EP2310539A1 - Method and devices for regulating the flow rate and for slowing down melt streams through magnetic fields in the tapping of metallurgical containers such as blast furnaces and melt furnaces - Google Patents

Method and devices for regulating the flow rate and for slowing down melt streams through magnetic fields in the tapping of metallurgical containers such as blast furnaces and melt furnaces

Info

Publication number
EP2310539A1
EP2310539A1 EP09781571A EP09781571A EP2310539A1 EP 2310539 A1 EP2310539 A1 EP 2310539A1 EP 09781571 A EP09781571 A EP 09781571A EP 09781571 A EP09781571 A EP 09781571A EP 2310539 A1 EP2310539 A1 EP 2310539A1
Authority
EP
European Patent Office
Prior art keywords
magnetic
melt stream
melt
magnetic fields
fields
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09781571A
Other languages
German (de)
French (fr)
Other versions
EP2310539B1 (en
Inventor
Hans-Uwe Morgenstern
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TMT Tapping Measuring Technology GmbH
Original Assignee
TMT Tapping Measuring Technology GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TMT Tapping Measuring Technology GmbH filed Critical TMT Tapping Measuring Technology GmbH
Publication of EP2310539A1 publication Critical patent/EP2310539A1/en
Application granted granted Critical
Publication of EP2310539B1 publication Critical patent/EP2310539B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/12Opening or sealing the tap holes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/15Tapping equipment; Equipment for removing or retaining slag
    • F27D3/1509Tapping equipment
    • F27D3/1518Tapholes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/15Tapping equipment; Equipment for removing or retaining slag
    • F27D3/1509Tapping equipment
    • F27D3/1536Devices for plugging tap holes, e.g. plugs stoppers
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4653Tapholes; Opening or plugging thereof

Definitions

  • the invention relates to a method and devices for controlling the flow rate and for braking non-ferromagnetic melt streams by magnetic fields during tapping of metallurgical containers such as blast furnace and furnace.
  • a closed magnetic circuit is used to generate a magnetic field through which a voltage is induced in the melt stream, are caused by the eddy currents in the melt stream, which generate forces in cooperation with the magnetic field, which reduce the flow rate of the melt stream and increase again and can slow down the melt stream.
  • the invention has for its object to develop a method and apparatus for controlling the flow rate and for braking non-ferromagnetic melt streams, which make it possible to enhance the magnetic field acting on the melt stream and the eddy currents generated by this to increase the forces acting on the melt stream ,
  • the dependent claims include advantageous and expedient developments of the method according to claim 1 and the control devices according to claims 6 and 7.
  • the inventive method for controlling the flow velocity and for braking non-ferromagnetic melt streams during tapping of metallurgical containers such as blast furnaces and furnaces is characterized in that the melt stream in a closed guide by at least two in the flow direction of the melt in series successively arranged magnetic fields with a constant, opposite Polarity is conducted such that the magnetic field lines transversely penetrate the melt stream over its entire cross-section and induced by the magnetic fields in the melt stream opposing voltages, are generated in the melt stream at least three consecutive axial eddy current fields, and that by the interaction of magnetic fields and eddy currents are generated by the forces Flow rate of the melt stream in dependence on the strong magnetic field can be reduced.
  • a double, opposing voltage is induced in the melt flow by the magnetic flux of a closed magnetic circuit via two opposing magnetic fields between each two poles, such that there is a mutually reinforcing effect on the current intensity of the central axial eddy field.
  • a variant of the method consists in that voltages are induced in the melt stream by the magnetic flux of two closed magnetic circuits arranged behind one another via two opposing magnetic fields between each two poles, such that a mutually reinforcing effect on the current intensity of the central eddy current field results.
  • the basic concept of the invention is based on the fact that the double utilization of the magnetic flux of a closed magnetic circuit, a double, opposite, eddy current amplifying voltage is induced in the molten metal, wherein the magnetic resistance in the iron core and thus the internal losses are approximately halved.
  • the influence on the melt flow is disproportionately increased by a disproportionate increase in the number of steeper gradients of the magnetic flux, by a disproportionate increase in the number of amplified eddy current fields with their respective double interaction with the magnetic fields and by a double utilization of the inducing effect of the electric induction coils.
  • the multiple use and the associated distribution of the eddy currents in the individual eddy current fields in the melt stream have a multiple and analog effect on the strengthening of the forces acting on the melt stream.
  • Fig. 1 is a perspective view of a
  • FIG. 2 is a diagram showing the course of
  • FIG. 3 is a perspective view of a first embodiment of the control device according to the invention.
  • Fig. 4 is a diagram showing the course of
  • control device 5 is a perspective view of another embodiment of the control device.
  • Fig. 6 shows the arrangement of a control device in front of the outlet opening of a taphole channel of a blast furnace
  • Fig. 7 is a schematic representation of the double utilization of the magnetic flux inducing effect of electric induction coils.
  • the control device 1 according to FIG. 1 which is preferably used for tapping blast furnaces for regulating the flow velocity and for braking a melt stream 2 by means of a magnetic field 3 of constant polarity, has a core 4 of ferror ⁇ agnetica material which is formed as a yoke 5 with two poles 6, 7, which form a gap 8 for receiving a guide element 9 in the form of a tube 10 for passing the melt stream 2.
  • a core 4 of ferror ⁇ agnetica material which is formed as a yoke 5 with two poles 6, 7, which form a gap 8 for receiving a guide element 9 in the form of a tube 10 for passing the melt stream 2.
  • On the yoke 5 sit two induction coils 11, 12 for generating a closed magnetic circuit 13 with the magnetic field 3 of constant polarity between the two poles 6, 7, which is characterized by field lines 14.
  • the melt stream 2 enters the magnetic field 3 in the region of 15 m and leaves it again in the region 16.
  • a voltage 17 is induced in the melt stream in a plane perpendicular to the magnetic field lines 14
  • Rule of Lenz axial eddy currents 18 are generated in the melt stream 2. Due to the interaction of magnetic field 3 and eddy currents 18, the so-called Lorentz forces 19 are produced in the melt stream 2, which are opposite to the flow direction a of the melt stream 2 and which thereby exert a braking effect on the melt stream 2, by which the flow velocity of the melt stream is reduced.
