EP2315975B1 - Fireproof wall, in particular for a combustion furnace - Google Patents

Fireproof wall, in particular for a combustion furnace Download PDF

Info

Publication number
EP2315975B1
EP2315975B1 EP09809162.2A EP09809162A EP2315975B1 EP 2315975 B1 EP2315975 B1 EP 2315975B1 EP 09809162 A EP09809162 A EP 09809162A EP 2315975 B1 EP2315975 B1 EP 2315975B1
Authority
EP
European Patent Office
Prior art keywords
wall
refractory
boiler
wall according
intermediate space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09809162.2A
Other languages
German (de)
French (fr)
Other versions
EP2315975A1 (en
Inventor
Andreas Kern
Hans Petschauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mokesys AG
Original Assignee
Mokesys AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mokesys AG filed Critical Mokesys AG
Publication of EP2315975A1 publication Critical patent/EP2315975A1/en
Application granted granted Critical
Publication of EP2315975B1 publication Critical patent/EP2315975B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M5/00Casings; Linings; Walls
    • F23M5/08Cooling thereof; Tube walls
    • F23M5/085Cooling thereof; Tube walls using air or other gas as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M5/00Casings; Linings; Walls
    • F23M5/08Cooling thereof; Tube walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/10Water tubes; Accessories therefor
    • F22B37/107Protection of water tubes
    • F22B37/108Protection of water tube walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/0003Linings or walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/12Casings; Linings; Walls; Roofs incorporating cooling arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M2900/00Special features of, or arrangements for combustion chambers
    • F23M2900/05004Special materials for walls or lining
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M2900/00Special features of, or arrangements for combustion chambers
    • F23M2900/05005Sealing means between wall tiles or panels

Definitions

  • the invention relates to a refractory wall with a boiler wall and a superior in distance from the boiler wall refractory and fire-proof protective cover according to the preamble of claim 1.
  • Such refractory walls are e.g. used in combustion chambers of combustion plants.
  • the boiler wall is often designed as a metal pipe wall and is usually made of webs connected by pipes.
  • the fire-resistant and fire-resistant protective cover which is suspended at a distance from the pipe wall, is intended to protect the pipe wall from corrosion by flue gases.
  • Refractory walls are e.g. also used in fluidized bed ovens, where the boiler wall consists of a more or less thick simple metal wall. Again, the boiler wall or metal wall to be protected from corrosion.
  • the boiler walls and protective coverings are often exposed to temperatures of over 1000 ° C in today's incinerators and experience even with a suitable choice of material due to the large temperature differences of the individual operating conditions strains and contractions.
  • the differences in temperature are generally greater for the protective linings than for the boiler walls themselves, which must be taken into account in the choice of material and / or design of the protective linings, so that the protective linings are not destroyed by greater strains and contractions than the boiler walls.
  • the protective panels or the plates thereof are therefore usually not rigidly attached to the boiler walls but with play, so that compensating movements parallel to the boiler walls are possible to a limited extent.
  • the choice of a suitable material for the protective covering makes it possible for the protective covering to be matched to the boiler wall for every operating condition.
  • protective linings made of ceramic materials, in particular SiC have proven successful, although the SiC content can be very different.
  • SiC masses or SiC plates with a SiC content of 30% -90% are used.
  • the panels of the protective cover are usually mutually sealed by various measures to some extent to prevent the passage of flue gases. However, in practice this alone can not completely avoid that corrosive flue gases can pass through the protective cover and attack the boiler wall.
  • a refractory wall of the generic type is known in which the plates of the protective cover have a tongue / groove structure or complementary stepped edges, so that even with thermally induced mutual displacements of the plates a certain tightness is maintained and at least a straight-line flow of flue gas is prevented.
  • the mutual sealing of the individual plates is further increased by ceramic fiber strips, which are arranged between the individual plates in the region of the tongue and groove structures or the complementary stepped edges.
  • the space between the pipe wall and the protective covering is encapsulated with a SiC flow concrete, which causes an additional seal between the plates and the pipe wall.
  • a refractory wall having a tube wall and a spaced superior protective cover from a plurality of refractory plates, wherein the (non-cast) space between the tube wall and the protective cover is formed as at least one closed pressure chamber, wherein the or each pressure chamber with a pressurized inert gas is applied.
  • the excess pressure of the protective gas is so high that no flue gas can penetrate through the protective lining from the combustion furnace.
  • the heat transfer between the protective lining becomes due to the insulating effect of the protective gas and obstructs the pipe wall, so that depending on the application, not enough heat can be dissipated.
  • GB430021 describes a refractory wall according to the preamble of claim 1.
  • the invention has the object to improve a refractory wall of the generic type to the effect that on the one hand sufficient heat transfer between the protective panel and the boiler wall is guaranteed and that this heat transfer on the other hand can be selectively influenced quantitatively and locally.
  • This object is achieved by the inventive refractory wall, as defined in independent claim 1.
  • Particularly advantageous developments and refinements of the invention will become apparent from the dependent claims.
  • the essence of the invention consists in the following:
  • a refractory wall, in particular for a combustion furnace, comprises a boiler wall and a refractory and fire-proof protective lining which is provided at a distance from the latter and protects the boiler wall against corrosion by flue gases.
  • the protective cover comprises a plurality of juxtaposed and stacked refractory plates, which are fastened via at least one plate holder on the boiler wall.
  • the refractory wall has means for supplying gas, in particular air, into the intermediate space.
  • a particulate filler which has a porosity of 15-70% and which is coated with an activatable ceramic or mineral binder which exhibits its bonding effect when an activation temperature is exceeded.
  • the refractory wall also has means for removing the gas from the space.
  • the particulate filling material between the boiler wall and the protective lining significantly improves the heat transfer from the protective lining to the boiler wall.
  • the particulate filling material is arranged in zones of the wall or its interspace.
  • individual zones may contain different particulate filler or may not be backfilled at all. Due to the zonal division and arrangement of the particulate filling material and by appropriate Choice of material, the heat transfer within the wall can be specifically controlled and thus optimally adapted to the operational requirements.
  • particulate filler having a porosity of 15-70% is used.
  • the refractory wall according to the invention can advantageously be additionally developed as a ventilated system.
  • first embodiment of the refractory wall comprises as a boiler wall a pipe wall 1 ( Figures 2-5 ) and a distance in front superior protective cover 2, wherein between the pipe wall 1 and the protective cover 2, a gap 3 is formed.
  • the pipe wall 1 consists of a plurality of vertical use in practice pipes 11, which are held together by webs 12 at a mutual distance.
  • the tubes 11 and the webs 12 are made usually made of steel.
  • the protective cover 2 comprises a plurality of juxtaposed and superimposed refractory plates 21, which interlock, for example, by complementary shaping of their edges and in this way are mutually sealed to a certain extent.
  • the joints between the plates 21 are denoted by 23.
  • the plates are, for example, ceramic SiC plates, preferably SiC 90 plates having an SiC content of about 90% in the production, which are fire resistant up to over 1000 ° C.
  • Each plate 21 is fastened to the tube wall 1 by, for example, four plate holders 22.
  • the plate mounts are made of heat-resistant steel, eg steel no. 310 to AISI standard or material no. 1.4845 to DIN 17440.
  • the plate mounts 22 essentially comprise in each case one bolt 22a welded to a web 12 and two nuts 22b and 22c seated on the bolt ( Figures 3-5).
  • the plate brackets 22 engage in vertical, inwardly widened slots 21a of the plates 21 and set the distance of the plates 21 to the tube wall.
  • the plates 21 are movable to some extent, so as to allow thermally induced expansion or contraction movements.
  • the plates 21 have, on their side facing the tube wall, the tubes 11 adapted cylindrical grooves, so that the clear width (gap width) of the gap 3 between the tube wall 1 and protective cover 2 over the entire wall is substantially approximately constant.
  • Practical gap widths are 5-20 mm, preferably 5-10 mm.
  • a first essential difference from the prior art is that the intermediate space 3 between the boiler wall, here the pipe wall 1, and the protective covering 2 is completely or partially filled with a particulate filling material (granulate) P.
  • the particulate filler material P consists of ceramic or metallic materials, for example SiC, has a particle size of about 1-10 mm, preferably 3-7 mm, and according to the invention a porosity of about 15-70%.
  • the requirements for heat dissipation can vary locally.
  • the heat transfer from the protective lining to the pipe wall can be optimally adapted locally to the operating requirements of the incinerator both quantitatively and zone by zone.
  • two such zones Z1 and Z2 are indicated purely by way of example.
  • the zone classification depends on the operating requirements and can of course also be realized in the vertical direction.
  • the spatial distribution of the gap 3 in individual zones can be done for example by separating plates 3a, as shown in the FIGS. 3 and 4 is indicated schematically.
  • the particulate filler material P is coated with a thin layer of a mineral or ceramic binder, as shown in FIG Fig. 9 is shown greatly enlarged.
  • the actual filling material forms the core Pk, the surrounding, for example, about 100 ⁇ thick coating or coating with the binder is denoted by Pb.
  • a binder a material is used, which is activated only at high temperatures, for example above 100 ° C, ie unfolds its binding effect. As long as the particulate filler P is exposed to lower temperatures, the binder is not active and the particulate filler remains free-flowing. However, if, for example, the breakage of a plate 21 locally exceeds the activation temperature, the binder unfolds its adhesive or binding action and bakes the particulate filler together locally. This prevents trickling out of the breakage of the protective cover.
  • the refractory wall is additionally designed as a ventilated system.
  • the gas can also flow through the filling material.
  • the gas (or the air) in the space is in operation under a pressure of about 2-50 mbar and has over the combustion chamber of the combustion furnace to about 2-10 mbar higher pressure. This prevents corrosive flue gases from leaking through the protective covering from the combustion chamber into the intermediate space 3 and can attack the pipe wall 1.
  • inlet nozzles 31 and outlet openings 32 are provided in the wall, the inlet nozzles 31 communicating with and communicating with one or more air supply channels or channels 33. these are fed ( Fig. 5 ).
  • the gas or air supply takes place from the side of the boiler wall, wherein the inlet nozzles 31 pass through the boiler wall, in this case the pipe wall 1, in the region of its webs 12 ( Fig. 5 ).
  • the outlet openings 32 pass through the protective cover 2, whereby the gas flowing through the gap 3 is discharged into the furnace chamber.
  • the inlet nozzles 31 are protected or arranged. By this is meant that it is ensured that the particulate filling material P can not get into the inlet nozzles and clog them. This can e.g. be achieved by a downward inclination of the inlet nozzles. Likewise, preferably, the outlet openings 32 should be protected so that the particulate filler P can not be blown through them.
  • the outlet openings 32 are preferably arranged in the region of the upper edge of the refractory wall, as shown in FIGS FIGS. 1 and 6 is indicated schematically.
  • the inlet nozzles 31 can be arranged at the foot of the wall, ie near its lower edge, as shown in FIGS FIGS. 1 and 7 is shown. Preferably, however, the inlet nozzles 31 are distributed over the entire wall surface or individual areas thereof.
  • the plates 21 of the protective cover 2 are mutually sealed in a double manner.
  • the z-shaped plate joints 23 of the protective covering 2 are sealed by inserted ceramic sealing strips 23a of refractory material and by an additional putty mass 23b.
  • the felt strips 23a provide some flexibility but do not provide an absolute seal. The latter is achieved by the additional putty seal 23b.
  • the boiler wall of the refractory wall according to the invention does not have to be designed as a tube wall, but can also be, for example, a normal metal wall.
  • the Fig. 8 schematically shows a second embodiment in which the boiler wall is formed as such a flat metal wall 1a. Also in this embodiment causes the possibly zonal backing with particulate filler P the mentioned advantages.

