EP2332205A1 - Cellule électrochimique haute température et dispositif de cellules électrochimiques correspondant - Google Patents
Cellule électrochimique haute température et dispositif de cellules électrochimiques correspondantInfo
- Publication number
- EP2332205A1 EP2332205A1 EP09783263A EP09783263A EP2332205A1 EP 2332205 A1 EP2332205 A1 EP 2332205A1 EP 09783263 A EP09783263 A EP 09783263A EP 09783263 A EP09783263 A EP 09783263A EP 2332205 A1 EP2332205 A1 EP 2332205A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fuel cell
- copper
- ods
- cell according
- anode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9016—Oxides, hydroxides or oxygenated metallic salts
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0425—Copper-based alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/05—Mixtures of metal powder with non-metallic powder
- C22C1/051—Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
- C22C1/1084—Alloys containing non-metals by mechanical alloying (blending, milling)
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8878—Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
- H01M4/8882—Heat treatment, e.g. drying, baking
- H01M4/8885—Sintering or firing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9016—Oxides, hydroxides or oxygenated metallic salts
- H01M4/9025—Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
- H01M4/9033—Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9041—Metals or alloys
- H01M4/905—Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
- H01M4/9066—Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of metal-ceramic composites or mixtures, e.g. cermets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0206—Metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/241—Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
- H01M8/2425—High-temperature cells with solid electrolytes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M2004/8678—Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
- H01M2004/8684—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M2008/1293—Fuel cells with solid oxide electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8663—Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0215—Glass; Ceramic materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the invention relates to a high-temperature fuel cell (SOFC) according to the preamble of claim 1.
- SOFC high-temperature fuel cell
- the invention also relates to an associated, constructed of such fuel cells Brennstoffzellen- anläge.
- the invention relates to the use of copper in the anodes in the individual fuel cells and as cell connectors in the entire fuel cell system.
- SOFC S_olid Oxide Fuel Cell
- Copper also has the tendency to react with nickel even at relatively low temperatures and in particular to form alloys (see state diagram copper-nickel, Hansen / Anderko "Constitution of Binary Alloys" (McGraw-Hill 1958), page 602) when using copper in a In a SOFC generator, all nickel components are always exchanged for copper.
- the anode In particular in the event that copper-based materials are used to reduce the operating temperature in fuel cells, the anode must also be set to copper. This applies to the SOFCs of different designs, in particular the tubular, HPD or ⁇ cells.
- cell-to-cell connector materials such as pastes or tapes for their realization
- cell-to-cell connector materials are also copper-based.
- the copper-based pastes or slips used to make them, as well as tapes, must be conductive, porous and stable at the operating temperature of the generator, and for comparatively long periods of operation.
- the contact pastes or the anodes in the corresponding time will be more dense and that the porosity of the materials decreases when copper grains sinter together in the slurry and form larger agglomerates, in a relatively short time even at relatively low temperatures (600 0 C - 700 0 C).
- relatively low temperatures 600 0 C - 700 0 C.
- the invention relates to the selection of such copper-based materials for the individual fuel cells - both for the anode and for the materials for connection to the contacts - in which a mechanical alloy of so-called.
- ODS copper powders with fine oxidic powders i. as dispersion alloy is present (ODS: Oxide-p_ispersion-S_trengthened).
- the ODS Cu / metal oxide material is produced by mechanical alloying of the different powders.
- the invention are advantageously such new copper-ferbas elected materials for fuel cells such as the anode layer and anode contact paste is proposed, which advantageously at lower temperatures, particularly in the range 400-700 0 C, or even at moderate operating temperatures, particularly in the range 700-950 0 C, whereby the materials find use for the anodes as well as for all other compounds.
- the invention proposes the use of copper particles with the finest distributions of certain metal oxides by mechanical alloying.
- the distribution of metal oxide particles allows a better thermal stability of the copper particles, as confirmed by experimental studies, and leads to a longer life and a slower rate of degradation of the contact slip.
- the invention is based on the finding that excessive sintering between copper particles, in particular in the anode and contact paste, is avoided and that subsequent compression of the contact pastes in the individual bundles of the fuel cells and thus in the entire generator can be excluded. This should improve the performance, i. the long-term stability of the new fuel cells can be increased.