  • eddy currents 20 are generated in the melt stream, which in turn generate by cooperation with the magnetic field 3 Lorentz forces 21 which are opposite to the flow direction a of the melt stream 2 and thus an additional braking effect to the braking effect of Lorentz Forces 19 in the inlet region 15 of the melt stream into the magnetic field 3 triggers.
  • the induced voltages 17 and the eddy currents 18, 20 are shown rotated by 90 ° from the horizontal plane in the vertical plane in Figure 1.
  • the diagram of Figure 2 shows the course of the magnetic flux density in Tessla of the generated with the control device 1 of Figure 1 magnetic field 3 over the length L of the exposure section of the magnetic field 3 to the melt stream 2. Because of the magnetic saturation in iron, it is not economically with only one more reasonable effort possible to achieve a magnetic flux density that is above 2 Tessla.
  • the eddy current on the resulting current path normally interacts only once with a magnetic field and therefore only generates a force once.
  • the magnetic field has the steepest possible gradient to the edge in the direction of the inverse second magnetic field and thus generates the shortest possible current path, as Figure 4 illustrates.
  • the new control device 22 of Figure 3 in particular when tapping blast furnaces to control the
  • Flow rate and for braking a melt stream 2 in the taphole of a blast furnace is used, is equipped with a formed by two yokes 24, 25 core 23 of ferromagnetic material, the two in series successively arranged pole pairs 26, 27, each with two poles 28, 29; 30, 31.
  • the two pole pairs 26, 27 form two successively arranged column 32, 33 for receiving a guide element 9 for passing the melt stream 2, which is formed as a pipe 10 or channel.
  • On the four pole pieces 34- 37 of the two yokes 24, 25 of the core 23 are four induction coils 38-41 for generating two in
  • Flow direction a of the melt stream 2 in series successively arranged magnetic fields 42, 43 in a closed magnetic circuit 44 between the poles 28, 29; 30, 31 of the two pole pairs 26, 27 are arranged, wherein the two magnetic fields 42, 43 have a constant, opposite polarity.
  • opposing voltages 45, 46 are induced in the melt stream 2
  • the control device can be extended to the melt flow as needed to increase the braking force acting on a melt stream by an even number of pole pairs over the length L of the exposure section of the magnetic fields.
  • the diagram according to FIG. 4 illustrates the course of the magnetic flux density in Tessla shown in a solid line of the two magnetic fields 42, 43 generated in a closed magnetic circuit 44 with the control device 22 shown in FIG. 3 over the length L of the acting section the magnetic fields on the melt stream and in dashed lines the magnetic flux density of the two magnetic fields of a similar, connected to the first control device 22 further control device.
  • the solid curve in Figure 4 illustrates that in the control device 22 of Figure 3, the magnetic flux in a closed magnetic circuit 44 is used twice and with mutually different polarity.
  • the resulting increase in the magnetic flux density results in a corresponding increase in the eddy current intensity.
  • the double use in a closed magnetic circuit takes place in opposite directions, that is, the magnetic flux is effective in both the positive and in the negative flow direction.
  • This increases the usable magnetic flux density for eddy current formation from about 2 Tessla to 4 Tessla in the same magnetic circuit.
  • the gradient for the decrease of the magnetic flux density in the region 50 shown in FIG. 4 between the two magnetic fields 42, 43 is particularly large. As a result, the path lengths of the eddy currents and thus the electrical resistances become smaller, which results in a corresponding increase in the current intensities.
  • FIG. 4 illustrates that, in the case of a regulating device with a closed magnetic circuit, a steep curve of the magnetic flux density results between two flat curves and that, in the case of two, one behind the other arranged control devices with two closed magnetic circuits and a double use of the magnetic flux in each magnetic circuit result in three steep curves between two flat curves of the magnetic flux density.
  • the gaps 32, 33 between the poles 28, 29 and 30, 31 and the magnetic fields 42, 43 acting in the gaps 32, 33 are close to one another.
  • the magnetic fields 42, 43 are tightly bundled in the region 50 in which they abut each other despite high magnetic flux density. From the correspondingly shortened current paths of the eddy currents and the double effect of the eddy currents it follows that the effect of the electromagnetic influence on the melt current more than doubles-
  • FIG. 5 shows a further embodiment 51 of the regulating device, which has two control devices 1 according to FIG. 1 connected in series.
  • the control device 51 is equipped with two successively arranged cores 4, 4 of ferromagnetic material having a yoke 5 with two poles 6, 7, which form a gap 8, wherein by the two in series successively arranged column 8, 8 a guide element , In particular, a taphole channel of a blast furnace for a melt stream 2 is passed.
  • the control device 51 further has two each on the pole pieces of the two yokes 5, 5 arranged induction coils 11, 12 for generating two consecutively arranged magnetic fields 42, 43 with opposite polarity in two separate, closed, opposing magnetic circuits 13, 13 a, wherein the magnetic fields 42 43 trigger in the melt stream 2 axial eddy currents to produce a force acting on the melt stream 2 braking force.
  • control device 51 of Figure 5 Compared with a control device according to Figure 3, which operates with a double use of the magnetic flux of a closed magnetic circuit, the control device 51 of Figure 5 with a simple use of the magnetic flux of two successively arranged, closed magnetic circuits has a poorer efficiency, but with this control device is an essential Reinforcing the eddy currents in the melt stream compared to the control device of Figure 1 achieved with a closed magnetic circuit with a simple use of the magnetic flux.
  • the various control devices 22, 51 can be arranged as an attachment device in front of the outlet opening of the stitch hole of a blast furnace or in front of the outlet opening of the outflow channel of a melting furnace around the taphole channel or outflow channel.
  • FIG. 7 shows three iron-core induction coils 53-55 of a multiple arrangement of iron-core induction coils for producing closed magnetic circuits with double utilization of the magnetic flux to form eddy currents in a melt stream 2 flowing through a pipe 10.
  • the coils 53-55 must be operated with alternately opposite polarity.
  • the current directions of the respective right and left coil halves and the direction of the resulting magnetic flux 56 can be seen.