Description

Die Erfindung betrifft eine feuerfeste Wand mit einer Kesselwand und einer im Abstand zur Kesselwand vorgesetzten feuerfesten und feuerdichten Schutzverkleidung gemäss dem Oberbegriff des Anspruchs 1.The invention relates to a refractory wall with a boiler wall and a superior in distance from the boiler wall refractory and fire-proof protective cover according to the preamble of claim 1.

Solche feuerfesten Wände werden z.B. in Feuerräumen von Verbrennungsanlagen eingesetzt. Die Kesselwand ist dabei oft als metallene Rohrwand ausgebildet und besteht in der Regel aus durch Stege verbundenen Rohren. Die im Abstand zur Rohrwand vorgehängte feuerfeste und feuerdichte Schutzverkleidung soll die Rohrwand vor Korrosion durch Rauchgase schützen. Feuerfeste Wände werden z.B. auch bei Wirbelschichtöfen eingesetzt, bei denen die Kesselwand aus einer mehr oder weniger dicken einfachen Metallwand besteht. Auch hier soll die Kesselwand bzw. Metallwand vor Korrosion geschützt werden.Such refractory walls are e.g. used in combustion chambers of combustion plants. The boiler wall is often designed as a metal pipe wall and is usually made of webs connected by pipes. The fire-resistant and fire-resistant protective cover, which is suspended at a distance from the pipe wall, is intended to protect the pipe wall from corrosion by flue gases. Refractory walls are e.g. also used in fluidized bed ovens, where the boiler wall consists of a more or less thick simple metal wall. Again, the boiler wall or metal wall to be protected from corrosion.

Die Kesselwände und Schutzverkleidungen werden in den heutigen Verbrennungsanlagen oftmals Temperaturen von über 1000°C ausgesetzt und erfahren auch bei geeigneter Materialwahl aufgrund der grossen Temperaturunterschiede der einzelnen Betriebszustände Dehnungen und Kontraktionen. Die Temperaturunterschiede sind bei den Schutzverkleidungen im Allgemeinen grösser als bei den Kesselwänden selbst, was bei der Materialwahl und/oder Ausgestaltung der Schutzverkleidungen berücksichtigt werden muss, damit die Schutzverkleidungen nicht durch grössere Dehnungen und Kontraktionen als die Kesselwände zerstört werden. Die Schutzverkleidungen bzw. die Platten derselben werden daher in der Regel nicht starr an den Kesselwänden befestigt sondern mit Spiel, so dass in beschränktem Umfang Ausgleichsbewegungen parallel zu den Kesselwänden möglich sind.The boiler walls and protective coverings are often exposed to temperatures of over 1000 ° C in today's incinerators and experience even with a suitable choice of material due to the large temperature differences of the individual operating conditions strains and contractions. The differences in temperature are generally greater for the protective linings than for the boiler walls themselves, which must be taken into account in the choice of material and / or design of the protective linings, so that the protective linings are not destroyed by greater strains and contractions than the boiler walls. The protective panels or the plates thereof are therefore usually not rigidly attached to the boiler walls but with play, so that compensating movements parallel to the boiler walls are possible to a limited extent.

