EP3561385B1 - Refractory wall with anti-corrosive layer - Google Patents

Refractory wall with anti-corrosive layer Download PDF

Info

Publication number
EP3561385B1
EP3561385B1 EP19170024.4A EP19170024A EP3561385B1 EP 3561385 B1 EP3561385 B1 EP 3561385B1 EP 19170024 A EP19170024 A EP 19170024A EP 3561385 B1 EP3561385 B1 EP 3561385B1
Authority
EP
European Patent Office
Prior art keywords
base element
refractory
wall
refractory wall
protection layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19170024.4A
Other languages
German (de)
French (fr)
Other versions
EP3561385A1 (en
Inventor
Tobias Kern
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mokesys AG
Original Assignee
Mokesys AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mokesys AG filed Critical Mokesys AG
Priority to PL19170024T priority Critical patent/PL3561385T3/en
Publication of EP3561385A1 publication Critical patent/EP3561385A1/en
Application granted granted Critical
Publication of EP3561385B1 publication Critical patent/EP3561385B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M5/00Casings; Linings; Walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/10Water tubes; Accessories therefor
    • F22B37/107Protection of water tubes
    • F22B37/108Protection of water tube walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/10Water tubes; Accessories therefor
    • F22B37/20Supporting arrangements, e.g. for securing water-tube sets
    • F22B37/201Suspension and securing arrangements for walls built-up from tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M5/00Casings; Linings; Walls
    • F23M5/08Cooling thereof; Tube walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/0003Linings or walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/0003Linings or walls
    • F27D1/0006Linings or walls formed from bricks or layers with a particular composition or specific characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/04Casings; Linings; Walls; Roofs characterised by the form, e.g. shape of the bricks or blocks used
    • F27D1/045Bricks for lining cylindrical bodies, e.g. skids, tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/04Casings; Linings; Walls; Roofs characterised by the form, e.g. shape of the bricks or blocks used
    • F27D1/06Composite bricks or blocks, e.g. panels, modules
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M2900/00Special features of, or arrangements for combustion chambers
    • F23M2900/05001Preventing corrosion by using special lining materials or other techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M2900/00Special features of, or arrangements for combustion chambers
    • F23M2900/05004Special materials for walls or lining