  • Relative to the middle upper core 57 and its magnetic flux not only the associated coil 54 is effective, but also in this plane also the right half of the coil coil 53 of the left core 58 and the left half of the coil coil 55 of the right core 59.
  • the left-hand coil half of the coil 55 of the right-hand core 59 magnetizes both the right-hand core 59 and the central core 57.

Abstract

The invention relates to a method for regulating the flow rate and for slowing down melt streams through magnetic fields in the tapping of metallurgical containers such as blast furnaces and melt furnaces. The method is characterized in that the melt stream is routed in a closed routing element using at least two magnetic fields disposed in series one after the other in the flow direction of the melt, said magnetic fields having a constant polarity opposite to one another, in such a way that the magnetic field lines transversally penetrate the melt flow across the entire cross section thereof and such that opposite voltages are induced in the melt stream by the magnetic fields, there being at least three eddy current fields produced thereby in the melt stream that are disposed axially one after the other, and that due to the interactions between the magnetic fields and the eddy currents forces are generated that can be used to reduce the flow rate of the melt stream.

Description

Beschreibung description
Titel: Verfahren und Vorrichtungen zur Regelung derTitle: Methods and devices for regulating the
Strömungsgeschwindigkeit und zum Abbremsen von Schmelzestromen durch Magnetfelder beim Abstich von metallurgischen Behaltern wie Kochofen und SchmelzofenFlow velocity and braking of melt streams by magnetic fields during the tapping of metallurgical containers such as cooking oven and furnace
Die Erfindung betrifft ein Verfahren und Vorrichtungen zur Regelung der Stromungsgeschwindigkeit und zum Abbremsen von nichtferromagnetischen Schmelzestromen durch Magnetfelder beim Abstich von metallurgischen Behaltern wie Hochofen und Schmelzofen .The invention relates to a method and devices for controlling the flow rate and for braking non-ferromagnetic melt streams by magnetic fields during tapping of metallurgical containers such as blast furnace and furnace.
Mit der parallelen Patentanmeldung 10 2008 036 799.0-24 wird eine gattungsgemaße Regelvorrichtung vorgeschlagen, die gekennzeichnet ist durch einen Kern aus ferromagnetischem Material, der zwei Pole aufweist, die einen Spalt zur Aufnahme eines Leitelements für einen Schmelzestrom bilden, sowie auf dem Kern angeordnete Induktionsspulen zur Erzeugung eines Magnetfeldes, das auf den Schmelzestrom m dem zwischen den Polen angeordneten Leitelement wirkt.With the parallel patent application 10 2008 036 799.0-24 a generic control device is proposed, which is characterized by a core of ferromagnetic material having two poles forming a gap for receiving a conductive element for a melt stream, and arranged on the core induction coils for Generation of a magnetic field, which acts on the melt flow m arranged between the poles guide.
Bei dieser Regelvorrichtung wird ein geschlossener Magnetkreis zur Erzeugung eines Magnetfeldes genutzt, durch das in dem Schmelzestrom eine Spannung induziert wird, durch die in dem Schmelzestrom Wirbelstrome ausgelost werden, die im Zusammenwirken mit dem Magnetfeld Kräfte erzeugen, die die Stromungsgeschwindigkeit des Schmelzestroms vermindern und wieder erhohen sowie den Schmelzestrom abbremsen können. Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und Vorrichtungen zur Regelung der Strömungsgeschwindigkeit und zum Abbremsen von nichtferromagnetischen Schmelzeströmen zu entwickeln, die es ermöglichen, das auf den Schmelzestrom wirkende Magnetfeld und die durch dieses erzeugten Wirbelströme zur Erhöhung der auf den Schmelzestrom wirkenden Kräfte zu verstärken.In this control device, a closed magnetic circuit is used to generate a magnetic field through which a voltage is induced in the melt stream, are caused by the eddy currents in the melt stream, which generate forces in cooperation with the magnetic field, which reduce the flow rate of the melt stream and increase again and can slow down the melt stream. The invention has for its object to develop a method and apparatus for controlling the flow rate and for braking non-ferromagnetic melt streams, which make it possible to enhance the magnetic field acting on the melt stream and the eddy currents generated by this to increase the forces acting on the melt stream ,
Diese Aufgabe wird erfindungsgemäß gelöst durch das Verfahren mit den Merkmalen des Patentanspruchs 1 und die Regelvorrichtungen nach den Patentansprüchen 6 und 1.This object is achieved by the method with the features of claim 1 and the control devices according to claims 6 and 1.
Die Unteransprüche beinhalten vorteilhafte und zweckmäßige Weiterbildungen des Verfahrens nach Patentanspruch 1 und der Regelvorrichtungen nach den Patentansprüchen 6 und 7.The dependent claims include advantageous and expedient developments of the method according to claim 1 and the control devices according to claims 6 and 7.
Das erfindungsgemäße Verfahren zur Regelung der Strömungsgeschwindigkeit und zum Abbremsen von nichtferromagnetischen Schmelzeströmen beim Abstich von metallurgischen Behältern wie Hochöfen und Schmelzöfen ist dadurch gekennzeichnet, dass der Schmelzestrom in einem geschlossenen Leitelement durch mindestens zwei in Strömungsrichtung der Schmelze in Reihe hintereinander angeordnete Magnetfelder mit einer gleichbleibenden, entgegengerichteten Polarität geleitet wird, derart, dass die Magnetfeldlinien den Schmelzestrom über dessen gesamten Querschnitt transversal durchdringen und von den Magnetfeldern in dem Schmelzestrom entgegengerichtete Spannungen induziert werden, durch die in dem Schmelzestrom mindestens drei hintereinander liegende axiale Wirbelstromfelder erzeugt werden, und dass durch das Zusammenwirken von Magnetfeldern und Wirbelströmen Kräfte erzeugt werden, durch die die Stromungsgeschwindigkeit des Schmelzestroms in Abhängigkeit von den Magnetfeldstarken vermindert werden kann.The inventive method for controlling the flow velocity and for braking non-ferromagnetic melt streams during tapping of metallurgical containers such as blast furnaces and furnaces is characterized in that the melt stream in a closed guide by at least two in the flow direction of the melt in series successively arranged magnetic fields with a constant, opposite Polarity is conducted such that the magnetic field lines transversely penetrate the melt stream over its entire cross-section and induced by the magnetic fields in the melt stream opposing voltages, are generated in the melt stream at least three consecutive axial eddy current fields, and that by the interaction of magnetic fields and eddy currents are generated by the forces Flow rate of the melt stream in dependence on the strong magnetic field can be reduced.
