EP2349903B1 - Commande du déplacement d'un engin de travaux - Google Patents

Commande du déplacement d'un engin de travaux Download PDF

Info

Publication number
EP2349903B1
EP2349903B1 EP09740812.4A EP09740812A EP2349903B1 EP 2349903 B1 EP2349903 B1 EP 2349903B1 EP 09740812 A EP09740812 A EP 09740812A EP 2349903 B1 EP2349903 B1 EP 2349903B1
Authority
EP
European Patent Office
Prior art keywords
boom assembly
flow control
actuator
actuators
work vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09740812.4A
Other languages
German (de)
English (en)
Other versions
EP2349903A1 (fr
Inventor
Qinghui Yuan
Jay Y. Lew
Damrongrit Piyabongkarn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eaton Corp
Original Assignee
Eaton Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eaton Corp filed Critical Eaton Corp
Publication of EP2349903A1 publication Critical patent/EP2349903A1/fr
Application granted granted Critical
Publication of EP2349903B1 publication Critical patent/EP2349903B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F11/00Lifting devices specially adapted for particular uses not otherwise provided for
    • B66F11/04Lifting devices specially adapted for particular uses not otherwise provided for for movable platforms or cabins, e.g. on vehicles, permitting workmen to place themselves in any desired position for carrying out required operations
    • B66F11/044Working platforms suspended from booms
    • B66F11/046Working platforms suspended from booms of the telescoping type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
    • B66C13/06Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads
    • B66C13/063Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
    • B66C13/06Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads
    • B66C13/066Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads for minimising vibration of a boom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
    • B66C13/08Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for depositing loads in desired attitudes or positions
    • B66C13/085Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for depositing loads in desired attitudes or positions electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/62Constructional features or details
    • B66C23/64Jibs
    • B66C23/70Jibs constructed of sections adapted to be assembled to form jibs or various lengths
    • B66C23/701Jibs constructed of sections adapted to be assembled to form jibs or various lengths telescopic
    • B66C23/705Jibs constructed of sections adapted to be assembled to form jibs or various lengths telescopic telescoped by hydraulic jacks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F17/00Safety devices, e.g. for limiting or indicating lifting force
    • B66F17/006Safety devices, e.g. for limiting or indicating lifting force for working platforms

