of one piece material from the material of the electrode body out.
  • the invention is not limited thereto. It may be provided in a development that the (axial or radial) stop is anchored as a stop screw or stop pin anchored in the material of the electrode body.
  • Such an anchoring can be made detachable or non-detachable. It can be designed as gluing, welding, drilling or screwing. In this case, such a stop also consist of a different material than the material of the electrode body.
  • the stop is arranged on a ring which is inserted or pressed into the annular, circumferential recess in the electrode body or fixed in some other way.
  • the ring can also be fixed in this recess by means of clamping means in order to avoid strike-off or flushing with the cooling liquid.
  • Fig.1 shows a plasma electrode 1, which consists essentially of an electrode body 2 and a cooling tube 3.
  • the plasma electrode 1 can be fitted exchangeably by pressing fit in a cathode block to a burner, not shown here.
  • the elongated, axially extending electrode body 2 is made of copper in a preferred embodiment. However, materials such as silver or copper alloys are also possible.
  • the electrode body 2 has an open and a closed end, wherein the closed end is in the lower region.
  • the electrode body 2 has an inwardly axially extending receptacle 5.
  • a bore 8 is provided in the middle of the electrode body 2, and serves to receive the electrode core 9.
  • the bore 8 may be formed either as a blind hole or through hole.
  • the electrode core 9 is pressed in a preferred embodiment.
  • the invention is not limited to a press fit. It is also a soldering, welding or other connection technology possible.
  • the receptacle 5 for the electrode core 9 is radially formed in the interior of the electrode body 2 and forms a part with the electrode body 2 from.
  • the electrode core 9 is designed as an insert and consists of a material with high thermionic emissivity. For this purpose, z. As hafnium, zirconium or tungsten can be used.
  • the electrode core extends from the lower end axlai through the bore 5 in the direction of the interior of the electrode body. 2
  • the axial receptacle 5 extends, wherein an annular recess 6 between the receptacle 5 and the housing wall of the electrode body 2 is formed.
  • the annular recess 6 serves for better circulation of the cooling liquid and thus enables a more effective heat dissipation away from the electrode.
  • the cooling tube 3 inserted into the central center bore of the electrode body 2 is thin-walled, hollow, cylindrical and preferably exchangeable. Due to its diameter, the cooling tube 3 forms in its interior a liquid channel 4, which allows the flow of a cooling liquid in the direction of arrow 19.
  • the outer diameter of the cooling tube 3 is designed so that it is a backflow of the cooling liquid between the inner wall of the electrode body 2 and the outer wall of the cooling tube 3 by a radial annular gap 18 in the direction of arrow 23 allows. Thus, a circulation of the cooling liquid takes place within the electrode body 2.
  • the cooling liquid is introduced through the liquid channel 4 in the direction of arrow 19 and impinges on the electrode core 8 and the receptacle 5 with its inner surface 7. Thereafter, the cooling liquid flows along the inner surface 7 of the receptacle 5 in the annular recess 6 and is due to the formation of the electrode body 2 deflected into the radially outer annulus.
  • the circulation or deflection of the cooling liquid in the annular recess 6 requires a certain axial positioning of the cooling tube 3 with respect to the electrode body 2. This is achieved by at least one stop 10, which is located at the bottom of the annular recess 25 of the electrode body 2.
  • the stop 10 is formed as an axial, rectangular elevation and spaced, due to its design and position, the cooling tube 3 in the lower region of the electrode body. 2
  • the stop 10 has a longitudinal axis 27. which is parallel to the longitudinal axis of the electrode body 2.
  • the stop 10 is formed from the material of the electrode body 2.
  • an outer ring groove bottom 13 forms between the inside of the electrode body 2 and the stop 10.
  • an inner Ringnutenground 14 On the radially opposite side forms between the stop 10 and the inner surface 7 of the receptacle 5 on the base 25 of the recess 6, an inner Ringnutenground 14.
  • the stopper 10 extends in the axial direction and has an axial distance 21.
  • the distance 21 results from the end face 22 of the receptacle 5 and the end face 20 of the knockout 10.
  • the distance 21 is about 2/3 of the total axial length of the receptacle 5.
  • the invention should not be limited to this length specification. Rather, any distance is possible.
  • any other shape is to be claimed for the present invention, which is formed on the side of the electrode body 2.
  • the stopper 10 is part of the electrode body 2 and is arranged axially, on the bottom side in the recess 6 of the electrode body 2.
  • the stop 10 is formed on one side and as a rectangular shoulder on the base 25 of the recess 6.
  • the cooling water can thus flow in the direction of arrow 19 through the liquid channel 4, strikes the bottom 25 of the recess 6, is deflected here and then flows through the annular gap 18 in the direction of arrow 23 again.
  • the stop 10 is formed only as a single, smaller, rectangular shoulder at the bottom of the recess 6, the coolant can circulate almost without resistance.
  • Fig.2 shows a second embodiment of the invention essential plasma electrode.
  • the same reference numerals as in FIG. 1 the same reference numerals as in FIG. 1 ,
  • the stop 10a starting from the inner surface of the electrode body 2, extends radially in the direction of the central longitudinal axis of the electrode body 2.
  • the stopper 10a is thus directed radially inwardly with its longitudinal extent.
  • the side surface 24 of the radially inwardly directed stop 10a is in direct contact with the end face 26 of the cooling tube 3 and is thereby spaced from the base 25 of the recess.
  • the longitudinal axis (27) of the stop (10a) is formed perpendicular to the longitudinal axis of the electrode body (2).
  • annular gap 16 is formed, which is followed in the axial direction by a radial Schuschnusist 15.
  • the undercut 15 allows the coolant to circulate in the recess 6 despite the stop 10a.
  • the stop 10a is formed as a one-sided, single paragraph, which keeps at a point the entire cooling tube 3 at a distance.
  • the coolant can circulate largely freely within the recess 6 and the entire electrode body 2.
  • FIG. 3 a third embodiment is shown.
  • the stop 10b extends, starting from the centrally arranged receptacle 5 radially in the direction of the inner wall of the electrode body 2.
  • the stopper 10b is thus directed with its longitudinal extent radially outward.
  • an annular gap 17 is formed, which is followed by a radial undercut 15 in the direction of the longitudinal axis.
  • the stopper 10b is thus formed as a freestanding, radial stop, around which the cooling water can circulate
  • the longitudinal axis (27) of the stop (10b) is formed perpendicular to the longitudinal axis of the electrode body (2).
  • the number of stops 10, 10 ', 10a, 10b, 10c, 10d, 10e, 10f is not limited to one, as well as a plurality of stops can be arranged distance limiting for the cooling tube 3 within the electrode body 2.
  • FIG. 4 shows a schematic representation of a plasma electrode 1 with an axial end face stop 10c.
  • the stopper 10c extends both radially outgoing from the centrally disposed receptacle 5 in the direction of the inner wall of the electrode body 2, as well as axially starting from the base 25 of the recess. 6
  • the stop 10c is formed as a one-sided paragraph, which cooperates with the end face 26 of the cooling tube 3 and these spaced.
  • the coolant can largely circulate in the recess 6 of the electrode body 2.
