EP2333340A1 - Flexibles Element für Mikropumpe - Google Patents

Flexibles Element für Mikropumpe Download PDF

Info

Publication number
EP2333340A1
EP2333340A1 EP09178168A EP09178168A EP2333340A1 EP 2333340 A1 EP2333340 A1 EP 2333340A1 EP 09178168 A EP09178168 A EP 09178168A EP 09178168 A EP09178168 A EP 09178168A EP 2333340 A1 EP2333340 A1 EP 2333340A1
Authority
EP
European Patent Office
Prior art keywords
micro
actuator
membrane
pump according
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09178168A
Other languages
English (en)
French (fr)
Inventor
Niklaus Schneeberger
Eric Chappel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Debiotech SA
Original Assignee
Debiotech SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Debiotech SA filed Critical Debiotech SA
Priority to EP09178168A priority Critical patent/EP2333340A1/de
Priority to JP2012542648A priority patent/JP5778169B2/ja
Priority to PCT/IB2010/055310 priority patent/WO2011070468A1/fr
Priority to US13/512,463 priority patent/US9822774B2/en
Priority to EP10803638.5A priority patent/EP2510236B1/de
Priority to CN201080048311.5A priority patent/CN102667158B/zh
Priority to RU2012124971/06A priority patent/RU2012124971A/ru
Priority to IN4834DEN2012 priority patent/IN2012DN04834A/en
Publication of EP2333340A1 publication Critical patent/EP2333340A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • F04B43/043Micropumps
    • F04B43/046Micropumps with piezoelectric drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/006Micropumps