Definitions

  • Construction vehicles can be used to provide temporary access to relatively inaccessible areas. Many of these vehicles include a boom having multiple joints. The boom can be controlled by controlling the displacements of the joints. However, such control is dependent on an operator's proficiency.
  • An aspect of the present disclosure relates to a method for controlling a boom assembly as it is defined in claim 1.
  • Another aspect of the present disclosure relates to a work vehicle as it is defined in claim 6.
  • the work vehicle 10 includes multiple joints that are actuated using linear and/or rotary actuators (e.g., cylinders, motors, etc.). These linear and rotary actuators are adapted to extend or retract a boom assembly and to control a work platform disposed on an end of the boom assembly.
  • linear and/or rotary actuators e.g., cylinders, motors, etc.
  • the work vehicle 10 includes a plurality of flow control valves and a plurality of sensors.
  • the flow control valves are controlled by an electronic control unit of the work vehicle 10.
  • the electronic control unit receives desired inputs from an operator and measured inputs from the plurality of sensors. Using a motion control scheme, the electronic control unit outputs signals to the flow control valves to move the work platform to a desired location.
  • the motion control scheme is adapted to reduce vibration in the boom assembly and to maintain good responsiveness to operator input.
  • the work vehicle 10 could be one of a variety of work vehicles, such as a crane, a boom lift, a scissor lift, etc.
  • the work vehicle 10 will be described herein as being an aerial work platform for ease of description.
  • the aerial work platform 10 is adapted to provide access to areas that are generally inaccessible to people at ground level due to height and/or location.
  • the aerial work platform 10 includes a base 12 having a plurality of wheels 14.
  • the aerial work platform 10 further includes a body 16 that is rotatably mounted to the base 12 so that the body 16 can rotate relative to the base 12.
  • the rotation angle of the body 16 is denoted by ⁇ 1 .
  • a first motor 18 (shown in FIG. 2 ) rotates the body 16 relative to the base 12.
  • the first motor 18 is coupled to a gear reducer.
  • a flexible structure 20 is mounted to the body 16 with a revolute joint.
  • the flexible structure 20 will be described herein as a boom assembly 20.
  • the boom assembly 20 can move upwards and/or downwards. This upwards and/or downwards movement of the boom assembly 20 is denoted by a rotation angle ⁇ 2 of the boom assembly 20.
  • a first cylinder 22 (shown in FIG. 2 ) is adapted to raise and lower the boom assembly 20.
  • a first end 24 (shown in FIG. 2 ) of the first cylinder 22 is connected to the boom assembly 20 while a second end 26 (shown in FIG. 2 ) is connected to the body 16.
  • the boom assembly 20 includes a base boom 28, an intermediate boom 30 and a tip boom 32.
  • the base boom 28 is connected to the body 16 of the aerial work platform 10.
  • the intermediate and tip booms 30, 32 are telescopic booms that extend outwardly from the base boom 28 in an axial direction. As shown in FIG. 1 , the intermediate and tip booms 30, 32 are in a retracted position.
  • the length l 3 of the boom assembly 20 can be changed by retracting or extending the intermediate and tip booms 30, 32.
  • the length l 3 of the boom assembly 20 is changed via a second cylinder 34 and corresponding mechanical linkage 36.
  • a work platform 38 is mounted to an end 40 of the tip boom 32.
  • the pitch of the work platform 38 is held parallel to the ground by a master-slave hydraulic system design while a yaw orientation ⁇ 5 of the work platform 38 is controlled by a second motor 42.
  • the control system 50 includes a fluid pump 52, a fluid reservoir 54, a plurality of flow control valves 56, a plurality of actuators 58 and a controller 60.
  • the fluid pump 52 is a load-sensing pump.
  • the load-sensing pump 52 is in fluid communication with a load sensing valve 150.
  • the load-sensing valve 150 is adapted to receive a signal 152 from the controller 60.
  • the signal 152 is a pulse width modulation signal.
  • the plurality of actuators 58 includes the first and second cylinders 22, 34 and the first and second motors 18, 42.
  • the plurality of flow control valves 56 is adapted to control the plurality of actuators 58. By controlling the plurality of actuators 58, the work platform 38 can reach a desired location with a desired orientation within the work envelope of the aerial work platform 10.
  • a first flow control valve 56a is in fluid communication with the first cylinder 22
  • a second flow control valve 56b is in fluid communication with the second cylinder 34
  • a third flow control valve 56c is in fluid communication with the first motor 18