Bei einer bevorzugten Ausfuhrungsform dieses Verfahrens wird durch den Magnetfluss eines geschlossenen Magnetkreises über zwei gegenläufige Magnetfelder zwischen jeweils zwei Polen eine doppelte, gegenläufige Spannung in dem Schmelzestrom induziert, derart, dass sich eine gegenseitig verstärkende Wirkung auf die Stromstarke des zentralen axialen Wirbelstrornfeldes ergibt.In a preferred embodiment of this method, a double, opposing voltage is induced in the melt flow by the magnetic flux of a closed magnetic circuit via two opposing magnetic fields between each two poles, such that there is a mutually reinforcing effect on the current intensity of the central axial eddy field.
Durch die doppelte Ausnutzung des Magnetflusses eines geschlossenen Magnetkreises werden der magnetische Widerstand im Eisenkern des Magnetkreises und damit die inneren Verluste des Magnetkreises ungefähr halbiert.Due to the double utilization of the magnetic flux of a closed magnetic circuit, the magnetic resistance in the iron core of the magnetic circuit and thus the internal losses of the magnetic circuit are approximately halved.
Eine Variante des Verfahrens besteht darin, dass durch den Magnetfluss von zwei hintereinander angeordneten, geschlossenen Magnetkreisen über zwei gegenläufige Magnetfelder zwischen jeweils zwei Polen Spannungen in dem Schmelzestrom induziert werden, derart, dass sich eine gegenseitig verstärkende Wirkung auf die Stromstarke des zentralen Wirbelstromfeldes ergibt.A variant of the method consists in that voltages are induced in the melt stream by the magnetic flux of two closed magnetic circuits arranged behind one another via two opposing magnetic fields between each two poles, such that a mutually reinforcing effect on the current intensity of the central eddy current field results.
Durch eine dichte Hinteremanderanordnung der auf den Schmelzestrom m einem Spalt zwischen den beiden Polen eines Magnetkreises einwirkenden Magnetfelder wird erreicht, dass der Gradient der Abnahme des Magnetflusses zum seitlichen Spaltrand möglichst groß ist und dass durch die dicht beieinander liegende Anordnung der Spalte die Pfadlange der Wirbelstrome in den im Schmelzestrom erzeugten Wirbelstromfeldern verkürzt und der elektrische Widerstand verringert wird.By means of a dense rear-end arrangement of the magnetic fields acting on the melt stream m a gap between the two poles of a magnetic circuit it is achieved that the gradient of the decrease of the magnetic flux to the lateral edge of the gap is as large as possible and that the path length of the eddy currents in shortens the eddy current fields generated in the melt stream and reduces the electrical resistance.
Der grundsätzliche Erfindungsgedanke beruht darauf, dass durch die doppelte Ausnutzung des Magnetflusses eines geschlossenen Magnetkreises eine doppelte, gegenläufige, wirbelstromverstärkende Spannung in dem Schmelzest rom induziert wird, wobei der magnetische Widerstand im Eisenkern und damit die inneren Verluste in etwa halbiert werden.The basic concept of the invention is based on the fact that the double utilization of the magnetic flux of a closed magnetic circuit, a double, opposite, eddy current amplifying voltage is induced in the molten metal, wherein the magnetic resistance in the iron core and thus the internal losses are approximately halved.
Durch die Hintereinanderanordnung von mehreren in sich geschlossenen Magnetkreisen mit einer doppelten Ausnutzung des Magnetflusses wird die Einwirkung auf den Schmelzestrom überproportional gesteigert durch eine überproportionale Erhöhung der Anzahl der steileren Gradienten des Magnetflusses, durch eine überproportionale Erhöhung der Anzahl der verstärkten Wirbelstromfelder mit ihrer jeweils doppelten Interaktion mit den Magnetfeldern und durch eine doppelte Ausnutzung der induzierenden Wirkung der elektrischen Induktionsspulen. Die Mehrfachnutzung und die damit verbundene Verteilung der Wirbelströme in den einzelnen Wirbelstromfeldern im Schmelzestrom wirken sich mehrfach und analog auf die Verstärkung der auf den Schmelzestrom einwirkenden Kräfte aus.By the arrangement of several self-contained magnetic circuits with a double utilization of the magnetic flux, the influence on the melt flow is disproportionately increased by a disproportionate increase in the number of steeper gradients of the magnetic flux, by a disproportionate increase in the number of amplified eddy current fields with their respective double interaction with the magnetic fields and by a double utilization of the inducing effect of the electric induction coils. The multiple use and the associated distribution of the eddy currents in the individual eddy current fields in the melt stream have a multiple and analog effect on the strengthening of the forces acting on the melt stream.