  • the longitudinal axis (27) of the stop (10c) is formed parallel to the longitudinal axis of the electrode body (2).
  • FIG. 5 shows a schematic representation of a plasma electrode 1 with an axial, end stop 10d.
  • the stop 10d extends both radially outgoing from the inner wall of the electrode body 2 in the direction of the longitudinal axis, as well as axially starting from the base 25 of the recess. 6
  • annular groove 14 is formed, which allows a circulation of the cooling water.
  • the annular groove 14 extends axially in the direction of the bottom 25 of the recess 6.
  • the stop 10d is in this case designed so that it cooperates with its side surface 24 and the end face 26 of the cooling tube 2 and this distance from the bottom 25 of the recess 6. By this one-sided spacing, it is possible for the coolant to circulate in the remaining recess 6.
  • the longitudinal axis (27) of the stop (10d) is formed perpendicular to the longitudinal axis of the electrode body (2).
  • Flg. 6 is the electrode body 2 of the FIG. 1 shown in sectional view XI. Between the electrode body 2 and the central, inner receptacle 5 at least one stop 10 is arranged, which is arranged in the annular recess 6.
  • the cooling tube 3 is shown in phantom in this embodiment and is in contact with at least one stop 10 and 10 '.
  • the stop 10 extends in the axial direction and cooperates with at least one point of the end face of the cooling tube 3.
  • an inner annular groove bottom 14 Between the cooling tube 3 and the central receptacle 5 is an inner annular groove bottom 14 and between the central receptacle 5 and the inner wall of the electrode body 2, an outer annular groove bottom 13 is formed A liquid channel 4, which is part of the cooling tube 3, adjoins the inner annular groove bottom 14 in the axial direction. And on the outer Ringnutenground 13 joins in the axial direction an annular gap 18, through which the coolant flows out again.
  • FIG. 7 shows a ring 11, which is to form a stop 10 for the cooling tube 3 as another embodiment.
  • the ring 11 has at least one stop tooth 12 and is in this case inserted between the cooling tube 3 and the electrode body 2.
  • two diametrically opposed stop teeth 12 are shown.
  • the cooling tube 3 When installed, the cooling tube 3 can be positioned in alignment with the electrode body 2 in the axial direction by means of the ring 11 and the stop tooth 12. This allows a circulation of the liquid between the front end side of the cooling tube 3 and the electrode body 2, wherein the annular recess 6, the direction reversal of the coolant flow accomplished.
  • FIG. 8 shows a representation of a ring 11 with two radial, inner stops 10.
  • the ring 11 is inserted into the recess 6 of the electrode body 2.
  • the radially inwardly directed stops 10 which are in direct contact with the end face 26 of the cooling tube 3, there is a spacing of the cooling tube 2 in the axial direction, starting from the bottom 25 of the recess 6 instead.
  • the electrode body 2 has in its interior in the recess 6, a stop 10e, which has a continuous shoulder between the inner wall of the electrode body 2 and the receptacle 5 forms.
  • the stop 10e is in this case offset from the end face 22 by the distance 21 back.
  • the stop 10e is formed on one side or only in a partial region of the recess 6.
  • the partial area can be for example 30 °.
  • stop 10e cooperates with its end face 20 with the end face of the cooling tube 3 and this spaced apart in the axial direction relative to the base 25 of the recess.
  • radial side of the electrode body 2 between the receptacles 5 and the inner wall of the electrode body 2 has a recess 6, which allows a circulation of the cooling water.
  • the cooling tube 2 is thus held on one side by the stop 10e at a distance, while the recess 6 is free and allows a circulation of the cooling water.
  • a double-sided internal stop 10f is shown.
  • the stop 10f is either circumferential or is formed by two, single paragraphs. Decisive in this embodiment is that the stopper 10f is a part of the electrode body 2 and the receptacle 5 and is designed as a shoulder, which spaces the cooling tube 2 in the axial direction relative to the base 25 of the recess 6.
  • annular groove 13 is formed, in which the cooling water can circulate.
  • the longitudinal axis (27) of the at least one stop (10f) is formed parallel to the longitudinal axis of the electrode body (2).
  • FIG. 11 shows a schematic representation of the electrode body according to the invention. At two opposite points on the inner wall of the Electrode body 2 are two, formed radially inwardly, extending in the direction of the longitudinal axis stops 10d
  • the electrode body 2 has an annular groove bottom 14 in which the cooling water can circulate.
  • the heels 10d are arranged so that they interact with their end face 20 with the end face 26 of the cooling tube 3 and this space in the axial direction of the base 25 of the recess 6.
  • the heels 10d can either be arranged completely circumferentially or only in certain partial areas around the receptacle 5.
  • the longitudinal axis (27) of the stop (10d) is formed perpendicular to the longitudinal axis of the electrode body (2).
  • FIG. 12 shows a section through the in FIG. 12 illustrated embodiment of the electrode body.
  • the stops 10d are arranged opposite one another, extending radially outwardly on the central receptacle 5.
  • a ring groove bottom 14 is formed, which continues in the axial direction in the form of a liquid channel 4.
  • the cooling tube 3 is shown in dashed lines and is in contact with its end face at least two points with the at least two stops 10d. Between the inner wall and the cooling tube 3, an annular gap 18 is formed.
  • FIG. 13 shows a section through the in FIG. 10 illustrated embodiment of the electrode body.
  • At least one stop 10b, 10f extend in the radial direction.
  • an outer annular groove bottom 13 is arranged, which is followed in the axial direction by an annular gap.
  • FIG. 14 will cut through the in FIG. 9 shown embodiment shown.
  • the electrode body 2 has in its interior in the recess 6, a stop 10 e, which forms a continuous shoulder or a continuous connection between the inner wall of the electrode body 2 and the receptacle 5.
  • the cooling tube 3 is here shown in dashed lines and lies with its front side on one side on the stop 10e and is thereby spaced from the bottom of the recess 6.
  • FIGS. 15 to 19 individual process steps for producing an electrode body essential to the invention are shown.
  • the production of the electrode body is a cold forming.
  • the material is brought into a geometric shape.
  • a first process step ( FIG. 15 ) is the respective blank for the subsequent electrode body 2 of a rod-shaped material to the right one Length to cut.
  • the electrode body 2 is now in its original form.
  • a second process step ( FIG. 16 ) the blank is cold formed for the first time.
  • an external, axial force acts on the blank.
  • a first cupping of the electrode body takes place.
  • a first cavity forms within the electrode body 2.
  • the term "cupping” generally refers to a massive forming in which the workpiece or the blank is deformed in a press between a pressing die and a die with considerable pressure. Is between the die inside and punch a cavity into which the material flows by pressing, the result is a cup-shaped bulge in the workpiece according to the shape of the punch. Depending on the direction of flow of the material, this is referred to as forward or reverse extrusion.
  • a fourth process step ( FIG. 18 ) another cupping process takes place, whereby the cavity within the electrode body is further increased.
  • a fifth process step there is a combined cupping and upsetting process.
  • the central receptacle 5, the stops 10f and the outer Ringnutenminute 13 are formed.
  • the electrode body 2 now has the same shape as in FIG FIG. 10 on.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)
  • Arc Welding In General (AREA)