- the already mentioned ODS copper / metal oxide powder ie, for example, Cu / doped Zr ⁇ 2 - such.
- Cu / YSZ or Cu / ScSZ - or Cu / doped Ce0 2 - such as Cu / GDC or Cu / SDC - can be used.
- Cu / metal oxide combinations with different dispersion material content and grain size can be used.
- the oxide dispersion should be present with a good distribution in the submicrometer range, for example also in the nano range.
- All metal oxides are replaceable, but especially the oxides of the electrolyte material in order to avoid possible reactions between the various elements in the long-term operation of the fuel cell system.
- the dispersion energetically blocks the movement of copper to minimize the specific surface area.
- the anode layers could be removed with the aid of wet coating methods, eg. As roller coating, screen printing, wet-powder spraying, and be prepared with additional sintering processes.
- the anode paste or solution / suspension consists of ODS copper powder, electrolyte material, water, binder, plasticizer, and possibly a porous material, eg. As graphite or polymer materials.
- the contact paste (possibly it could be in the adhesive tape form) consists of the ODS copper powder, water, binder or adhesive materials, such as polyvinyl acetate (PVA) and possibly a plasticizer to control the viscosity, are mixed. Other additives are possible.
- PVA polyvinyl acetate
- FIG. 1 shows a micrograph of pure copper powder
- FIG. 2 shows a micrograph of sintered Cu / SCZ material
- FIG. 3 shows schematically copper particles with mechanically added metal oxides in extremely fine distribution.
- Such functional layers with ODS powders can be carried out by applying appropriate materials, for example by spraying liquids, by mechanical application or by preparation via belts.
- appropriate materials for example by spraying liquids, by mechanical application or by preparation via belts.
- copper powder can be mixed together with copper / metal oxides already produced by mechanical alloying.
- the copper particles are denoted by 1, as obtained in a bed of copper powder. It can be seen that pores 2 are present.
- FIG. 2 shows a composite of Cu / SCSZ 10 mol% after a thermal treatment at 1000 ° for 125 h. It can be seen clearly that the pure copper powder has sintered together to form larger areas 10 and, according to FIG. 1, forms extended agglomerates, while the Cu / ScSZ powder is characterized by a few contact compounds among the particles 10. These contact connections provide electrical conductivity to form a network in the anode that allows electronic conductivity. Ansons- The individual particles appear as discrete regions and substantially unchanged from FIG.
- FIG. 3 shows a particle 110 which was produced by mechanical alloying.
- the distribution of substantially smaller metal oxide particles 111 occurs in the larger particle 110 of copper matrix.
- the metal oxide particles 111 have a diameter of 100 nm, and the matrix particles may have an extension of 1 mm or more. In accordance with FIG. 2, this results in a statistical distribution of the metal oxide particles 111 in the matrix 110.
- the hybrid particles of copper with mechanically alloyed ODS copper / oxide particles described with reference to FIGS. 1 to 3 are used to build up the anodes of SOFC fuel cells. Furthermore, the material for the contacts can be produced on this basis. This solves the problem that it can lead to copper precipitation during long-term operation of the new fuel cell. As mentioned above, it can be assumed that mechanical alloying for improving material structures is known per se. In connection with high-temperature fuel cells and the
- the ODS dispersion of metal oxide in metal cores are suitable for the replacement of the previous nickel-based anode in high-temperature fuel cells, if in the fuel cell system, the operating temperature is lowered.
- the corresponding compounds in pasty or liquid consistency for contacting the individual parts of the fuel cell system may also have corresponding copper / copper oxide-based ODS materials.
- the use of pastes with copper / metal oxide distributions allows for improved thermal stability and increased lifetime of the SOFC and the individual fuel cells or the fuel cell belt. This results in a considerable cost reduction of the known SOFC generators, which is of highest relevance in practice.
- the materials described are used in fuel cell, wherein the anode has a thickness of about 1 to 100 microns.
