EP2310539A1 - Procédé et dispositifs pour la régulation de la vitesse d'écoulement et pour le ralentissement de flux de matière en fusion par des champs magnétiques lors du piquage de contenants métallurgiques tels que hauts-fourneaux et fours de fusion - Google Patents
Procédé et dispositifs pour la régulation de la vitesse d'écoulement et pour le ralentissement de flux de matière en fusion par des champs magnétiques lors du piquage de contenants métallurgiques tels que hauts-fourneaux et fours de fusionInfo
- Publication number
- EP2310539A1 EP2310539A1 EP09781571A EP09781571A EP2310539A1 EP 2310539 A1 EP2310539 A1 EP 2310539A1 EP 09781571 A EP09781571 A EP 09781571A EP 09781571 A EP09781571 A EP 09781571A EP 2310539 A1 EP2310539 A1 EP 2310539A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- magnetic
- melt stream
- melt
- magnetic fields
- fields
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 160
- 238000000034 method Methods 0.000 title claims abstract description 19
- 238000010079 rubber tapping Methods 0.000 title claims abstract description 11
- 230000001105 regulatory effect Effects 0.000 title claims abstract description 8
- 239000000155 melt Substances 0.000 claims abstract description 79
- 230000003993 interaction Effects 0.000 claims abstract description 7
- 230000004907 flux Effects 0.000 claims description 41
- 230000006698 induction Effects 0.000 claims description 10
- 230000001276 controlling effect Effects 0.000 claims description 8
- 230000005294 ferromagnetic effect Effects 0.000 claims description 6
- 230000003014 reinforcing effect Effects 0.000 claims description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 5
- 239000003302 ferromagnetic material Substances 0.000 claims description 5
- 238000002844 melting Methods 0.000 claims description 4
- 230000008018 melting Effects 0.000 claims description 4
- 230000000694 effects Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B7/00—Blast furnaces
- C21B7/12—Opening or sealing the tap holes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D3/00—Charging; Discharging; Manipulation of charge
- F27D3/15—Tapping equipment; Equipment for removing or retaining slag
- F27D3/1509—Tapping equipment
- F27D3/1518—Tapholes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D3/00—Charging; Discharging; Manipulation of charge
- F27D3/15—Tapping equipment; Equipment for removing or retaining slag
- F27D3/1509—Tapping equipment
- F27D3/1536—Devices for plugging tap holes, e.g. plugs stoppers
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/28—Manufacture of steel in the converter
- C21C5/42—Constructional features of converters
- C21C5/46—Details or accessories
- C21C5/4653—Tapholes; Opening or plugging thereof
Definitions
- the invention relates to a method and devices for controlling the flow rate and for braking non-ferromagnetic melt streams by magnetic fields during tapping of metallurgical containers such as blast furnace and furnace.
- a closed magnetic circuit is used to generate a magnetic field through which a voltage is induced in the melt stream, are caused by the eddy currents in the melt stream, which generate forces in cooperation with the magnetic field, which reduce the flow rate of the melt stream and increase again and can slow down the melt stream.
- the invention has for its object to develop a method and apparatus for controlling the flow rate and for braking non-ferromagnetic melt streams, which make it possible to enhance the magnetic field acting on the melt stream and the eddy currents generated by this to increase the forces acting on the melt stream ,
- the dependent claims include advantageous and expedient developments of the method according to claim 1 and the control devices according to claims 6 and 7.
- the inventive method for controlling the flow velocity and for braking non-ferromagnetic melt streams during tapping of metallurgical containers such as blast furnaces and furnaces is characterized in that the melt stream in a closed guide by at least two in the flow direction of the melt in series successively arranged magnetic fields with a constant, opposite Polarity is conducted such that the magnetic field lines transversely penetrate the melt stream over its entire cross-section and induced by the magnetic fields in the melt stream opposing voltages, are generated in the melt stream at least three consecutive axial eddy current fields, and that by the interaction of magnetic fields and eddy currents are generated by the forces Flow rate of the melt stream in dependence on the strong magnetic field can be reduced.
- a double, opposing voltage is induced in the melt flow by the magnetic flux of a closed magnetic circuit via two opposing magnetic fields between each two poles, such that there is a mutually reinforcing effect on the current intensity of the central axial eddy field.