Definitions

  • the invention relates to a refractory wall, in particular for an incinerator, according to the preamble of claim 1 and a method for producing such a refractory wall.
  • Such refractory walls are used, for example, in combustion chambers for the recovery of thermal energy from the hot flue gases.
  • Typical representatives of such walls are, for example, in the CH 699 406 A2 or. WO 2016/109903 A1 described.
  • the usually metallic base element of the wall is often designed as a pipe wall and usually consists of pipes connected by webs.
  • the fireproof protective cladding is placed in front of the pipe wall and is intended to protect the pipe wall from corrosion by smoke gases.
  • the fireproof protective cladding is usually formed from panels arranged in rows and columns next to or one above the other.
  • the protective covering is only arranged on one side of the pipe wall (e.g. CH 699 406 A2 ) or the protective cladding encloses the pipe wall all around (e.g. WO 2016/109903 A1 ).
  • Basic elements protected by protective cladding are also used in fluidized bed furnaces, for example, where the aim is to protect a metallic boiler wall from corrosion by flue gases.
  • the base element is formed by the boiler wall.
  • the panels of the protective cladding are usually mutually sealed by various measures to a certain extent in order to prevent the passage of smoke gases.
  • this alone cannot completely prevent corrosive smoke gases from passing through the protective cladding and can attack the underlying base element, for example the pipe wall or boiler wall.
  • So-called actively rear-ventilated systems counter this problem in that a protective gas - generally air - is pumped through the space between the base element and the protective cladding, which is placed in front of it at a distance.
  • the gas or air is under a slight overpressure in relation to the combustion chamber of the incineration furnace, which prevents the flue gases from the combustion chamber from penetrating into the wall space and attacking the metallic base element.
  • Typical examples of such rear-ventilated systems are, for example, in CH 699 406 A2 or. WO 2016/109903 A1 as well as in the EP 2 754 961 A2 described.
  • Actively rear-ventilated systems are relatively complex in terms of construction because of the necessary protective gas supply.
  • energy is used to pump the protective gas through under excess pressure.
  • WO 2004/068050 A1 describes a fireproof wall with a metallic pipe wall and a protective covering in front of it.
  • the protective cladding is attached to the pipe wall using a ceramic-based cement.
  • AT 43703 B describes a refractory wall with a metallic pipe wall and a protective covering in front, the parts of which are fastened to the pipe wall by means of holding elements.
  • the holding elements are protected by means of a covering made of refractory material, which also causes an adhesive connection between the parts of the protective covering and the holding elements.
  • the present invention is intended to improve a fire-resistant wall in such a way that, on the one hand, active rear ventilation can be dispensed with and, on the other hand, reliable protection of the at least one base element against the corrosive effect of smoke gases is achieved.
  • a refractory wall in particular for a combustion furnace, comprises at least one base element and a refractory protective cladding made of refractory panels in front of the at least one base element.
  • the at least one base element has a ceramic corrosion protection layer on at least one side facing the protective cladding.
  • the fireproof protective cladding is arranged at a distance from the at least one base element, with an intermediate space being present between the at least one base element and the protective cladding through which the smoke gases that have penetrated through the protective cladding can escape.
  • the ceramic corrosion protection layer can cover the at least one base element on a side facing the protective cladding entirely or only in certain areas, for example if a different corrosion protection is provided for certain areas or if none at all is required.
  • the ceramic corrosion protection layer preferably has a proportion of tricalcium aluminate and SiC which is at least 60% by weight. In this way, a high temperature resistance and protective effect can be achieved.
  • the corrosion protection layer is advantageously a hardened or hydraulically set ceramic paste. This allows the corrosion protection layer as Apply paste relatively easily to the (usually metallic) at least one base element.
  • the ceramic paste is preferably a mixture of solid constituents and water and, immediately after the mixing of its constituents, contains a proportion of 20-80% by weight, preferably 35-75% by weight, of SiC and an additional proportion, based on the totality of its solid components of 10-50% by weight Al 2 O 3 , 5-30% by weight SiO 2 and 1-5% by weight CaO.
  • a high temperature resistance and protective effect can be achieved and, on the other hand, the coefficient of thermal expansion can be adapted to that of the at least one base element, so that the corrosion protection layer adheres securely to the at least one base element when exposed to thermal stress.
  • the coefficient of thermal expansion of the anti-corrosion layer does not differ by more than 10% from the coefficient of thermal expansion of the at least one base element.
  • the corrosion protection layer advantageously has a thickness of 0.1-3 mm, preferably 0.9-1.1 mm. This is an advantageous compromise between the anti-corrosive protective effect and the required amount of ceramic paste and the optimal heat transfer.
  • the at least one base element is preferably metallic.
  • the at least one base element expediently comprises tubes for the passage of a fluid medium.
  • the at least one base element is advantageously designed as a tube wall with tubes connected by webs.
  • Such pipe walls have proven themselves in known refractory walls.
  • the refractory plates are expediently attached to the at least one base element via at least one plate holder each.
  • the fireproof panels of the protective cladding are preferably arranged in rows and columns next to and one above the other. Such an arrangement facilitates the assembly of the protective cover and also the replacement of defective panels.
  • the protective cladding advantageously encloses the at least one base element all around, so that the at least one base element is protected from flue gases essentially on all sides.
  • the at least one base element is a boiler wall.
  • the essence of the invention consists in the following: By mixing solid components and water, a hydraulically setting ceramic paste is produced.
  • the ceramic paste is applied to at least one base element of a refractory wall as a corrosion protection layer, in particular painted on or sprayed on, and the ceramic paste is then caused to harden or set.
  • a refractory protective cladding made of refractory plates is placed in front of the at least one base element.
  • Position and directional designations, such as above, below, side by side, one above the other, side, vertical, horizontal, height and width refer to the usual vertical position of use of the refractory wall shown in the drawings.
  • a base element is understood to mean any type of, in particular metallic, construction.
  • this can be a metallic boiler wall or an arrangement of (e.g. parallel) pipes through which a fluid medium (e.g. water) can be passed.
  • the base element is to be understood in particular as a pipe wall consisting of a plurality of pipes connected to one another or a single pipe.
  • the illustrated first embodiment of a refractory wall according to the invention represents, in practical use, part of a boundary wall of an incineration furnace, its protective cladding being aligned with the interior of the incineration furnace. One side of the wall is exposed to hot smoke gases.
  • the refractory wall designated as a whole with W comprises a base element designed as a metallic pipe wall 1 and a refractory protective cladding 2, which is placed in front of the pipe wall 1 at a distance so that there is a gap 3 between the protective cladding 2 and the pipe wall 1 ( Figures 2 and 4th ) through which air can flow.
  • the pipe wall 1 forming the base element consists of a large number of pipes 11 which are vertical in practical use and which are held together by webs 12 at a mutual distance (see in particular Fig. 4 ).
  • the tubes 11 and the webs 12 are usually made of steel.
  • the protective cladding 2 consists of a large number of refractory plates 21 arranged next to and on top of one another, in rows and columns that are fire-resistant up to over 1000 ° C.
  • the plates 21 of the protective cladding 2 are fastened to the pipe wall 1 by means of plate holders 13.
  • the plate holders 13 consist, for example, of heat-resistant steel, e.g. steel no. 310 according to AISI standard or material no. 1.4845 according to DIN 17440. Corrosion-resistant CrNi alloys are also suitable, in particular with additives such as molybdenum.
  • the plate holders 13 essentially each comprise a screw bolt welded to a web 12 and a nut seated on the screw bolt. The plate holders 13 engage in vertically continuous, inwardly expanded grooves 21a ( Fig. 4 ) of the plates 21 and determine the distance between the plates 21 and the pipe wall 1.
  • the plate holders 13 also serve to support the plates 21 in the vertical direction, the plates 21 with bridge elements (not shown) arranged on them resting on the plate holders 13.
  • the plates 21 are movable to a certain extent in the vertical direction in order to allow thermally induced expansion and contraction movements.
  • parting lines 23 run between the panels 21 arranged next to one another and horizontal parting lines 24 are located between the panels 21 arranged one above the other.
  • the parting lines are sealed in a manner known per se by inserted sealing elements and / or an overlapping design of the panel edges (not shown in detail).
  • the refractory wall according to the invention corresponds in its basic structure and in its mode of operation to conventional walls of this type, as for example in FIG CH 699 406 A2 , WO 2016/086322 A1 and WO 2016/109904 A1 are described in detail, in particular with regard to the design of the refractory panels. The person skilled in the art does not therefore need any further explanation.
  • the essential difference between the refractory wall according to the invention and conventional refractory walls of this type is that the pipe wall 1 or generally the (in particular metallic) base element is covered with a ceramic corrosion protection layer 10.
  • the corrosion protection layer 10 is best in the detail Figure 4 recognizable.
  • the anti-corrosion layer 10 prevents that smoke gases that have penetrated into the space 3 between the protective lining 2 and the pipe wall 1 through leaks in the protective lining 2 cannot attack the pipe wall 1. This enables a structurally complex active rear ventilation (pumping through a gas, e.g. air, under overpressure through the Gap 3 of the wall) are omitted. The smoke gases that have penetrated can escape through the space 3.
  • the ceramic corrosion protection layer 10 here covers the entire pipe wall 1 including the webs 12 between the individual pipes 11. It consists of a hardened or (hydraulically) set ceramic paste, which consists of a mixture of various solid components and water. Immediately after mixing its solid components and before adding water, the paste contains 20-80%, preferably 35-75%, SiC as the most important component. Further components at this point are 10-50% Al 2 O 3 , 5-30% SiO 2 and, as a binder, 1-5% CaO. The proportions of these solid constituents (without taking water into account) are always chosen so that they add up to 100%. Then about 6% water (H 2 O) is added (so that a total amount of about 106% results), whereby a pasty-liquid state of aggregation is achieved. All percentages are percentages by weight.
  • SiO 2 , Al 2 O 3 and CaO react together with H 2 O, whereby a large part of H 2 O is broken down (chemically bound). The rest of the H 2 O evaporates during operation at the latest.
  • the SiC reacts only minimally.
  • the SiO 2 contributes, among other things, to the strength of the corrosion protection layer.
  • so-called calcium silicate hydrate fibers (Ca 3 S 2 H 3 ) are created (grow), which combine with the three components SiO 2 , Al 2 O 3 and CaO, resulting in the hardened product "tricalcium aluminate".
  • the SiC is only an additive that is embedded by the tricalcium aluminate and solidifies to form the actual ceramic mortar after it has set.
  • there is a ceramic corrosion protection layer in which the proportion of tricalcium aluminate and SiC is at least 60% by weight.
  • composition of only the solid components of the ceramic paste are (data in percent by weight): SiC SiO 2 Al 2 O 3 CaO 38 17th 42 3rd 49 15th 33 3rd 57 12th 28 3rd 63 10 24 3rd 72 8th 17th 3rd
  • the grain size of the SiC in the ceramic paste is preferably ⁇ 2 mm, more preferably ⁇ 1 mm.
  • the thickness of the anti-corrosion layer 10 is preferably 0.1-3 mm, more preferably 0.9-1.1 mm.
  • the corrosion protection layer 10 adheres to the surface roughness of the metallic pipe wall 1.
  • the corrosion protection layer 10 is painted or sprayed onto the pipe wall 1 as a paste and then hardens or sets hydraulically. Usually paste is mixed together and then applied within 5 minutes to 1 hour. After that, it is already hardened to the point where it can hardly be applied.
  • the composition of the ceramic paste is also selected so that the anti-corrosion layer in the cured or set state has a thermal expansion coefficient that is as similar as possible (deviating at most 10%) to the pipe wall or, in general, the base element.
  • the composition of the paste can advantageously be based on the expected temperature range that the base element (in this case the metallic pipe wall 1) reaches in use.
  • the SiC proportion is reduced and the (highly heat-resistant) Al 2 O 3 proportion is increased, as the following table shows, for example (percentages by weight here including water): SiC SiO 2 Al 2 O 3 CaO Fe 2 O 3 H 2 O 300 ° C 57 10 25th 1 1 6th 280 ° C 60 10 22nd 1 1 6th 260 ° C 63 10 19th 1 1 6th
  • the paste also contains a small amount of Fe 2 O 3 , which supports the formation of nitrides and thereby the hardening.
  • this portion is not absolutely necessary and can therefore also be omitted.
  • the illustrated second embodiment of the refractory wall according to the invention is intended to be arranged in practical use as a heat exchanger inside a combustion furnace, the wall being acted upon by hot flue gases on more than one side.
  • it has a similar structure to the fireproof wall of the Figures 1-4 but with the difference that its base element, i.e. the pipe wall, is protected on four sides or all around by a fireproof protective cladding.
  • the fireproof wall again comprises a base element designed as a metallic pipe wall 1 and a fireproof protective lining 20, which is placed in front of the pipe wall 1 on four sides at a distance so that there is a gap 3 between the protective lining 20 and the pipe wall 1 ( Figures 6 and 8th ).
  • the pipe wall 1 forming the base element again consists of a large number of pipes 11 which are vertical in practical use and which are held together by webs 12 at a mutual distance (see in particular Fig. 8 ).
  • the protective cover 20 is analogous to that in the Figures 1-4
  • the illustrated embodiment consists of a plurality of refractory plates 21 and 22 arranged next to one another and one above the other, in rows and columns, which are fastened to the pipe wall 1 by means of plate holders 13.
  • the protective cladding 20 encloses the pipe wall 1 all around.
  • essentially flat plates 21 are arranged on the two opposite longitudinal sides of the pipe wall 1 and, in addition, plates 22 which are essentially U-shaped in cross section are arranged along the lateral end edges of the pipe wall 1, which surround the lateral end edges of the pipe wall 1, see above that the protective cladding 20 forms a closed shell around the pipe wall 1, a space 3 remaining around the pipe wall 1 between the pipe wall and the protective casing 20.
  • the plates 22 are also fastened to the pipe wall 1 by means of plate holders 13, these plate holders being in vertically continuous, inwardly expanded grooves 22a ( Fig. 8 ) of the plates 22 engage.
  • this exemplary embodiment of a wall according to the invention corresponds in its basic structure and in its mode of operation to that in FIG WO 2016/109903 A1 described conventional wall.
  • the design of the refractory plates and the plate holders what has been said in connection with the first exemplary embodiment applies. The person skilled in the art therefore does not need any further explanation with regard to the second exemplary embodiment.
  • the main difference between the inventive fire-resistant wall and conventional fire-resistant walls of this type is that the pipe wall 1 or generally the base element is covered with a ceramic corrosion protection layer 10, which prevents leaks in the protective lining 20 from entering the space 3 between the protective cladding 20 and the pipe wall 1, smoke gas that has penetrated the pipe wall 1 can attack.
  • the corrosion protection layer 10 is best in the detail Figure 8 recognizable. With regard to the corrosion protection layer 10 and the ceramic paste on which it is based, what has been explained in connection with the first exemplary embodiment applies again.
  • the at least one base element can also comprise an arrangement of two or more tubes that are not connected by webs, the tubes again being covered with the ceramic corrosion protection layer already mentioned.
  • Unconnected pipes existing metallic base elements are, for example, in the EP 2 754 961 A2 described.
  • the at least one base element can also be formed by a metallic boiler wall, the protective cladding being placed in front of this boiler wall at a distance.
  • the boiler wall only has a ceramic corrosion protection layer on its side facing the protective cladding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Description

Die Erfindung betrifft eine feuerfeste Wand, insbesondere für einen Verbrennungsofen, gemäss dem Oberbegriff des Patentanspruchs 1 sowie ein Verfahren zur Herstellung einer solchen feuerfesten Wand.The invention relates to a refractory wall, in particular for an incinerator, according to the preamble of claim 1 and a method for producing such a refractory wall.