Die Wahl eines geeigneten Materials für die Schutzverkleidung ermöglicht es, dass die Schutzverkleidung für jeden Betriebszustand auf die Kesselwand abgestimmt ist. Für Kesselwände aus Stahl haben sich Schutzverkleidungen aus keramischen Werkstoffen, insbesondere SiC, bewährt, wobei der SiC-Gehalt sehr unterschiedlich sein kann. In der Praxis werden SiC-Massen oder SiC-Platten mit einem SiC-Gehalt von 30% - 90% eingesetzt.The choice of a suitable material for the protective covering makes it possible for the protective covering to be matched to the boiler wall for every operating condition. For boiler walls made of steel, protective linings made of ceramic materials, in particular SiC, have proven successful, although the SiC content can be very different. In practice, SiC masses or SiC plates with a SiC content of 30% -90% are used.

Die Platten der Schutzverkleidung sind in der Regel durch verschiedene Massnahmen bis zu einem gewissen Grad gegenseitig abgedichtet, um den Durchtritt von Rauchgasen zu verhindern. Allerdings lässt es sich in der Praxis dadurch allein nicht vollständig vermeiden, dass korrosive Rauchgase durch die Schutzverkleidung gelangen und die Kesselwand angreifen können.The panels of the protective cover are usually mutually sealed by various measures to some extent to prevent the passage of flue gases. However, in practice this alone can not completely avoid that corrosive flue gases can pass through the protective cover and attack the boiler wall.

Aus der EP 1 032 790 B1 ist eine feuerfeste Wand der gattungsgemässen Art bekannt, bei der die Platten der Schutzverkleidung eine Nut/Feder-Struktur bzw. komplementär abgestufte Ränder aufweisen, so dass auch bei thermisch bedingten gegenseitigen Verschiebungen der Platten eine gewisse Dichtigkeit erhalten bleibt und zumindest ein geradliniges Durchströmen von Rauchgas verhindert wird. Die gegenseitige Abdichtung der einzelnen Platten ist ferner durch Keramikfaserstreifen erhöht, welche zwischen den einzelnen Platten im Bereich der Nut/Feder-Strukturen bzw. der komplementär abgestuften Ränder angeordnet sind. Darüber hinaus ist der Zwischenraum zwischen Rohrwand und Schutzverkleidung mit einem SiC-Fliessbeton vergossen, der zwischen den Platten und der Rohrwand eine zusätzliche Abdichtung bewirkt. Anderseits besteht aber durch diese Ausgiessung des Zwischenraums mit Fliessbeton eine direkte Verbindung zwischen den Platten der Schutzverkleidung und der Rohrwand, welche die Flexibilität des Wandsystems hinsichtlich Wärmeübergangserfordernisse reduziert. Ausserdem besteht die Gefahr, dass sich durch unsachgemässen Betrieb des Verbrennungsofens, z.B. durch zu rasches Hoch- oder Runterfahren desselben, die Schutzverkleidung von der Rohrwand bzw. generell Kesselwand löst.From the EP 1 032 790 B1 is a refractory wall of the generic type is known in which the plates of the protective cover have a tongue / groove structure or complementary stepped edges, so that even with thermally induced mutual displacements of the plates a certain tightness is maintained and at least a straight-line flow of flue gas is prevented. The mutual sealing of the individual plates is further increased by ceramic fiber strips, which are arranged between the individual plates in the region of the tongue and groove structures or the complementary stepped edges. In addition, the space between the pipe wall and the protective covering is encapsulated with a SiC flow concrete, which causes an additional seal between the plates and the pipe wall. On the other hand, however, there is a direct connection between the plates of the protective covering and the pipe wall, which reduces the flexibility of the wall system in terms of heat transfer requirements by this pouring of the intermediate space with flowing concrete. In addition, there is the danger that due to improper operation of the incinerator, for example by too fast raising or lowering of the same, the protective cover of the pipe wall or boiler wall generally dissolves.

Aus der DE 198 16 059 C2 ist eine feuerfeste Wand mit einer Rohrwand und einer im Abstand vorgesetzten Schutzverkleidung aus einer Vielzahl von feuerfesten Platten bekannt, bei der der (unvergossene) Zwischenraum zwischen der Rohrwand und der Schutzverkleidung als mindestens eine geschlossene Druckkammer ausgebildet ist, wobei die bzw. jede Druckkammer mit einem unter Überdruck stehenden Schutzgas beaufschlagt ist. Der Überdruck des Schutzgases ist dabei so hoch bemessen, dass aus dem Verbrennungsofen kein Rauchgas durch die Schutzverkleidung eindringen kann. Dadurch wird zwar eine relativ gute Korrosionsschutzwirkung erreicht, jedoch wird durch die Isolationswirkung des Schutzgases der Wärmeübergang zwischen der Schutzverkleidung und der Rohrwand behindert, so dass je nach Einsatz nicht genügend Wärme abgeführt werden kann.
GB430021 beschreibt eine feuerfeste Wand gemäß dem Oberbegriff des Anspruchs 1.
From the DE 198 16 059 C2 a refractory wall is known having a tube wall and a spaced superior protective cover from a plurality of refractory plates, wherein the (non-cast) space between the tube wall and the protective cover is formed as at least one closed pressure chamber, wherein the or each pressure chamber with a pressurized inert gas is applied. The excess pressure of the protective gas is so high that no flue gas can penetrate through the protective lining from the combustion furnace. As a result, although a relatively good corrosion protection effect is achieved, however, the heat transfer between the protective lining becomes due to the insulating effect of the protective gas and obstructs the pipe wall, so that depending on the application, not enough heat can be dissipated.
GB430021 describes a refractory wall according to the preamble of claim 1.