Description

    Gebiet der Erfindung
  • Gegenstand der Erfindung ist ein Abstandshalter für das Kühlrohr einer Elektrode einer Plasmaschneidvorrichtung.
  • Stand der Technik
  • Plasmaschneider werden zum Trennen sämtlicher elektrisch leitfähigen Werkstoffe eingesetzt. Der Plasmaschneider besteht dabei beispielsweise aus einem inverter, einem Handstück, einem Massekabel, einer Stromzuleitung und einer Druckluftzuleitung.
  • Folgende Punkte haben sich beim Plasmaschneiden als wesentliche Vorteile herausgestellt:
    • Hervorragende Eignung im dünnen und mittleren Baustahlbereich (bis 30 mm)
    • Schneiden hochfester Baustähle mit geringer Wärmeeinbringung
    • Hohe Schneidgeschwindigkeiten
    • Sehr gute Automatisierbarkeit.
  • Ein Plasma ist ein elektrisch leitfähiges Gas, wobei ein Lichtbogen fast ausschließlich mit einer Hochfrequenzzündung gezündet wird und am Austritt durch eine isolierte, in der Regel wassergekühlte, Kupferdüse eingeschnürt wird. Durch die hohe Energiedichte schmilzt das Metall. Die Metallschmelze wird durch einen Gasstrahl weggeblasen, wodurch die Schnittfuge entsteht.
  • Die Elektrode einer Plasmaschneidvorrichtung weist einen länglichen Hohlkörper mit einem offenen Ende und einem geschlossenen Ende auf. Sie ist bevorzugt aus Kupfer ausgebildet, es sind jedoch andere Materialien wie Kupfer- und Silberlegierungen möglich. Im unteren Bereich der Elektrode ist mittig ein zylindrischer Einsatz aus einem Material mit hoher thermionischer Emissionsfähigkeit in einer Bohrung eingepresst. Dies Material stellt den Elektrodenkern dar und besteht bevorzugt aus z. B. Hafnium, Zirkonium oder Wolfram.
  • Aus dem Stand der Technik ist es somit bereits bekannt, dass die Kühlflüssigkeit, über ein in der Elektrode innenliegendes Kühlrohr, zum unteren Ende der Elektrode geleitet wird. Durch die zirkulierende Flüssigkeit findet eine ausreichende Kühlung der Elektrode statt.
  • Das innenliegende Kühlrohr benötigt gegenüber der Elektrode eine relativ feste Position, um die Eigenschaft der zirkulierenden Kühlströmung gut auszunutzen. Dies stellt einen wichtigen Punkt in Bezug auf die Erhöhung der Lebensdauer der Elektrode dar.
  • Aus dem Stand der Technik ist bereits eine bestimmte Positionierung des Kühlrohres gegenüber dem Elektrodenkörper bekannt.
  • Die EP 2 082 622 zeigt ein innenliegendes, zylindrisch ausgebildetes Kühlrohrs, dass eine vorgegebene Position gegenüber dem Elektrodenkörper hat. Dies wird durch einen radial vorstehenden Absatz auf der Umfangsfläche des Kühlrohres in Verbindung mit einem dafür passenden Anschlag auf der Elektrodengehäuseseite erreicht. Das Kühlrohr wird damit im oberen Bereich gehalten und so gezielt gegenüber dem Elektrodenkörper positioniert.
  • Diese Ausführungsform ist jedoch nur sehr aufwendig und kostenintensiv zu produzieren. Durch den Absatz auf der Umfangsfläche des Kühlrohres und den dafür benötigten Anschlag auf der Elektrodenkörperseite ist eine genaue Positionierung schwer möglich.
  • Gegenstand der Erfindung
  • Der Erfindung liegt deshalb die Aufgabe zugrunde einen einfachen und universellen Anschlag für das Kühlrohr bereit zustellen.
  • Zur Lösung der gestellten Aufgabe ist die Erfindung durch die technische Lehre des Anspruches 1 gekennzeichnet.
  • Die Lösung der gestellten Aufgabe erfolgt durch die technische Lehre des Anspruches 1.
  • Wesentliches Merkmal der Erfindung ist, dass auf der Innenseite des Elektrodenkörpers mindestens ein axialer Anschlag für das Kühlrohr ausgebildet ist.
  • Obwohl die Erfindung auch die Anordnung mehrerer Anschläge vorsieht, wird der einfacheren Beschreibung wegen nur die Anordnung eines einzigen Anschlages näher beschrieben. Dies soll jedoch nicht den Offenbarungsumfang der Erfindung begrenzen. Wenn demnach in der folgenden Beschreibung von einem einzigen Anschlag die Rede ist, so ist dies als "ein oder mehrere Anschläge" zu verstehen.
  • In einer ersten bevorzugten Ausführungsform besitzt der Elektrodenkörper im unteren Bereich eine mittige Bohrung, die einen Elektrodenkern aufnimmt. Der Elektrodenkern erstreckt sich in Richtung des Innenraums des Elektrodenkörpers und wird durch eine zylindrisch ausgebildete Aufnahme im Elektrodenkörper gehalten. Um eine bessere Kühlung der Elektrode zu gewährleisten, wird im Innenraum des Elektrodenkörpers die Aufnahme des Elektrodenkerns von einer ringförmigen Ausnehmung umgeben, in der die Kühlflüssigkeit zirkulieren kann. Dies ermöglicht eine gute Wärmeableitung und verlängert somit die Lebensdauer der Elektrode.
  • Neu bei der Erfindung ist nun, dass das Kühlrohr durch einen Anschlag in der ringförmigen Ausnehmung auf der Seite der Elektrode beabstandet wird. Dies ermöglicht eine gute Zirkulation der Kühlflüssigkeit im unteren Bereich des Elektrodenkörpers.
  • Somit sieht die Erfindung vor, den die axiale Bewegung des Kühlrohres begrenzenden Anschlag in die Innenseite des Elektrodenkörpers und zwar in die Nähe der Stirnseite des Elektrodenkörpers zu verlagern. Der Anschlag wird also in die umlaufende ringförmige Ausnehmung in der Nähe der Stirnseite des Elektrodenkörpers hinein verlegt.
  • Der Anschlag befindet sich somit auf der Elektrodenseite und kann vorzugsweise als rechteckiger oder runder, sich in axialer Richtung erstreckender Zahn ausgebildet sein. Entscheidend ist, dass die Größe des Anschlags weitgehend nicht den Strömungsfluss der Kühlflüssigkeit beeinträchtigt. Die vordere Stirnseite des Kühlrohres liegt nun an der Stirnseite des in die Kühlflüssigkeit eintauchenden, in axialer Richtung weisenden Zahnes auf.
  • Um eine gute Qualität der Elektrode zusammen mit dem Anschlag zu erreichen, kann in einer bevorzugten Ausführungsform die Elektrode durch ein Pressverfahren hergestellt werden. Mithilfe des Pressverfahrens lässt sich die spezielle Bauform der Elektrode zusammen mit dem axial ausgerichteten Anschlag spanlos herstellen und verringert so eine aufwendige, spanabhebende Nachbearbeitung. Ebenso ist es möglich, den Anschlag für das Kühlrohr in einem zweiten Prozess an den Elektrodenkörper anzubringen.
  • Statt eines Pressverfahrens kann der zahnförmige Anschlag auch durch eine spanabhebende Bearbeitung der ringförmigen Ausnehmung an der Innenseite des Elektrodenkörpers erreicht werden. In diesem Fall fährt ein in axialer Richtung ausgerichteter Stirnfräser in die zentrale Innenbohrung des Elektrodenkörpers und fräst den Boden der ringförmigen Ausnehmung in Umfangsrichtung fortschreitend um einen Umfangswinkel von z.B. 355 Grad ab, sodass im verbleibenden Winkelbereich von 5 Grad der zahnförmige Anschlag als Materialerhöhung stehen bleibt.
  • In einer weiteren Ausführungsform sind in der ringförmigen Ausnehmung am Elektrodenkörper mehrere Anschläge bzw. Anschlagzähne vorhanden, die das Kühlrohr an der Stirnseite anschlagbegrenzend gegenüber der Elektrode positionieren.
  • Statt der Ausbildung von einem oder mehreren axial gerichteten Anschlägen kann auch vorgesehen sein, dass der Anschlag nicht auf dem Grund der ringförmigen Ausnehmung im Elektrodenkörper angeordnet ist, sondern stattdessen an den Seitenwänden der ringförmigen Ausnehmung, wobei sich dann ein in radialer Richtung in den Innenraum der ringförmigen Ausnehmung vorstehender Zahn ergibt.