Vorrichtungen zur Regelung der Strömungsgeschwindigkeit und zum Abbremsen von Schmelzeströmen, die gemäß den vorstehend beschriebenen Verfahren arbeiten und die insbesondere beim Abstich von Hochöfen eingesetzt werden, sind nachfolgend anhand schematischer Zeichnungsfiguren erläutert, die folgendes darstellen:Devices for controlling the flow rate and for braking melt streams, which operate in accordance with the methods described above and which are used in particular during the tapping of blast furnaces, are explained below with reference to schematic drawing figures, which represent the following:
Fig. 1 eine perspektivische Darstellung einerFig. 1 is a perspective view of a
Regelvorrichtung gemäß der einer parallelen Patentanmeldung 10 2008 036 799.0-24 mit einem Magnetfeld gleichbleibender Polarität zur Regelung der Strömungsgeschwindigkeit und zum Abbremsen eines Schmelzestroms, Fig. 2 ein Diagramm mit dem Verlauf derRegulating device according to a parallel patent application 10 2008 036 799.0-24 with a magnetic field of constant polarity for controlling the flow velocity and for braking a melt stream, Fig. 2 is a diagram showing the course of
Magnetflussdichte des mit der Regelvorrichtung nach Fig. 1 erzeugten Magnetfeldes über die Länge des Einwirkungsabschnitts des Magnetfeldes auf den Schmelzestrom,Magnetic flux density of the magnetic field generated by the control device according to FIG. 1 over the length of the exposure section of the magnetic field to the melt flow,
Fig. 3 eine perspektivische Darstellung einer ersten Ausführungsform der erfindungsgemäßen RegelVorrichtung,3 is a perspective view of a first embodiment of the control device according to the invention,
Fig. 4 ein Diagramm mit dem Verlauf derFig. 4 is a diagram showing the course of
Magnetflussdichte der mit der Regelvorrichtung nach Fig. 3 erzeugten beiden Magnetfelder sowie mit dem Verlauf der Magnetflussdichte der beiden Magnetfelder einer dieser Regelvorrichtung nachgeordneten, baugleichen weiteren RegelVorrichtung,Magnetic flux density of the two magnetic fields generated by the control device according to FIG. 3 as well as with the course of the magnetic flux density of the two magnetic fields of a control device of the same type, structurally identical,
Fig. 5 eine perspektivische Darstellung einer weiteren Ausführungsform der Regelvorrichtung,5 is a perspective view of another embodiment of the control device,
Fig. 6 die Anordnung einer Regelvorrichtung vor der AuslaufÖffnung eines Stichlochkanals eines Hochofens undFig. 6 shows the arrangement of a control device in front of the outlet opening of a taphole channel of a blast furnace and
Fig. 7 eine Schemadarstellung der doppelten Ausnutzung der magnetflussinduzierenden Wirkung von elektrischen Induktionsspulen.Fig. 7 is a schematic representation of the double utilization of the magnetic flux inducing effect of electric induction coils.
Die Regelvorrichtung 1 nach Figur 1, die bevorzugt beim Abstich von Hochöfen zur Regelung der Strömungsgeschwindigkeit und zum Abbremsen eines Schmelzestroms 2 durch ein Magnetfeld 3 mit gleichbleibender Polarität eingesetzt wird, weist einen Kern 4 aus ferrorαagnetischen Material auf, der als Joch 5 mit zwei Polen 6, 7 ausgebildet ist, die einen Spalt 8 zur Aufnahme eines Leitelementes 9 in Form eines Rohres 10 zum Durchleiten des Schmelzestroms 2 bilden. Auf dem Joch 5 sitzen zwei Induktionsspulen 11, 12 zur Erzeugung eines geschlossenen Magnetkreises 13 mit dem Magnetfeld 3 gleichbleibender Polarität zwischen den beiden Polen 6, 7, das durch Feldlinien 14 charakterisiert ist.The control device 1 according to FIG. 1, which is preferably used for tapping blast furnaces for regulating the flow velocity and for braking a melt stream 2 by means of a magnetic field 3 of constant polarity, has a core 4 of ferrorαagnetischen material which is formed as a yoke 5 with two poles 6, 7, which form a gap 8 for receiving a guide element 9 in the form of a tube 10 for passing the melt stream 2. On the yoke 5 sit two induction coils 11, 12 for generating a closed magnetic circuit 13 with the magnetic field 3 of constant polarity between the two poles 6, 7, which is characterized by field lines 14.
Der Schmelzestrom 2 tritt im Bereich 15 m das Magnetfeld 3 ein und verlasst dieses wieder im Bereich 16. Beim Eintreten des Schmelzestroms 2 in das Magnetfeld 3 wird in dem Schmelzestrom in einer Ebene senkrecht zu den Magnetfeldlinien 14 eine Spannung 17 induziert, durch die nach der Regel von Lenz axiale Wirbelstrome 18 in dem Schmelzestrom 2 erzeugt werden. Durch das Zusammenwirken von Magnetfeld 3 und Wirbelstromen 18 entstehen im Schmelzestrom 2 die sogenannten Lorentz-Krafte 19, die der Stromungsrichtung a des Schmelzestroms 2 entgegengerichtet sind und die dadurch eine Bremswirkung auf den Schmelzestrom 2 ausüben, durch die die Stromungsgeschwindigkeit des Schmelzestroms herabgesetzt wird.The melt stream 2 enters the magnetic field 3 in the region of 15 m and leaves it again in the region 16. When the melt stream 2 enters the magnetic field 3, a voltage 17 is induced in the melt stream in a plane perpendicular to the magnetic field lines 14 Rule of Lenz axial eddy currents 18 are generated in the melt stream 2. Due to the interaction of magnetic field 3 and eddy currents 18, the so-called Lorentz forces 19 are produced in the melt stream 2, which are opposite to the flow direction a of the melt stream 2 and which thereby exert a braking effect on the melt stream 2, by which the flow velocity of the melt stream is reduced.
Beim Verlassen des Austrittsbereiches 16 des Magnetfeldes 3 entstehen in dem Schmelzestrom 2 Wirbelstrome 20, die durch Zusammenwirken mit dem Magnetfeld 3 wiederum Lorentz-Krafte 21 erzeugen, die der Stromungsrichtung a des Schmelzestroms 2 entgegengerichtet sind und die damit eine zusätzliche Bremswirkung zu der Bremswirkung der Lorentz-Krafte 19 im Eintrittsbereich 15 des Schmelzestroms in das Magnetfeld 3 auslosen. Zur besseren Darstellung sind in Figur 1 die induzierten Spannungen 17 und die Wirbelströme 18, 20 um 90° aus der Horizontalebene in die Vertikalebene gedreht gezeichnet.When leaving the exit region 16 of the magnetic field 3 2 eddy currents 20 are generated in the melt stream, which in turn generate by cooperation with the magnetic field 3 Lorentz forces 21 which are opposite to the flow direction a of the melt stream 2 and thus an additional braking effect to the braking effect of Lorentz Forces 19 in the inlet region 15 of the melt stream into the magnetic field 3 triggers. For better illustration, the induced voltages 17 and the eddy currents 18, 20 are shown rotated by 90 ° from the horizontal plane in the vertical plane in Figure 1.