Angesichts der Nachteile dieser bekannten feuerfesten Wandsysteme liegt der Erfindung die Aufgabe zugrunde, eine feuerfeste Wand der gattungsgemässen Art dahingehend zu verbessern, dass einerseits ein ausreichender Wärmeübergang zwischen der Schutzverkleidung und der Kesselwand gewährleistet ist und dass dieser Wärmeübergang anderseits gezielt quantitativ und lokal beeinflusst werden kann.
Diese Aufgabe wird durch die erfindungsgemässe feuerfeste Wand gelöst, wie sie im unabhängigen Anspruch 1 definiert ist. Besonders vorteilhafte Weiterbildungen und Ausgestaltungen der Erfindung ergeben sich aus den abhängigen Ansprüchen.
Das Wesen der Erfindung besteht im Folgenden: Eine feuerfeste Wand, insbesondere für einen Verbrennungsofen, umfasst eine Kesselwand und eine im Abstand zu dieser vorgesetzte feuerfeste und feuerdichte Schutzverkleidung zum Schützen der Kesselwand vor Korrosion durch Rauchgase. Die Schutzverkleidung umfasst eine Vielzahl von neben- und übereinander angeordneten feuerfesten Platten, die über je mindestens eine Plattenhalterung an der Kesselwand befestigt sind. Zwischen der Kesselwand und der Schutzverkleidung ist ein Zwischenraum vorhanden. Die feuerfeste Wand weist Mittel zur Zuführung von Gas, insbesondere Luft, in den Zwischenraum auf. Zumindest in einem Teilbereich des Zwischenraums ist ein partikuläres Füllmaterial angeordnet, das eine Porosität von 15-70% aufweist und das mit einem aktivierbaren keramischen oder mineralischen Binder beschichtet ist, der seine Klebe- bzw. Bindewirkung entfaltet, wenn eine Aktivierungstemperatur überstiegen wird. Die feuerfeste Wand weist ausserdem Mittel zur Abführung des Gases aus dem Zwischenraum auf.
Durch das partikuläre Füllmaterial zwischen Kesselwand und Schutzverkleidung wird der Wärmeübergang von der Schutzverkleidung zur Kesselwand deutlich verbessert.
In view of the disadvantages of these known refractory wall systems, the invention has the object to improve a refractory wall of the generic type to the effect that on the one hand sufficient heat transfer between the protective panel and the boiler wall is guaranteed and that this heat transfer on the other hand can be selectively influenced quantitatively and locally.
This object is achieved by the inventive refractory wall, as defined in independent claim 1. Particularly advantageous developments and refinements of the invention will become apparent from the dependent claims.
The essence of the invention consists in the following: A refractory wall, in particular for a combustion furnace, comprises a boiler wall and a refractory and fire-proof protective lining which is provided at a distance from the latter and protects the boiler wall against corrosion by flue gases. The protective cover comprises a plurality of juxtaposed and stacked refractory plates, which are fastened via at least one plate holder on the boiler wall. There is a space between the boiler wall and the protective lining. The refractory wall has means for supplying gas, in particular air, into the intermediate space. At least in a portion of the gap, there is disposed a particulate filler which has a porosity of 15-70% and which is coated with an activatable ceramic or mineral binder which exhibits its bonding effect when an activation temperature is exceeded. The refractory wall also has means for removing the gas from the space.
The particulate filling material between the boiler wall and the protective lining significantly improves the heat transfer from the protective lining to the boiler wall.

Gemäss einer bevorzugten Ausführungsform ist das partikuläre Füllmaterial in Zonen der Wand bzw. ihres Zwischenraums angeordnet. Dabei können einzelne Zonen unterschiedliches partikuläres Füllmaterial enthalten oder auch gar nicht hinterfüllt sein. Durch die zonale Aufteilung und Anordnung des partikulären Füllmaterials und durch entsprechende Materialwahl lässt sich der Wärmeübergang innerhalb der Wand gezielt steuern und damit den betrieblichen Erfordernissen optimal anpassen.According to a preferred embodiment, the particulate filling material is arranged in zones of the wall or its interspace. In this case, individual zones may contain different particulate filler or may not be backfilled at all. Due to the zonal division and arrangement of the particulate filling material and by appropriate Choice of material, the heat transfer within the wall can be specifically controlled and thus optimally adapted to the operational requirements.

Erfindungsgemäss wird partikuläres Füllmaterial mit einer Porosität von 15-70% verwendet. Auf diese Weise lässt sich die erfindungsgemässe feuerfeste Wand in vorteilhafter Weise zusätzlich auch als hinterlüftetes System ausbilden.According to the invention, particulate filler having a porosity of 15-70% is used. In this way, the refractory wall according to the invention can advantageously be additionally developed as a ventilated system.

Im Folgenden wird die erfindungsgemässe feuerfeste Wand unter Bezugnahme auf die beigefügten Zeichnungen anhand von zwei Ausführungsbeispielen detaillierter beschrieben. Es zeigen:

Fig. 1
- ein erstes Ausführungsbeispiel der erfindungsgemässen Wand in einer Ansicht auf die Schutzverkleidung,
Fig. 2
- einen Schnitt gemäss der Linie II-II in Fig. 1,
Fig. 3-4
- je einen Ausschnitt aus Fig. 2 in vergrösserter Darstellung,
Fig. 5
- eine Detailskizze analog Fig. 4 zur Erläuterung der Luftzuführung in die Wand,
Fig. 6
- eine schematische Skizze zur Erläuterung der Luftabführung aus der Wand,
Fig. 7
- eine schematische Skizze zur Anordnung von Luftzuführungsdüsen,
Fig. 8
- eine Schnittdarstellung analog Fig. 2 eines zweiten Ausführungsbeispiels der erfindungsgemässen Wand und
Fig. 9
- einen Schnitt durch ein Korn eines partikulären Füllmaterials.
In the following, the refractory wall according to the invention will be described in more detail with reference to the accompanying drawings with reference to two embodiments. Show it:
Fig. 1
a first embodiment of the inventive wall in a view of the protective covering,
Fig. 2
- A section according to the line II-II in Fig. 1 .
Fig. 3-4
- ever a section of Fig. 2 in an enlarged view,
Fig. 5
- a detailed sketch analog Fig. 4 to explain the air supply into the wall,
Fig. 6
a schematic sketch explaining the air discharge from the wall,
Fig. 7
a schematic sketch of the arrangement of air supply nozzles,
Fig. 8
- A sectional view analog Fig. 2 a second embodiment of the inventive wall and
Fig. 9
- A section through a grain of a particulate filler.