- the ODS copper powder-based layer as
- the anode may be infiltrated with additional precursor suspensions - eg, CeO 2 , Co, Ni -, for example, by wet chemical or CVD methods to increase electrochemical activity.
- the metal oxide-based particles have an order of magnitude of ⁇ 1 ⁇ m and may be in particular in the nanoscale, ie submicrometer range.
- the ODS material may consist of Cu / ZrO 2 or Cu / doped-Zr0 2, as for example, be Cu / YSZ or Cu / ScSZ, gebil ⁇ det.
- the ODS may also be formed of Cu / doped CeO 2, such as Cu / GDC or Cu / SDC, or Cu / GDC.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Ceramic Engineering (AREA)
- Composite Materials (AREA)
- Fuel Cell (AREA)
- Inert Electrodes (AREA)
Abstract
L'invention concerne des cellules électrochimiques haute température fonctionnant à des températures entre 500 et 7000 °C, des matériaux à base de cuivre destinés aux composants et les compositions à base desdits matériaux. Les matériaux à base de cuivre sont des hybrides composés de poudres de cuivre et d'autres poudres oxydiques. Ces hybrides sont notamment produits par alliage mécanique. Le dispositif de cellules électrochimiques fabriqué selon l'invention présente une stabilité à long terme dans la plage de travail concernée et ne présente aucun dépôt de cuivre souvent observé sur les dispositifs habituels.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102008049607A DE102008049607A1 (de) | 2008-09-30 | 2008-09-30 | Hochtemperatur-Brennstoffzelle und zugehörige Brennstoffzellenanlage |
PCT/EP2009/062236 WO2010037665A1 (fr) | 2008-09-30 | 2009-09-22 | Cellule électrochimique haute température et dispositif de cellules électrochimiques correspondant |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2332205A1 true EP2332205A1 (fr) | 2011-06-15 |
Family
ID=41403131
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09783263A Withdrawn EP2332205A1 (fr) | 2008-09-30 | 2009-09-22 | Cellule électrochimique haute température et dispositif de cellules électrochimiques correspondant |
Country Status (4)
Country | Link |
---|---|
US (1) | US20110223509A1 (fr) |
EP (1) | EP2332205A1 (fr) |
DE (1) | DE102008049607A1 (fr) |
WO (1) | WO2010037665A1 (fr) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102539204B (zh) * | 2011-10-19 | 2013-09-11 | 深圳市金洲精工科技股份有限公司 | 一种pcb切片的制作方法及pcb切片 |
CN109175391B (zh) * | 2018-10-24 | 2020-12-15 | 北京航空航天大学 | 一种原位合成纳米氧化物颗粒弥散强化合金的方法 |
US11453618B2 (en) * | 2018-11-06 | 2022-09-27 | Utility Global, Inc. | Ceramic sintering |
US11539053B2 (en) * | 2018-11-12 | 2022-12-27 | Utility Global, Inc. | Method of making copper electrode |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5312582A (en) * | 1993-02-04 | 1994-05-17 | Institute Of Gas Technology | Porous structures from solid solutions of reduced oxides |
DE19630004C2 (de) * | 1996-07-25 | 2001-11-08 | Mtu Friedrichshafen Gmbh | Anodenstromkollektor für eine Schmelzkarbonatbrennstoffzelle |
JP3924772B2 (ja) * | 2000-11-16 | 2007-06-06 | 三菱マテリアル株式会社 | 固体電解質型燃料電池の空気極集電体 |
WO2005029618A2 (fr) * | 2003-09-17 | 2005-03-31 | Tiax Llc | Dispositifs electrochimiques et composants de ceux-ci |
US7767358B2 (en) * | 2005-05-31 | 2010-08-03 | Nextech Materials, Ltd. | Supported ceramic membranes and electrochemical cells and cell stacks including the same |
US20070117006A1 (en) * | 2005-11-22 | 2007-05-24 | Zhongliang Zhan | Direct Fabrication of Copper Cermet for Use in Solid Oxide Fuel Cell |
JP5170815B2 (ja) * | 2006-07-04 | 2013-03-27 | 日産自動車株式会社 | 固体電解質型燃料電池ユニット及びスタック |
-
2008