Definitions

  • the invention relates to micro-pumps obtained by micromachining and activatable by means of an actuator such as a piezoelectric element.
  • these devices are in the form of a stack, or a support plate, an intermediate layer acting as a flexible membrane, a pumping chamber and a closure plate, the pumping chamber communicating with the outside, eg through the support plate.
  • Part of the membrane is secured to a piezoelectric element disposed outside the device.
  • the connection between these two elements is achieved by means of at least one element, eg a block obtained by micromachining in the support plate.
  • the problem that the present invention proposes to solve lies in the difficulty of ensuring a high-performance link between a membrane and an actuator that deforms when activated.
  • the solution of the aforementioned problem consists of a micro-pump in the form of a stack successively comprising a support plate, an intermediate layer acting as a flexible membrane, a pumping chamber and a closure plate said pump chamber communicating with the outside of the micro-pump, eg through the support plate, said membrane being secured to an actuator disposed outside the micro-pump, the connection being made through a passage passing through the support plate.
  • the actuator may be chosen from piezoelectric bi-morphs, piezoelectric multi-morphs, thermal bi-morphs or shape-memory alloy beams.
  • this type of actuator can exert significant forces, typically of the order of 0.1 N to 100 N.
  • this type of actuator can exert a small amplitude movement along a non-rectilinear trajectory, for example on a circular arc.
  • the length of the trajectory may be less than 1 mm.
  • the invention is characterized in that the membrane is secured to the actuator by means of at least one element in the form of a strip, rigid along its main axis and flexible in the direction perpendicular to its main axis. Rigidity allows the force of the actuator to be transmitted in a linear movement of the membrane while the flexibility ensures the lateral transmission of this force.
  • the actuator is a bi-morphic piezoelectric blade.
  • the actuator comprises a fixed end and a free end, the latter being disposed cantilever at the exit of the passage.
  • One end of the band being attached to said free end.
  • the strip is adhesively bonded to the piezoelectric element.
  • the strip is in direct contact with the membrane.
  • the band is preferably fixed by gluing to the membrane.
  • the end of the strip which is attached to the membrane preferably has holes or a crenellated contour.
  • the tape may be made of any material that achieves the intended purpose.
  • it is made of stainless steel.
  • the piezoelectric element comprises electrical contacts disposed near said fixed end.
  • a particularly interesting configuration is to fix the micro-pump on a rigid part, on which part is also fixed said fixed end of the piezoelectric element.
  • the constituent elements of this set thus form a closed loop.
  • the bonding between the membrane of the micro-pump and the flexible element is then carried out last. In this way these two elements are fixed in their relative position by the other elements and fasteners of the loop.
  • the last fixation (eg gluing) makes it possible to absorb the variations of geometry and to avoid the hyper - statisms by fixing this relative position.
  • the micro-pump shown on the figure 1 is formed of elements preferably made of silicon and glass. It is performed using micromachining technologies known per se. It comprises in particular a glass base plate 12, a silicon support plate 1, a silicon flexible membrane 2, a pumping chamber 4 and a glass closure plate 3, the pumping chamber 4 being defined between the membrane 2 and the closure plate 3.
  • a glass base plate 12 a silicon support plate 1
  • a silicon flexible membrane 2 a silicon flexible membrane 2
  • pumping chamber 4 being defined between the membrane 2 and the closure plate 3.
  • a piezoelectric element 5 (not shown on the figure 1 ) is made integral with a transmission block 13 machined in the support plate 3.
  • the figure 2 schematically illustrates a sectional view of a variant of the invention.
  • the electrical voltage applied to the fixed end 8 of a piezoelectric element 5 induces its contraction, contraction which results in a circular movement of its free end 9.
  • the maximum displacement of the piezoelectric element 5 is therefore at its free end 9.
  • Several electrical contacts 15 are placed in such a way that by applying a tension on each of them, the displacement occurs either in one direction or in the other and / or increasing the displacement.
  • the free end 9 of the piezoelectric element is attached to an upper end 10 of a strip 6 disposed in a vertical direction, inside a cylindrical passage 7.
  • the invention consists mainly in using as connecting element 6 a band, easily deformable horizontally. Moreover, the strip 6 is sufficiently rigid and resistant along its main axis so as to transmit the movement of the piezoelectric element to the membrane 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)
  • Micromachines (AREA)
EP09178168A 2009-12-07 2009-12-07 Flexibles Element für Mikropumpe Withdrawn EP2333340A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP09178168A EP2333340A1 (de) 2009-12-07 2009-12-07 Flexibles Element für Mikropumpe
JP2012542648A JP5778169B2 (ja) 2009-12-07 2010-11-19 マイクロポンプ用の可撓性エレメント
PCT/IB2010/055310 WO2011070468A1 (fr) 2009-12-07 2010-11-19 Element flexible pour micro-pompe
US13/512,463 US9822774B2 (en) 2009-12-07 2010-11-19 Diaphragm pump having a strip connector
EP10803638.5A EP2510236B1 (de) 2009-12-07 2010-11-19 Flexibles element für mikropumpe
CN201080048311.5A CN102667158B (zh) 2009-12-07 2010-11-19 微型泵的挠性元件
RU2012124971/06A RU2012124971A (ru) 2009-12-07 2010-11-19 Гибкий элемент для микронасоса
IN4834DEN2012 IN2012DN04834A (de) 2009-12-07 2010-11-19

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP09178168A EP2333340A1 (de) 2009-12-07 2009-12-07 Flexibles Element für Mikropumpe

Publications (1)

Publication Number Publication Date
EP2333340A1 true EP2333340A1 (de) 2011-06-15

Family

ID=42112213

Family Applications (2)

Application Number Title Priority Date Filing Date
EP09178168A Withdrawn EP2333340A1 (de) 2009-12-07 2009-12-07 Flexibles Element für Mikropumpe
EP10803638.5A Active EP2510236B1 (de) 2009-12-07 2010-11-19 Flexibles element für mikropumpe

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP10803638.5A Active EP2510236B1 (de) 2009-12-07 2010-11-19 Flexibles element für mikropumpe

Country Status (7)