Das in den Fig. 1-7 dargestellte erste Ausführungsbeispiel der erfindungsgemässen feuerfesten Wand umfasst als Kesselwand eine Rohrwand 1 (Figuren 2-5) und eine im Abstand dazu vorgesetzte Schutzverkleidung 2, wobei zwischen der Rohrwand 1 und der Schutzverkleidung 2 ein Zwischenraum 3 gebildet ist. Die Rohrwand 1 besteht aus einer Vielzahl von im praktischen Einsatz vertikalen Rohren 11, welche durch Stege 12 in gegenseitigem Abstand zusammengehalten sind. Die Rohre 11 und die Stege 12 bestehen üblicherweise aus Stahl. Die Schutzverkleidung 2 umfasst eine Vielzahl von neben- und übereinander angeordneten feuerfesten Platten 21, die z.B. durch komplementäre Formgebung ihrer Ränder ineinander greifen und auf diese Weise bis zu einem gewissen Grad gegenseitig abgedichtet sind. Die Trennfugen zwischen den Platten 21 sind mit 23 bezeichnet. Die Platten sind beispielsweise keramische SiC-Platten, vorzugsweise SiC 90-Platten mit einem SiC-Gehalt von ungefähr 90% in der Herstellung, die bis über 1000°C feuerbeständig sind. Jede Platte 21 ist mittels z.B. vier Plattenhalterungen 22 an der Rohrwand 1 befestigt. Die Plattenhalterungen bestehen aus hitzebeständigem Stahl, z.B. Stahl Nr. 310 nach AISI-Norm oder Werkstoff Nr. 1.4845 nach DIN 17440. Die Plattenhalterungen 22 umfassen im Wesentlichen je einen an einem Steg 12 angeschweissten Schraubbolzen 22a und zwei auf dem Schraubbolzen sitzende Muttern 22b und 22c (Figuren 3-5). Die Plattenhalterungen 22 greifen in vertikale, nach innen erweiterte Schlitze 21a der Platten 21 ein und legen den Abstand der Platten 21 zur Rohrwand fest. In vertikaler Richtung der Schutzverkleidung 2 sind die Platten 21 dabei in gewissem Masse beweglich, um so thermisch bedingte Ausdehnungs- bzw. Kontraktionsbewegungen zuzulassen. Die Platten 21 weisen an ihrer der Rohrwand zugewandten Seite den Rohren 11 formlich angepasste zylindrische Nuten auf, so dass die lichte Weite (Spaltbreite) des Zwischenraums 3 zwischen Rohrwand 1 und Schutzverkleidung 2 über die gesamte Wand im Wesentlichen ungefähr konstant ist. Praktische Spaltbreiten betragen 5-20 mm, vorzugsweise 5-10 mm. Soweit entspricht die feuerfeste Wand im Wesentlichen dem Stand der Technik, wie er z.B. durch das Dokument EP 1 032 790 B1 gegeben ist, und bedarf daher keiner näheren Erläuterung.That in the Fig. 1-7 illustrated first embodiment of the refractory wall according to the invention comprises as a boiler wall a pipe wall 1 ( Figures 2-5 ) and a distance in front superior protective cover 2, wherein between the pipe wall 1 and the protective cover 2, a gap 3 is formed. The pipe wall 1 consists of a plurality of vertical use in practice pipes 11, which are held together by webs 12 at a mutual distance. The tubes 11 and the webs 12 are made usually made of steel. The protective cover 2 comprises a plurality of juxtaposed and superimposed refractory plates 21, which interlock, for example, by complementary shaping of their edges and in this way are mutually sealed to a certain extent. The joints between the plates 21 are denoted by 23. The plates are, for example, ceramic SiC plates, preferably SiC 90 plates having an SiC content of about 90% in the production, which are fire resistant up to over 1000 ° C. Each plate 21 is fastened to the tube wall 1 by, for example, four plate holders 22. The plate mounts are made of heat-resistant steel, eg steel no. 310 to AISI standard or material no. 1.4845 to DIN 17440. The plate mounts 22 essentially comprise in each case one bolt 22a welded to a web 12 and two nuts 22b and 22c seated on the bolt (Figures 3-5). The plate brackets 22 engage in vertical, inwardly widened slots 21a of the plates 21 and set the distance of the plates 21 to the tube wall. In the vertical direction of the protective cover 2, the plates 21 are movable to some extent, so as to allow thermally induced expansion or contraction movements. The plates 21 have, on their side facing the tube wall, the tubes 11 adapted cylindrical grooves, so that the clear width (gap width) of the gap 3 between the tube wall 1 and protective cover 2 over the entire wall is substantially approximately constant. Practical gap widths are 5-20 mm, preferably 5-10 mm. As far as the refractory wall substantially corresponds to the prior art, as for example by the document EP 1 032 790 B1 is given, and therefore needs no further explanation.

Ein erster wesentlicher Unterschied zum Stand der Technik besteht darin, dass der Zwischenraum 3 zwischen der Kesselwand, hier der Rohrwand 1, und der Schutzverkleidung 2 ganz oder teilweise mit einem partikulärem Füllmaterial (Granulat) P gefüllt ist. Das partikuläre Füllmaterial P besteht aus keramischen oder metallischen Werkstoffen, beispielsweise SiC, hat eine Korngrösse von etwa 1-10 mm, vorzugsweise 3-7 mm, und erfindungsgemäß eine Porosität von ca. 15-70%. Durch die Füllung des Zwischenraums 3 mit dem partikulären Füllmaterial P wird der Wärmeübergang von der Schutzverkleidung 2 zur Kesselwand bzw. hier Rohrwand 1 durch Wärmeleitung erhöht. Die Erhöhung hängt vom gewählten Material bzw. dessen Wärmeleitungseigenschaften ab und lässt sich in weiten Grenzen steuern. Durch die offene Porosität des partikulären Füllmaterials P lässt sich zusätzlich ein hinterlüftetes Wandsystem realisieren, worauf weiter unten noch näher eingegangen wird.A first essential difference from the prior art is that the intermediate space 3 between the boiler wall, here the pipe wall 1, and the protective covering 2 is completely or partially filled with a particulate filling material (granulate) P. The particulate filler material P consists of ceramic or metallic materials, for example SiC, has a particle size of about 1-10 mm, preferably 3-7 mm, and according to the invention a porosity of about 15-70%. By the filling of the gap 3 with the particulate filler P, the heat transfer from the protective panel 2 to the boiler wall or here pipe wall 1 is increased by heat conduction. The increase depends on the selected material or its heat conduction properties and can be controlled within wide limits. Due to the open porosity of the particulate filler P can be additionally realize a ventilated wall system, which will be discussed in more detail below.

Im praktischen Betrieb eines Verbrennungsofens können z.B. aufgrund des Temperaturprofils im Feuerraum und der Verfahrenstechnik die Anforderungen an die Wärmeableitung lokal variieren. Gemäss einem weiteren wichtigen Aspekt der Erfindung kann dem dadurch Rechnung getragen werden, dass die feuerfeste Wand bzw. der Zwischenraum 3 zwischen der Schutzverkleidung 2 und der Kesselwand, hier der Rohrwand 1, in verschiedene Zonen ein- bzw. aufgeteilt ist und die einzelnen Zonen in unterschiedlicher Weise bzw. mit unterschiedlichem partikulären Füllmaterial P oder auch gar nicht hinterfüllt sind. Auf diese Weise lässt sich der Wärmeübergang von der Schutzverkleidung zur Rohrwand sowohl quantitativ als auch zonenweise lokal optimal den Betriebserfordernissen des Verbrennungsofens anpassen. In den Figuren 1-4 sind rein beispielsweise zwei solcher Zonen Z1 und Z2 angedeutet. Die Zoneneinteilung richtet sich nach den Betriebserfordernissen und kann selbstverständlich auch in vertikaler Richtung realisiert sein. Die räumliche Aufteilung des Zwischenraums 3 in einzelne Zonen kann z.B. durch Trennbleche 3a erfolgen, wie dies in den Figuren 3 und 4 schematisch angedeutet ist.In practical operation of a combustion furnace, for example, due to the temperature profile in the furnace and the process engineering, the requirements for heat dissipation can vary locally. According to another important aspect of the invention can be taken into account by the fact that the refractory wall or the gap 3 between the protective panel 2 and the boiler wall, here the pipe wall 1, divided into different zones and divided and the individual zones in different way or with different particulate filler P or not backfilled at all. In this way, the heat transfer from the protective lining to the pipe wall can be optimally adapted locally to the operating requirements of the incinerator both quantitatively and zone by zone. In the Figures 1-4 For example, two such zones Z1 and Z2 are indicated purely by way of example. The zone classification depends on the operating requirements and can of course also be realized in the vertical direction. The spatial distribution of the gap 3 in individual zones can be done for example by separating plates 3a, as shown in the FIGS. 3 and 4 is indicated schematically.