- a variant of the method consists in that voltages are induced in the melt stream by the magnetic flux of two closed magnetic circuits arranged behind one another via two opposing magnetic fields between each two poles, such that a mutually reinforcing effect on the current intensity of the central eddy current field results.
- the basic concept of the invention is based on the fact that the double utilization of the magnetic flux of a closed magnetic circuit, a double, opposite, eddy current amplifying voltage is induced in the molten metal, wherein the magnetic resistance in the iron core and thus the internal losses are approximately halved.
- the influence on the melt flow is disproportionately increased by a disproportionate increase in the number of steeper gradients of the magnetic flux, by a disproportionate increase in the number of amplified eddy current fields with their respective double interaction with the magnetic fields and by a double utilization of the inducing effect of the electric induction coils.
- the multiple use and the associated distribution of the eddy currents in the individual eddy current fields in the melt stream have a multiple and analog effect on the strengthening of the forces acting on the melt stream.
- Fig. 1 is a perspective view of a
- FIG. 2 is a diagram showing the course of
- FIG. 3 is a perspective view of a first embodiment of the control device according to the invention.
- Fig. 4 is a diagram showing the course of
- control device 5 is a perspective view of another embodiment of the control device.
- Fig. 6 shows the arrangement of a control device in front of the outlet opening of a taphole channel of a blast furnace
- Fig. 7 is a schematic representation of the double utilization of the magnetic flux inducing effect of electric induction coils.
- the control device 1 according to FIG. 1 which is preferably used for tapping blast furnaces for regulating the flow velocity and for braking a melt stream 2 by means of a magnetic field 3 of constant polarity, has a core 4 of ferror ⁇ agnetica material which is formed as a yoke 5 with two poles 6, 7, which form a gap 8 for receiving a guide element 9 in the form of a tube 10 for passing the melt stream 2.
- a core 4 of ferror ⁇ agnetica material which is formed as a yoke 5 with two poles 6, 7, which form a gap 8 for receiving a guide element 9 in the form of a tube 10 for passing the melt stream 2.
- On the yoke 5 sit two induction coils 11, 12 for generating a closed magnetic circuit 13 with the magnetic field 3 of constant polarity between the two poles 6, 7, which is characterized by field lines 14.
- the melt stream 2 enters the magnetic field 3 in the region of 15 m and leaves it again in the region 16.
- a voltage 17 is induced in the melt stream in a plane perpendicular to the magnetic field lines 14
- Rule of Lenz axial eddy currents 18 are generated in the melt stream 2. Due to the interaction of magnetic field 3 and eddy currents 18, the so-called Lorentz forces 19 are produced in the melt stream 2, which are opposite to the flow direction a of the melt stream 2 and which thereby exert a braking effect on the melt stream 2, by which the flow velocity of the melt stream is reduced.
- eddy currents 20 are generated in the melt stream, which in turn generate by cooperation with the magnetic field 3 Lorentz forces 21 which are opposite to the flow direction a of the melt stream 2 and thus an additional braking effect to the braking effect of Lorentz Forces 19 in the inlet region 15 of the melt stream into the magnetic field 3 triggers.
- the induced voltages 17 and the eddy currents 18, 20 are shown rotated by 90 ° from the horizontal plane in the vertical plane in Figure 1.
- the diagram of Figure 2 shows the course of the magnetic flux density in Tessla of the generated with the control device 1 of Figure 1 magnetic field 3 over the length L of the exposure section of the magnetic field 3 to the melt stream 2. Because of the magnetic saturation in iron, it is not economically with only one more reasonable effort possible to achieve a magnetic flux density that is above 2 Tessla.
- the eddy current on the resulting current path normally interacts only once with a magnetic field and therefore only generates a force once.
- the magnetic field has the steepest possible gradient to the edge in the direction of the inverse second magnetic field and thus generates the shortest possible current path, as Figure 4 illustrates.
- the new control device 22 of Figure 3 in particular when tapping blast furnaces to control the
- Flow rate and for braking a melt stream 2 in the taphole of a blast furnace is used, is equipped with a formed by two yokes 24, 25 core 23 of ferromagnetic material, the two in series successively arranged pole pairs 26, 27, each with two poles 28, 29; 30, 31.
- the two pole pairs 26, 27 form two successively arranged column 32, 33 for receiving a guide element 9 for passing the melt stream 2, which is formed as a pipe 10 or channel.