  • a fourth flow control valve 56d is in fluid communication with the second motor 42.
  • a valve suitable for use as each of the flow control valves 56a-56d has been described in UK Pat. No. GB2328524 and U.S. Pat. No. 7,518,523 .
  • Each of the flow control valves 56a-56d includes a supply port 62 that is in fluid communication with the fluid pump 52, a tank port 64 that is in fluid communication with the fluid reservoir 54, a first control port 66 and a second control port 68 that are in fluid communication with one of the plurality of actuators 58.
  • the control system 50 further includes a plurality of fluid pressure sensors 70.
  • a first pressure sensor 70a monitors the fluid pressure from the fluid pump 52 while a second pressure sensor 70b monitors the fluid pressure going to the fluid reservoir 54.
  • the first and second pressure sensors 70a, 70b are in communication with the controller 60.
  • the first and second pressure sensors 70a, 70b are in communication with the controller 60 through the load sensing valve 150.
  • Each of the fluid control valves 56a-56d is in fluid communication with a third pressure sensor 70c and a fourth pressure sensor 70d.
  • the third and fourth pressure sensors 70c, 70d monitor the fluid pressure to and from the corresponding actuator 58 at the first and second control ports 66, 68, respectively.
  • the third and fourth pressure sensors 70c, 70d are integrated into the flow control valves 56a-56d.
  • the control system 50 further includes a plurality of actuator sensors 72 that monitor the axial or rotational position of the plurality of actuators 58.
  • the plurality of actuator sensors 72 is adapted to send signals to the controller 60 regarding the displacement (e.g., position) of the plurality of actuators 58.
  • first and second actuator sensors 72a, 72b monitor the displacement of the first and second cylinders 22, 34.
  • the first and second actuator sensors 72a, 72b are laser sensors.
  • Third and fourth actuator sensors 72c, 72d monitor the rotation of the first and second motors 18, 42.
  • the third and fourth actuator sensors 72c, 72d are absolute angle encoders.
  • the flow control valve 56 includes at least one pilot stage spool 80 and at least one main stage spool 82.
  • the flow control valve 56 includes a first pilot stage spool 80a and a second pilot stage spool 80b and a first main stage spool 82a and a second main stage spool 82b.
  • the positions of the first and second pilot stage spools 80a, 80b control the positions of the first and second main stage spools 82a, 82b, respectively, by regulating the fluid pressure that acts on either end of the first and second main stage spools 82a, 82b.
  • the positions of the first and second main stage spools 82a, 82b control the fluid flow rate to the corresponding actuator 58.
  • first and second actuators 84a, 84b are electromagnetic actuators, such as voice coils.
  • First and second spool position sensors 86a, 86b measure the positions of the first and second main stage spools 82a, 82b and send a first and second signal 88a, 88b that corresponds to the positions of the first and second main stage spools 82a, 82b to the controller 60.
  • the first and second spool position sensors 86a, 86b are linear variable differential transformers (LVDT).
  • the controller 60 is adapted to receive signals from the plurality of actuator sensors 72 regarding the plurality of actuators 58 and the plurality of spool position sensors 86 regarding the position of the main stage spools 82 of the flow control valves 56.
  • the controller 60 is adapted to receive an input 90 regarding a desired output from the operator.
  • the controller 60 sends signals 92 to the first and second actuators 84a, 84b of the flow control valves 56a-56d for actuation of the plurality of actuators 58.
  • the signal 92 are pulse width modulation signals.
  • the controller 60 is shown as a single controller. In one aspect of the present disclosure, however, the controller 60 includes a plurality of controllers. In another aspect of the present disclosure, the plurality of controllers 60 is integrated in the plurality of flow control valves 56.
  • the controller 60 includes a motion control scheme 100.
  • the motion control scheme 100 is a closed loop coordinated control scheme.
  • the motion control scheme 100 includes a trajectory generator, a coordinate transformation module 104, a deflection compensation module 106, an axis control module 108 and an input shaping module 110.
  • the Cartesian coordinate includes the position and orientation of the end effector.
  • the coordinate transformation module 104 includes a first coordinate transformation module 104a and a second coordinate transformation module 104b.
  • the first coordinate transformation module 104a converts coordinates from Cartesian space to joint space.