Erfindungsgemäß ist das partikuläre Füllmaterial P mit einer dünnen Schicht eines mineralischen oder keramischen Binders umhüllt sein, wie dies in Fig. 9 stark vergrössert dargestellt ist. Das eigentliche Füllmaterial bildet den Kern Pk, die diesen umgebende, z.B. etwa 100 µ dicke Umhüllung bzw. Beschichtung mit dem Binder ist mit Pb bezeichnet. Als Binder wird ein Material eingesetzt, das erst bei hohen Temperaturen, z.B. über 100°C, aktiviert wird, d.h. seine Bindewirkung entfaltet. Solange das partikuläre Füllmaterial P niedrigeren Temperaturen ausgesetzt ist, ist der Binder nicht aktiv und das partikuläre Füllmaterial bleibt rieselfähig. Wenn jedoch z.B. durch den Bruch einer Platte 21 lokal die Aktivierungstemperatur überstiegen wird, entfaltet der Binder seine Klebe- bzw. Bindewirkung und bäckt das partikuläre Füllmaterial lokal zusammen. Dadurch wird das Ausrieseln aus der Bruchstelle der Schutzverkleidung verhindert.According to the invention, the particulate filler material P is coated with a thin layer of a mineral or ceramic binder, as shown in FIG Fig. 9 is shown greatly enlarged. The actual filling material forms the core Pk, the surrounding, for example, about 100 μ thick coating or coating with the binder is denoted by Pb. As a binder, a material is used, which is activated only at high temperatures, for example above 100 ° C, ie unfolds its binding effect. As long as the particulate filler P is exposed to lower temperatures, the binder is not active and the particulate filler remains free-flowing. However, if, for example, the breakage of a plate 21 locally exceeds the activation temperature, the binder unfolds its adhesive or binding action and bakes the particulate filler together locally. This prevents trickling out of the breakage of the protective cover.

Erfindungsgemäß ist die feuerfeste Wand zusätzlich als hinterlüftetes System ausgebildet. Das heisst, dass der Zwischenraum 3 zwischen der Schutzverkleidung 2 und der Kesselwand, hier der Rohrwand 1, im Betrieb von einem Gas - in der Regel Luft - durchströmt ist. Wegen der offenen Porosität des partikulären Füllmaterials P kann dabei das Gas auch durch das Füllmaterial hindurchströmen. Das Gas (bzw. die Luft) im Zwischenraum steht im Betrieb unter einem Druck von etwa 2-50 mbar und weist gegenüber dem Feuerraum des Verbrennungsofens einen um etwa 2-10 mbar höheren Druck auf. Dadurch wird vermieden, dass korrosive Rauchgase durch undichte Stellen der Schutzverkleidung aus dem Feuerraum in den Zwischenraum 3 gelangen und die Rohrwand 1 angreifen können.According to the invention, the refractory wall is additionally designed as a ventilated system. This means that the gap 3 between the protective panel 2 and the boiler wall, here the pipe wall 1, in the operation of a gas - usually air - flows through. Because of the open porosity of the particulate filling material P, the gas can also flow through the filling material. The gas (or the air) in the space is in operation under a pressure of about 2-50 mbar and has over the combustion chamber of the combustion furnace to about 2-10 mbar higher pressure. This prevents corrosive flue gases from leaking through the protective covering from the combustion chamber into the intermediate space 3 and can attack the pipe wall 1.

Für die Einführung und Abführung des Gases in den bzw. aus dem Zwischenraum 3 der Wand sind in der Wand Einlassdüsen 31 und Auslassöffnungen 32 vorgesehen, wobei die Einlassdüsen 31 mit einem oder mehreren Luftzufuhrkanal bzw. -kanälen 33 in Verbindung stehen und von diesem bzw. diesen gespiesen werden (Fig. 5). Die Gas- bzw. Luftzufuhr erfolgt von der Seite der Kesselwand, wobei die Einlassdüsen 31 die Kesselwand, hier die Rohrwand 1, im Bereich von deren Stegen 12 durchgreifen (Fig. 5). Die Auslassöffnungen 32 durchgreifen die Schutzverkleidung 2, wodurch das den Zwischenraum 3 durchströmende Gas in den Ofenraum abgeführt wird.For the introduction and discharge of the gas into and out of the gap 3 of the wall, inlet nozzles 31 and outlet openings 32 are provided in the wall, the inlet nozzles 31 communicating with and communicating with one or more air supply channels or channels 33. these are fed ( Fig. 5 ). The gas or air supply takes place from the side of the boiler wall, wherein the inlet nozzles 31 pass through the boiler wall, in this case the pipe wall 1, in the region of its webs 12 ( Fig. 5 ). The outlet openings 32 pass through the protective cover 2, whereby the gas flowing through the gap 3 is discharged into the furnace chamber.

Die Einlassdüsen 31 sind geschützt ausgebildet oder angeordnet. Darunter ist zu verstehen, dass dafür gesorgt ist, dass das partikuläre Füllmaterial P nicht in die Einlassdüsen gelangen und diese verstopfen kann. Dies kann z.B. durch eine Abwärtsneigung der Einlassdüsen erreicht werden. Desgleichen sollten vorzugsweise auch die Auslassöffnungen 32 geschützt ausgebildet sein, damit das partikuläre Füllmaterial P nicht durch diese ausgeblasen werden kann.The inlet nozzles 31 are protected or arranged. By this is meant that it is ensured that the particulate filling material P can not get into the inlet nozzles and clog them. This can e.g. be achieved by a downward inclination of the inlet nozzles. Likewise, preferably, the outlet openings 32 should be protected so that the particulate filler P can not be blown through them.

Die Auslassöffnungen 32 sind vorzugsweise im Bereich des oberen Rands der feuerfesten Wand angeordnet, so wie dies in den Figuren 1 und 6 schematisch angedeutet ist. Die Einlassdüsen 31 können am Fuss der Wand, d.h. in der Nähe ihres unteren Rands angeordnet sein, wie dies in den Figuren 1 und 7 dargestellt ist. Vorzugsweise sind die Einlassdüsen 31 jedoch über die gesamte Wandfläche oder einzelne Bereiche derselben verteilt.The outlet openings 32 are preferably arranged in the region of the upper edge of the refractory wall, as shown in FIGS FIGS. 1 and 6 is indicated schematically. The inlet nozzles 31 can be arranged at the foot of the wall, ie near its lower edge, as shown in FIGS FIGS. 1 and 7 is shown. Preferably, however, the inlet nozzles 31 are distributed over the entire wall surface or individual areas thereof.