- On the four pole pieces 34- 37 of the two yokes 24, 25 of the core 23 are four induction coils 38-41 for generating two in
- Flow direction a of the melt stream 2 in series successively arranged magnetic fields 42, 43 in a closed magnetic circuit 44 between the poles 28, 29; 30, 31 of the two pole pairs 26, 27 are arranged, wherein the two magnetic fields 42, 43 have a constant, opposite polarity.
- opposing voltages 45, 46 are induced in the melt stream 2
- the control device can be extended to the melt flow as needed to increase the braking force acting on a melt stream by an even number of pole pairs over the length L of the exposure section of the magnetic fields.
- the diagram according to FIG. 4 illustrates the course of the magnetic flux density in Tessla shown in a solid line of the two magnetic fields 42, 43 generated in a closed magnetic circuit 44 with the control device 22 shown in FIG. 3 over the length L of the acting section the magnetic fields on the melt stream and in dashed lines the magnetic flux density of the two magnetic fields of a similar, connected to the first control device 22 further control device.
- the solid curve in Figure 4 illustrates that in the control device 22 of Figure 3, the magnetic flux in a closed magnetic circuit 44 is used twice and with mutually different polarity.
- the resulting increase in the magnetic flux density results in a corresponding increase in the eddy current intensity.
- the double use in a closed magnetic circuit takes place in opposite directions, that is, the magnetic flux is effective in both the positive and in the negative flow direction.
- This increases the usable magnetic flux density for eddy current formation from about 2 Tessla to 4 Tessla in the same magnetic circuit.
- the gradient for the decrease of the magnetic flux density in the region 50 shown in FIG. 4 between the two magnetic fields 42, 43 is particularly large. As a result, the path lengths of the eddy currents and thus the electrical resistances become smaller, which results in a corresponding increase in the current intensities.
- FIG. 4 illustrates that, in the case of a regulating device with a closed magnetic circuit, a steep curve of the magnetic flux density results between two flat curves and that, in the case of two, one behind the other arranged control devices with two closed magnetic circuits and a double use of the magnetic flux in each magnetic circuit result in three steep curves between two flat curves of the magnetic flux density.
- the gaps 32, 33 between the poles 28, 29 and 30, 31 and the magnetic fields 42, 43 acting in the gaps 32, 33 are close to one another.
- the magnetic fields 42, 43 are tightly bundled in the region 50 in which they abut each other despite high magnetic flux density. From the correspondingly shortened current paths of the eddy currents and the double effect of the eddy currents it follows that the effect of the electromagnetic influence on the melt current more than doubles-
- FIG. 5 shows a further embodiment 51 of the regulating device, which has two control devices 1 according to FIG. 1 connected in series.
- the control device 51 is equipped with two successively arranged cores 4, 4 of ferromagnetic material having a yoke 5 with two poles 6, 7, which form a gap 8, wherein by the two in series successively arranged column 8, 8 a guide element , In particular, a taphole channel of a blast furnace for a melt stream 2 is passed.
- the control device 51 further has two each on the pole pieces of the two yokes 5, 5 arranged induction coils 11, 12 for generating two consecutively arranged magnetic fields 42, 43 with opposite polarity in two separate, closed, opposing magnetic circuits 13, 13 a, wherein the magnetic fields 42 43 trigger in the melt stream 2 axial eddy currents to produce a force acting on the melt stream 2 braking force.
- control device 51 of Figure 5 Compared with a control device according to Figure 3, which operates with a double use of the magnetic flux of a closed magnetic circuit, the control device 51 of Figure 5 with a simple use of the magnetic flux of two successively arranged, closed magnetic circuits has a poorer efficiency, but with this control device is an essential Reinforcing the eddy currents in the melt stream compared to the control device of Figure 1 achieved with a closed magnetic circuit with a simple use of the magnetic flux.
- the various control devices 22, 51 can be arranged as an attachment device in front of the outlet opening of the stitch hole of a blast furnace or in front of the outlet opening of the outflow channel of a melting furnace around the taphole channel or outflow channel.
- FIG. 7 shows three iron-core induction coils 53-55 of a multiple arrangement of iron-core induction coils for producing closed magnetic circuits with double utilization of the magnetic flux to form eddy currents in a melt stream 2 flowing through a pipe 10.