  • the second coordinate transformation module 104b converts coordinates from joint space to actuator space.
  • Table I lists the independent variables in Cartesian space, joint space and actuator space for the plurality of actuators 58. Table I - Relationship among Cartesian space, joint space and actuator space Cartesian Space Joint Space Actuator Space x 0 ⁇ 1 ⁇ 1 y 0 ⁇ 2 L AB z 0 l 3 l 3 ⁇ 0 ⁇ 5 ⁇ 5
  • T i , 1 ⁇ 3 ⁇ 1 ⁇ 3 i ⁇ 1 are direction cosine of the coordinate axes of O i - x i y i z i relative to O i- 1 -x i -1 y i -1 z i -1
  • T i , 1 ⁇ 3 ⁇ 4 i ⁇ 1 is the position of O i- 1 in O i- 1 - x i- 1 y i -1 z i -1 reference frame.
  • a i is the length of the common normal
  • d i is the distance between the origin O i -1 and the intersection of the common normal to z i -1
  • ⁇ i is the angle between the joint axis z i and z i -1 with respect to z i -1
  • ⁇ i is the angle between x i- 1 and the common normal with respect to z i -1 .
  • the parameters for the work platform 38 are given in Table II. Table II - Parameter of Denavit-Hartenberg Transformation for Coordinates defined in FIG. 1.
  • the end effector position and orientation can be obtained by using the values of the joint displacements (i.e., ⁇ 1 , ⁇ 2 , l 3 , ⁇ 4 , ⁇ 5 ) in equation 116 below.
  • T 5 0 T 1 0 ⁇ 1 T 2 1 ⁇ 2 T 3 2 l 3 T 4 3 ⁇ 2 T 5 4 ⁇ 5 .
  • Equation 120 The right side of equation 120 yields: cos ⁇ 5 ⁇ ⁇ ⁇ l 3 sin ⁇ 2 ⁇ ⁇ ⁇ l 3 cos ⁇ 2 ⁇ ⁇ ⁇ 0 ⁇ ⁇ ⁇ ⁇ .
  • the deflection compensation module 106 With the desired Cartesian coordinate X d converted to the desired coordinate ⁇ d in joint space, the deflection compensation module 106 accounts for deflection of the boom assembly 20.
  • the deflection compensation module 106 receives measurements from the plurality of actuator sensors 72, which monitor the actual axial and/or rotational position of the plurality of actuators 58. Using these measurements, the deflection compensation module 106 calculates a corresponding error correction in joint space.
  • deflection of that structure can cause a large error between an ideal end effector coordinate and the actual end effector coordinate.
  • This deflection error is a function of the end effector coordinate.
  • the deflection error in joint space primarily comes from the rotation angle ⁇ 2 of the boom assembly 20, as shown in FIG. 5 .
  • the deflection of the boom assembly 20 is affected by gravity acting on the boom assembly 20 and the load acting on the work platform 38.
  • the deflection of the boom assembly 20 is a function of the length l 3 of the boom assembly 20 and the rotation angle ⁇ 2 of the boom assembly 20.
  • Equation 130 is in joint space while the actual measurements of the actuator sensors 72 are in actuator space. Therefore, an actuator-to-joint space transformation would be needed for this conversion.
  • Actuator space refers to the plurality of actuators 58.
  • actuator space refers to the first and second cylinders 22, 34 and the first and second motors 18, 42.
  • Table I which is provided above, lists the independent variables for Cartesian space, joint space and actuator space. There is direct correspondence between the independent variables ⁇ 1 , ⁇ 2 , and ⁇ 5 in joint space and the corresponding independent variables in actuator space. The relationship between l 3 and L AB , however, will now be described.
  • FIG. 6 a schematic representation of the boom assembly 20 and the first cylinder 22.
  • the second end 26 of the first cylinder 22 is mounted to the body 16 of the work vehicle 10 at point A while the first end 24 of the first cylinder 22 is mounted to the boom assembly 20 at point B.
  • Point A is a fixed point in reference frame O 1 - x 1 y 1 z 1 associated with the body 16 while point B is a fixed point in the reference frame O 2 - x 2 y 2 z 2 associated with the boom assembly 20.
  • the resultant desired coordinate ⁇ d ′ converted to actuator space Y d [ ⁇ 1 , L AB ,l 3 , ⁇ 5 ] T
  • the resultant desired coordinate Y d and the actual measurements Y a from the plurality of actuator sensors 72 are received by the axis control module 108.
  • the axis control module 108 generates the control signal U for the flow control valves 56.
  • the control signal U is a vector of flow commands q n .
  • the flow commands q n correspond to the plurality of actuators 58.
  • a velocity feedforward proportional integral (PI) controller is used to generate the flow commands q n .
  • the gains K f,n , K p,n , K i,n will be slightly different for each direction due to piston area ratio.
  • the flow control valves 56 include embedded pressure sensors 70, embedded spool position sensors 88 and an inner control loop. These sensors and inner control loop allow the axis control module 108 to send flow commands q n directly to the flow control valves 56 as opposed to sending spool position commands.