Solche feuerfesten Wände werden z.B. in Feuerräumen von Verbrennungsanlagen zur Rückgewinnung von Wärmeenergie der heissen Rauchgase eingesetzt. Prinzipiell ist zu unterscheiden zwischen Wänden, die im praktischen Einsatz einen Teil der Begrenzungswände eines Verbrennungsofens bilden, und Wänden, die im praktischen Einsatz innerhalb des Verbrennungsofens z.B. hängend angeordnet und mehrseitig von Rauchgas beaufschlagt sind. Typische Vertreter solcher Wände sind z.B. in der CH 699 406 A2 bzw. WO 2016/109903 A1 beschrieben.Such refractory walls are used, for example, in combustion chambers for the recovery of thermal energy from the hot flue gases. In principle, a distinction must be made between walls that form part of the boundary walls of an incinerator in practical use, and walls that, in practical use, are arranged hanging inside the incinerator and are exposed to flue gas on several sides. Typical representatives of such walls are, for example, in the CH 699 406 A2 or. WO 2016/109903 A1 described.

Das üblicherweise metallische Basiselement der Wand ist oft als Rohrwand ausgebildet und besteht in der Regel aus durch Stege verbundenen Rohren. Die feuerfeste Schutzverkleidung ist der Rohrwand vorgesetzt und soll die Rohrwand vor Korrosion durch Rauchgase schützen. Die feuerfeste Schutzverkleidung ist in der Regel aus in Reihen und Spalten neben- bzw. übereinander angeordneten Platten gebildet. Je nach Einsatzzweck ist die Schutzverkleidung nur auf einer Seite der Rohrwand angeordnet (z.B. CH 699 406 A2 ) oder die Schutzverkleidung umschliesst die Rohrwand ringsum (z.B. WO 2016/109903 A1 ).The usually metallic base element of the wall is often designed as a pipe wall and usually consists of pipes connected by webs. The fireproof protective cladding is placed in front of the pipe wall and is intended to protect the pipe wall from corrosion by smoke gases. The fireproof protective cladding is usually formed from panels arranged in rows and columns next to or one above the other. Depending on the application, the protective covering is only arranged on one side of the pipe wall (e.g. CH 699 406 A2 ) or the protective cladding encloses the pipe wall all around (e.g. WO 2016/109903 A1 ).

Durch eine Schutzverkleidung geschützte Basiselemente werden z.B. auch bei Wirbelschichtöfen eingesetzt, wo es darum geht, eine metallische Kesselwand vor Korrosion durch Rauchgase zu schützen. In diesem Fall ist das Basiselement durch die Kesselwand gebildet.Basic elements protected by protective cladding are also used in fluidized bed furnaces, for example, where the aim is to protect a metallic boiler wall from corrosion by flue gases. In this case the base element is formed by the boiler wall.

Die Platten der Schutzverkleidung sind in der Regel durch verschiedene Massnahmen bis zu einem gewissen Grad gegenseitig abgedichtet, um den Durchtritt von Rauchgasen zu verhindern. Allerdings lässt es sich in der Praxis dadurch allein nicht vollständig vermeiden, dass korrosive Rauchgase durch die Schutzverkleidung gelangen und das dahinter liegende Basiselement, also z.B. die Rohrwand oder Kesselwand, angreifen können.The panels of the protective cladding are usually mutually sealed by various measures to a certain extent in order to prevent the passage of smoke gases. However, in practice this alone cannot completely prevent corrosive smoke gases from passing through the protective cladding and can attack the underlying base element, for example the pipe wall or boiler wall.

Sogenannte aktiv hinterlüftete Systeme begegnen diesem Problem dadurch, dass durch den Zwischenraum zwischen dem Basiselement und der im Abstand vorgesetzten Schutzverkleidung ein Schutzgas - im allgemeinen Luft - durchgepumpt wird. Das Gas bzw. die Luft steht dabei gegenüber dem Feuerraum des Verbrennungsofens unter einem leichten Überdruck, wodurch verhindert wird, dass die Rauchgase aus dem Feuerraum in den Wandzwischenraum eindringen und das metallische Basiselement angreifen können. Typische Beispiele solcher hinterlüfteten Systeme sind z.B. in der CH 699 406 A2 bzw. WO 2016/109903 A1 sowie auch in der EP 2 754 961 A2 beschrieben.So-called actively rear-ventilated systems counter this problem in that a protective gas - generally air - is pumped through the space between the base element and the protective cladding, which is placed in front of it at a distance. The gas or air is under a slight overpressure in relation to the combustion chamber of the incineration furnace, which prevents the flue gases from the combustion chamber from penetrating into the wall space and attacking the metallic base element. Typical examples of such rear-ventilated systems are, for example, in CH 699 406 A2 or. WO 2016/109903 A1 as well as in the EP 2 754 961 A2 described.

Aktiv hinterlüftete Systeme sind wegen der erforderlichen Schutzgaszufuhr konstruktiv relativ aufwändig. Ausserdem wird für das Durchpumpen des Schutzgases unter Überdruck auch Energie verbraucht.Actively rear-ventilated systems are relatively complex in terms of construction because of the necessary protective gas supply. In addition, energy is used to pump the protective gas through under excess pressure.

In der WO 2004/068050 A1 ist eine feuerfeste Wand mit einer metallischen Rohrwand und einer vorgesetzten Schutzverkleidung beschrieben. Die Schutzverkleidung ist durch Klebung mittels eines Kitts auf keramischer Basis an der Rohrwand befestigt.In the WO 2004/068050 A1 describes a fireproof wall with a metallic pipe wall and a protective covering in front of it. The protective cladding is attached to the pipe wall using a ceramic-based cement.

In der AT 43703 B ist eine feuerfeste Wand mit einer metallischen Rohrwand und einer vorgesetzten Schutzverkleidung beschrieben, deren Teile mittels Halteelementen an der Rohrwand befestigt sind. Die Halteelemente sind mittels eines aus feuerfestem Material bestehenden Belags geschützt, der auch eine Klebeverbindung zwischen den Teilen der Schutzverkleidung und den Halteelementen bewirkt.In the AT 43703 B describes a refractory wall with a metallic pipe wall and a protective covering in front, the parts of which are fastened to the pipe wall by means of holding elements. The holding elements are protected by means of a covering made of refractory material, which also causes an adhesive connection between the parts of the protective covering and the holding elements.

Durch die vorliegende Erfindung soll eine feuerfeste Wand dahingehend verbessert werden, dass einerseits auf eine aktive Hinterlüftung verzichtet werden kann und anderseits trotzdem ein zuverlässiger Schutz des mindestens einen Basiselements vor der korrosiven Wirkung von Rauchgasen erreicht wird.The present invention is intended to improve a fire-resistant wall in such a way that, on the one hand, active rear ventilation can be dispensed with and, on the other hand, reliable protection of the at least one base element against the corrosive effect of smoke gases is achieved.

Diese der Erfindung zugrundeliegende Aufgabe wird durch die erfindungsgemässe feuerfeste Wand gelöst, wie sie im unabhängigen Patentanspruch 1 definiert ist. Patentanspruch 14 definiert ein Verfahren zur Herstellung einer solchen feuerfesten Wand. Besonders vorteilhafte Weiterbildungen und Ausgestaltungen der Erfindung ergeben sich aus den abhängigen Patentansprüchen.This object on which the invention is based is achieved by the refractory wall according to the invention, as it is defined in independent patent claim 1. Claim 14 defines a method for manufacturing such a refractory wall. Particularly advantageous developments and refinements of the invention emerge from the dependent claims.

Das Wesen der Erfindung besteht im Folgenden: Eine feuerfeste Wand, insbesondere für einen Verbrennungsofen, umfasst mindestens ein Basiselement und eine dem mindestens einen Basiselement vorgesetzte feuerfeste Schutzverkleidung aus feuerfesten Platten. Das mindestens eine Basiselement weist zumindest an einer der Schutzverkleidung zugewandten Seite eine keramische Korrosionsschutzschicht auf. Die feuerfeste Schutzverkleidung ist im Abstand zum mindestens einen Basiselement angeordnet, wobei zwischen dem mindestens einen Basiselement und der Schutzverkleidung ein Zwischenraum vorhanden ist, durch den durch die Schutzverkleidung eingedrungene Rauchgase abziehen können.The essence of the invention consists in the following: A refractory wall, in particular for a combustion furnace, comprises at least one base element and a refractory protective cladding made of refractory panels in front of the at least one base element. The at least one base element has a ceramic corrosion protection layer on at least one side facing the protective cladding. The fireproof protective cladding is arranged at a distance from the at least one base element, with an intermediate space being present between the at least one base element and the protective cladding through which the smoke gases that have penetrated through the protective cladding can escape.