Country Link
US (1) US9822774B2 (de)
EP (2) EP2333340A1 (de)
JP (1) JP5778169B2 (de)
CN (1) CN102667158B (de)
IN (1) IN2012DN04834A (de)
RU (1) RU2012124971A (de)
WO (1) WO2011070468A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013068726A3 (en) * 2011-11-09 2013-07-04 Johnson Matthey Catalysts (Germany) Gmbh Bending transducer and micropump comprising a bending transducer
CN113302399A (zh) * 2018-11-23 2021-08-24 Hnp微系统有限责任公司 用于具有形状记忆合金的运输设备的密封结构

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012221832A1 (de) * 2012-11-29 2014-06-05 Robert Bosch Gmbh Dosierpumpe, Pumpenelement für die Dosierpumpe sowie Verfahren zum Herstellen eines Pumpenelements für eine Dosierpumpe
CN103334907A (zh) * 2013-07-08 2013-10-02 吉林大学 悬臂式压电隔膜泵
CN103362786B (zh) * 2013-07-12 2018-07-13 重庆中镭科技有限公司 一种压电微型隔膜泵
TWI539076B (zh) * 2013-09-25 2016-06-21 馬小康 腔體分離式薄膜幫浦
CN103925199B (zh) * 2014-05-06 2016-06-15 吉林大学 一种新型叠层式压电隔膜泵
EP3185931A1 (de) 2014-08-26 2017-07-05 Debiotech S.A. Erkennung einer infusionsanomalie
DE102020002351A1 (de) * 2020-04-19 2021-10-21 Exel Industries Sa Druckkopf mit mikropneumatischer Steuereinheit
CN112177903A (zh) * 2020-09-29 2021-01-05 长春工业大学 一种矩形腔柔性膜双振子无阀压电泵
CN113944615A (zh) * 2021-10-26 2022-01-18 上海应用技术大学 一种一体化微压电液体泵送装置及其制造和驱动方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5759014A (en) * 1994-01-14 1998-06-02 Westonbridge International Limited Micropump
US5759015A (en) * 1993-12-28 1998-06-02 Westonbridge International Limited Piezoelectric micropump having actuation electrodes and stopper members
US6309189B1 (en) * 1996-12-31 2001-10-30 Westonbridge International Limited Micropump with a built-in intermediate part
WO2006056967A1 (fr) * 2004-11-29 2006-06-01 Debiotech Sa Dispositif microfluidique mecanique, le procede de fabrication d'un empilement intermediaire et de ce dispositif microfluidique, et une micropompe.