  • the input shaping module 110 is adapted to reduce the structural vibration in the boom assembly 20 of the work vehicle 10.
  • An input shaping scheme suppresses vibration by generating shaped command inputs.
  • the effects of modeling errors can be reduced by increasing the number of impulses in an input shaping scheme.
  • the responsiveness of the command input decreases.
  • the input shaping scheme is a time-varying input shaping scheme.
  • the time-varying input shaping scheme reduces the amount of vibration while maintaining good responsiveness.
  • the time-varying input shaping scheme utilizes only two impulses.
  • the time-varying input shaping scheme uses measurements from the plurality of actuator sensors 72 to provide a control signal having time-varying parameters.
  • the time-varying input shaping scheme first estimates a damping ratio ⁇ ( t ) and a natural frequency ⁇ n ( t ) of the boom assembly 20 based on the actual measurements Y a from the plurality of actuator sensors 72.
  • the flow control valve 56 determines the damping ration function and the natural frequency function f ⁇ and f ⁇ , respectively. This determination of the damping ration function and the natural frequency function f ⁇ and f ⁇ by the flow control valve 56 will be described in greater detail subsequently.
  • U s q 1 A 1 t U 2 t ⁇ ⁇ T 1 t + A 2 t U 2 t ⁇ ⁇ T 2 t q 3 q 4 .
  • the shaped control signal U s is sent to the flow control valves 56 so that fluid can be passed through the flow control valves 56 to the actuators 58 to move the work platform 38.
  • the input shape module 110 is potentially advantageous as it reduces or eliminates vibrations in the boom assembly 20 while maintaining responsiveness of the boom assembly 20.
  • step 202 the actuators are actuated to a first position.
  • the first and second cylinders 22, 34 are moved to positions in which damping ratios and natural frequencies are expected (e.g., full extension of first and second cylinders 22, 34, partial extension of first and second cylinders 22, 34, etc.).
  • the boom assembly 20 is vibrated.
  • the boom assembly 20 is vibrated by applying a force to the boom assembly 20.
  • the boom assembly 20 is vibrated by quickly moving an input device (e.g., joystick, etc.) on the work vehicle that controls the movement of the boom assembly 20. This movement imparts a short pulse of hydraulic fluid to the first and/or second cylinders 22, 34 which causes the boom assembly 20 to vibrate.
  • an input device e.g., joystick, etc.
  • step 206 the damping ratio ⁇ ( t ) and the natural frequency ⁇ n ( t ) are calibrated.
  • the calibration of the damping ratio and the natural frequency is done by the flow control valve 56.
  • a cycle counter N is set to an initial value, such as 1.
  • the flow control valve 56 receives signals from the pressure sensors 70 in step 304.
  • the flow control valve 56 records the pressure P HI,1 when the pressure signal is at its highest value (peak) and the time t HI,1 at which the peak pressure P HI,1 occurs in step 306.
  • the flow control valve 56 also records the pressure P LO,1 when the pressure signal is at its lowest value (trough) and the time t LO,1 at which the pressure P LO,1 occurs in step 308.
  • step 312 the cycle counter N is compared to a predefined value. If the cycle counter N equals the predefined value, the flow control valve 56 records the pressure P HI,2 when the pressure signal is at its highest value (peak) for that given cycle and the time t HI,2 at which the peak pressure P HI,2 occurs for that given cycle in step 314. The flow control valve 56 also records the pressure P LO,2 when the pressure signal is at its lowest value (trough) for that given cycle and the time t LO,2 at which the pressure P LO,2 occurs for that given cycle in step 316.
  • the natural frequency ⁇ n ( t ) is calculated.
  • the natural frequency ⁇ n ( t ) can be calculated for small damping systems where the vibration is typically large using the following equation: ⁇ n ⁇ 2 ⁇ ⁇ N t HI ,2 ⁇ t HI ,1 .
  • step 320 the damping ratio ⁇ ( t ) is calculated.
  • the damping ratio ⁇ ( t ) is a measure describing how oscillations in the boom assembly 20 decrease after a disturbance.
  • the actuator 58 is moved to a second position in step 208 and the damping ratio ⁇ ( t ) and the natural frequency ⁇ n ( t ) are determined for that actuator position using steps 204-206.
  • damping ratio and natural frequency are only calibrated at discrete actuator positions
  • interpolation can be used to determine the damping ratio and natural frequency for actuator positions other than these discrete actuator positions.
  • linear interpolation can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Forklifts And Lifting Vehicles (AREA)
  • Operation Control Of Excavators (AREA)