Durch die keramische Korrosionsschutzschicht können durch die Schutzverkleidung eingedrungene aggressive Rauchgase das mindestens eine Basiselement nicht angreifen, so dass eine aktive Hinterlüftung wegfallen kann.Due to the ceramic corrosion protection layer, aggressive smoke gases that have penetrated through the protective cladding cannot attack the at least one base element, so that active rear ventilation can be omitted.

Die keramische Korrosionsschutzschicht kann das mindestens eine Basiselement an einer der Schutzverkleidung zugewandten Seite ganz oder auch nur bereichsweise bedecken, beispielsweise wenn für gewisse Bereiche ein anderer Korrosionsschutz vorgesehen ist oder gar keiner benötigt wird.The ceramic corrosion protection layer can cover the at least one base element on a side facing the protective cladding entirely or only in certain areas, for example if a different corrosion protection is provided for certain areas or if none at all is required.

Vorzugsweise weist die keramische Korrosionsschutzschicht einen Anteil an Tricalciumaluminat und SiC auf, der mindestens 60 Gew.% beträgt. So kann eine hohe Temperaturfestigkeit und Schutzwirkung erreicht werden.The ceramic corrosion protection layer preferably has a proportion of tricalcium aluminate and SiC which is at least 60% by weight. In this way, a high temperature resistance and protective effect can be achieved.

Vorteilhafterweise ist die Korrosionsschutzschicht eine ausgehärtete bzw. hydraulisch abgebundene keramische Paste. Dadurch lässt sich die Korrosionsschutzschicht als Paste relativ einfach auf das (in der Regel metallische) mindestens eine Basiselement aufbringen.The corrosion protection layer is advantageously a hardened or hydraulically set ceramic paste. This allows the corrosion protection layer as Apply paste relatively easily to the (usually metallic) at least one base element.

Vorzugsweise ist die keramische Paste eine Mischung von festen Bestandteilen und Wasser und enthält unmittelbar nach dem Mischen ihrer Bestandteile bezogen auf die Gesamtheit ihrer festen Bestandteile einen Anteil von 20-80 Gew.%, vorzugsweise 35-75 Gew.%, SiC und zusätzlich einen Anteil von 10-50 Gew.% Al2O3, 5-30 Gew.% SiO2 und 1-5 Gew.% CaO. Mit diesen Zusammensetzungen kann einerseits eine hohe Temperaturfestigkeit und Schutzwirkung erreicht werden und anderseits kann der thermische Ausdehnungskoeffizient an denjenigen des mindestens einen Basiselements angepasst werden, so dass die Korrosionsschutzschicht bei thermischer Belastung sicher auf dem mindestens einen Basiselement haften bleibt. Vorteilhafterweise weicht dabei der thermische Ausdehnungskoeffizient der Korrosionsschutzschicht um nicht mehr als 10% vom thermischen Ausdehnungskoeffizienten des mindestens einen Basiselements ab.The ceramic paste is preferably a mixture of solid constituents and water and, immediately after the mixing of its constituents, contains a proportion of 20-80% by weight, preferably 35-75% by weight, of SiC and an additional proportion, based on the totality of its solid components of 10-50% by weight Al 2 O 3 , 5-30% by weight SiO 2 and 1-5% by weight CaO. With these compositions, on the one hand, a high temperature resistance and protective effect can be achieved and, on the other hand, the coefficient of thermal expansion can be adapted to that of the at least one base element, so that the corrosion protection layer adheres securely to the at least one base element when exposed to thermal stress. Advantageously, the coefficient of thermal expansion of the anti-corrosion layer does not differ by more than 10% from the coefficient of thermal expansion of the at least one base element.

Vorteilhafterweise weist die Korrosionsschutzschicht eine Dicke von 0,1 - 3 mm, vorzugsweise 0,9 - 1,1 mm auf. Dies ist ein vorteilhafter Kompromiss zwischen der antikorrosiven Schutzwirkung und der benötigten Menge an keramischer Paste und der optimalen Wärmeübertragung.The corrosion protection layer advantageously has a thickness of 0.1-3 mm, preferably 0.9-1.1 mm. This is an advantageous compromise between the anti-corrosive protective effect and the required amount of ceramic paste and the optimal heat transfer.

Das mindestens eine Basiselement ist vorzugsweise metallisch.The at least one base element is preferably metallic.

Zweckmässigerweise umfasst das mindestens eine Basiselement Rohre zur Durchleitung eines fluiden Mediums.The at least one base element expediently comprises tubes for the passage of a fluid medium.

Vorteilhafterweise ist das mindestens eine Basiselement als Rohrwand mit durch Stege verbundenen Rohren ausgebildet. Solche Rohrwände haben sich in bekannten feuerfesten Wänden bewährt.The at least one base element is advantageously designed as a tube wall with tubes connected by webs. Such pipe walls have proven themselves in known refractory walls.

Zweckmässigerweise sind die feuerfesten Platten über je mindestens eine Plattenhalterung am mindestens einen Basiselement befestigt.The refractory plates are expediently attached to the at least one base element via at least one plate holder each.

Vorzugsweise sind die feuerfesten Platten der Schutzverkleidung in Reihen und Spalten neben- und übereinander angeordnet. Eine solche Anordnung erleichtert den Zusammenbau der Schutzverkleidung und auch den Austausch defekter Platten.The fireproof panels of the protective cladding are preferably arranged in rows and columns next to and one above the other. Such an arrangement facilitates the assembly of the protective cover and also the replacement of defective panels.

Für den Einsatz der feuerfesten Wand im Innenraum eines Verbrennungsofens umschliesst die Schutzverkleidung das mindestens eine Basiselement vorteilhafterweise ringsum, so dass das mindestens eine Basiselement im Wesentlichen allseitig vor Rauchgasen geschützt ist.For the use of the refractory wall in the interior of a combustion furnace, the protective cladding advantageously encloses the at least one base element all around, so that the at least one base element is protected from flue gases essentially on all sides.

Bei einer vorteilhaften Ausführungsvariante ist das mindestens eine Basiselement eine Kesselwand.In an advantageous embodiment variant, the at least one base element is a boiler wall.

Hinsichtlich des Verfahrens zur Herstellung einer feuerfesten Wand besteht das Wesen der Erfindung in Folgendem: Durch Mischen von festen Bestandteilen und Wasser wird eine hydraulisch abbindende keramische Paste hergestellt. Die keramische Paste wird auf mindestens ein Basiselement einer feuerfesten Wand als Korrosionsschutzschicht aufgetragen, insbesondere aufgestrichen oder aufgespritzt, und die keramische Paste wird dann zum Aushärten bzw. Abbinden gebracht. Dem mindestens einen Basiselement wird nach dem Auftragen der keramischen Paste eine feuerfeste Schutzverkleidung aus feuerfesten Platten vorgesetzt.With regard to the method for producing a refractory wall, the essence of the invention consists in the following: By mixing solid components and water, a hydraulically setting ceramic paste is produced. The ceramic paste is applied to at least one base element of a refractory wall as a corrosion protection layer, in particular painted on or sprayed on, and the ceramic paste is then caused to harden or set. After the ceramic paste has been applied, a refractory protective cladding made of refractory plates is placed in front of the at least one base element.

Das Auftragen einer keramischen Paste ist wesentlich einfacher und kostengünstiger als z.B. das Aufschweissen von Schutzlegierungen.Applying a ceramic paste is much easier and cheaper than, for example, welding on protective alloys.

Die bezüglich der erfindungsgemässen feuerfesten Wand genannten Ausführungsvarianten und Vorteile gelten entsprechend auch für das Verfahren zur Herstellung einer solchen feuerfesten Wand.The design variants and advantages mentioned with regard to the refractory wall according to the invention also apply accordingly to the method for producing such a refractory wall.

Im Folgenden wird die Erfindung anhand von in den Zeichnungen dargestellten Ausführungsbeispielen detaillierter beschrieben. Es zeigen:

Fig. 1 -
einen Ausschnitt eines ersten Ausführungsbeispiels einer erfindungsgemässen feuerfesten Wand in Aufsicht;
Fig. 2 -
einen Längsschnitt des Ausschnitts der Fig. 1 gemäss der Linie II-II der Fig. 3;
Fig. 3 -
einen Querschnitt des Ausschnitts der Fig. 1 gemäss der Linie III-III der Fig. 1;
Fig. 4 -
einen vergrösserten Detailausschnitt aus Fig. 3;
Fig. 5 -
einen Ausschnitt eines zweiten Ausführungsbeispiels einer erfindungsgemässen feuerfesten Wand in Aufsicht;
Fig. 6 -
einen Längsschnitt des Ausschnitts der Fig. 5 gemäss der Linie VI-VI der Fig. 7;
Fig. 7 -
einen Querschnitt des Ausschnitts der Fig. 5 gemäss der Linie VII-VII der Fig. 5 und
Fig. 8 -
einen vergrösserten Detailausschnitt aus Fig. 7.
The invention is described in more detail below with reference to the exemplary embodiments shown in the drawings. Show it:
Fig. 1 -
a detail of a first embodiment of a refractory wall according to the invention in plan view;
Fig. 2 -
a longitudinal section of the section of the Fig. 1 according to line II-II of Fig. 3 ;
Fig. 3 -
a cross section of the detail of the Fig. 1 according to line III-III of Fig. 1 ;
Fig. 4 -
an enlarged detail section Fig. 3 ;
Fig. 5 -
a section of a second embodiment of a fire-resistant wall according to the invention in plan view;
Fig. 6 -
a longitudinal section of the section of the Fig. 5 according to the line VI-VI of Fig. 7 ;
Fig. 7 -
a cross section of the detail of the Fig. 5 according to the line VII-VII of the Fig. 5 and
Fig. 8 -
an enlarged detail section Fig. 7 .