  • Alle oben beschriebenen Ausführungen beziehen sich darauf, dass der Anschlag werkstoffeinstückig aus dem Material des Elektrodenkörpers heraus gearbeitet ist. Darauf ist die Erfindung nicht beschränkt. Es kann in einer Weiterbildung vorgesehen sein, dass der (axiale oder radiale) Anschlag als Anschlagschraube oder Anschlagstift ausgebildet in dem Material des Elektrodenkörpers verankert ist. Eine solche Verankerung kann lösbar oder unlösbar ausgebildet sein. Sie kann als Klebung, Schweißung, Bohrung oder Verschraubung ausgebildet sein. Hierbei kann ein solcher Anschlag auch aus einem anderen Material als das Material des Elektrodenkörpers bestehen.
  • Schließlich ist in einer weiteren Ausgestaltung vorgesehen, dass der Anschlag an einem Ring angeordnet ist, der in die ringförmige, umlaufende Ausnehmung in den Elektrodenkörper eingelegt oder eingepresst oder in anderer Weise festgelegt ist. Der Ring kann natürlich auch in diese Ausnehmung durch Spannmittel festgelegt sein, um ein Losschlagen oder Ausschwemmen mit der Kühlflüssigkeit zu vermeiden.
  • Im Folgenden wird die Erfindung anhand von lediglich einen Ausführungsweg darstellenden Zeichnungen näher erläutert. Hierbei gehen aus den Zeichnungen und ihrer Beschreibung weitere erfindungswesentliche Merkmale und Vorteile der Erfindung hervor.
  • Es zeigen:
  • Fig. 1:
    Schematische Darstellung einer Plasmaelektrode mit stirnseitigern Anschlag am Elektrodenkörper
    Fig. 2:
    Schematische Darstellung einer Plasmaelektrode mit radialem Anschlag an der Innenwand des Elektrodenkörpers
    Fig. 3:
    Schematische Darstellung einer Plasmaelektrode mit einem radialen Anschlag an der Wand der mittigen Aufnahme
    Fig. 4:
    Schematische Darstellung einer Plasmaelektrode mit einem radialen, stirnseitigen Anschlag
    Fig.5:
    Schematische Darstellung einer Plasmaelektrode mit einem radialen, stirnseitigen Anschlage
    Fig.6:
    Darstellung einer geschnitten Ansicht der Ausführungsform aus Figur 1
    Fig.7:
    Perspektivische Darstellung eines Rings mit einem Anschlag für ein Kühlrohr
    Fig.8:
    Darstellung einer abgewandelten Ausführung eines Rings mit zwei radialen, innenliegende Anschlägen
    Figur 9:
    Schematische Darstellung einer Plasmaelektrode mit einem einseitigen, durchgehenden Anschlag
    Figur 10:
    Schematische Darstellung einer Plasmaelektrode mit einem beidseitigen, mittigen Anschlag
    Figur 11:
    Schematische Darstellung einer Plasmaelektrode mit einem beidseitigen, außenseitigen Anschlag
    Figur 12:
    Schnitt durch den Elektrodenkörper mit randseitigen Anschlägen
    Figur 13:
    Schnitt durch den Elektrodenkörper mit an der mittigen Aufnahme angeordneten Anschlägen
    Figur 14:
    Schnitt durch den Elektrodenkörper mit einem durchgängigen, einseitigen Absatz
    Figuren 15 bis 19:
    Schematischer Verfahrensablauf einer Herstellung eines Elektrodenkörpers
  • Fig.1 zeigt eine Plasmaelektrode 1, die im Wesentlichen aus einem Elektrodenkörper 2 und einem Kühlrohr 3 besteht. Die Plasmaelektrode 1 kann durch Presspassung in einem Kathodenblock an einem hier nicht gezeigten Brenner austauschbar befestigt sein.
  • Der längliche, axial verlaufende Elektrodenkörper 2 wird in einer bevorzugten Ausführungsform aus Kupfer hergestellt. Es sind jedoch ebenso Werkstoffe wie beispielsweise Silber- oder Kupferlegierungen möglich.
  • Der Elektrodenkörper 2 weist ein offenes und ein geschlossenes Ende auf, wobei sich das geschlossene Ende im unteren Bereich befindet.
  • Im unteren Bereich weist der Elektrodenkörper 2 eine nach Innen axial erstreckende Aufnahme 5 auf. In der Mitte des Elektrodenkörpers 2 ist eine Bohrung 8 vorhanden und dient zur Aufnahme des Elektrodenkerns 9. Die Bohrung 8 kann entweder als Sackloch- oder Durchgangsbohrung ausgebildet sein.
  • Der Elektrodenkern 9 ist in einer bevorzugten Ausführungsform eingepresst. Hierbei Ist die Erfindung nicht auf eine Presspassung beschränkt. Es ist ebenso ein Löten, Schweißen oder eine andere Verbindungstechnik möglich. Die Aufnahme 5 für den Elektrodenkern 9 Ist Im Innenraum des Elektrodenkörpers 2 radial ausgebildet und bildet ein Teil mit dem Elektrodenkörper 2 aus.
  • Der Elektrodenkern 9 ist als Einsatz ausgebildet und besteht aus einem Material mit hoher thermionischer Emissionsfähigkeit. Hierfür kann z. B. Hafnium, Zirkonium oder Wolfram eingesetzt werden. Der Elektrodenkern erstreckt sich ausgehend von dem unteren Ende axlai durch die Bohrung 5 in Richtung des Innenraums des Elektrodenkörpers 2.
  • Im Innenraum des Elektrodenkörpers 2 erstreckt sich die axiale Aufnahme 5, wobei sich eine ringförmige Ausnehmung 6 zwischen der Aufnahme 5 und der Gehäusewand des Elektrodenkörpers 2 ausbildet. Die ringförmige Ausnehmung 6 dient zur besseren Zirkulation der Kühlflüssigkeit und ermöglicht so eine effektivere Wärmeabfuhr von der Elektrode weg.
  • Das in die zentrale Mittenbohrung des Elektrodenkörpers 2 eingesetzte Kühlrohr 3 ist dünnwandig, hohl, zylindrisch und vorzugsweise austauschbar.
    Aufgrund seines Durchmessers bildet das Kühlrohr 3 in seinem Innenraum einen Flüssigkeitskanal 4 aus, welcher das Strömen einer Kühlflüssigkeit in Pfeilrichtung 19 ermöglicht. Der Außendurchmesser des Kühlrohres 3 ist so ausgebildet, dass er einen Rückfluss der Kühlflüssigkeit zwischen der Innenwand des Elektrodenkörpers 2 und der Außenwand des Kühlrohres 3 durch einen radialen Ringspalt 18 in Pfeilrichtung 23 ermöglicht wird. Somit findet eine Zirkulation der Kühlflüssigkeit innerhalb des Elektrodenkörpers 2 statt.
  • Durch die Bauform des Kühlrohres 3 wird die Kühlflüssigkeit durch den Flüssigkeitskanal 4 in Pfeilrichtung 19 eingeleitet und trifft auf den Elektrodenkern 8 sowie die Aufnahme 5 mit ihrer Innenfläche 7. Danach fließt die Kühlflüssigkeit entlang der Innenfläche 7 der Aufnahme 5 in die ringförmige Ausnehmung 6 und wird aufgrund der Ausbildung des Elektrodenkörpers 2 In den radial außen liegenden Ringraum umgelenkt.
  • Die Zirkulation bzw. Umlenkung der Kühlflüssigkeit in der ringförmigen Ausnehmung 6 erfordert eine gewisse axiale Positionierung des Kühlrohrs 3 gegenüber dem Elektrodenkörper 2. Dies wird durch mindestens einen Anschlag 10 erreicht, der sich am Grund der ringförmigen Ausnehmung 25 des Elektrodenkörpers 2 befindet.
  • Entsprechend der Figur 1 ist der axial erstreckende Anschlag 10 auf dem Grund 25 der ringförmigen Ausnehmung 6 gezeichnet, es sind jedoch auch andere Positionen bzw. Ausrichtungen für den Anschlag 10 innerhalb des Elektrodenkörpers 2 möglich.
  • In einer bevorzugten Ausgestaltung ist der Anschlag 10 als axiale, rechteckige Erhebung ausgebildet und beabstandet, bedingt durch seine Bauform und Position, das Kühlrohr 3 im unteren Bereich des Elektrodenkörpers 2.
  • Der Anschlag 10 weist eine Längsachse 27 auf. welche parallel zur Längsachse des Elektrodenkörpers 2 ist.
  • In einer bevorzugten Ausführungsform ist der Anschlag 10 aus dem Material des Elektrodenkörpers 2 gebildet.
  • Durch die Positionierung des Anschlages 10 am Grund 25 der Ausnehmung 6 bildet sich zwischen der Innenseite des Elektrodenkörpers 2 und dem Anschlag 10 ein äußerer Ringnutengrund 13 aus.
  • Auf der radial, gegenüberliegenden Seite bildet sich zwischen dem Anschlag 10 und der Innenfläche 7 der Aufnahme 5 am Grund 25 der Ausnehmung 6 ein innerer Ringnutengrund 14 aus.
  • Der Anschlag 10 erstreckt sich in axialer Richtung und weist einen axialen Abstand 21 auf. Der Abstand 21 ergibt sich aus der Stirnseite 22 der Aufnahme 5 und der Stirnseite 20 des Abschlages 10. In einer bevorzugten Ausführungsform beträgt der Abstand 21 etwas 2/3 der axialen Gesamtlänge der Aufnahme 5. Die Erfindung soll jedoch nicht auf diese Längenangabe beschränkt werden. Es ist vielmehr jeder beliebige Abstand möglich.