Claims (11)

  1. Procédé pour commander un ensemble de flèche (20), le procédé comprenant les étapes suivantes :
    prévoir un ensemble de flèche (20) ayant un effecteur terminal (38), l'ensemble de flèche comprenant une pluralité d'actionneurs linéaires et/ou rotatifs (58) dans lequel chacun des actionneurs est en communication de fluide avec une valve de régulation de débit (56) ;
    convertir une coordonnée souhaitée de l'effecteur terminal (38) de l'ensemble de flèche (20) de l'espace Cartésien à l'espace d'actionneur ;
    calculer une erreur de déflexion de l'effecteur terminal (38) due à la flexion de l'ensemble de flèche (20) qui dépend de la longueur et de l'angle de rotation de l'ensemble de flèche, sur la base d'un déplacement axial et/ou rotatif mesuré des actionneurs (58) ;
    calculer une coordonnée souhaitée résultante sur la base de la coordonnée souhaitée et de l'erreur de déflexion ;
    générer un signal de commande sur la base de la coordonnée souhaitée résultante et du déplacement axial et/ou rotatif mesuré des actionneurs ;
    former le signal de commande pour réduire la vibration de l'ensemble de flèche (20) ; et
    transmettre le signal de commande formé, aux valves de régulation de débit (56).
  2. Procédé selon la revendication 1, dans lequel le signal de commande est formé en utilisant un schéma de formage d'entrée variant avec le temps.
  3. Procédé selon la revendication 2, dans lequel le schéma de formage d'entrée variant avec le temps comprend deux impulsions.
  4. Procédé selon la revendication 1, dans lequel une première transformation de coordonnée fait passer la coordonnée souhaitée de l'espace Cartésien à l'espace de joint et une seconde transformation de coordonnée fait passer la coordonnée souhaitée de l'espace de joint à l'espace d'actionneur, dans lequel facultativement, l'erreur de déflexion est prévue dans les coordonnées d'espace de joint.
  5. Procédé selon la revendication 1, dans lequel le capteur d'actionneur (72) est un capteur laser (72a, 72b) ou un encodeur d'angle absolu (72c, 72d).
  6. Engin de travaux (10) comprenant :
    un ensemble de flèche (20) ayant un effecteur terminal (38) ;
    une pluralité d'actionneurs linéaires et/ou rotatifs (58) mis en prise avec l'ensemble de flèche (20), dans lequel les actionneurs (58) sont adaptés pour positionner l'ensemble de flèche (20) ;
    une pluralité de capteurs d'actionneur (72) adaptés pour mesurer le déplacement axial et/ou rotatif des actionneurs (58) ;
    une pluralité de valves de régulation de débit (56) qui sont en communication de fluide avec les actionneurs (58) ;
    un organe de commande (60) étant en communication électrique avec les valves de régulation de débit (56), l'organe de commande (60) étant adapté pour actionner les valves de régulation de débit (56) en réponse à un signal d'entrée, dans lequel l'organe de commande comprend un schéma de commande de déplacement qui comprend :
    un module de transformation de coordonnée (104) qui fait passer une coordonnée souhaitée de l'effecteur terminal (38) de l'ensemble de flèche (20) de l'espace Cartésien à l'espace d'actionneur ;
    un module de compensation de déflexion (106) qui calcule une erreur de déflexion de l'effecteur terminal (38) due à la flexion de l'ensemble de flèche (20), qui dépend de la longueur et de l'angle de rotation de l'ensemble de flèche, sur la base des mesures de la position axiale et/ou rotative des capteurs d'actionneur (72) ;
    un module de commande d'axe (108) qui génère un signal de commande sur la base de la coordonnée souhaitée, l'erreur de déflexion et des mesures des capteurs d'actionneur (72) ; et
    un module de formage d'entrée (110) qui forme le signal de commande transmis aux valves de régulation de débit (56) pour réduire la vibration de l'ensemble de flèche (20).
  7. Engin de travaux selon la revendication 6, dans lequel l'engin de travaux (10) est une plateforme de travail aérienne.
  8. Engin de travaux selon la revendication 6, dans lequel l'effecteur terminal (38) est une plateforme de travail.
  9. Engin de travaux selon la revendication 6, dans lequel les valves de régulation de débit (56) comprennent une pluralité de capteurs de pression (70) qui sont intégrés dans les valves de régulation de débit.
  10. Engin de travaux selon la revendication 6, dans lequel le module de formage d'entrée (110) est un schéma de formage d'entrée variant avec le temps adapté pour estimer le rapport d'amortissement et la fréquence naturelle de l'ensemble de flèche (20) sur la base des mesures des capteurs d'actionneur (72).
  11. Engin de travaux selon la revendication 10, dans lequel les valves de régulation de débit (56) déterminent une fonction de rapport d'amortissement et une fonction de fréquence naturelle utilisée pour estimer le rapport d'amortissement et la fréquence naturelle.
EP09740812.4A 2008-10-16 2009-10-16 Commande du déplacement d'un engin de travaux Active EP2349903B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10595208P 2008-10-16 2008-10-16
PCT/US2009/061072 WO2010045602A1 (fr) 2008-10-16 2009-10-16 Commande du déplacement d’un engin de travaux