Das Diagramm gemäß Figur 2 zeigt den Verlauf der Magnetflussdichte in Tessla des mit der Regelvorrichtung 1 nach Figur 1 erzeugten Magnetfeldes 3 über die Länge L des Einwirkungsabschnitts des Magnetfeldes 3 auf den Schmelzestrom 2. Wegen der magnetischen Sättigung im Eisen ist es nur mit einem wirtschaftlich nicht mehr vertretbaren Aufwand möglich, eine Magnetflussdichte zu erreichen, die über 2 Tessla liegt. Die Ausweitung des Magnetfeldes 3, die durch die sich aufweitenden Magnetfeldlinien 14 verdeutlicht wird, im Spalt 8 zwischen den beiden Polen 6 und 7 bewirkt, dass die Kurve der Magnetflussdichte flach und weit zu den beiden Rändern des Spaltes 8 zwischen den Polen 6, 7 ausläuft. Innerhalb des Magnetfeldes 3 wird in Abhängigkeit von dessen Stärke und Polarität eine entsprechende elektrische Spannung 17 in dem Schmelzestrom 2 induziert, die als Antriebskraft für die Wirbelströme 18, 20 wirkt, so dass die Wirbelströme den Stromkreis erst außerhalb des Magnetfeldes 3 schließen können. Der geringere Gradient der Abnahme der Magnetflussdichte hat aufgeweitete Wirbelstromfelder 18, 20 mit langen Strompfaden zur Folge. Entsprechend dieser vergleichsweise großen Pfadlänge treten vergleichsweise hohe elektrische Widerstände auf und damit ergeben sich entsprechend verringerte Wirbelstromstärken.The diagram of Figure 2 shows the course of the magnetic flux density in Tessla of the generated with the control device 1 of Figure 1 magnetic field 3 over the length L of the exposure section of the magnetic field 3 to the melt stream 2. Because of the magnetic saturation in iron, it is not economically with only one more reasonable effort possible to achieve a magnetic flux density that is above 2 Tessla. The expansion of the magnetic field 3, which is illustrated by the widening magnetic field lines 14, in the gap 8 between the two poles 6 and 7 causes the curve of magnetic flux density flat and far to the two edges of the gap 8 between the poles 6, 7 expires , Within the magnetic field 3, a corresponding electrical voltage 17 is induced in the melt stream 2 as a function of its strength and polarity, which acts as a driving force for the eddy currents 18, 20, so that the eddy currents can close the circuit only outside the magnetic field 3. The lower gradient of the decrease in magnetic flux density results in expanded eddy current fields 18, 20 with long current paths. In accordance with this comparatively long path length, comparatively high electrical resistances occur and accordingly correspondingly reduced eddy current strengths result.
Die aus dem Zusammenwirken von Wirbelströmen und Magnetfeld entstehenden Kräfte sind u. a. abhängig von der Stärke der Wirbelströme, die wiederum u.a. abhängig sind von der Länge des Strompfades. Je kürzer der Strompfad, desto geringer ist der elektrische Widerstand und desto höher der entstehende Wirbelstrom bei ansonsten gegebenen Bedingungen. Da sich die Strompfade im Regefall erst außerhalb des Magnetfeldes schließen können, wäre ein am Rande möglichst scharf auf Null abfallendes Magnetfeld für diese Zwecke ideal. In der Realität läuft ein Magnetfeld aber weit aus, wie dies aus Figur 2 hervorgeht.The forces resulting from the interaction of eddy currents and magnetic field depend inter alia on the strength of the eddy currents, which, in turn, are inter alia dependent on the length of the current path. The shorter the current path, the lower the electrical resistance and the higher the resulting eddy current under otherwise given conditions. Since the If current paths can only close outside of the magnetic field, a magnetic field that drops as sharply as possible to zero at the edge would be ideal for this purpose. In reality, a magnetic field but runs far, as can be seen from Figure 2.
Außerdem ist es so, dass der Wirbelstrom auf dem entstehenden Strompfad normalerweise nur einmal mit einem Magnetfeld in Wechselwirkung tritt und daher nur einmal eine Kraft erzeugt.In addition, the eddy current on the resulting current path normally interacts only once with a magnetic field and therefore only generates a force once.
Wenn jetzt also zwei Magnetfelder mit umgekehrter Polarität dicht nebeneinander gestellt werden, derart, dass die Magnetfeldlinien den Schmelzestrom transversal kreuzen, dann ergeben sich folgende Vorteile:So now if two magnetic fields with reversed polarity are placed close to each other, such that the magnetic field lines cross the melt flow transversely, then there are the following advantages:
1. Das Magnetfeld hat zum Rand in Richtung des inversen zweiten Magnetfeldes den steilsten möglichen Gradienten und erzeugt damit den kürzest möglichen Strompfad, wie dies Figur 4 verdeutlicht.1. The magnetic field has the steepest possible gradient to the edge in the direction of the inverse second magnetic field and thus generates the shortest possible current path, as Figure 4 illustrates.
2. Dadurch, dass das benachbarte Magnetfeld die umgekehrte Polarität hat, wirkt es auf die gleiche Wirbelstromschleife gleichsinnig und verstärkend/verdoppelnd. Hierzu wird auf die nachfolgend noch ausführlich erläuterte Figur 4 verwiesen.2. The fact that the adjacent magnetic field has the opposite polarity, it acts on the same eddy current loop in the same direction and amplifying / doubling. Reference is made to FIG. 4, which will be explained in detail below.
