EP2352413A1 - Procédé pour faire fonctionner un lave-vaisselle - Google Patents

Procédé pour faire fonctionner un lave-vaisselle

Info

Publication number
EP2352413A1
EP2352413A1 EP09736941A EP09736941A EP2352413A1 EP 2352413 A1 EP2352413 A1 EP 2352413A1 EP 09736941 A EP09736941 A EP 09736941A EP 09736941 A EP09736941 A EP 09736941A EP 2352413 A1 EP2352413 A1 EP 2352413A1
Authority
EP
European Patent Office
Prior art keywords
dishwasher
desorption
program step
desorption process
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09736941A
Other languages
German (de)
English (en)
Other versions
EP2352413B1 (fr
Inventor
Michael Fauth
Helmut Jerg
Kai Paintner
Andreas Reiter
Roland Rieger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BSH Hausgeraete GmbH
Original Assignee
BSH Bosch und Siemens Hausgeraete GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BSH Bosch und Siemens Hausgeraete GmbH filed Critical BSH Bosch und Siemens Hausgeraete GmbH
Priority to PL09736941T priority Critical patent/PL2352413T3/pl
Publication of EP2352413A1 publication Critical patent/EP2352413A1/fr
Application granted granted Critical
Publication of EP2352413B1 publication Critical patent/EP2352413B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L15/00Washing or rinsing machines for crockery or tableware
    • A47L15/0018Controlling processes, i.e. processes to control the operation of the machine characterised by the purpose or target of the control
    • A47L15/0021Regulation of operational steps within the washing processes, e.g. optimisation or improvement of operational steps depending from the detergent nature or from the condition of the crockery
    • A47L15/0042Desorption phases of reversibly dehydrogenated drying material, e.g. zeolite in a sorption drying system
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L15/00Washing or rinsing machines for crockery or tableware
    • A47L15/42Details
    • A47L15/48Drying arrangements
    • A47L15/481Drying arrangements by using water absorbent materials, e.g. Zeolith
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L15/00Washing or rinsing machines for crockery or tableware
    • A47L15/0002Washing processes, i.e. machine working principles characterised by phases or operational steps
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2401/00Automatic detection in controlling methods of washing or rinsing machines for crockery or tableware, e.g. information provided by sensors entered into controlling devices
    • A47L2401/12Water temperature
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2401/00Automatic detection in controlling methods of washing or rinsing machines for crockery or tableware, e.g. information provided by sensors entered into controlling devices
    • A47L2401/18Air temperature
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2501/00Output in controlling method of washing or rinsing machines for crockery or tableware, i.e. quantities or components controlled, or actions performed by the controlling device executing the controlling method
    • A47L2501/11Air heaters