Gemäss einer weiteren vorteilhaften Weiterbildung der Erfindung sind die Platten 21 der Schutzverkleidung 2 in doppelter Weise gegenseitig abgedichtet. Wie insbesondere aus den Figuren 3 und 4 ersichtlich ist, sind die z-förmig ausgebildeten Plattenfugen 23 der Schutzverkleidung 2 durch eingelegte keramische Dichtstreifen 23a aus feuerfestem Material und durch eine zusätzliche Kittmasse 23b abgedichtet. Die Filzstreifen 23a verleihen eine gewisse Flexibilität, bewirken aber keine absolute Abdichtung. Letztere wird durch die zusätzliche Kitt-Abdichtung 23b erreicht.According to a further advantageous embodiment of the invention, the plates 21 of the protective cover 2 are mutually sealed in a double manner. As in particular from the FIGS. 3 and 4 it can be seen, the z-shaped plate joints 23 of the protective covering 2 are sealed by inserted ceramic sealing strips 23a of refractory material and by an additional putty mass 23b. The felt strips 23a provide some flexibility but do not provide an absolute seal. The latter is achieved by the additional putty seal 23b.

Wie schon eingangs erwähnt, muss die Kesselwand der erfindungsgemässen feuerfesten Wand nicht als Rohrwand ausgebildet sein, sondern kann beispielsweise auch eine normale Metallwand sein. Die Fig. 8 zeigt schematisch ein zweites Ausführungsbeispiel, bei der die Kesselwand als eine solche flache Metallwand 1a ausgebildet ist. Auch bei diesem Ausführungsbeispiel bewirkt die allenfalls zonenweise Hinterfüllung mit partikulärem Füllmaterial P die erwähnten Vorteile.As already mentioned, the boiler wall of the refractory wall according to the invention does not have to be designed as a tube wall, but can also be, for example, a normal metal wall. The Fig. 8 schematically shows a second embodiment in which the boiler wall is formed as such a flat metal wall 1a. Also in this embodiment causes the possibly zonal backing with particulate filler P the mentioned advantages.

Claims (11)

  1. Refractory wall, in particular for a combustion furnace, with a boiler wall (1; 1a) and a refractory and fire-tight protective lining (2) placed in front of and spaced from the boiler wall for protecting the boiler wall from corrosion by smoke gas, the protective lining (2) comprising a multiplicity of refractory plates (21) arranged alongside and above one another, each fastened to the boiler wall with at least one plate mounting (22), an intermediate space (3) being provided between the boiler wall (1) and the protective lining (2) and a particulate filling (P) is arranged in at least one portion of the intermediate space (3), characterized in that the particulate filling (P) has a porosity of 15-70% and is coated with an activatable ceramic or mineral binding agent (Pb) that starts bonding or binding when an activation temperature is exceeded, and in that the refractory wall comprises means (31) for supplying gas, in particular air, to the intermediate space (3) and additionally means (32) for discharging gas from the intermediate space (3).
  2. Wall according to claim 1, characterized in that the intermediate space (3) is subdivided into zones (Z1, Z2) along the area of the wall and that the particulate filling (P) is arranged in at least one zone (Z1).
  3. Wall according to claim 2, characterized in that there are at least two zones (Z1, Z2) with differing particulate filling (P).
  4. Wall according to any one of the preceding claims, characterized in that the particulate filling (P) has a grain size of 1-10 mm, preferably 3-7 mm.
  5. Wall according to any one of the preceding claims, characterized in that the particulate filling (P) consists of ceramic or metallic materials, in particular SiC.
  6. Wall according to any one of the preceding claims, characterized in that the clearance of the intermediate space (3) measures 5-20 mm, preferably 5-10 mm.
  7. Wall according to any one of the preceding claims, characterized in that there are plate joints (23) between the refractory plates (21) that are sealed by inlaid refractory ceramic sealing strips (23a) and an additional luting compound (23b).
  8. Wall according to any one of the preceding claims, characterized in that the means for supplying gas comprise protected inlet nozzles (31) that penetrate the boiler wall (1; 1a) and are designed and/or arranged such that they cannot be clogged by the particulate filling (P).
  9. Wall according to claim 8, characterized in that the inlet nozzles (31) are arranged in the lower region of the wall or distributed over the wall surface.
  10. Wall according to any one of the preceding claims, characterized in that the means for discharging gas comprise vent openings (32) that penetrate the protective lining (2) and are arranged in the uppermost region of the wall.
  11. Wall according to any one of the preceding claims, characterized in that the boiler wall is a tube wall (1) consisting of tubes (11) connected by webs (12).
EP09809162.2A 2008-08-26 2009-08-21 Fireproof wall, in particular for a combustion furnace Active EP2315975B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH01361/08A CH699405B1 (en) 2008-08-26 2008-08-26 Refractory wall, especially for an incinerator.
PCT/CH2009/000276 WO2010022522A1 (en) 2008-08-26 2009-08-21 Fireproof wall, in particular for a combustion furnace

Publications (2)

Publication Number Publication Date
EP2315975A1 EP2315975A1 (en) 2011-05-04
EP2315975B1 true EP2315975B1 (en) 2019-07-24

Family

ID=40419144

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09809162.2A Active EP2315975B1 (en) 2008-08-26 2009-08-21 Fireproof wall, in particular for a combustion furnace

Country Status (5)

Country Link
US (1) US20110139049A1 (en)
EP (1) EP2315975B1 (en)
JP (1) JP5734851B2 (en)
CH (1) CH699405B1 (en)
WO (1) WO2010022522A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013000424A1 (en) * 2013-01-14 2014-07-17 Martin GmbH für Umwelt- und Energietechnik Method and device for protecting heat exchanger tubes and ceramic component
RU2555697C2 (en) * 2013-10-15 2015-07-10 Общество С Ограниченной Ответственностью "Медногорский Медно-Серный Комбинат" Metallurgical furnace wall lining
NL1041195B1 (en) * 2014-06-06 2016-04-01 Hkh Dev B V Refractory lining for a pipe wall of an incinerator.
NL2021445B1 (en) * 2018-08-09 2020-02-20 Awect Bv High pressure heating installation comprising an advanced panel design and cladding thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4460335A (en) * 1982-05-14 1984-07-17 Didier-Werke Ag System for preventing excess pressure in a gap between a double-shell structure of a blast heating apparatus
EP0922784A1 (en) * 1997-02-21 1999-06-16 Tocalo Co. Ltd. Heating tube for boilers and method of manufacturing the same
US6284688B1 (en) * 1992-12-22 2001-09-04 Foseco International Limited Refractory compositions