Die neue Regelvorrichtung 22 nach Figur 3, die insbesondere beim Abstich von Hochöfen zur Regelung derThe new control device 22 of Figure 3, in particular when tapping blast furnaces to control the
Strömungsgeschwindigkeit und zum Abbremsen eines Schmelzestroms 2 im Stichlochkanal eines Hochofens Verwendung findet, ist mit einem durch zwei Joche 24, 25 gebildeten Kern 23 aus ferromagnetischem Material ausgestattet, der zwei in Reihe hintereinander angeordnete Polpaare 26, 27 mit jeweils zwei Polen 28, 29; 30, 31 aufweist. Die beiden Polpaare 26, 27 bilden zwei hintereinander angeordnete Spalte 32, 33 zur Aufnahme eines Leitelementes 9 zum Durchleiten des Schmelzestroms 2, das als Rohr 10 oder Kanal ausgebildet ist. Auf den vier Polschuhen 34- 37 der beiden Joche 24, 25 des Kerns 23 sind vier Induktionsspulen 38-41 zur Erzeugung von zwei inFlow rate and for braking a melt stream 2 in the taphole of a blast furnace is used, is equipped with a formed by two yokes 24, 25 core 23 of ferromagnetic material, the two in series successively arranged pole pairs 26, 27, each with two poles 28, 29; 30, 31. The two pole pairs 26, 27 form two successively arranged column 32, 33 for receiving a guide element 9 for passing the melt stream 2, which is formed as a pipe 10 or channel. On the four pole pieces 34- 37 of the two yokes 24, 25 of the core 23 are four induction coils 38-41 for generating two in
Strömungsrichtung a des Schmelzestroms 2 in Reihe hintereinander angeordneten Magnetfeldern 42, 43 in einem geschlossenen Magnetkreis 44 zwischen den Polen 28, 29; 30, 31 der beiden Polpaare 26, 27 angeordnet, wobei die beiden Magnetfelder 42, 43 eine gleichbleibende, entgegengerichtete Polarität aufweisen. Durch die Magnetfelder 42, 43 werden in dem Schmelzestrom 2 entgegengerichtete Spannungen 45, 46 induziert, durch die in dem Schmelzestrom 2 drei axial hintereinanderliegende Wirbelstromfelder 47-49 erzeugt werden, derart, dass sich eine gegenseitig verstärkende Wirkung auf die Stromstärke des zentralen Wirbelstromfeldes 48 zwischen den beiden äußeren Wirbelstromfeldern 47, 49 ergibt. Durch das Zusammenwirken von Magnetfeldern und Wirbelströmen werden in dem Schmelzestrom Kräfte erzeugt, durch die die Strömungsgeschwindigkeit des Schmelzestroms vermindert werden kann.Flow direction a of the melt stream 2 in series successively arranged magnetic fields 42, 43 in a closed magnetic circuit 44 between the poles 28, 29; 30, 31 of the two pole pairs 26, 27 are arranged, wherein the two magnetic fields 42, 43 have a constant, opposite polarity. By the magnetic fields 42, 43 opposing voltages 45, 46 are induced in the melt stream 2, are generated in the melt stream two axially consecutive eddy current fields 47-49, such that a mutually reinforcing effect on the current of the central eddy current field 48 between the two outer eddy current fields 47, 49 results. Due to the interaction of magnetic fields and eddy currents, forces are generated in the melt stream through which the flow velocity of the melt stream can be reduced.
Die Regelvorrichtung kann nach Bedarf zur Erhöhung der auf einen Schmelzestrom wirkenden Bremskraft um eine gerade Anzahl von Polpaaren über die Länge L des Einwirkungsabschnittes der Magnetfelder auf den Schmelzestrom erweitert werden.The control device can be extended to the melt flow as needed to increase the braking force acting on a melt stream by an even number of pole pairs over the length L of the exposure section of the magnetic fields.
Das Diagramm gemäß Figur 4 verdeutlicht den in einer durchgezogenen Linie dargestellten Verlauf der Magnetflussdichte in Tessla der mit der in Figur 3 dargestellten Regelvorrichtung 22 in einem geschlossenen Magnetkreis 44 erzeugten beiden Magnetfelder 42, 43 über die Länge L des Einwirkungsabschnitts der Magnetfelder auf den Schmelzestrom sowie in gestrichelter Linienführung die Magnetflussdichte der beiden Magnetfelder einer baugleichen, an die erste Regelvorrichtung 22 angeschlossenen weiteren Regelvorrichtung.The diagram according to FIG. 4 illustrates the course of the magnetic flux density in Tessla shown in a solid line of the two magnetic fields 42, 43 generated in a closed magnetic circuit 44 with the control device 22 shown in FIG. 3 over the length L of the acting section the magnetic fields on the melt stream and in dashed lines the magnetic flux density of the two magnetic fields of a similar, connected to the first control device 22 further control device.
Der durchgezogene Kurvenverlauf in Figur 4 verdeutlicht, dass bei der Regelvorrichtung 22 nach Figur 3 der Magnetfluss in einem geschlossenen Magnetkreis 44 doppelt und mit gegeneinander unterschiedlicher Polarität genutzt wird. Die dadurch erreichte Erhöhung der Magnetflussdichte hat eine entsprechende Erhöhung der Wirbelstromstärke zur Folge. Die doppelte Nutzung in einem geschlossenen Magnetkreis erfolgt gegensinnig, das heißt, der Magnetfluss wird sowohl in positiver als auch in negativer Flussrichtung wirksam. Dadurch wird die für die Wirbelstromausbildung nutzbare Magnetflussdichte von etwa 2 Tessla auf 4 Tessla in demselben Magnetkreis erhöht. Ferner ist der Gradient für die Abnahme der Magnetflussdichte in dem aus Figur 4 ersichtlichen Bereich 50 zwischen den beiden Magnetfeldern 42, 43 besonders groß. Dadurch werden die Pfadlängen der Wirbelströme und damit die elektrischen Widerstände kleiner, was eine entsprechende Erhöhung der Stromstärken zur Folge hat.The solid curve in Figure 4 illustrates that in the control device 22 of Figure 3, the magnetic flux in a closed magnetic circuit 44 is used twice and with mutually different polarity. The resulting increase in the magnetic flux density results in a corresponding increase in the eddy current intensity. The double use in a closed magnetic circuit takes place in opposite directions, that is, the magnetic flux is effective in both the positive and in the negative flow direction. This increases the usable magnetic flux density for eddy current formation from about 2 Tessla to 4 Tessla in the same magnetic circuit. Furthermore, the gradient for the decrease of the magnetic flux density in the region 50 shown in FIG. 4 between the two magnetic fields 42, 43 is particularly large. As a result, the path lengths of the eddy currents and thus the electrical resistances become smaller, which results in a corresponding increase in the current intensities.