Publications (2)

Publication Number Publication Date
EP2349903A1 EP2349903A1 (fr) 2011-08-03
EP2349903B1 true EP2349903B1 (fr) 2019-06-26

Family

ID=41528706

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09740812.4A Active EP2349903B1 (fr) 2008-10-16 2009-10-16 Commande du déplacement d'un engin de travaux

Country Status (6)

Country Link
EP (1) EP2349903B1 (fr)
JP (1) JP5780963B2 (fr)
CN (1) CN102245491B (fr)
BR (1) BRPI0914428A2 (fr)
CA (1) CA2741066A1 (fr)
WO (1) WO2010045602A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011001112A1 (de) * 2011-03-04 2012-09-06 Schneider Electric Automation Gmbh Verfahren und Steuerungseinrichtung zur schwingungsarmen Bewegung eines bewegbaren Kranelementes eines Kransystems
JP5919797B2 (ja) * 2011-12-16 2016-05-18 株式会社島津製作所 液圧式リフタ及び車両
JP2015511296A (ja) * 2012-01-20 2015-04-16 イートン コーポレーションEaton Corporation 油圧流体システム用電子式負荷降下保護装置
CN104495714B (zh) * 2014-12-31 2017-02-08 中联重科股份有限公司 高空作业平台工作斗的调平方法及装置
WO2018009981A1 (fr) * 2016-07-15 2018-01-18 Fastbrick Ip Pty Ltd Machine de pose de briques/blocs incorporée dans un véhicule
IT201800004717A1 (it) 2018-04-19 2019-10-19 Braccio articolato provvisto di un sistema per la compensazione di deformazioni dovute a carichi
CN109052261B (zh) * 2018-08-27 2020-04-24 中联重科股份有限公司 高空作业设备调平系统、方法及其高空作业设备
US11009048B1 (en) * 2020-09-09 2021-05-18 Robert Bosch Gmbh Boom lift system