- the coils 53-55 must be operated with alternately opposite polarity.
- the current directions of the respective right and left coil halves and the direction of the resulting magnetic flux 56 can be seen.
- Relative to the middle upper core 57 and its magnetic flux not only the associated coil 54 is effective, but also in this plane also the right half of the coil coil 53 of the left core 58 and the left half of the coil coil 55 of the right core 59.
- the left-hand coil half of the coil 55 of the right-hand core 59 magnetizes both the right-hand core 59 and the central core 57.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Manufacturing & Machinery (AREA)
- Vertical, Hearth, Or Arc Furnaces (AREA)
- Blast Furnaces (AREA)
- Continuous Casting (AREA)
- Furnace Charging Or Discharging (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
- General Induction Heating (AREA)
Abstract
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102008036798A DE102008036798A1 (de) | 2008-08-07 | 2008-08-07 | Verfahren und Vorrichtung zur Regelung der Strömungsgeschwindigkeit und zum Abbremsen von Schmelzeströmen durch Magnetfelder, insbesondere beim Abstich von metallurgischen Behältern wie Hochöfen und Schmelzöfen |
PCT/EP2009/060225 WO2010015684A1 (fr) | 2008-08-07 | 2009-08-06 | Procédé et dispositifs pour la régulation de la vitesse d'écoulement et pour le ralentissement de flux de matière en fusion par des champs magnétiques lors du piquage de contenants métallurgiques tels que hauts-fourneaux et fours de fusion |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2310539A1 true EP2310539A1 (fr) | 2011-04-20 |
EP2310539B1 EP2310539B1 (fr) | 2012-05-09 |
Family
ID=41202483
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09781571A Not-in-force EP2310539B1 (fr) | 2008-08-07 | 2009-08-06 | Procédé et dispositifs pour la régulation de la vitesse d'écoulement et pour le ralentissement de flux de matière en fusion par des champs magnétiques lors du piquage de contenants métallurgiques tels que hauts-fourneaux et fours de fusion |
Country Status (11)
Country | Link |
---|---|
US (1) | US8658084B2 (fr) |
EP (1) | EP2310539B1 (fr) |
JP (1) | JP5635986B2 (fr) |
CN (1) | CN102177258A (fr) |
AT (1) | ATE557106T1 (fr) |
BR (1) | BRPI0917123A2 (fr) |
DE (1) | DE102008036798A1 (fr) |
RU (1) | RU2515778C2 (fr) |
UA (1) | UA103775C2 (fr) |
WO (1) | WO2010015684A1 (fr) |
ZA (1) | ZA201100943B (fr) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009035241B4 (de) * | 2008-08-07 | 2014-06-12 | Tmt Tapping-Measuring-Technology Gmbh | Verfahren und Vorrichtungen zur Regelung der Strömungsgeschwindigkeit und zum Abbremsen von nichtferromagnetischen, elektrisch leitfähigen Flüssigkeiten und Schmelzen |
CN103900386B (zh) * | 2014-04-15 | 2015-09-30 | 清华大学 | 一种液态铝合金电磁输送设备 |
KR101568601B1 (ko) * | 2014-08-19 | 2015-11-12 | 주식회사 포스코 | 전자기력을 이용한 출선 속도 제어 장치 |
CN109153957B (zh) * | 2016-05-26 | 2021-07-06 | 株式会社Ifg | 培养液中的细胞的非接触电刺激装置和非接触电刺激方法 |
CN109546841B (zh) * | 2018-12-29 | 2024-03-22 | 中国原子能科学研究院 | 一种可变气隙永磁场圆弧导管电磁泵 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE365731B (fr) * | 1970-01-20 | 1974-04-01 | Asea Ab | |
JPS61154739A (ja) * | 1984-12-26 | 1986-07-14 | Kawasaki Steel Corp | 薄鋳片連続鋳造機 |
US4936374A (en) * | 1988-11-17 | 1990-06-26 | The United States Of America As Represented By The United States Department Of Energy | Sidewall containment of liquid metal with horizontal alternating magnetic fields |
JPH03198974A (ja) * | 1989-12-26 | 1991-08-30 | Kawasaki Steel Corp | 移送流路内の溶融金属の流動制御装置 |
IN191638B (fr) * | 1994-07-28 | 2003-12-06 | Bhp Steel Jla Pty Ltd | |
US6106620A (en) * | 1995-07-26 | 2000-08-22 | Bhp Steel (Jla) Pty Ltd. | Electro-magnetic plugging means for hot dip coating pot |
AU714976B2 (en) * | 1996-04-29 | 2000-01-13 | Bhp Steel (Jla) Pty Limited | Magnetic braking |
JPH1099944A (ja) * | 1996-09-30 | 1998-04-21 | Mitsubishi Steel Mfg Co Ltd | 溶融金属の連続鋳造用鋳型構造 |
JP2000176609A (ja) * | 1998-12-18 | 2000-06-27 | Daido Steel Co Ltd | 連続鋳造に使用する鋳型 |
WO2000071761A1 (fr) * | 1999-05-18 | 2000-11-30 | Danieli Technology, Inc. | Frein electromagnetique dans le canal d'evacuation d'un four |