Für die nachstehende Beschreibung gilt die folgende Festlegung: Sind in einer Figur zum Zweck zeichnerischer Eindeutigkeit Bezugszeichen angegeben, aber im unmittelbar zugehörigen Beschreibungsteil nicht erwähnt, so wird auf deren Erläuterung in vorangehenden oder nachfolgenden Beschreibungsteilen verwiesen. Umgekehrt sind zur Vermeidung zeichnerischer Überladung für das unmittelbare Verständnis weniger relevante Bezugszeichen nicht in allen Figuren eingetragen. Hierzu wird auf die jeweils übrigen Figuren verwiesen.The following definition applies to the following description: If reference symbols are given in a figure for the purpose of clarity of the drawing, but not mentioned in the directly associated part of the description, reference is made to their explanation in the preceding or following parts of the description. Conversely, in order to avoid overloading the drawings, less relevant reference symbols for direct understanding are not entered in all figures. Reference is made to the other figures in each case.

Lage- und Richtungsbezeichnungen, wie z.B. oben, unten, nebeneinander, übereinander, seitlich, vertikal, horizontal, Höhe und Breite beziehen sich auf die übliche, in den Zeichnungen dargestellte vertikale Einsatzposition der feuerfesten Wand.Position and directional designations, such as above, below, side by side, one above the other, side, vertical, horizontal, height and width refer to the usual vertical position of use of the refractory wall shown in the drawings.

Als Basiselement wird im Zusammenhang mit der Erfindung jede Art von, insbesondere metallischer, Konstruktion verstanden. Insbesondere kann dies eine metallische Kesselwand sein oder eine Anordnung von (z.B. parallelen) Rohren, durch welche ein fluides Medium (z.B. Wasser) durchleitbar ist. Als Basiselement ist insbesondere auch eine aus mehreren untereinander verbundenen Rohren bestehende Rohrwand oder ein einzelnes Rohr zu verstehen.In connection with the invention, a base element is understood to mean any type of, in particular metallic, construction. In particular, this can be a metallic boiler wall or an arrangement of (e.g. parallel) pipes through which a fluid medium (e.g. water) can be passed. The base element is to be understood in particular as a pipe wall consisting of a plurality of pipes connected to one another or a single pipe.

Das in den Figuren 1-4 dargestellte erste Ausführungsbeispiel einer erfindungsgemässen feuerfesten Wand stellt im praktischen Einsatz einen Teil einer Begrenzungswand eines Verbrennungsofens dar, wobei ihre Schutzverkleidung zum Inneren des Verbrennungsofens ausgerichtet ist. Die Wand wird dabei einseitig von heissen Rauchgasen beaufschlagt.That in the Figures 1-4 The illustrated first embodiment of a refractory wall according to the invention represents, in practical use, part of a boundary wall of an incineration furnace, its protective cladding being aligned with the interior of the incineration furnace. One side of the wall is exposed to hot smoke gases.

Die als Ganze mit W bezeichnete feuerfeste Wand umfasst ein als metallische Rohrwand 1 ausgebildetes Basiselement und eine feuerfeste Schutzverkleidung 2, die der Rohrwand 1 im Abstand vorgesetzt ist, sodass sich zwischen der Schutzverkleidung 2 und der Rohrwand 1 ein Zwischenraum 3 befindet (Figuren 2 und 4), durch den Luft strömen kann.The refractory wall designated as a whole with W comprises a base element designed as a metallic pipe wall 1 and a refractory protective cladding 2, which is placed in front of the pipe wall 1 at a distance so that there is a gap 3 between the protective cladding 2 and the pipe wall 1 ( Figures 2 and 4th ) through which air can flow.

Die das Basiselement bildende Rohrwand 1 besteht aus einer Vielzahl von im praktischen Einsatz vertikalen Rohren 11, welche durch Stege 12 in gegenseitigem Abstand zusammengehalten sind (siehe insbesondere Fig. 4). Die Rohre 11 und die Stege 12 bestehen üblicherweise aus Stahl.The pipe wall 1 forming the base element consists of a large number of pipes 11 which are vertical in practical use and which are held together by webs 12 at a mutual distance (see in particular Fig. 4 ). The tubes 11 and the webs 12 are usually made of steel.

Die Schutzverkleidung 2 besteht aus einer Vielzahl von neben- und übereinander, in Reihen und Spalten angeordneten feuerfesten Platten 21. Die Platten sind beispielsweise keramische SiC-Platten, vorzugsweise SiC 90-Platten mit einem SiC-Gehalt von ungefähr 90 Gew.% in der Herstellung, die bis über 1000°C feuerbeständig sind.The protective cladding 2 consists of a large number of refractory plates 21 arranged next to and on top of one another, in rows and columns that are fire-resistant up to over 1000 ° C.

Die Platten 21 der Schutzverkleidung 2 sind an der Rohrwand 1 mittels Plattenhalterungen 13 befestigt. Die Plattenhalterungen 13 bestehen beispielsweise aus hitzebeständigem Stahl, z.B. Stahl Nr. 310 nach AISI-Norm oder Werkstoff Nr. 1.4845 nach DIN 17440. Geeignet sind auch korrosionsbeständige CrNi-Legierungen, insbesondere mit Zusatzstoffen wie z.B. Molybdän. Die Plattenhalterungen 13 umfassen im Wesentlichen je einen an einem Steg 12 angeschweissten Schraubbolzen und eine auf dem Schraubbolzen sitzende Mutter. Die Plattenhalterungen 13 greifen in vertikal durchgehende, nach innen erweiterte Nuten 21a (Fig. 4) der Platten 21 ein und legen den Abstand der Platten 21 zur Rohrwand 1 fest. Die Plattenhalterungen 13 dienen ebenfalls zur Stützung der Platten 21 in vertikaler Richtung, wobei die Platten 21 mit an ihnen angeordneten (nicht dargestellten) Brückenelementen auf den Plattenhalterungen 13 aufliegen. Die Platten 21 sind dabei in vertikaler Richtung in gewissem Masse beweglich, um so thermisch bedingte Ausdehnungs- bzw. Kontraktionsbewegungen zuzulassen.The plates 21 of the protective cladding 2 are fastened to the pipe wall 1 by means of plate holders 13. The plate holders 13 consist, for example, of heat-resistant steel, e.g. steel no. 310 according to AISI standard or material no. 1.4845 according to DIN 17440. Corrosion-resistant CrNi alloys are also suitable, in particular with additives such as molybdenum. The plate holders 13 essentially each comprise a screw bolt welded to a web 12 and a nut seated on the screw bolt. The plate holders 13 engage in vertically continuous, inwardly expanded grooves 21a ( Fig. 4 ) of the plates 21 and determine the distance between the plates 21 and the pipe wall 1. The plate holders 13 also serve to support the plates 21 in the vertical direction, the plates 21 with bridge elements (not shown) arranged on them resting on the plate holders 13. The plates 21 are movable to a certain extent in the vertical direction in order to allow thermally induced expansion and contraction movements.

Zwischen den nebeneinander angeordneten Platten 21 verlaufen vertikale Trennfugen 23 und zwischen den übereinander angeordneten Platten 21 befinden sich horizontale Trennfugen 24. Die Trennfugen sind in an sich bekannter Weise durch eingelegte Dichtelemente und/oder eine überlappende Ausbildung der Plattenränder abgedichtet (nicht im Detail dargestellt).Vertical parting lines 23 run between the panels 21 arranged next to one another and horizontal parting lines 24 are located between the panels 21 arranged one above the other. The parting lines are sealed in a manner known per se by inserted sealing elements and / or an overlapping design of the panel edges (not shown in detail).

Soweit entspricht die erfindungsgemässe feuerfeste Wand in ihrem grundsätzlichen Aufbau und in ihrer Funktionsweise herkömmlichen Wänden dieser Art, wie sie z.B. in der CH 699 406 A2 , WO 2016/086322 A1 und WO 2016/109904 A1 in allen Einzelheiten, insbesondere auch bezüglich der Ausbildung der feuerfesten Platten, beschrieben sind. Der Fachmann bedarf also soweit keiner näheren Erläuterung.To this extent, the refractory wall according to the invention corresponds in its basic structure and in its mode of operation to conventional walls of this type, as for example in FIG CH 699 406 A2 , WO 2016/086322 A1 and WO 2016/109904 A1 are described in detail, in particular with regard to the design of the refractory panels. The person skilled in the art does not therefore need any further explanation.