Definitions

  • the invention relates to a method for operating a dishwasher, in particular a domestic dishwasher according to the preamble of patent claim 1.
  • the reversibly dehydratable drying material is heated to very high temperatures, whereby water stored in this drying material emerges as hot water vapor and is conducted into the rinsing container by means of an airflow generated by the fan a washware in the rinse tank and the air in the rinse tank are heated,
  • a sorption drying system has proven to be energy-saving and quiet drying of the dishes proved to be very beneficial.
  • the object of the invention is to achieve a further improved desorption result for the reversibly dehydratable drying material of the sorption drying apparatus.
  • the invention is based on a method for operating a dishwasher, in particular a domestic dishwasher, with a sorption drying system in which a desorption process of a reversibly dehydratable dry material, in particular zeolite, is effected at least temporarily.
  • parameters influencing the desorption process are evaluated for determining the time for carrying out the desorption.
  • the air temperature in the dishwasher and / or the water inlet temperature are detected as parameters.
  • the air temperature in the dishwasher depends on room temperature in the vicinity of the dishwasher. However, the air temperature can also deviate greatly from the room temperature, if shortly before a Spülprogrammlauf took place without it could come to a cooling of the dishwasher. If only the air temperature or water inlet temperature is detected, the determination of the time for performing the desorption can be made on the basis of stored values, e.g. in tabular form. In this case, the degree of cooling is determined by the water inlet temperature by refilling with liquid, in particular with water from a home-side supply system.
  • both the air and the water inlet temperature are detected, a comparison with stored values can also be made and / or the difference of the two temperatures is evaluated and the time of desorption is determined. The difference between these two temperature values is therefore a measure for determining how strong the temperature in the interior of the dishwasher will fall below the starting temperature.
  • the detection of the room temperature can also be provided alone or together with the water inlet temperature at the installation site of the dishwasher.
  • a desorption process is carried out at least partially during a first program step during which the heating means of the dishwasher are operated when the air temperature is higher than the water inlet temperature by a predetermined temperature value at the most.
  • the heating means may be an air heater, can be erwakbar with the air, which is driven by the drying material.
  • no excessive cooling is to be expected by refilling with liquid, so that a Desortionsvorgang is performed in the first program step in which a heating of liquid takes place, such as the program step cleaning or the program step pre-wash, if a particularly intensive cleaning is desired.
  • a desorption process is carried out at least partially during a program step in which heating means are operated after an at least partial liquid change when the air temperature is higher than the water inlet temperature by at least a predetermined temperature value.
  • heating means are operated after an at least partial liquid change when the air temperature is higher than the water inlet temperature by at least a predetermined temperature value.
  • the predetermined temperature value is selected substantially between 3 to 30 0 C, in particular between 5 and 15 ° C. This ensures that only in the case of large temperature differences does the time of the desorption process be postponed, in which due to the high starting temperature no complete and efficient desorption is to be expected.
  • the desorption process is carried out at least partially during a program step cleaning with detergent addition and cleaning action. This allows a particularly energy-efficient cleaning of items to be washed.
  • the desorption process is carried out at least partially during a pre-rinse program step without cleaning agent addition.
  • the cleaning effect during the program step of pre-rinsing and thus of the rinsing program can be increased.
  • the desorption process is carried out at least partially during a program rinse with rinse aid addition.
  • the drying effect during the subsequent program step drying can be increased or the duration of the program step drying can be reduced.
  • a quantity of liquid, in particular a quantity of fresh water from a home-side water supply system is cached.
  • the water tank is at the end of a Rinsing program run filled, so that in the meantime, until the next start of a Spellerprogramm takeanks cached in the water tank amount of water from the inlet water temperature of eg 15 ° C can warm to room temperature.
  • This liquid heated to room temperature is used in a rinse cycle to perform the rinse program step of pre-rinse.
  • a renewed filling with water from the water supply system causes a corresponding cooling below the room temperature.