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB311629A (en) * 1928-06-27 1929-05-16 Ac Spark Plug Co Improvement in fuel pump
US2228565A (en) * 1937-09-25 1941-01-14 John K Haddaway Pumping mechanism
US2488995A (en) * 1948-02-17 1949-11-22 George A Thiberg Pump for gases and liquids to obtain variating pressures
US2829601A (en) * 1953-12-09 1958-04-08 Mc Graw Edison Co Vibratory pump
US3833876A (en) * 1973-11-21 1974-09-03 Honeywell Inc Temperature compensated snap-beam actuator
US4162876A (en) * 1976-01-28 1979-07-31 Erwin Kolfertz Electromagnetically driven diaphragm pump
JPS56133190A (en) * 1980-03-22 1981-10-19 Sharp Corp Temperature compensator for ink feeder
JPS6035191A (ja) * 1983-08-05 1985-02-22 Kureha Chem Ind Co Ltd ポンプ
CH667701A5 (de) * 1985-11-05 1988-10-31 Hans Meyer Pumpe.
JP2912372B2 (ja) 1988-04-15 1999-06-28 科学技術振興事業団 液体マイクロバルブ
JPH0842457A (ja) * 1994-07-27 1996-02-13 Aisin Seiki Co Ltd マイクロポンプ
TW388748B (en) * 1996-06-28 2000-05-01 Sintokogio Ltd Apparatus for setting a gap between glass substrates
US5758014A (en) 1996-08-05 1998-05-26 Delco Electronics Corp. Electric vehicle traction control system and method
JPH11142780A (ja) * 1997-11-12 1999-05-28 Mitsubishi Electric Corp 光源装置及び投写型表示装置
US6368079B2 (en) * 1998-12-23 2002-04-09 Battelle Pulmonary Therapeutics, Inc. Piezoelectric micropump
US6425740B1 (en) * 2000-07-28 2002-07-30 Sarcos, L.C. Resonator pumping system
US6428289B1 (en) * 2000-12-21 2002-08-06 Grigori Lishanski Automated pump
US6777007B2 (en) * 2002-07-06 2004-08-17 Edward Z. Cai Pod and method for making fluid comestible
GB0108258D0 (en) * 2001-04-03 2001-05-23 Univ Birmingham Actuator assembly
JP2003145751A (ja) * 2001-11-07 2003-05-21 Ricoh Co Ltd マイクロポンプ、該マイクロポンプを用いたインクジェット記録ヘッド、及びインクジェット記録装置
JP2004116327A (ja) * 2002-09-25 2004-04-15 Fuji Electric Holdings Co Ltd マイクロディスペンサ
JP2005084166A (ja) * 2003-09-05 2005-03-31 Fuji Photo Film Co Ltd 画像表示装置および画像表示方法
US7790325B2 (en) * 2004-03-31 2010-09-07 Canon Kabushiki Kaisha Valve having valve element displaced by at least one of a movement of a diaphragm and a movement of an actuator, and fuel cell using the valve
US7267043B2 (en) * 2004-12-30 2007-09-11 Adaptivenergy, Llc Actuators with diaphragm and methods of operating same
FR2885411B1 (fr) * 2005-05-04 2007-07-06 Michelin Soc Tech Pneumatique comportant un dispositif de mesure de force a tige rigide
FR2895986B1 (fr) * 2006-01-06 2008-09-05 Centre Nat Rech Scient Preparation de microcomposants multicouches par la methode de la couche epaisse sacrificielle
JP4935159B2 (ja) * 2006-04-11 2012-05-23 株式会社村田製作所 マイクロポンプ
US7663294B2 (en) * 2006-10-20 2010-02-16 The Boeing Company Enhanced displacement piezoelectric motor
JP2009108715A (ja) * 2007-10-29 2009-05-21 Alps Electric Co Ltd 圧電ポンプ
US8057198B2 (en) * 2007-12-05 2011-11-15 Ford Global Technologies, Llc Variable displacement piezo-electric pumps

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5759015A (en) * 1993-12-28 1998-06-02 Westonbridge International Limited Piezoelectric micropump having actuation electrodes and stopper members
US5759014A (en) * 1994-01-14 1998-06-02 Westonbridge International Limited Micropump
US6309189B1 (en) * 1996-12-31 2001-10-30 Westonbridge International Limited Micropump with a built-in intermediate part
WO2006056967A1 (fr) * 2004-11-29 2006-06-01 Debiotech Sa Dispositif microfluidique mecanique, le procede de fabrication d'un empilement intermediaire et de ce dispositif microfluidique, et une micropompe.

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SCHUBERT S ET AL: "Hybrid-assembled micro dosing system using silicon-based micropump/ valve and mass flow sensor", SENSORS AND ACTUATORS A, ELSEVIER SEQUOIA S.A., LAUSANNE, CH LNKD- DOI:10.1016/S0924-4247(98)00039-9, vol. 69, no. 1, 30 June 1998 (1998-06-30), pages 85 - 91, XP004134645, ISSN: 0924-4247 *
WILLIAM L BENARD ET AL: "Thin-Film Shape-Memory Alloy Actuated Micropumps", JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 7, no. 2, 1 June 1998 (1998-06-01), XP011034789, ISSN: 1057-7157 *
ZENGERLE R ET AL: "The VAMP - A new device for handling liquids or gases", SENSORS AND ACTUATORS A, ELSEVIER SEQUOIA S.A., LAUSANNE, CH LNKD- DOI:10.1016/S0924-4247(97)80106-9, vol. 57, no. 2, 1 November 1996 (1996-11-01), pages 153 - 157, XP004073452, ISSN: 0924-4247 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013068726A3 (en) * 2011-11-09 2013-07-04 Johnson Matthey Catalysts (Germany) Gmbh Bending transducer and micropump comprising a bending transducer
CN113302399A (zh) * 2018-11-23 2021-08-24 Hnp微系统有限责任公司 用于具有形状记忆合金的运输设备的密封结构
CN113302399B (zh) * 2018-11-23 2023-08-29 Hnp微系统有限责任公司 用于具有形状记忆合金的运输设备的密封结构