    Neben der rechteckigen Form des Anschlages 10 soll für die vorliegende Erfindung jede andere Form beansprucht werden, die auf Seite des Elektrodenkörpers 2 ausgebildet ist.
  • Entscheidend bei dieser Ausführungsform ist, dass der Anschlag 10 Teil des Elektrodenkörpers 2 ist und axial, bodenseitig in der Ausnehmung 6 des Elektrodenkörpers 2 angeordnet ist.
  • In einer bevorzugten Ausführungsform ist der Anschlag 10 einseitig und als rechteckiger Absatz am Grund 25 der Ausnehmung 6 ausgebildet.
  • Durch die Ausbildung und Positionierung des Anschlages 10 ist das Kühlrohr 3 mit seiner Stirnfläche 26 in direkten Kontakt mit der Stirnseite des einseitig ausgebildeten Anschlags 10. In dieser Position ist n
  • Das Kühlwasser kann somit in Pfeilrichtung 19 durch den Flüssigkeitskanal 4 einströmen, trifft auf den Grund 25 der Ausnehmung 6, wird hier umgelenkt und fließt anschließend durch den Ringspalt 18 In Pfeilrichtung 23 wieder ab.
  • Dadurch, dass der Anschlag 10 nur als einzelner, kleiner, rechteckiger Absatz am Grund der Ausnehmung 6 ausgebildet ist, kann das Kühlmittel fast ohne Widerstand zirkulieren.
  • Fig.2 zeigt eine zweite Ausführungsform der erfindungswesentlichen Plasmaelektrode. Hierbei gelten die gleichen Bezugszeichen wie bei Figur 1.
  • Neu bei dieser Ausführungsform ist, dass sich der Anschlag 10a, ausgehend von der Innenfläche des Elektrodenkörpers 2, radial in Richtung der mittigen Längsachse des Elektrodenkörpers 2 erstreckt. Der Anschlag 10a ist somit mit seiner Längserstreckung radial einwärts gerichtet.
  • Die Seitenfläche 24 des radial einwärts gerichteten Anschlag 10a ist in direkten Kontakt mit der Stirnfläche 26 des Kühlrohres 3 und wird dadurch von dem Grund 25 der Ausnehmung beabstandet.
  • Die Längsachse (27) des Anschlages (10a) Ist senkrecht zur Längsachse des Elektrodenkörpers (2) ausgebildet.
  • Zwischen dem radial einwärts gerichteten Anschlag 10a und der Aufnahme 5 ist ein Ringspalt 16 ausgebildet, welcher in axialer Richtung von einer radialen Hinterschneldung 15 gefolgt ist. Die Hinterschneidung 15 ermöglicht dem Kühlmittel trotz des Anschlages 10a in der Ausnehmung 6 zu zirkulieren.
  • In einer bevorzugten Ausführungsform ist der Anschlag 10a als einseitiger, einzelner Absatz ausgebildet, welcher an einem Punkt das gesamte Kühlrohr 3 auf Abstand hält. Durch diese Anordnung kann das Kühlmittel weitgehend frei innerhalb der Ausnehmung 6 bzw. des gesamten Elektrodenkörpers 2 zirkulieren.
  • In Figur 3 ist eine dritte Ausführungsform dargestellt. Hierbei erstreckt sich der Anschlag 10b, ausgehend von der mittig angeordneten Aufnahme 5 radial in Richtung der Innenwand des Elektrodenkörpers 2. Der Anschlag 10b ist somit mit seiner Längserstreckung radial auswärts gerichtet. Zwischen dem Anschlag 10b und der Innenwand des Elektrodenkörpers 2 ist ein Ringspalt 17 ausgebildet, welcher von einer radialen Hinterschneidung 15 in Richtung der Längsachse gefolgt wird. Der Anschlage 10b ist somit als freistehender, radialer Anschlag ausgebildet, um welchen das Kühlwasser zirkulieren kann
  • Die Längsachse (27) des Anschlages (10b) ist senkrecht zur Längsachse des Elektrodenkörpers (2) ausgebildet.
  • Entscheidend bei allen Ausführungsbeispielen ist, dass die Anzahl der Anschläge 10, 10', 10a, 10b, 10c, 10d, 10e, 10f nicht auf einen beschränkt ist, ebenso können mehrere Anschläge abstandsbegrenzend für das Kühlrohr 3 innerhalb des Elektrodenkörper 2 angeordnet sein.
  • Figur 4 zeigt eine schematische Darstellung einer Plasmaelektrode 1 mit einem axialen, stirnseitigen Anschlag 10c. Der Anschlag 10c erstreckt sich sowohl radial ausgehende von der mittig angeordneten Aufnahme 5 in Richtung der Innenwand des Elektrodenkörpers 2, als auch axial ausgehend von dem Grund 25 der Ausnehmung 6.
  • In einer bevorzugten Ausführungsform ist der Anschlag 10c als einseitiger Absatz ausgebildet, welcher mit der Stirnfläche 26 des Kühlrohres 3 zusammen wirkt und diese beabstandet.
  • Zwischen dem Anschlag 10c und der Innenwand des Elektrodenkörpers 2 bildet sich ein Ringnutengrund 13 aus.
  • Durch die einseitige, nicht umlaufende Ausführungsform des Absatzes 10c kann das Kühlmittel weitgehend in der Ausnehmung 6 des Elektrodenkörpers 2 zirkulieren.
  • Die Längsachse (27) des Anschlages (10c) ist parallel zur Längsachse des Elektrodenkörpers (2) ausgebildet.
  • Figur 5 zeigt eine schematische Darstellung einer Plasmaelektrode 1 mit einem axialen, stirnseitigen Anschlag 10d. Der Anschlag 10d erstreckt sich sowohl radial ausgehende von der Innenwand des Elektrodenkörpers 2 in Richtung der Längsachse, als auch axial ausgehend von dem Grund 25 der Ausnehmung 6.
  • Zwischen dem Absatz 10d und der Aufnahme 5 ist eine Ringnut 14 ausgebildet, die ein Zirkulieren des Kühlwassers ermöglicht. Die Ringnut 14 erstreckt sich axial in Richtung des Grundes 25 der Ausnehmung 6.
  • Der Anschlag 10d ist hierbei so ausgebildet, dass er mit seiner Seitenfläche 24 und der Stirnfläche 26 des Kühlrohres 2 zusammen wirkt und dieses von dem Grund 25 der Ausnehmung 6 beabstandet. Durch diese einseitige Beabstandung ist es dem Kühlmittel möglich, in der verbleibenden Ausnehmung 6 zu zirkulieren.
  • Die Längsachse (27) des Anschlages (10d) ist senkrecht zur Längsachse des Elektrodenkörpers (2) ausgebildet.
  • In Flg. 6 ist der Elektrodenkörper 2 aus der Figur 1 in der Schnittdarstellung XI gezeigt. Zwischen dem Elektrodenkörper 2 und der zentrischen, inneren Aufnahme 5 ist mindestens ein Anschlag 10 angeordnet, welcher in der ringförmigen Ausnehmung 6 angeordnet ist.
  • Das Kühlrohr 3 ist in diesem Ausführungsbeispiel gestrichelt dargestellt und ist mit in Kontakt mit mindestens einem Anschlag 10 bzw. 10'.
  • Der Anschlag 10 erstreckt sich in axialer Richtung und wirkt mit mindestens einer Stelle der Stirnseite des Kühlrohres 3 zusammen.
  • Zwischen dem Kühlrohr 3 und der mittleren Aufnahme 5 ist ein innerer Ringnutengrund 14 und zwischen der mittleren Aufnahme 5 und der Innenwand des Elektrodenkörpers 2 ist ein äußerer Ringnutengrund 13 ausgebildet
    An den inneren Ringnutengrund 14 schließt sich in axialer Richtung ein Flüssigkeitskanal 4 an, welcher Teil des Kühlrohres 3 ist. Und an den äußeren Ringnutengrund 13 schließt sich in axialer Richtung ein Ringspalt 18 an, durch welchen das Kühlmittel wieder abfließt.
  • In einer weiteren Ausführungsform sind mehrere Anschläge 10' in der ringförmigen Ausnehmung 6 dargestellt, die in Figur 6 gestrichelt gezeichnet sind.
  • Figur 7 zeigt einen Ring 11, der als weiteres Ausführungsbeispiel einen Anschlag 10 für das Kühlrohr 3 bilden soll. Der Ring 11 verfügt über mindestens einen Anschlagzahn 12 und wird hierbei zwischen das Kühlrohr 3 und dem Elektrodenkörper 2 eingesetzt. In der gezeichneten Ausführung sind zwei diametral gegenüberliegende Anschlagzähne 12 dargestellt.
  • Im eingebauten Zustand kann mithilfe des Rings 11 und dem Anschlagzahn 12 das Kühlrohr 3 fluchtend gegenüber dem Elektrodenkörper 2 in axialer Richtung positioniert werden. Dies ermöglicht eine Zirkulation der Flüssigkeit zwischen der vorderen Stirnseite des Kühlrohrs 3 und dem Elektrodenkörper 2, wobei die ringförmige Ausnehmung 6 die Richtungsumkehr des Kühlmittelstromes bewerkstelligt.