  • a dishwasher in particular a domestic dishwasher, which is formed at least partially in at least one program step of a plurality of program steps
  • detection means for detecting environmental parameters at the site of the dishwasher and evaluation means for determining the time for
  • FIG. 1 is a schematic representation of an embodiment of a dishwasher according to the invention with a sorption drying system
  • FIG. 2 shows a schematic representation of the temperature profile during a first embodiment of a rinsing program run according to the invention
  • FIG. 3 shows a schematic representation of the temperature profile of a further, second exemplary embodiment of a rinsing program run according to the invention.
  • FIG. 4 is a schematic representation of the temperature profile of a further, third exemplary embodiment of a rinsing program run according to the invention. Reference is first made to FIG.
  • a dishwasher GS designed in the present exemplary embodiment as a domestic dishwasher has an interior space IR serving as a washing container, which can be opened or closed for loading and unloading by means of a door (not shown) pivotably hinged to the dishwasher GS.
  • Interior IR of the dishwasher GS dish baskets GK are provided for receiving items to be cleaned, which can be pulled out of the interior IR of the dishwasher GS to facilitate loading and unloading.
  • means for supplying items to be washed with liquid are provided in the interior IR of the dishwasher GS as spraying arms SA, wherein the liquid may, for example, be filled with water. can act with detergents or with rinse aid added water, so as to effect a cleaning effect or streak-free drying.
  • the liquid flowing down from the items to be washed collects in a pump sump PS, which is arranged in the bottom area of the interior IR of the dishwasher GS.
  • the spray arms SA are fluidly connected via a supply line ZL with a circulation pump UP, which is arranged in a floor assembly BO below the interior IR of the dishwasher GS, among other components components of the dishwasher.
  • a circulation pump UP In operation, i. when the circulation pump UP is running, the circulation pump UP sucks the liquid accumulated in the pump sump PS and delivers it through the supply line ZL to the spray arms SA.
  • the circulating pump In order to heat the liquid circulated by the operation of the circulating pump UP, the circulating pump has an integrated water heater WZ for heating the liquid.
  • a separate instantaneous water heater or another water heater may be provided for emptying the interior IR of the dishwasher GS.
  • a drain pump LP For emptying the interior IR of the dishwasher GS, a drain pump LP is provided, which is also in fluid-conducting connection with the pump sump PS and can be connected to a disposal line EL to a house-side sewage disposal network.
  • the dishwasher GS has a Sorptionstrockungssystem, with the arranged in the baskets GR and cleaned items at the end of a Rinse program run can be dried.
  • a sorption SB is provided in the bottom assembly BO, which is air-conductively connected via an air duct LK with an inlet El, wherein for generating a forced flow, a fan LT is provided.
  • an outlet opening AU is provided in the bottom area of the interior IR dishwasher GS.
  • Dishwasher GS passed. In order to dry the circulating air is in the
  • Sorption SB a drying agent for performing an exothermic drying provided. It is a reversibly dehydratable drying material, e.g. Zeolite, which absorbs water due to its hydroscopic property, at the same time heat energy is released. This released heat energy becomes a
  • Drying process is an amount of liquid stored in the drying material ZEO.
  • an air heater HZ is provided, which is arranged in the present embodiment in the sorption SB.
  • an air heater outside the sorbent tank SB e.g. in the air passage LK to cause heating of the conveyed into the sorbent SB air.
  • an air flow generated by the fan LT is heated, so that the drying material ZEO can be heated to temperatures at which the amount of water stored in the drying material ZEO can be released again.
  • Dishwashers GS continuous for cleaning and drying of items to be cleaned, wash programs, which consist of a plurality of program steps, which are passed through successively.
  • a program can from the Program steps pre-rinse V, cleaning R, intermediate rinsing Z, rinsing K and drying T exist, with individual program steps, such.
  • the pre-rinsing V or intermediate rinsing Z can also be hidden, while it is also conceivable to pass through individual program steps repeatedly, such as the intermediate rinsing Z.
  • Wash ware is charged with water without the addition of detergents, this either with unheated water or with heated water by means of a heater.
  • water can be used that has been stored in a water tank (not shown).
  • a water tank can be in heat-conducting connection with the environment of the dishwasher, so that liquid stored in the water tank, such as water from a home-side supply system, can warm up to room temperature.
  • cleaning step R cleaning of items to be washed takes place by application of detergent-added water, ie during the cleaning stage, a detergent is added. Furthermore, a heating of the liquid, so as to increase the cleaning effect of the cleaning agent.