Also Published As

Publication number Publication date
IN2012DN04834A (de) 2015-09-25
WO2011070468A1 (fr) 2011-06-16
JP5778169B2 (ja) 2015-09-16
US9822774B2 (en) 2017-11-21
RU2012124971A (ru) 2014-01-20
US20120237375A1 (en) 2012-09-20
EP2510236B1 (de) 2013-08-28
CN102667158B (zh) 2015-04-22
CN102667158A (zh) 2012-09-12
EP2510236A1 (de) 2012-10-17
JP2013513066A (ja) 2013-04-18

Similar Documents

Publication Publication Date Title
EP2510236B1 (de) Flexibles element für mikropumpe
EP2682655A2 (de) Magnetventil mit flachem Kern und flacher Feder
EP1950392B1 (de) Vorrichtung zum Zusammenbau von zwei Einheiten, beispielsweise für den Stator eines Turbotriebwerks
EP1136719B1 (de) Schwingungsdämpfer, insbesondere für Hubschrauberrotor
WO2014102507A1 (fr) Dispositif micro-electromecanique comprenant une masse mobile apte a se deplacer hors du plan
FR2888394A1 (fr) Dispositif capacitif a volume capacitif optimise
EP3076245B1 (de) Dämpfungsvorrichtung, insbesondere für mikromechanische uhrkomponente
EP3176650B1 (de) Schutz einer uhrkomponente aus mikro-bearbeitbarem material
FR3003846A1 (fr) Mat deployable a deploiement spontane autonome et satellite comportant au moins un tel mat
EP3084140B1 (de) Führungsarm für gegenstände mit länglicher form, insbesondere für eine turbomaschine
EP0568592A1 (de) Flextensioneller akustischer wandler für tiefe untertauchung.
FR3070193A1 (fr) Profil de joint en forme de gland
EP3804116B1 (de) Vibrationsenergieumwandler
EP3670439A1 (de) Gelenk für mikro- und nanoelektrische systeme mit bewegungen ausserhalb der ebene, das eine reduzierte nichtlinearität ermöglicht
EP0636810A1 (de) Verbesserung an den Gegenschwingungslagern von Hubschrauberrotorflügeln, und Hubschrauberrotor mit solchen Lagern
FR3030412A1 (fr) Dispositif d'essuie-glace
WO2019229319A1 (fr) Recuperateur d'energie vibratoire
EP1059466B1 (de) Schwingungsdämpfer mit unausdehnbarem Kabelbegrenzer
EP2470819B1 (de) Dämpfungsbrücke
EP1152859B1 (de) Vorrichtung zum kontrolierten trennen
FR3013684A1 (fr) Structure porteuse de satellite comportant un dispositif de liaison amortissante
EP1136354B1 (de) Schwingungsdämpfer, insbesondere für einen Hubschrauberrotorarm
FR2950121A1 (fr) Dispositif de controle de recul pour plaquettes de frein et frein muni d'un tel dispositif.
FR3021258A3 (fr) Plot de suspension pour element de suspension d'une ligne d'echappement de vehicule automobile
WO2019180101A1 (fr) Système de renfort d'une conduite et procédé de montage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: CHAPPEL, ERIC

Inventor name: SCHNEEBERGER, NIKLAUS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20111216