  • Figur 8 zeigt eine Darstellung eines Ringes 11 mit zwei radialen, innenliegenden Anschlägen 10. In einer bevorzugten Ausführungsform wird der Ring 11 in die Ausnehmung 6 des Elektrodenkörpers 2 eingelegt. Durch die radial nach innen gerichteten Anschläge 10, die in direkten Kontakt mit der Stirnfläche 26 des Kühlrohres 3 sind, findet ein Beabstandung des Kühlrohres 2 in axialer Richtung, ausgehend von dem Grund 25 der Ausnehmung 6, statt.
  • Mit der Figur 9 wird eine weitere Ausführungsform des Elektrodenkörpers gezeigt.
    Der Elektrodenkörper 2 weist in seinem Innenraum in der Ausnehmung 6, einen Anschlag 10e auf, welcher einen durchgehenden Absatz zwischen der Innenwand des Elektrodenkörpers 2 und der Aufnahme 5 ausbildet. Der Anschlag 10e ist hierbei gegenüber der Stirnseite 22 um den Abstand 21 zurück versetzt.
  • In einer bevorzugten Ausführungsform ist der Anschlag 10e einseitig bzw. nur in einem Teilbereich der Ausnehmung 6 ausgebildet. Der Teilbereich kann hierbei beispielsweise 30° betragen.
  • Entscheidend ist, dass der Anschlag 10e mit seiner Stirnseite 20 mit der Stirnseite des Kühlrohres 3 zusammenwirkt und dieses in axialer Richtung gegenüber dem Grund 25 der Ausnehmung beabstandet.
  • Auf der gegenüberliegenden, radialen Seite weißt der Elektrodenkörper 2 zwischen der Aufnahmen 5 und der Innenwand des Elektrodenkörpers 2 eine Ausnehmung 6 auf, die eine Zirkulation des Kühlwassers erlaubt.
  • Das Kühlrohr 2 wird somit einseitig durch den Anschlag 10e auf Abstand gehalten, während die Ausnehmung 6 frei ist und ein zirkulieren des Kühlwassers ermöglicht.
  • Mit der Figur 10 wird ein beidseitiger, innerer Anschlag 10f gezeigt. Der Anschlag 10f ist entweder umlaufend oder wird durch zwei, einzelne Absätze gebildet. Entscheidend bei dieser Ausführungsform ist, dass der Anschlag 10f ein Teil des Elektrodenkörpers 2 bzw. der Aufnahme 5 ist und als Absatz ausgebildet ist, der das Kühlrohr 2 in axialer Richtung gegenüber dem Grund 25 der Ausnehmung 6 beabstandet.
  • Zwischen dem Anschlag 10f und der Innenwand des Elektrodenkörpers 2 ist eine Ringnut 13 ausgebildet, in welcher das Kühlwasser zirkulieren kann.
  • Die Längsachse (27) des mindestens einen Anschlages (10f) ist parallel zur Längsachse des Elektrodenkörpers (2) ausgebildet.
  • Die Figur 11 zeigt eine schematische Darstellung des erfindungsgemäßen Elektrodenkörpers. An zwei gegenüberliegenden Stellen an der Innenwand des Elektrodenkörpers 2 sind zwei, sich radial nach innen, in Richtung der Längsachse erstreckende Anschläge 10d ausgebildet
  • Es ist jedoch auch eine Ausführungsform mit nur einem Anschlag 10a möglich.
  • Zwischen den Anschlägen 10d und der mittigen Aufnahme 5 weißt der Elektrodenkörper 2 eine Ringnutgrund 14 auf, in der das Kühlwasser zirkulieren kann.
  • Die Absätze 10d sind so angeordnet, dass sie mit ihrer Stimseite 20 mit der Stirnfläche 26 des Kühlrohres 3 zusammen wirken und dieses in axialer Richtung von dem Grund 25 der Ausnehmung 6 beabstanden.
  • Die Absätze 10d können hierbei entweder vollkommen umlaufend oder auch nur in bestimmten Teilbereichen um die Aufnahme 5 angeordnet sein.
  • Die Längsachse (27) des Anschlages (10d) ist senkrecht zur Längsachse des Elektrodenkörpers (2) ausgebildet.
  • Die Figur 12 zeigt einen Schnitt durch die in Figur 12 abgebildete Ausführungsform des Elektrodenkörpers.
  • Die Anschläge 10d sind gegenüberliegend, radial nach außen erstreckend an der mittleren Aufnahme 5 angeordnet.
  • Zwischen dem Anschlag 10d und der mittleren Aufnahme 5 ist ein Ringnutengrund 14 ausgebildet, welcher sich in axialer Richtung in Form eines Flüssigkeitskanals 4 fortsetzt.
  • Das Kühlrohr 3 ist gestrichelt dargestellt und ist mit seiner Stirnseite an mindestens zwei Stellen mit den mindestens zwei Anschlägen 10d in Kontakt. Zwischen der Innenwand und dem Kühlrohr 3 bildet sich ein Ringspalt 18 aus.
  • Die Figur 13 zeigt einen Schnitt durch die in Figur 10 abgebildete Ausführungsform des Elektrodenkörpers.
  • Ausgehend von der mittigen Aufnahme 5 erstrecken sich in radialer Richtung mindestens ein Anschlag 10b, 10f.
  • Zwischen den Anschlägen 10f und der Innenwand des Elektrodenkörpers 2 ist ein äußerer Ringnutengrund 13 angeordnet, welcher in axialer Richtung von einem Ringspalt gefolgt wird.
  • Entscheidend bei allen oben genannten Ausführungsformen ist, dass es sich immer um mindestens einen Anschlag handelt - es können jedoch auch mehr als ein Anschlag Verwendung finden.
  • Mit der Figur 14 wird ein Schnitt durch die in Figur 9 dargestellte Ausführungsform gezeigt.
  • Der Elektrodenkörper 2 weist in seinem Innenraum in der Ausnehmung 6, einen Anschlag 10e auf, welcher einen durchgehenden Absatz bzw. eine durchgehende Verbindung zwischen der Innenwand des Elektrodenkörpers 2 und der Aufnahme 5 ausbildet.
  • Das Kühlrohr 3 ist hierbei gestrichelt dargestellt und liegt mit seiner Stirnseite einseitige auf dem Anschlag 10e auf und wird dadurch von dem Grund der Ausnehmung 6 beabstandet.
  • Mit den Figuren 15 bis 19 werden einzelne Verfahrensschritte zur Herstellung eines erfindungswesentlichen Elektrodenkörpers gezeigt.
  • Bei der Herstellung des Elektrodenkörpers handelt es sich um eine KaltUmformung. Hierbei wird der Werkstoff in eine geometrische Form gebracht.
  • In einem ersten Verfahrensschritt (Figur 15) wird der jeweilige Rohling für den späteren Elektrodenkörper 2 von einem stangenförmigen Material auf die richtige Länge zu geschnitten. Der Elektrodenkörper 2 befindet sich nun in seiner Ausgangsform.
  • In einem zweiten Verfahrensschritt (Figur 16) wird der Rohling ein erstes Mal kalt Umgeformt. Hierbei wirkt eine äußere, axiale Kraft auf den Rohling. Es tritt eine Gefügeänderung ein, welche zu einer Erhöhung der Festigkeit und eine Verminderung der Dehnung führt.
  • In einem dritten Verfahrensschritt (Figur 17) findet ein erstes Napfen des Elektrodenkörpers statt. Hierbei bildet sich ein erster Hohlraum innerhalb des Elektrodenkörpers 2 aus.
  • Unter Napfen versteht man allgemein eine Massivumformung, bei der das Werkstück bzw. der Rohling in einer Presse zwischen einem Pressstempel und einer Matrize mit erheblichem Drücken verformt wird. Ist zwischen Matrizeninnenseite und Stempel ein Hohlraum, in den der Werkstoff durch das Pressen fließt, entsteht im Werkstück eine napfförmige Ausbuchtung entsprechend der Form des Stempels. Je nach Fließrichtung des Werkstoffes spricht man vom Vorwärts- oder Rückwärtsfließpressen.
  • In einem vierten Verfahrensschritt (Figur 18) findet ein weiterer Napfvorgang statt, wodurch sich der Hohlraum innerhalb des Elektrodenkörpers weiter vergrößert.
  • In einem fünften Verfahrensschritt (Figur 19) findet ein kombinierter Napf- und Stauchvorgang statt. Hierbei bilden sich die mittlere Aufnahme 5, die Anschläge 10f und die äußeren Ringnutengründe 13 aus. Der Elektrodenkörper 2 weist nun die gleiche Form wie in Figur 10 auf.
  • Zeichnungslegende
  • 1.
    Plasmaelektrode
    2.
    Elektrodenkörper
    3.
    Kühlrohr
    4.
    Flüssigkeitskanal
    6.
    Aufnahme (unterer Bereich)
    6.
    Ausnehmung
    7.
    Innenfläche
    8.
    Bohrung
    9.
    Elektrodenkern
    10.
    Anschlag (10a, b, c, d, e, f)
    11.
    Ring
    12.
    Anschlagzahn
    13.
    Ringnutgrund (außen) von 18
    14.
    Ringnutnutgrund (innen)
    15.
    Hinterschneldung
    16.
    Ringspalt (innen)
    17.
    Ringspalt (außen)
    18.
    Ringspalt
    19.
    Pfeilrichtung
    20.
    Stirnseite von 10
    21.
    Abstand
    22.
    Stirnseite von 5
    23.
    Pfeilrichtung
    24.
    Seitenfläche von 10
    25.
    Grund der Ausnehmung 6
    26.
    Stirnfläche von 3
    27.
    Längsachse (Anschlag)