  • the cleaning step R is composed of a heating phase P1, P2, in which the liquid is heated in the dishwasher GS by means of heating until a predetermined maximum temperature is reached and a subsequent Nachwaschphase together, while the heater is turned off, the slowly cooling liquid by the circulating pump UP is circulated.
  • the intermediate rinse Z program step liquid is applied to the items to be washed in order to convey dirt residues from the dishwasher GS.
  • the next step in the program is rinsing K in preparation for the program step drying T, in which water mixed with rinse aid is circulated by means of the circulation pump and applied to the now cleaned items via the spray arms SA.
  • the program step drying T in which the ware is no longer charged with liquid, but by operation of the fan LT through the interior IR of the dishwasher GS and the sorbent SB circulating air flow is generated.
  • a complete or at least partial fluid change can be carried out between the individual program steps, ie the dishwasher GS is emptied by means of the drain pump LP and the disposal line EL and refilled again by a supply line (not shown) making a connection to a house-side supply system.
  • heating of liquid takes place only in the program step cleaning R.
  • the liquid circulated by the circulation pump UP is transmitted through heated air heater HZ in the sorption SB to a maximum temperature T1, wherein at the same time the fan LT generates a circulating through the interior IR of the dishwasher GS air flow.
  • the air heater HZ heats the drying material ZEO into the sorption container SB to temperatures at which the amount of water stored in the drying material ZEO is expelled from the drying material ZEO and conveyed through the outlet opening AU into the interior IR dishwasher GS.
  • the blow-out opening AU is cooled in the interior IR dishwasher GS, so as to ensure that due to the heating power of the air heater HZ no excessive heating of the blow-out opening HZ with overheating damage occurs.
  • the circulation pump UP is operated so that liquid is conveyed by the circulation pump from the pump sump PS through the supply line to the spray arm SA.
  • the spray arms SA are set in rotation and cause by spraying the exhaust opening AU, in particular a cap covering the discharge opening AU with liquid, a cooling thereof.
  • the amount of liquid is heated from the first temperature T1 to the second temperature T2 by means of the water heater WZ.
  • the rotational speed of the circulation pump UP to increase the spray pressure of the water jets emerging from the spray arm SA.
  • the amount of liquid circulated by the circulation pump UP increased by a refilling step, for example, at time t1 (see Figure 2) and then increases the speed of the circulation pump UP, e.g. continuously until the recirculation pump runs under run-flat condition, i.e., does not draw in air bubbles during operation, which reduces the delivery rate of the recirculation pump UP and results in undesirable noise.
  • This makes it possible to take into account the amount of liquid released during the desorbing, which was stored in the drying material ZEO, in the dimensioning of the amount of liquid to be replenished and thus to reduce the total water requirement with improved cleaning performance.
  • Liquid i. with rinse aid added water, can drain from the dishes due to gravity and in the pump sump PS of the interior of the IR
  • Dishwasher GS can collect. As a result, the of the
  • Sorption drying system reduces the amount of liquid to be absorbed and thus the duration of the program step drying T.
  • liquid is heated in the first of the program steps, the pre-rinsing program step V.
  • liquid is heated from a starting temperature TO during a phase PV to a temperature TV by means of the air heating HZ, as described above by means of the fan LT a circulating through the interior IR of the dishwasher GS and the sorbent SB air flow is generated.
  • the air heater HZ is deactivated.
  • the drying material ZEO is not yet completely desorbed, i. in the drying material ZEO a residual amount of water is stored.
  • the liquid is heated by the air heater HZ to a temperature T1 in the subsequent program step cleaning R and then by operating the Water heating to the temperature T2 heated.
  • the desorption phase of the drying agent ZEO in the sorption container SB is divided into two in this exemplary embodiment and is distributed over two program steps, namely the preprocessing program step V and the program step cleaning R.
  • a further phase P3 (see FIG. 3) can be provided, while the water heater WZ is used to further heat the liquid to a temperature T3.
  • the liquid is heated during the rinsing step K.
  • the water heater WZ liquid which is water or water mixed with rinse aid
  • T4 is heated to a temperature T4.
  • the water heating and the air heater HZ be used to complete, for example, a previously not complete in the course of the program desorption.
  • another phase P5 further heating of the liquid to a Temperature T5 done to improve drying with the sorption drying system.