Der wesentliche Unterschied der erfindungsgemässen feuerfesten Wand gegenüber herkömmlichen feuerfesten Wänden dieser Art besteht darin, dass die Rohrwand 1 oder allgemein das (insbesondere metallische) Basiselement mit einer keramischen Korrosionsschutzschicht 10 überzogen ist. Die Korrosionsschutzschicht 10 ist am besten in der Detail-Figur 4 erkennbar. Die Korrosionsschutzschicht 10 verhindert, dass durch Undichtigkeiten in der Schutzverkleidung 2 in den Zwischenraum 3 zwischen der Schutzverkleidung 2 und der Rohrwand 1 eingedrungene Rauchgase die Rohrwand 1 angreifen können. Dadurch kann eine konstruktiv aufwändige aktive Hinterlüftung (Durchpumpen eines Gases, z.B. Luft, unter Überdruck durch den Zwischenraum 3 der Wand) wegfallen. Die eingedrungenen Rauchgase können durch den Zwischenraum 3 abziehen.The essential difference between the refractory wall according to the invention and conventional refractory walls of this type is that the pipe wall 1 or generally the (in particular metallic) base element is covered with a ceramic corrosion protection layer 10. The corrosion protection layer 10 is best in the detail Figure 4 recognizable. The anti-corrosion layer 10 prevents that smoke gases that have penetrated into the space 3 between the protective lining 2 and the pipe wall 1 through leaks in the protective lining 2 cannot attack the pipe wall 1. This enables a structurally complex active rear ventilation (pumping through a gas, e.g. air, under overpressure through the Gap 3 of the wall) are omitted. The smoke gases that have penetrated can escape through the space 3.

Die keramische Korrosionsschutzschicht 10 bedeckt hier die gesamte Rohrwand 1 inklusive den Stegen 12 zwischen den einzelnen Rohren 11. Sie besteht aus einer ausgehärteten bzw. (hydraulisch) abgebundenen keramischen Paste, die aus einer Mischung von verschiedenen festen Bestandteilen und Wasser besteht. Unmittelbar nach dem Mischen ihrer festen Bestandteile und noch vor der Beifügung von Wasser enthält die Paste als wesentlichsten Bestandteil 20-80 %, vorzugsweise 35-75 %, SiC. Weitere Bestandteile zu diesem Zeitpunkt sind 10-50 % Al2O3, 5-30 % SiO2 und als Bindemittel 1-5 % CaO. Die Mengenanteile dieser festen Bestandteile (ohne Berücksichtigung des Wassers) sind immer so gewählt, dass sie sich auf 100 % ergänzen. Danach wird noch etwa 6 % Wasser (H2O) beigefügt (so dass sich eine Gesamtmenge von etwa 106 % ergibt), wodurch ein pastös-flüssiger Aggregatzustand erreicht wird. Alle Prozentangaben sind Gewichtsprozente.The ceramic corrosion protection layer 10 here covers the entire pipe wall 1 including the webs 12 between the individual pipes 11. It consists of a hardened or (hydraulically) set ceramic paste, which consists of a mixture of various solid components and water. Immediately after mixing its solid components and before adding water, the paste contains 20-80%, preferably 35-75%, SiC as the most important component. Further components at this point are 10-50% Al 2 O 3 , 5-30% SiO 2 and, as a binder, 1-5% CaO. The proportions of these solid constituents (without taking water into account) are always chosen so that they add up to 100%. Then about 6% water (H 2 O) is added (so that a total amount of about 106% results), whereby a pasty-liquid state of aggregation is achieved. All percentages are percentages by weight.

SiO2, Al2O3 und CaO reagieren zusammen mit H2O, wobei H2O zu einem grossen Teil abgebaut (chemisch gebunden) wird. Der Rest des H2O verdunstet spätestens im Betrieb. Das SiC reagiert nur minim. Das SiO2 trägt u.a. zur Festigkeit der Korrosionsschutzschicht bei. Bei der Hydratation (dem Abbinden) entstehen (wachsen) sogenannte Calciumsilikathydratfasern (Ca3S2H3), welche sich mit den drei Bestandteilen SiO2, Al2O3 und CaO verbinden, wobei das erhärtete Produkt "Tricalciumaluminat" entsteht. Das SiC stellt lediglich einen Zuschlagstoff dar, welcher vom Tricalciumaluminat eingebettet wird und nach dem Abbinden zum eigentlichen keramischen Mörtel erstarrt. Nach dem Abbinden liegt eine keramische Korrosionsschutzschicht vor, bei der der Anteil an Tricalciumaluminat und SiC mindestens 60 Gew.% beträgt.SiO 2 , Al 2 O 3 and CaO react together with H 2 O, whereby a large part of H 2 O is broken down (chemically bound). The rest of the H 2 O evaporates during operation at the latest. The SiC reacts only minimally. The SiO 2 contributes, among other things, to the strength of the corrosion protection layer. During hydration (setting), so-called calcium silicate hydrate fibers (Ca 3 S 2 H 3 ) are created (grow), which combine with the three components SiO 2 , Al 2 O 3 and CaO, resulting in the hardened product "tricalcium aluminate". The SiC is only an additive that is embedded by the tricalcium aluminate and solidifies to form the actual ceramic mortar after it has set. After setting, there is a ceramic corrosion protection layer in which the proportion of tricalcium aluminate and SiC is at least 60% by weight.

Konkrete Beispiele für die Zusammensetzung nur der festen Bestandteile der keramischen Paste sind (Angaben in Gewichtsprozenten): SiC SiO2 Al2O3 CaO 38 17 42 3 49 15 33 3 57 12 28 3 63 10 24 3 72 8 17 3 Specific examples for the composition of only the solid components of the ceramic paste are (data in percent by weight): SiC SiO 2 Al 2 O 3 CaO 38 17th 42 3rd 49 15th 33 3rd 57 12th 28 3rd 63 10 24 3rd 72 8th 17th 3rd

Die Korngrösse des SiC in der keramischen Paste ist vorzugsweise < 2 mm, noch bevorzugter < 1 mm. Die Dicke der Korrosionsschutzschicht 10 beträgt vorzugsweise 0,1 - 3 mm, noch bevorzugter 0,9 - 1,1 mm. Die Korrosionsschutzschicht 10 haftet an den Oberflächenrauigkeiten der metallischen Rohrwand 1.The grain size of the SiC in the ceramic paste is preferably <2 mm, more preferably <1 mm. The thickness of the anti-corrosion layer 10 is preferably 0.1-3 mm, more preferably 0.9-1.1 mm. The corrosion protection layer 10 adheres to the surface roughness of the metallic pipe wall 1.

Die Korrosionsschutzschicht 10 wird bei der Herstellung der Wand als Paste auf die Rohrwand 1 aufgestrichen oder aufgespritzt und härtet dann aus bzw. bindet hydraulisch ab. Üblicherweise wird Paste zusammengemischt und dann innert 5 min. bis 1 Stunde aufgetragen. Danach ist sie bereits soweit ausgehärtet, dass sie kaum mehr aufgetragen werden kann.During the manufacture of the wall, the corrosion protection layer 10 is painted or sprayed onto the pipe wall 1 as a paste and then hardens or sets hydraulically. Usually paste is mixed together and then applied within 5 minutes to 1 hour. After that, it is already hardened to the point where it can hardly be applied.

Die Zusammensetzung der keramischen Paste ist ferner so gewählt, dass die Korrosionsschutzschicht im ausgehärteten bzw. abgebundenen Zustand einen möglichst ähnlichen (höchstens 10% abweichenden) thermischen Ausdehnungskoeffizienten wie die Rohrwand bzw. allgemein das Basiselement aufweist. Die Zusammensetzung der Paste kann sich dabei vorteilhafterweise nach dem erwarteten Temperaturbereich richten, den das Basiselement (hier also die metallische Rohrwand 1) im Einsatz erreicht. Bei höheren zu erwartenden Temperaturen des Basiselements wird der SiC-Anteil reduziert und der (hoch hitzebeständige) Al2O3-Anteil erhöht, wie die nachstehende Tabelle beispielsweise zeigt (Gewichtsprozente hier inklusive Wasser): SiC SiO2 Al2O3 CaO Fe2O3 H2O 300°C 57 10 25 1 1 6 280°C 60 10 22 1 1 6 260°C 63 10 19 1 1 6 The composition of the ceramic paste is also selected so that the anti-corrosion layer in the cured or set state has a thermal expansion coefficient that is as similar as possible (deviating at most 10%) to the pipe wall or, in general, the base element. The composition of the paste can advantageously be based on the expected temperature range that the base element (in this case the metallic pipe wall 1) reaches in use. At higher expected temperatures of the base element, the SiC proportion is reduced and the (highly heat-resistant) Al 2 O 3 proportion is increased, as the following table shows, for example (percentages by weight here including water): SiC SiO 2 Al 2 O 3 CaO Fe 2 O 3 H 2 O 300 ° C 57 10 25th 1 1 6th 280 ° C 60 10 22nd 1 1 6th 260 ° C 63 10 19th 1 1 6th

In den Beispielen der vorstehenden Tabelle enthält die Paste zusätzlich noch einen geringen Anteil an Fe2O3, welcher die Nitridbildung und dadurch die Härtung unterstützt. Dieser Anteil ist aber nicht unbedingt erforderlich und kann daher auch weggelassen sein.In the examples in the table above, the paste also contains a small amount of Fe 2 O 3 , which supports the formation of nitrides and thereby the hardening. However, this portion is not absolutely necessary and can therefore also be omitted.