Claims (9)

  1. Plasmaelektrode (1) für eine Schneidvorrichtung, welche aus einem Elektrodenkörper (2) mit einer axialen, zentrischen Aufnahme (5) für einen stirnseitig dort abgeordneten Elektrodenkern (8) besteht, wobei im Innenraum des Elektrodenkörpers (2) ein radial innen liegender Flüssigkeitskanal (4) durch ein austauschbares Kühlrohr (3) gebildet ist, durch welchen ein Kühlflüssigkeitsstrom in axialer Richtung (19) fließt, wobei das Kühlrohr (3) durch einen oder mehrere Anschläge (10, 12) am Elektrodenkörper (2) positioniert ist und dessen vordere, dem Elektrodenkern (9) nächstliegende Stirnseite (20) in eine ringförmigen Ausnehmung (6) des Elektrodenkörpers (2) eingreift, in welcher der Kühlflüssigkeitsstrom umgelenkt ist, wobei auf der Innenseite des Elektrodenkörpers (2) mindestens ein axial gerichteter Anschlag (10, 12) für das Kühlrohr (3) angeordnet ist, der mit der vorderen Stirnfläche (26) des Kühlrohrs (3) zusammenwirkt, dadurch gekennzeichnet, dass der mindestens eine Anschlag (10) am Grund der Ausnehmung (6) angeordnet und mit mindestens einer Seitenfläche der mittigen Aufnahme (5) verbunden ist, so dass seine Längsachse (27) parallel zur Längsachse des Elektrodenkörpers (2) ausgerichtet ist.
  2. Plasmaelektrode (1) nach Anspruch 1, dadurch gekennzeichnet, dass der Anschlag (10,12) in der Ausnehmung (6) des Elektrodenkörpers (2) um einen axialen Abstand (21) von der Stirnseite (22) der Aufnahme (5) zurückversetzt ist.
  3. Plasmaelektrode (1) nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass zwischen dem Anschlag (10,12) und der Innenwand des Elektrodenkörpers (2) ein Ringnutengrund (13) ausgebildet ist, der Anschlag (10, 12) als einseitiger Absatz ausgebildet ist, welcher mit der Stirnfläche (26) des Kühlrohres (3) zusammenwirkt und dieses vom Grund (25) der Ausnehmung (6) beabstandet.
  4. Plasmaelektrode (1) für eine Schneidvorrichtung, welche aus einem Elektrodenkörper (2) mit einer axialen, zentrischen Aufnahme (5) für einen stirnseitig dort abgeordneten Elektrodenkern (8) besteht, wobei im Innenraum des Elektrodenkörpers (2) ein radial innen liegender Flüssigkeitskanal (4) durch ein austauschbares Kühlrohr (3) gebildet ist, durch welchen ein Kühlflüssigkeitsstrom in axialer Richtung (19) fließt, wobei das Kühlrohr (3) durch einen oder mehrere Anschläge (10, 12) am Elektrodenkörper (2) positioniert ist und dessen vordere, dem Elektrodenkern (9) nächstliegende Stirnseite (20) in eine ringförmigen Ausnehmung (6) des Elektrodenkörpers (2) eingreift, in welcher der Kühlflüssigkeitsstrom umgelenkt ist, wobei auf der Innenseite des Elektrodenkörpers (2) mindestens ein radial oder axial gerichteter Anschlag (10, 12) für das Kühlrohr (3) angeordnet ist, der mit der vorderen Stirnfläche (26) des Kühlrohrs (3) zusammenwirkt, wobei der mindestens eine Anschiag (10, 10a) mit mindestens einer Seitenfläche des Elektrodenkörpers (2) verbunden ist und er sich ausgehend von der Innenfläche des Elektrodenkörpers (2) radial in Richtung der mittigen Längsachse des Elektrodenkörpers (2) erstreckt, so dass der Anschlag (10, 10a) mit seiner Längsachse (27) senkrecht zur Längsachse des Elektrodenkörpers (2) ausgerichtet ist, dadurch gekennzeichnet, dass zwischen dem radial gerichteten Anschlag (10, 10a) und der Aufnahme (5) ein Ringspalt (16) ausgebildet ist, welchen in axialer Richtung zwischen dem radial gerichteten Anschlag (10, 10a) und dem Grund der Ausnehmung (25) eine radiale Hinterschneidung (15) ausgebildet ist.
  5. Plasmaelektrode (1) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der mindestens eine Anschlag in Form mindestens eines Anschlagzahnes (12) an einem Ring (11) angeordnet ist, der in die Ausnehmung (6) im Elektrodenkörper (2) eingelegt ist.
  6. Plasmaelektrode (1) nach Anspruch 5, dadurch gekennzeichnet, dass der Anschlagzahn (12) am Ring entweder axial oder radial ausgerichtet ist.
  7. Plasmaelektrode (1) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Anschlag (10, 10a) aus dem Material des Elektrodenkörpers (2) gebildet ist.
  8. Verfahren zur Herstellung eines Elektrodenkörpers (2) für eine Plasmaelektrode (1) gemäß den Ansprüchen 1 bis 7, dadurch gekennzeichnet, dass aufgrund einer Kaltumformung innerhalb des Elektrodenkörpers (2) mindestens eine mittlere Aufnahme (5), mindestens ein Anschlages (10) und mindestens ein Ringnutgrund (13,14) ausgebildet ist.
  9. Verfahren zur Herstellung eines Elektrodenkörpers (2) nach Anspruch 8, gekennzeichnet durch folgende Verfahrensschritte:
    • Zuschneiden des Rohlings für den Elektrodenkörpers (2).
    • Kaltumformung des Elektrodenkörpers (2) in Form einer axialen Stauchung.
    • Kaltumformung des Elektrodenkörpers (2) in Form eines ersten, axialen, inneren Napfvorganges.
    • Kaltumformung des Elektrodenkörpers (2) in Form eines zweiten, axialen, inneren Napfvorganges.
    • Kombiniertes axiales Napfen und Stauchen zur Ausbildung der mittleren Aufnahme (5), des mindestens einen Anschlages (10f) und des mindestens einen Ringnutgrund (13,14).
EP10015592.8A 2009-12-18 2010-12-14 Elektrode mit Kühlrohr für eine Plasmaschneidvorrichtung Not-in-force EP2364070B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009059108A DE102009059108A1 (de) 2009-12-18 2009-12-18 Elektrode mit Kühlrohr für eine Plasmaschneidvorrichtung