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE758284A (fr) * 1970-03-26 1971-04-01 Chu Associates Procede et appareil de traitement par signaux
JPH05196004A (ja) * 1992-01-20 1993-08-06 Komatsu Ltd 作業機シリンダの自動クッション制御装置
JP3300507B2 (ja) * 1993-11-15 2002-07-08 日立建機株式会社 建設機械の作業用表示モニタ
JPH0871963A (ja) * 1994-08-31 1996-03-19 Toshiba Corp 産業用ロボット
KR0168992B1 (ko) * 1995-10-31 1999-02-18 유상부 굴삭기의 제어방법
JPH11343095A (ja) * 1998-06-04 1999-12-14 Kobe Steel Ltd ブーム式作業機械
US6374147B1 (en) * 1999-03-31 2002-04-16 Caterpillar Inc. Apparatus and method for providing coordinated control of a work implement
JP4683686B2 (ja) * 2000-02-28 2011-05-18 株式会社タダノ ブーム作業車の撓み角度の算出方法及び装置
JP4744664B2 (ja) * 2000-03-08 2011-08-10 株式会社タダノ ブーム付き作業機の制御装置
DE10016137C2 (de) * 2000-03-31 2003-08-21 Iveco Magirus Drehleiter
US7586032B2 (en) * 2005-10-07 2009-09-08 Outland Research, Llc Shake responsive portable media player
CN1932215B (zh) * 2006-09-30 2010-08-11 三一重工股份有限公司 用于抑制混凝土泵车臂架振动的方法及装置
US7518523B2 (en) * 2007-01-05 2009-04-14 Eaton Corporation System and method for controlling actuator position
JP5245085B2 (ja) * 2007-02-21 2013-07-24 国立大学法人豊橋技術科学大学 時変形システムに対する振動抑制制御入力決定方法、搬送システム、および時変形システムに対する振動抑制制御入力演算プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
JP2012505807A (ja) 2012-03-08
CN102245491B (zh) 2014-01-29
CN102245491A (zh) 2011-11-16
WO2010045602A1 (fr) 2010-04-22
CA2741066A1 (fr) 2010-04-22
EP2349903A1 (fr) 2011-08-03
JP5780963B2 (ja) 2015-09-16
BRPI0914428A2 (pt) 2015-10-20

Similar Documents

Publication Publication Date Title
US8352129B2 (en) Motion control of work vehicle
EP2349903B1 (fr) Commande du déplacement d'un engin de travaux
US9938692B2 (en) Wheel loader payload measurement system linkage acceleration compensation
RU2424939C2 (ru) Выравнивающая система с векторным управлением лесозаготовительной машины
US7627393B2 (en) Crane or digger for swinging a load hanging on a support cable with damping of load oscillations
US9777491B2 (en) Structural 3D printing machine
US5737993A (en) Method and apparatus for controlling an implement of a work machine
EP1174384B1 (fr) Procedé et systeme pour le contrôle d'une flèche
CN107849856B (zh) 具有可快速折叠和展开的铰接式桅杆的大型机械手
US7874152B2 (en) Hydraulic system with compensation for kinematic position changes of machine members
KR20050036978A (ko) 분절 마스트 작동 장치
US6968264B2 (en) Method and system for controlling a mechanical arm
US20030025473A1 (en) Robot controller
CN101538941A (zh) 控制用于泵送混凝土的关节臂的振动的方法及相关装置
US20090222176A1 (en) Loader
WO1999005368A1 (fr) Procede et appareil permettant de commander un outil de travail
US20120004816A1 (en) Construction Machine, Method for Controlling Construction Machine, and Program for Causing Computer to Execute the Method
CN103061511B (zh) 多自由度臂架的轨迹规划系统、方法及泵车
CN112049426B (zh) 臂架控制系统、方法和作业车辆
US6356829B1 (en) Unified control of a work implement
JP5362158B2 (ja) ターンテーブル梯子装置
JP2002167794A (ja) 油圧ショベルのフロント制御装置
Yuan et al. Motion control of an aerial work platform
JP2002012399A (ja) ターンテーブル梯子の制御
DE102005025536A1 (de) Mobile Arbeitsmaschinen, insbesondere hydraulisch angetriebene Erdbaumaschinen, und Verfahren zur Erd- und Schüttgutbewegung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110516

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LEW, JAY, Y.

Inventor name: YUAN, QINGHUI

Inventor name: PIYABONGKARN, DAMRONGRIT

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20121009

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190107

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EATON CORPORATION

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1148058

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009058889

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190926

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190926

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190927

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1148058

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191028

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191026

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009058889

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191016

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

26N No opposition filed

Effective date: 20200603

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191016

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091016

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602009058889

Country of ref document: DE

Owner name: DANFOSS POWER SOLUTIONS II TECHNOLOGY A/S, DK

Free format text: FORMER OWNER: EATON CORPORATION, CLEVELAND, OHIO, US

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20220606 AND 20220608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230617

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230913

Year of fee payment: 15

Ref country code: GB

Payment date: 20230831

Year of fee payment: 15

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20231005 AND 20231011

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230906

Year of fee payment: 15