- 2008-09-30 DE DE102008049607A patent/DE102008049607A1/de not_active Ceased
-
2009
- 2009-09-22 US US13/121,778 patent/US20110223509A1/en not_active Abandoned
- 2009-09-22 EP EP09783263A patent/EP2332205A1/fr not_active Withdrawn
- 2009-09-22 WO PCT/EP2009/062236 patent/WO2010037665A1/fr active Application Filing
Also Published As
Publication number | Publication date |
---|---|
DE102008049607A1 (de) | 2010-04-01 |
WO2010037665A1 (fr) | 2010-04-08 |
US20110223509A1 (en) | 2011-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE60032577T2 (de) | Kompositelektroden für festkörperelektrochemische vorrichtungen | |
DE3785794T2 (de) | Elektroden fuer elektrochemische zellen mit festoxidelektrolyt. | |
EP2712467B1 (fr) | Élément accumulateur et procédé pour sa fabrication | |
WO2011060756A1 (fr) | Anode pour une pile à combustible à haute température et sa fabrication | |
DE112007000670T5 (de) | Brennstoffzelle und Herstellungsverfahren für eine Brennstoffzelle | |
DE112011104814T5 (de) | Verfahren zur Herstellung von feinen Katalysatorteilchen, Verfahren zur Herstellung von Kohlenstoff-geträgerten feinen Katalysatorteilchen, Verfahren zur Herstellung einer Katalysatormischung und Verfahren zur Herstellung einer Elektrode | |
EP2050155A1 (fr) | Électrode pour une pile à combustible à carbonate fondu et son procédé de fabrication | |
WO2015139791A1 (fr) | Couche de catalyseur pour une pile à combustible et procédé de fabrication de cette couche | |
DE112012004623T5 (de) | Membranelektrodenanordnung für eine Brennstoffzelle | |
DE102019115643A1 (de) | Festkörperelektroden mit elektronisch leitenden, nicht-kohlenstoffhaltigen zusatzstoffen | |
DE112010005461B4 (de) | Brennstoffzelle | |
EP1915793B1 (fr) | Protection de cellules a combustible haute temperature a protection anodique vis-a-vis de la reoxydation de l'anode | |
EP2332205A1 (fr) | Cellule électrochimique haute température et dispositif de cellules électrochimiques correspondant | |
EP3479429A1 (fr) | Procédé de fabrication d'un matériau de catalyseur, déposé sur un support, pour une pile à combustible | |
DE102010046146A1 (de) | Verfahren zur Herstellung von Festoxidbrennstoffzellen mit einer metallsubstratgetragenen Kathoden-Elektrolyt-Anoden-Einheit sowie deren Verwendung | |
EP3108528B1 (fr) | Électrode à diffusion gazeuse, procédé de production d'une électrode à diffusion gazeuse et batterie | |
DE102016123910A1 (de) | Gasdiffusionselektrode | |
EP2718992B1 (fr) | Carte de voeux à cellule métal-air | |
WO2012139899A1 (fr) | Électrode à diffusion gazeuse, son procédé de fabrication et son utilisation | |
WO2017025557A1 (fr) | Unité membrane-électrodes pour pile à combustible et pile à combustible | |
EP2985820B1 (fr) | Électrode de diffusion de gaz, procede de fabrication d'une electrode de diffusion de gaz et batterie | |
EP3697944B1 (fr) | Électrode à gaz combustible ainsi que procédé de fabrication d'une électrode à gaz combustible | |
WO2018096022A1 (fr) | Anode pour cellule électrochimique et procédé de fabrication d'une cellule électrochimique munie de ladite anode | |
DE102017218012A1 (de) | Elektrolyse- und/oder Brennstoffzelle umfassend ein Elektrodenmaterial enthaltend einen metallokeramischen Verbundwerkstoff und Verfahren zur Herstellung dieser | |
DE10232093A1 (de) | Verfahren zum Zusammenfügen von Einzel-Brennstoffzellen zu einem Block oder -Stack sowie derartiger Brennstoffzellen-Block |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20110330 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20111123 |