Abstract

L'invention concerne un procédé pour faire fonctionner un lave-vaisselle (GS), notamment un lave-vaisselle ménager. Le procédé consiste à provoquer au moins temporairement un processus de désorption d'un matériau sec (ZEO), notamment d'une zéolithe, pouvant être déshydrogéné de façon réversible, d'un système de séchage par sorption. Selon l'invention, des paramètres influençant le processus de désorption sont évalués pour la détermination de l'instant de réalisation de la désorption.
EP09736941A 2008-11-07 2009-10-16 Procédé pour faire fonctionner un lave-vaisselle Active EP2352413B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL09736941T PL2352413T3 (pl) 2008-11-07 2009-10-16 Sposób działania zmywarki do naczyń

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008043576A DE102008043576A1 (de) 2008-11-07 2008-11-07 Verfahren zum Betreiben einer Geschirrspülmaschine
PCT/EP2009/063601 WO2010052116A1 (fr) 2008-11-07 2009-10-16 Procédé pour faire fonctionner un lave-vaisselle

Publications (2)

Publication Number Publication Date
EP2352413A1 true EP2352413A1 (fr) 2011-08-10
EP2352413B1 EP2352413B1 (fr) 2012-09-05

Family

ID=41343319

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09736941A Active EP2352413B1 (fr) 2008-11-07 2009-10-16 Procédé pour faire fonctionner un lave-vaisselle

Country Status (8)

Country Link
US (1) US9955845B2 (fr)
EP (1) EP2352413B1 (fr)
CN (1) CN102209484B (fr)
DE (1) DE102008043576A1 (fr)
ES (1) ES2391249T3 (fr)
PL (1) PL2352413T3 (fr)
RU (1) RU2505263C2 (fr)
WO (1) WO2010052116A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5445566B2 (ja) * 2011-11-29 2014-03-19 パナソニック株式会社 食器洗い機
DE102012013322A1 (de) 2012-07-06 2014-01-09 Eichenauer Heizelemente Gmbh & Co. Kg Geschirrspülmaschine
DE102013101673A1 (de) 2013-02-20 2014-08-21 Miele & Cie. Kg Geschirrspülmaschine und Verfahren zum Betreiben einer Geschirrspülmaschine
IT201700078567A1 (it) * 2017-07-13 2019-01-13 Candy Spa Metodo per valutare automaticamente lo spostamento di un oggetto all’interno di una zona di lavaggio di una macchina lavastoviglie.
DE102021207644A1 (de) * 2021-07-19 2023-01-19 BSH Hausgeräte GmbH Haushaltsgeschirrspülmaschine mit einem Sorptionstrocknungssystem sowie zugehöriges Verfahren zum Durchführen eines Energiespar- Geschirrspülprogramms

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1144692A (en) * 1965-03-12 1969-03-05 Pall Corp Gas drier with automatic cycle control and process
DE10353774A1 (de) * 2003-07-30 2005-02-24 BSH Bosch und Siemens Hausgeräte GmbH Geschirrspülmaschine
PL1667569T3 (pl) * 2003-07-30 2021-03-08 BSH Hausgeräte GmbH Zmywarka do naczyń
DE10353775A1 (de) 2003-07-30 2005-02-24 BSH Bosch und Siemens Hausgeräte GmbH Verfahren zur Betreiben eines Gerätes mit wenigstens einem Teilprogrammschritt "Trocknen"
DE10356787A1 (de) * 2003-12-04 2005-07-07 BSH Bosch und Siemens Hausgeräte GmbH Geschirrspülmaschine
JP2006020753A (ja) * 2004-07-07 2006-01-26 Matsushita Electric Ind Co Ltd 食器洗い乾燥機
DE102004057019A1 (de) 2004-11-25 2006-06-01 BSH Bosch und Siemens Hausgeräte GmbH Wasserführendes Haushaltgerät mit einem Vorratsbehälter
DE102005004097A1 (de) * 2004-12-09 2006-06-14 BSH Bosch und Siemens Hausgeräte GmbH Geschirrspülmaschine und Verfahren zum Betreiben derselben
CN200951070Y (zh) * 2004-12-09 2007-09-26 Bsh博施及西门子家用器具有限公司 洗碗机
DE102005004096A1 (de) 2004-12-09 2006-06-14 BSH Bosch und Siemens Hausgeräte GmbH Geschirrspülmaschine mit einer Sorptionstrockenvorrichtung
DE102007017284B3 (de) * 2007-04-12 2008-11-13 BSH Bosch und Siemens Hausgeräte GmbH Temperaturerfassung bei Zeolithtrocknung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010052116A1 *