Das in den Figuren 5-8 dargestellte zweite Ausführungsbeispiel der erfindungsgemässen feuerfesten Wand ist dafür vorgesehen, im praktischen Einsatz als Wärmetauscher im Inneren eines Verbrennungsofens angeordnet zu sein, wobei die Wand mehrseitig von heissen Rauchgasen beaufschlagt wird. Sie ist prinzipiell ähnlich aufgebaut wie die feuerfeste Wand der Figuren 1-4, jedoch mit dem Unterschied, dass ihr Basiselement, also die Rohrwand, vierseitig bzw. ringsum durch eine feuerfeste Schutzverkleidung geschützt ist.That in the Figures 5-8 The illustrated second embodiment of the refractory wall according to the invention is intended to be arranged in practical use as a heat exchanger inside a combustion furnace, the wall being acted upon by hot flue gases on more than one side. In principle, it has a similar structure to the fireproof wall of the Figures 1-4 but with the difference that its base element, i.e. the pipe wall, is protected on four sides or all around by a fireproof protective cladding.

Die feuerfeste Wand umfasst wieder ein als metallische Rohrwand 1 ausgebildetes Basiselement und eine feuerfeste Schutzverkleidung 20, die der Rohrwand 1 vierseitig im Abstand vorgesetzt ist, sodass sich zwischen der Schutzverkleidung 20 und der Rohrwand 1 ein Zwischenraum 3 befindet (Figuren 6 und 8).The fireproof wall again comprises a base element designed as a metallic pipe wall 1 and a fireproof protective lining 20, which is placed in front of the pipe wall 1 on four sides at a distance so that there is a gap 3 between the protective lining 20 and the pipe wall 1 ( Figures 6 and 8th ).

Die das Basiselement bildende Rohrwand 1 besteht wieder aus einer Vielzahl von im praktischen Einsatz vertikalen Rohren 11, welche durch Stege 12 in gegenseitigem Abstand zusammengehalten sind (siehe insbesondere Fig. 8).The pipe wall 1 forming the base element again consists of a large number of pipes 11 which are vertical in practical use and which are held together by webs 12 at a mutual distance (see in particular Fig. 8 ).

Die Schutzverkleidung 20 besteht analog zum in den Figuren 1-4 dargestellten Ausführungsbeispiel aus einer Vielzahl von neben- und übereinander, in Reihen und Spalten angeordneten feuerfesten Platten 21 und 22, die an der Rohrwand 1 mittels Plattenhalterungen 13 befestigt sind. Im Unterschied zum ersten Ausführungsbeispiel umschliesst bei diesem Ausführungsbeispiel die Schutzverkleidung 20 die Rohrwand 1 ringsum vollständig. An den beiden gegenüberliegenden Längsseiten der Rohrwand 1 sind wie beim ersten Ausführungsbeispiel im Wesentlichen ebene Platten 21 angeordnet und zusätzlich sind längs der seitlichen Endränder der Rohrwand 1 im Querschnitt im Wesentlichen U-förmige Platten 22 angeordnet, welche die seitlichen Endränder der Rohrwand 1 umschliessen, so dass die Schutzverkleidung 20 eine geschlossene Hülle um die Rohrwand 1 bildet, wobei rings um die Rohrwand 1 ein Zwischenraum 3 zwischen der Rohrwand und der Schutzverkleidung 20 verbleibt. Auch die Platten 22 sind mittels Plattenhalterungen 13 an der Rohrwand 1 befestigt, wobei diese Plattenhalterungen in vertikal durchgehende, nach innen erweiterte Nuten 22a (Fig. 8) der Platten 22 eingreifen.The protective cover 20 is analogous to that in the Figures 1-4 The illustrated embodiment consists of a plurality of refractory plates 21 and 22 arranged next to one another and one above the other, in rows and columns, which are fastened to the pipe wall 1 by means of plate holders 13. In contrast to the first exemplary embodiment, in this exemplary embodiment the protective cladding 20 encloses the pipe wall 1 all around. As in the first exemplary embodiment, essentially flat plates 21 are arranged on the two opposite longitudinal sides of the pipe wall 1 and, in addition, plates 22 which are essentially U-shaped in cross section are arranged along the lateral end edges of the pipe wall 1, which surround the lateral end edges of the pipe wall 1, see above that the protective cladding 20 forms a closed shell around the pipe wall 1, a space 3 remaining around the pipe wall 1 between the pipe wall and the protective casing 20. The plates 22 are also fastened to the pipe wall 1 by means of plate holders 13, these plate holders being in vertically continuous, inwardly expanded grooves 22a ( Fig. 8 ) of the plates 22 engage.

Soweit entspricht dieses Ausführungsbeispiel einer erfindungsgemässen Wand in ihrem grundsätzlichen Aufbau und in ihrer Funktionsweise der beispielsweise in der WO 2016/109903 A1 beschriebenen herkömmlichen Wand. Bezüglich der Ausbildung der feuerfesten Platten und der Plattenhalterungen gilt das im Zusammenhang mit dem ersten Ausführungsbeispiel Gesagte. Der Fachmann bedarf daher bezüglich des zweiten Ausführungsbeispiels soweit keiner näheren Erläuterung.To this extent, this exemplary embodiment of a wall according to the invention corresponds in its basic structure and in its mode of operation to that in FIG WO 2016/109903 A1 described conventional wall. With regard to the design of the refractory plates and the plate holders, what has been said in connection with the first exemplary embodiment applies. The person skilled in the art therefore does not need any further explanation with regard to the second exemplary embodiment.

Der wesentliche Unterschied der erfindungsgemässen feuerfesten Wand gegenüber herkömmlichen feuerfesten Wanden dieser Art besteht auch bei diesem zweiten Ausführungsbeispiel darin, dass die Rohrwand 1 oder allgemein das Basiselement mit einer keramischen Korrosionsschutzschicht 10 überzogen ist, welche verhindert, dass durch Undichtigkeiten in der Schutzverkleidung 20 in den Zwischenraum 3 zwischen der Schutzverkleidung 20 und der Rohrwand 1 eingedrungenes Rauchgas die Rohrwand 1 angreifen kann. Die Korrosionsschutzschicht 10 ist am besten in der Detail-Figur 8 erkennbar. Hinsichtlich der Korrosionsschutzschicht 10 und der ihr zugrundeliegenden keramischen Paste gilt wieder das im Zusammenhang mit dem ersten Ausführungsbeispiel Erläuterte.The main difference between the inventive fire-resistant wall and conventional fire-resistant walls of this type is that the pipe wall 1 or generally the base element is covered with a ceramic corrosion protection layer 10, which prevents leaks in the protective lining 20 from entering the space 3 between the protective cladding 20 and the pipe wall 1, smoke gas that has penetrated the pipe wall 1 can attack. The corrosion protection layer 10 is best in the detail Figure 8 recognizable. With regard to the corrosion protection layer 10 and the ceramic paste on which it is based, what has been explained in connection with the first exemplary embodiment applies again.

Das mindestens eine Basiselement kann auch eine Anordnung von zwei oder mehreren, nicht über Stege verbundenen Rohren umfassen, wobei die Rohre wieder mit der schon erwähnten keramischen Korrosionsschutzschicht überzogen sind. Aus unverbundenen Rohren bestehende metallische Basiselemente (ohne Korrosionsschutzschicht) sind z.B. in der EP 2 754 961 A2 beschrieben.The at least one base element can also comprise an arrangement of two or more tubes that are not connected by webs, the tubes again being covered with the ceramic corrosion protection layer already mentioned. Out Unconnected pipes existing metallic base elements (without a corrosion protection layer) are, for example, in the EP 2 754 961 A2 described.

Das mindestens eine Basiselement kann auch durch eine metallische Kesselwand gebildet sein, wobei dieser Kesselwand die Schutzverkleidung im Abstand vorgesetzt ist. In diesem Fall weist die Kesselwand nur auf ihrer der Schutzverkleidung zugewandten Seite eine keramische Korrosionsschutzschicht auf.The at least one base element can also be formed by a metallic boiler wall, the protective cladding being placed in front of this boiler wall at a distance. In this case, the boiler wall only has a ceramic corrosion protection layer on its side facing the protective cladding.