Publications (3)

Publication Number Publication Date
EP2364070A2 EP2364070A2 (de) 2011-09-07
EP2364070A3 EP2364070A3 (de) 2013-10-23
EP2364070B1 true EP2364070B1 (de) 2016-04-20

Family

ID=43754970

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10015592.8A Not-in-force EP2364070B1 (de) 2009-12-18 2010-12-14 Elektrode mit Kühlrohr für eine Plasmaschneidvorrichtung

Country Status (2)

Country Link
EP (1) EP2364070B1 (de)
DE (1) DE102009059108A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010006786A1 (de) 2010-02-04 2011-08-04 Holma Ag Düse für einen flüssigkeitsgekühlten Plasma-Schneidbrenner
US9114475B2 (en) 2012-03-15 2015-08-25 Holma Ag Plasma electrode for a plasma cutting device
EP2640167B1 (de) * 2012-03-15 2018-02-14 Manfred Hollberg Plasmaelektrode für eine Plasma-Schneidvorrichtung
DE102015001456A1 (de) 2014-07-15 2016-01-21 Linde Aktiengesellschaft Verfahren zum Wolfram-Schutzgasschweißen
CN109862682A (zh) * 2019-03-28 2019-06-07 成都金创立科技有限责任公司 等离子发生器水冷阴极头
CZ202054A3 (cs) * 2020-02-05 2021-03-03 B&Bartoni, spol. s r.o. Sestava elektrody pro plazmový obloukový hořák se zlepšeným přenosem elektrického proudu

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8904858D0 (en) * 1989-03-03 1989-04-12 Tetronics Research & Dev Co Li Improvements in or relating to plasma arc torches
US5097111A (en) * 1990-01-17 1992-03-17 Esab Welding Products, Inc. Electrode for plasma arc torch and method of fabricating same
US5416296A (en) * 1994-03-11 1995-05-16 American Torch Tip Company Electrode for plasma arc torch
US6215090B1 (en) * 1998-03-06 2001-04-10 The Esab Group, Inc. Plasma arc torch
US6156995A (en) * 1998-12-02 2000-12-05 The Esab Group, Inc. Water-injection nozzle assembly with insulated front end
ITRM20010291A1 (it) * 2001-05-29 2002-11-29 Ct Sviluppo Materiali Spa Torcia al plasma
US20080116179A1 (en) 2003-04-11 2008-05-22 Hypertherm, Inc. Method and apparatus for alignment of components of a plasma arc torch
US6946617B2 (en) * 2003-04-11 2005-09-20 Hypertherm, Inc. Method and apparatus for alignment of components of a plasma arc torch
US7081597B2 (en) * 2004-09-03 2006-07-25 The Esab Group, Inc. Electrode and electrode holder with threaded connection
US7538294B2 (en) * 2005-05-17 2009-05-26 Huys Industries Limited Welding electrode and method
US7256366B2 (en) * 2005-12-21 2007-08-14 The Esab Group, Inc. Plasma arc torch, and methods of assembling and disassembling a plasma arc torch
FR2910224A1 (fr) * 2006-12-13 2008-06-20 Air Liquide Torche de coupage plasma avec circuit de refroidissement a tube plongeur adaptatif

Also Published As

Publication number Publication date
EP2364070A2 (de) 2011-09-07
EP2364070A3 (de) 2013-10-23
DE102009059108A1 (de) 2011-06-22

Similar Documents

Publication Publication Date Title
EP2364070B1 (de) Elektrode mit Kühlrohr für eine Plasmaschneidvorrichtung
EP0223909B1 (de) Strangpresswerkzeug zur Herstellung eines Hartmetall- oder Keramik-Bohrerrohlings
DE2448160C2 (de)
DE60018098T2 (de) HERSTELLUNGSVERFAHREN EINES BOHRMEIßELS ZUM SCHLAGBOHREN UND BOHRMEIßEL UND HARTMETALLEINSÄTZE DAFÜR
DE19710261B4 (de) Verfahren zum Herstellen einer Schlauchkupplung
EP2809497B1 (de) Expansionskopf für aufweitwerkzeuge und diesen umfassendes expansionswerkzeug
EP0739454A1 (de) Selbstbohrende und gewindeformende schraube mit fliessformabschnitt
EP2470321A1 (de) Werkzeug
DE19800097A1 (de) Span- oder Schneidwerkzeug und Verfahren zu dessen Herstellung
EP1668236A1 (de) Brennkammer mit kühleinrichtung und verfahren zur herstellung der brennkammer
DE2240148A1 (de) Verfahren und vorrichtung zum herstellen von rohren oder rohrfoermigen koerpern mit unregelmaessig geformter innenwand
DE1477730B2 (de) Tieflochbohrer zum bohren insbesondere metallischer werkstuecke
DE102009012938A1 (de) Zerspanungswerkzeug mit Führungshülse
DE202013105739U1 (de) Miniaturfräser
DE102017208039B4 (de) Verfahren zur Herstellung eines Rotationswerkzeugs und Rotationswerkzeug
DE2404129C3 (de) Elektrischer Lichtbogenbrenner
EP1279896B1 (de) Glühkerzen und Verfahren zu deren Herstellung
DE10144516B4 (de) Plasmabrenner
DE102008010192A1 (de) Verfahren zum Verbinden eines Abgasrohrs mit einem Flansch sowie dadurch hergestellte Flansch-Abgasrohr-Verbindung und Widerstandspressschweißvorrichtung
EP2640167B1 (de) Plasmaelektrode für eine Plasma-Schneidvorrichtung
DE102014000661B4 (de) Kabelendhülse
DE4217995C2 (de) Schmelzschweißkontaktdüse
EP2642831A1 (de) Plasma-Elektrode für einen Plasma-Lichtbogenbrenner und Verfahren zur Herstellung
DE7517897U (de) QuetschhülsenanschluB
WO2009030431A2 (de) Laserbearbeitungskopf zur bearbeitung eines werkstücks mittels eines laserstrahls mit lösbar verbundenem gehäuse, aufnahmevorrichtung und düse; düsenelement mit einem verrundeten verjüngungsbereich; aufnahmevorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HOLLBERG, MANFRED

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: H05H 1/34 20060101AFI20130918BHEP

17P Request for examination filed

Effective date: 20140120

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160104

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 793659

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010011461

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160721

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160822

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010011461

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

26N No opposition filed

Effective date: 20170123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161214

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170102

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161214

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 793659

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161214

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101214

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20191217

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20201222

Year of fee payment: 11

Ref country code: DE

Payment date: 20201216

Year of fee payment: 11

Ref country code: CZ

Payment date: 20201203

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20201230

Year of fee payment: 11

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20210101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210101

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010011461

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211214

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211214

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211214