US6732890B2 (en) * | 2000-01-15 | 2004-05-11 | Hazelett Strip-Casting Corporation | Methods employing permanent magnets having reach-out magnetic fields for electromagnetically pumping, braking, and metering molten metals feeding into metal casting machines |
JP4772407B2 (ja) * | 2005-07-15 | 2011-09-14 | 高橋 謙三 | 溶湯搬送装置 |
US8343416B2 (en) * | 2008-08-07 | 2013-01-01 | Tmt Tapping-Measuring-Technology Gmbh | Methods and devices for regulating the flow rate and for slowing down non-ferromagnetic, electrically conductive liquids and melts |
-
2008
- 2008-08-07 DE DE102008036798A patent/DE102008036798A1/de not_active Withdrawn
-
2009
- 2009-08-06 EP EP09781571A patent/EP2310539B1/fr not_active Not-in-force
- 2009-08-06 CN CN2009801399001A patent/CN102177258A/zh active Pending
- 2009-08-06 UA UAA201102450A patent/UA103775C2/ru unknown
- 2009-08-06 WO PCT/EP2009/060225 patent/WO2010015684A1/fr active Application Filing
- 2009-08-06 US US13/057,951 patent/US8658084B2/en not_active Expired - Fee Related
- 2009-08-06 AT AT09781571T patent/ATE557106T1/de active
- 2009-08-06 BR BRPI0917123A patent/BRPI0917123A2/pt not_active IP Right Cessation
- 2009-08-06 JP JP2011521585A patent/JP5635986B2/ja not_active Expired - Fee Related
- 2009-08-06 RU RU2011106577/02A patent/RU2515778C2/ru not_active IP Right Cessation
-
2011
- 2011-02-04 ZA ZA2011/00943A patent/ZA201100943B/en unknown
Non-Patent Citations (1)
Title |
---|
See references of WO2010015684A1 * |
Also Published As
Publication number | Publication date |
---|---|
RU2011106577A (ru) | 2012-09-20 |
JP2011529795A (ja) | 2011-12-15 |
US8658084B2 (en) | 2014-02-25 |
UA103775C2 (ru) | 2013-11-25 |
ATE557106T1 (de) | 2012-05-15 |
JP5635986B2 (ja) | 2014-12-03 |
DE102008036798A1 (de) | 2010-02-18 |
CN102177258A (zh) | 2011-09-07 |
RU2515778C2 (ru) | 2014-05-20 |
ZA201100943B (en) | 2013-10-30 |
BRPI0917123A2 (pt) | 2015-11-17 |
WO2010015684A1 (fr) | 2010-02-11 |
EP2310539B1 (fr) | 2012-05-09 |
US20110175265A1 (en) | 2011-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2310539B1 (fr) | Procédé et dispositifs pour la régulation de la vitesse d'écoulement et pour le ralentissement de flux de matière en fusion par des champs magnétiques lors du piquage de contenants métallurgiques tels que hauts-fourneaux et fours de fusion | |
DE102008047852A1 (de) | Trenneinrichtung zum Trennen eines Gemischs von in einer in einem Trennkanal geführten Suspension enthaltenen magnetisierbaren und unmagnetisierbaren Teilchen | |
EP1704574A1 (fr) | Motorisation lineaire electromagnetique | |
DE3635961A1 (de) | Induktive heizeinrichtung | |
DE1635289A1 (de) | Vorrichtung zur gleichmaessigen Belastung von durch einen Spalt tretendem Material | |
DE102010010220A1 (de) | Trennvorrichtung zum Trennen eines Gemischs | |
EP3487049B1 (fr) | Moteur linéaire á flux transversal | |
DE1489691A1 (de) | Mit Gleichstrom,Wechselstrom oder Drehstrom speisbarer Elektromagnet | |
DE1565881A1 (de) | Verfahren zum kontrollierten Beheizen eines Targetmaterials in einem Hochvakuum-Elektronenstrahlofen und Anordnung zur Durchfuehrung desselben | |
EP0134827A1 (fr) | Entraînement électromagnétique pour mouvements linéaires ou rotatifs continus et pas à pas | |
DE2851038A1 (de) | Linearer asynchronmotor | |
DE2654714C3 (de) | Kreuzpunkt-Schaltmatrix | |
EP0019118B1 (fr) | Dispositif pour brasser des fontes métalliques dans des installations de coulée continue | |
DE102013214810A1 (de) | Vorrichtung und Verfahren zur gesteuerten Sekundärkühlung eines gegossenen Metallstrangs | |
DE202004007443U1 (de) | Vorrichtung zum Umformen von stangenförmigen und/oder rohrförmigen elektrisch leitenden Gütern | |
DE2146141A1 (de) | Magnetisches trag- oder fuehrungssystem | |
DE2646784C3 (de) | Dauermagnetische Haftplatte | |
DE2059971A1 (de) | Einrichtung,insbesondere fuer elektromagnetische Antriebe,Schalt- oder Steuer- oder Regelanlagen | |
WO2010084175A2 (fr) | Procédés et dispositifs destinés à la régulation par champs magnétiques de la vitesse de translation, du nombre de rotations et de la fréquence et/ou de l'amplitude d'oscillations linéaires, tournantes et pendulaires d'éléments en matériau électriquement conducteur, non ferromagnétique | |
DE2757342C2 (de) | Anordnung zum elektrodynamischen Führen des flüssigen Sumpfes einer Metallbramme | |