Claims (14)

  1. Refractory wall (W), in particular for an incinerator, comprising at least one base element (1) and a refractory protective cladding (2; 20) comprising refractory panels (21, 22) and disposed in front of the at least one base element (1), wherein the at least one base element (1) has a ceramic corrosion protection layer (10) at least at one side towards the protective cladding (2; 20), characterised in that the refractory protective cladding (2; 20) is arranged at a spacing relative to the at least one base element (1), wherein between the at least one base element (1) and the protective cladding (2; 20) there is an intermediate space through which flue gases which have penetrated through the protective cladding (2; 20) can be withdrawn.
  2. Refractory wall (W) according to claim 1, characterised in that the ceramic corrosion protection layer (10) has a proportion of tricalcium aluminate and SiC which is at least 60 wt-%.
  3. Refractory wall (W) according to claim 1 or claim 2, characterised in that the corrosion protection layer (10) is a hydraulically set ceramic paste.
  4. Refractory wall (W) according to claim 3, characterised in that the paste is a mixture of solid constituents and water and immediately after mixing of its constituents in relation to the total of its solid constituents contains a proportion of 20-80 wt-%, preferably 35-75 wt-% of SiC.
  5. Refractory wall (W) according to claim 4, characterised in that immediately after mixing of its constituents in relation to the total of its solid constituents the paste has a proportion of 10-50 wt-% of Al2O3, 5-30 wt-% of SiO2 and 1-5 wt-% of CaO.
  6. Refractory wall (W) according to one of the preceding claims, characterised in that the corrosion protection layer (10) is of a thickness of 0.1 - 3 mm, preferably 0.9 - 1.1 mm.
  7. Refractory wall (W) according to one of the preceding claims, characterised in that the corrosion protection layer (10) has a coefficient of thermal expansion which differs by not more than 10% from the coefficient of thermal expansion of the at least one base element (1).
  8. Refractory wall (W) according to one of the preceding claims, characterised in that the at least one base element (1) is metallic.
  9. Refractory wall (W) according to one of the preceding claims, characterised in that the at least one base element (1) includes tubes (11) for passing a fluid medium.
  10. Refractory wall (W) according to one of the preceding claims, characterised in that the at least one base element (1) is in the form of a tube wall with tubes (11) connected by bars (12).
  11. Refractory wall (W) according to one of the preceding claims, characterised in that the refractory panels (21, 22) are fixed to the at least one base element (1) by way of at least one respective panel holder (13).
  12. Refractory wall according to one of the preceding claims, characterised in that the protective cladding (20) surrounds the at least one base element (1) all around.
  13. Refractory wall (W) according to one of the preceding claims, characterised in that the at least one base element (1) is a boiler wall.
  14. Method of producing a refractory wall (W) according to one of the preceding claims, characterised in that a hydraulically setting ceramic paste is produced by mixing solid constituents and water, the paste is applied as a corrosion protection layer to the at least one base element, in particular being painted or sprayed thereon, and is then caused to harden, and after application of the ceramic paste the refractory protective cladding (2; 20) comprising refractory panels (21, 22) is disposed in front of the at least one base element (1).
EP19170024.4A 2018-04-26 2019-04-18 Refractory wall with anti-corrosive layer Active EP3561385B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL19170024T PL3561385T3 (en) 2018-04-26 2019-04-18 Refractory wall with anti-corrosive layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH00535/18A CH714933B1 (en) 2018-04-26 2018-04-26 Refractory wall, especially for an incinerator.

Publications (2)

Publication Number Publication Date
EP3561385A1 EP3561385A1 (en) 2019-10-30
EP3561385B1 true EP3561385B1 (en) 2021-06-02

Family

ID=66239780

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19170024.4A Active EP3561385B1 (en) 2018-04-26 2019-04-18 Refractory wall with anti-corrosive layer

Country Status (5)

Country Link
EP (1) EP3561385B1 (en)
CH (1) CH714933B1 (en)
DK (1) DK3561385T3 (en)
ES (1) ES2880579T3 (en)
PL (1) PL3561385T3 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2021445B1 (en) * 2018-08-09 2020-02-20 Awect Bv High pressure heating installation comprising an advanced panel design and cladding thereof
CN111649589A (en) * 2020-07-01 2020-09-11 山东民烨耐火纤维有限公司 Annealing furnace lining for reducing atmosphere

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4188915A (en) * 1975-12-05 1980-02-19 Dr. C. Otto & Comp. G.M.B.H. Water-cooled, high-temperature gasifier
FR2595792B1 (en) * 1986-03-17 1990-02-02 Mediterranee Const Navales Ind IMPROVEMENTS IN FIXING PROTECTIVE ELEMENTS OF BOILER COMBUSTION CHAMBERS
DE19841881A1 (en) * 1998-09-11 2000-03-16 Juenger & Graeter Gmbh Feuerfe Single or multi-part metallic holder for fixing fireproof wall to metallic tube wall, particularly of rubbish burning furnace, has shaft connectable to tube wall and holding section anchorable in wall
DE10303173B4 (en) * 2003-01-27 2005-06-30 Saint-Gobain Industriekeramik Düsseldorf Gmbh Pipe wall protection for a boiler pipe wall
CH699406A2 (en) 2008-08-26 2010-02-26 Mokesys Ag Ventilated refractory wall, in particular for an incinerator.
DE102013000424A1 (en) 2013-01-14 2014-07-17 Martin GmbH für Umwelt- und Energietechnik Method and device for protecting heat exchanger tubes and ceramic component
CH710497B1 (en) 2014-12-01 2018-08-31 Mokesys Ag Fireproof wall, in particular for a combustion furnace.
CH710596A1 (en) 2015-01-07 2016-07-15 Mokesys Ag Heat exchanger for an interior of an incinerator.
CH710597A1 (en) 2015-01-07 2016-07-15 Mokesys Ag Refractory wall, in particular for an incinerator.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DK3561385T3 (en) 2021-08-16
CH714933A2 (en) 2019-10-31
ES2880579T3 (en) 2021-11-24
PL3561385T3 (en) 2021-11-29
CH714933B1 (en) 2021-06-15
EP3561385A1 (en) 2019-10-30

Similar Documents

Publication Publication Date Title
DE2925395C2 (en) Furnace ceiling for an electrothermal reduction furnace
DE2418096A1 (en) INSULATION FOR OVEN
EP3227610A1 (en) Fireproof wall, in particular for a combustion furnace
EP3561385B1 (en) Refractory wall with anti-corrosive layer
DE3121434C2 (en) Refractory brick for rotary kilns
CH699406A2 (en) Ventilated refractory wall, in particular for an incinerator.
DE3405051C2 (en) Method of completing, preferably repairing a silica refractory structure
EP1032790B1 (en) Refractory lining for tubular wall
DE19635292C2 (en) Heat-resistant protective blocks and protective wall structure with such protective blocks for a boiler
DE3925280A1 (en) LIQUID-FLOWED COOLING ELEMENT FOR SHAFT OVENS
EP2315975B1 (en) Fireproof wall, in particular for a combustion furnace
DE10005426C2 (en) Refractory ceramic plate and associated wall structure for an incinerator
DE2454202A1 (en) Cooler grate plate, esp. for cooling cement clinker - made of metal box-frame contg. refractory layer and air holes
DE10361104A1 (en) Heat protection body
DE202011110611U1 (en) Cladding for a finned tube wall of a combustion furnace
DE202010011142U1 (en) Corrosion protection body and protection system for a furnace inner wall
DE60205607T2 (en) WALL CONSTRUCTION FOR USE IN AN OVEN
EP1128131A1 (en) Heat shield element, combustion chamber and gas turbine
DE1451558A1 (en) Flat ceiling for ovens and other heating systems or devices
DE10206607B4 (en) Feuerfestabkleidung
DE29616509U1 (en) Wall cooling element for shaft furnaces
DE102016114177B4 (en) Refractory protection segment
DE102016103443B4 (en) refractory protection segment
DE19912944C1 (en) Rubbish burning grate cheek sealing body is for steel lining of chamber in which grate is arranged, and is formed by steel plate supporting fireproof layer on chamber side
EP4348146A1 (en) Wall for a furnace, refractory brick for a wall of a furnace, furnace, securing system, method for securing a refractory brick in a groove, and method for producing a wall for a furnace

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200427

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201203

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1398794

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019001526

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20210602

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20210813

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210902

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2880579

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20211124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210903

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211004

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019001526

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220418

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230327

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230324

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230424

Year of fee payment: 5

Ref country code: IT

Payment date: 20230403

Year of fee payment: 5

Ref country code: ES

Payment date: 20230503

Year of fee payment: 5

Ref country code: DK

Payment date: 20230419

Year of fee payment: 5

Ref country code: DE

Payment date: 20230330

Year of fee payment: 5

Ref country code: CH

Payment date: 20230502

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230417

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230404

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20190418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20240328

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20240412

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240408

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20240314

Year of fee payment: 6