Also Published As

Publication number Publication date
US20110203614A1 (en) 2011-08-25
DE102008043576A1 (de) 2010-05-12
WO2010052116A1 (fr) 2010-05-14
CN102209484A (zh) 2011-10-05
CN102209484B (zh) 2014-11-12
EP2352413B1 (fr) 2012-09-05
PL2352413T3 (pl) 2013-02-28
RU2011119250A (ru) 2012-12-20
RU2505263C2 (ru) 2014-01-27
ES2391249T3 (es) 2012-11-22
US9955845B2 (en) 2018-05-01

Similar Documents

Publication Publication Date Title
EP1737334B1 (fr) Methode de lavage d'une lave vaiselle, et lave vaiselle
EP3085292A1 (fr) Procédé de fonctionnement d'un lave-vaisselle ayant au moins une étape de programme partiel
WO2011026657A1 (fr) Lave-vaisselle et procédé pour faire fonctionner un lave-vaisselle
EP2352411B1 (fr) Procédé pour faire fonctionner un lave-vaisselle
EP2328453B1 (fr) Procédé pour faire fonctionner un lave-vaisselle
EP2328455B1 (fr) Procédé de fonctionnement d'un lave-vaisselle
EP2323533B1 (fr) Procédé de lavage pour un appareil ménager à circulation d'eau, en particulier pour un lave-vaisselle
EP2352413B1 (fr) Procédé pour faire fonctionner un lave-vaisselle
EP2326234B1 (fr) Procédé de fonctionnement d'un lave-vaisselle
DE102011087322A1 (de) Programmautomat mit Trocknungssystem sowie Verfahren zum Betreiben eines solchen Programmautomaten
EP2326230B1 (fr) Procédé de rinçage pour un appareil ménager avec circuit d'eau
DE102013213359B3 (de) Verfahren zum Betreiben einer Spülmaschine sowie Spülmaschine
EP2352410B1 (fr) Lave-vaisselle et procédé pour chauffer le liquide
DE102008043554A1 (de) Verfahren zum Betreiben eines Geschirrspülmaschine
EP2352412A2 (fr) Procédé pour faire fonctionner un lave-vaisselle
EP2352414B1 (fr) Procédé de fonctionnement d'un lave-vaisselle
DE102017208440B4 (de) Verfahren zum Betreiben einer Geschirrspülmaschine und Geschirrspülmaschine
EP2618712B1 (fr) Lave-vaisselle, en particulier lave-vaisselle ménager
DE102013101673A1 (de) Geschirrspülmaschine und Verfahren zum Betreiben einer Geschirrspülmaschine
DE102013210468B3 (de) Verfahren zum Betreiben einer Spülmaschine sowie Spülmaschine
DE102008043550A1 (de) Verfahren zum Betreiben einer Geschirrspülmaschine
DE102008043551A1 (de) Verfahren zum Betreiben einer Geschirrspülmaschine
EP1651092A1 (fr) Procede pour faire fonctionner un appareil avec au moins une etape de sous-programme "sechage"

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110607

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 573706

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009004618

Country of ref document: DE

Effective date: 20121025

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2391249

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20121122

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121206

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

BERE Be: lapsed

Owner name: BSH BOSCH UND SIEMENS HAUSGERATE G.M.B.H.

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130105

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130107

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121016

26N No opposition filed

Effective date: 20130606

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009004618

Country of ref document: DE

Effective date: 20130606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121016

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091016

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131031

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131016

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502009004618

Country of ref document: DE

Owner name: BSH HAUSGERAETE GMBH, DE

Free format text: FORMER OWNER: BSH BOSCH UND SIEMENS HAUSGERAETE GMBH, 81739 MUENCHEN, DE

Effective date: 20150409

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: BSH HAUSGERATE GMBH

Effective date: 20150529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: BSH HAUSGERATE GMBH, DE

Effective date: 20151022

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 573706

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141016

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20211117

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20211029

Year of fee payment: 13

Ref country code: FR

Payment date: 20211021

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20221005

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221016

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20231128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221017

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231009

Year of fee payment: 15

Ref country code: DE

Payment date: 20231031

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231003

Year of fee payment: 15