DE38385C (de) | Vorrichtungen, um bei elektrischen Bahnen mit Strom-Zu- bezw. Abführung durch die Schienen in den vom Strafsenverkehr mitbenutzten Strecken (Wegübergängen etc.) die Schienen nach Bedarf zur Strom-Zu- und Abführung heranzuziehen | |
DE10318484B3 (de) | Vorrichtung zum Messen relativer Beschleunigungen | |
DE121043C (fr) | ||
DE2659775B2 (de) | Korrekturspulenanordnung zur Homogenisierung eines magnetischen Feldes zwischen zwei Polschuhflächen eines Magneten, sowie Verfahren zu ihrem Betrieb | |
DE2912539A1 (de) | Vorrichtung zum elektrodynamischen ruehren des sumpfes in einer stranggegossenen erstarrenden metallbramme |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20110209 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
DAX | Request for extension of the european patent (deleted) | ||
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: MORGENSTERN, HANS-UWE |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 557106 Country of ref document: AT Kind code of ref document: T Effective date: 20120515 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502009003491 Country of ref document: DE Effective date: 20120712 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D Effective date: 20120509 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120809 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120509 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120509 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120909 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120509 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120509 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120810 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120509 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120509 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120910 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120509 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120509 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120509 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120509 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120509 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120509 |
|
BERE | Be: lapsed |
Owner name: TMT TAPPING-MEASURING-TECHNOLOGY G.M.B.H. Effective date: 20120831 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120831 |
|
26N | No opposition filed |
Effective date: 20130212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120820 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120831 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502009003491 Country of ref document: DE Effective date: 20130212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120809 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120806 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120509 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130831 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120509 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120509 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090806 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20140821 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20140821 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20140620 Year of fee payment: 6 Ref country code: FR Payment date: 20140819 Year of fee payment: 6 Ref country code: GB Payment date: 20140821 Year of fee payment: 6 Ref country code: SE Payment date: 20140821 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20140827 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20141024 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120509 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502009003491 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150806 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 557106 Country of ref document: AT Kind code of ref document: T Effective date: 20150806 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20150806 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150806 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20150901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150807 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150806 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20160429 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150806 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150831 |