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB815643A (en) * 1954-08-09 1959-07-01 Alec Joseph Skinner Improvements in fuel-fired furnaces
GB226801A (en) * 1923-12-24 1925-08-20 Vacuumschmelze Gmbh Process for the production and repair of refractory linings for hearths of metallurgical and other furnaces
GB430021A (en) * 1933-12-09 1935-06-11 Cape Asbestos Company Ltd Improvements in and relating to the insulation of water-cooled furnace walls for water tube boilers
US2207992A (en) * 1937-06-26 1940-07-16 T E Schundler & Co Inc Combustion chamber
US2467069A (en) * 1944-03-09 1949-04-12 Wright Paul Arch and wall construction
FR1415060A (en) * 1964-10-29 1965-10-22 Karrena Feuerungsbau Gmbh Process in particular for the coating of firebox tubes or other applications
US3479993A (en) * 1968-06-03 1969-11-25 Dow Chemical Co Wet bottom boiler floor or the like
US3850146A (en) * 1973-01-15 1974-11-26 D Frame Boiler tube shielding wall
JPS53143038A (en) * 1977-05-19 1978-12-13 Nippon Steel Corp Construction of fire resistant wall with cooling function
US4244686A (en) * 1979-07-18 1981-01-13 General Electric Company Energy saving furnace and method of operating same
DE3152796C2 (en) * 1981-03-31 1987-01-22 Inst Lit Ja Akademii Nauk Uk S Process for lining a mechanical aggregate
FR2611864B1 (en) * 1987-02-27 1989-05-05 Stein Industrie DEVICE FOR PROTECTING BOILER SCREENS, PARTICULARLY FOR GARBAGE INCINERATION FURNACES, AND METHOD FOR MANUFACTURING THE SAME
DE3806044A1 (en) * 1988-02-26 1989-08-31 Steinmueller Gmbh L & C Furnace wall
FR2647779B1 (en) * 1989-05-31 1993-06-25 Daussan & Co PROCESS FOR MAKING A COATING ON A METALLURGICAL CONTAINER, COMPOSITION AND MACHINE FOR IMPLEMENTING SAME
SE466971B (en) * 1990-09-17 1992-05-04 Flaekt Ab SEAT AND DEVICE FOR COOLING A ROTARY Oven
JP2587222Y2 (en) * 1991-10-15 1998-12-16 株式会社プランテック Side wall structure of refuse incinerator
US5193468A (en) * 1992-01-30 1993-03-16 Texas Refractory Service, Inc. Medical waste incinerator
US5542378A (en) * 1994-06-02 1996-08-06 Saint-Gobain/Norton Industrial Ceramics Corp. Waterwall tube block design
JP3406791B2 (en) * 1996-12-11 2003-05-12 黒崎播磨株式会社 Method of constructing incinerator furnace wall using unfired SiC molded body
US6164956A (en) * 1997-02-11 2000-12-26 Ge Energy & Environmental Research Corporation System and method for removing ash deposits in a combustion device
JP3590243B2 (en) * 1997-10-06 2004-11-17 株式会社タクマ Furnace wall cooling structure of electric melting furnace
ES2161546T3 (en) * 1997-11-18 2001-12-01 Mokesys Ag REFRACTORY COATING OF TUBULAR WALLS.
DE19816059C2 (en) * 1998-04-09 2000-04-06 Juenger & Graeter Gmbh Feuerfe Furnace wall of an incinerator
JP2000203952A (en) * 1998-12-28 2000-07-25 Nichias Corp Dense slip casting refractory composition and its execution method
JP3586599B2 (en) * 1999-10-27 2004-11-10 三菱重工業株式会社 Waste incinerator with boiler
DE10005426C2 (en) * 2000-02-08 2001-11-15 Didier Werke Ag Refractory ceramic plate and associated wall structure for an incinerator
CA2478672C (en) * 2002-03-12 2008-04-15 Sanyo Industries Co., Ltd. Incinerator
JP4832118B2 (en) * 2006-03-07 2011-12-07 俊廣 阿部 Combustion device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4460335A (en) * 1982-05-14 1984-07-17 Didier-Werke Ag System for preventing excess pressure in a gap between a double-shell structure of a blast heating apparatus
US6284688B1 (en) * 1992-12-22 2001-09-04 Foseco International Limited Refractory compositions
EP0922784A1 (en) * 1997-02-21 1999-06-16 Tocalo Co. Ltd. Heating tube for boilers and method of manufacturing the same

Also Published As

Publication number Publication date
WO2010022522A1 (en) 2010-03-04
CH699405B1 (en) 2021-06-15
CH699405A1 (en) 2010-02-26
US20110139049A1 (en) 2011-06-16
JP5734851B2 (en) 2015-06-17
EP2315975A1 (en) 2011-05-04
JP2012500956A (en) 2012-01-12

Similar Documents

Publication Publication Date Title
EP3227610B1 (en) Fireproof wall, in particular for a combustion furnace
EP1064510B1 (en) Wall segment for a combustion chamber and combustion chamber
EP2326879B1 (en) Back-ventilated fire-resistant wall, in particular for a combustion furnace
EP2315975B1 (en) Fireproof wall, in particular for a combustion furnace
EP1032790B1 (en) Refractory lining for tubular wall
EP0028679A1 (en) Coke oven door with a voluminous gas collecting space
EP1126221A1 (en) Padded refactory tile as liner for a gas turbine combustor
DE10063362A1 (en) Brake shoe, in particular for disc brakes
EP3561385B1 (en) Refractory wall with anti-corrosive layer
DE10005426A1 (en) Refractory ceramic plate and associated wall structure for an incinerator
DE4335707C2 (en) Cladding of a combustion chamber wall
DE10303173B4 (en) Pipe wall protection for a boiler pipe wall
EP0063700B1 (en) Method of sealing doors of horizontal coke ovens and coke ovens with coke oven doors
EP3243027B1 (en) Fireproof wall, in particular for a combustion furnace
DE102014003033A1 (en) Fire protection device for a wall or ceiling for insertion into a ventilation duct
EP1336808B1 (en) Refractory material heat shield
DE102007010910B4 (en) Device for discharging combustion exhaust gases from a building
CH710596A1 (en) Heat exchanger for an interior of an incinerator.
DE956898C (en) Flame holder for Pitot tube jet engines
EP0518279A1 (en) Heat treatment furnace for bulk materials
AT234888B (en) Boiler lining
DE102009039390A1 (en) Corrosion protection body
DE202007007491U1 (en) Fire-proof insulation for pipe base of e.g. heat exchanger, is provided in pipe base of pressure tank, where regions of pipe base are respectively insulated with two types of stones made of fire-proof material
EP2154429A2 (en) Arrangement of a refractory lining
DD239236A1 (en) SELF-WEARING FIRE-RESISTANT WALL FOR RAIL VEHICLES, ESPECIALLY TRAVEL VEHICLES

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110307

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170629

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KERN, ANDREAS

Inventor name: PETSCHAUER, HANS

INTG Intention to grant announced

Effective date: 20190208

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009015893

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1158642

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: FREULERSTRASSE 10, 4127 BIRSFELDEN (CH)

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOHEST AG, CH

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: MOKESYS AG

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 1158642

Country of ref document: AT

Kind code of ref document: T

Owner name: MOKESYS AG, CH

Effective date: 20191018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191024

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191125

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191024

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191124

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191025

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190821

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009015893

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190821

26N No opposition filed

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230705

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230717

Year of fee payment: 15

Ref country code: GB

Payment date: 20230704

Year of fee payment: 15

Ref country code: CH

Payment date: 20230902

Year of fee payment: 15

Ref country code: AT

Payment date: 20230721

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230705

Year of fee payment: 15