Die durchgezogene und die gestrichelte Linienführung in Figur 4 zeigen den Kurvenverlauf der Magnetflussdichte über die Länge des Einwirkungsabschnittes der Magnetfelder auf den Schmelzestrom von zwei hintereinander angeordneten Regelvorrichtungen gemäß Figur 3 mit zwei aufeinander folgenden, geschlossenen Magnetkreisen mit jeweils einer doppelten Nutzung des Magnetflusses. Figur 4 verdeutlicht, dass sich bei einer Regelvorrichtung mit einem geschlossenen Magnetkreis ein steiler Kurvenverlauf der Magnetflussdichte zwischen zwei flachen Kurvenverläufen ergibt und dass sich bei zwei hintereinander angeordneten Regelvorrichtungen mit zwei geschlossenen Magnetkreisen und einer Doppelnutzung des Magnetflusses in jedem Magnetkreis drei steile Kurvenverläufe zwischen zwei flachen Kurvenverläufen der Magnetflussdichte ergeben. Dadurch ist der Wirkungsanstieg deutlich überproportional.The solid and the dashed lines in Figure 4 show the curve of the magnetic flux density over the length of the impact section of the magnetic fields on the melt stream of two successively arranged control devices according to Figure 3 with two consecutive closed magnetic circuits, each with a double use of the magnetic flux. FIG. 4 illustrates that, in the case of a regulating device with a closed magnetic circuit, a steep curve of the magnetic flux density results between two flat curves and that, in the case of two, one behind the other arranged control devices with two closed magnetic circuits and a double use of the magnetic flux in each magnetic circuit result in three steep curves between two flat curves of the magnetic flux density. As a result, the increase in impact is clearly disproportionate.
Bei der Regelvorrichtung 22 nach Figur 3 liegen die Spalte 32, 33 zwischen den Polen 28, 29 sowie 30, 31 und die in den Spalten 32, 33 wirkenden Magnetfelder 42, 43 dicht beieinander. Die Magnetfelder 42, 43 sind in dem Bereich 50, in dem sie aneinander stoßen, trotz hoher Magnetflussdichte eng gebündelt. Aus den entsprechend verkürzten Strompfaden der Wirbelströme und der doppelten Einwirkung der Wirbelströme folgt, dass sich die Wirkung der elektromagnetischen Beeinflussung auf den Schmelzestrom mehr als verdoppelt-In the control device 22 according to FIG. 3, the gaps 32, 33 between the poles 28, 29 and 30, 31 and the magnetic fields 42, 43 acting in the gaps 32, 33 are close to one another. The magnetic fields 42, 43 are tightly bundled in the region 50 in which they abut each other despite high magnetic flux density. From the correspondingly shortened current paths of the eddy currents and the double effect of the eddy currents it follows that the effect of the electromagnetic influence on the melt current more than doubles-
In Figur 5 ist eine weitere Ausführungsform 51 der Regelvorrichtung dargestellt, die zwei hintereinander geschaltete Regelvorrichtungen 1 gemäß Figur 1 aufweist.FIG. 5 shows a further embodiment 51 of the regulating device, which has two control devices 1 according to FIG. 1 connected in series.
Die Regelvorrichtung 51 ist mit zwei hintereinander angeordneten Kernen 4, 4 aus ferromagnetischem Material ausgestattet, die ein Joch 5 mit zwei Polen 6, 7 aufweisen, die einen Spalt 8 bilden, wobei durch die beiden in Reihe hintereinander angeordneten Spalte 8, 8 ein Leitelement 9, insbesondere ein Stichlochkanal eines Hochofens für einen Schmelzestrom 2 hindurchgeführt ist. Die Regelvorrichtung 51 besitzt ferner jeweils zwei auf den Polschuhen der beiden Joche 5, 5 angeordnete Induktionsspulen 11, 12 zur Erzeugung von zwei hintereinander angeordneten Magnetfeldern 42, 43 mit entgegengerichteter Polarität in zwei getrennten, geschlossenen, gegenläufigen Magnetkreisen 13, 13 a, wobei die Magnetfelder 42, 43 in dem Schmelzestrom 2 axiale Wirbelstrome zur Erzeugung einer auf den Schmelzestrom 2 wirkenden Abbremskraft auslosen.The control device 51 is equipped with two successively arranged cores 4, 4 of ferromagnetic material having a yoke 5 with two poles 6, 7, which form a gap 8, wherein by the two in series successively arranged column 8, 8 a guide element , In particular, a taphole channel of a blast furnace for a melt stream 2 is passed. The control device 51 further has two each on the pole pieces of the two yokes 5, 5 arranged induction coils 11, 12 for generating two consecutively arranged magnetic fields 42, 43 with opposite polarity in two separate, closed, opposing magnetic circuits 13, 13 a, wherein the magnetic fields 42 43 trigger in the melt stream 2 axial eddy currents to produce a force acting on the melt stream 2 braking force.
Gegenüber einer Regelvorrichtung gemäß Figur 3, die mit einer doppelten Nutzung des Magnetflusses eines geschlossenen Magnetkreises arbeitet, hat die Regelvorrichtung 51 nach Figur 5 mit einer einfacher Nutzung des Magnetflusses von zwei hintereinander angeordneten, geschlossenen Magnetkreisen einen schlechteren Wirkungsgrad, jedoch wird mit dieser Regelvorrichtung eine wesentliche Verstärkung der Wirbelstrome im Schmelzestrom gegenüber der Regelvorrichtung nach Figur 1 mit einem geschlossenen Magnetkreis mit einer einfachen Nutzung des Magnetflusses erreicht.Compared with a control device according to Figure 3, which operates with a double use of the magnetic flux of a closed magnetic circuit, the control device 51 of Figure 5 with a simple use of the magnetic flux of two successively arranged, closed magnetic circuits has a poorer efficiency, but with this control device is an essential Reinforcing the eddy currents in the melt stream compared to the control device of Figure 1 achieved with a closed magnetic circuit with a simple use of the magnetic flux.
Wahrend es bei einer Regelvorrichtung mit derWhile it with a control device with the
Maximalausfuhrung der Mehrfachnutzung des Magnetflusses eines Hagnetkreises nur möglich ist, mit einer geraden Anzahl von Polpaaren zu arbeiten, ist es bei einer Regelvorrichtung mit einer einfachen Ausnutzung des Magnetflusses mehrerer Regelkreise möglich, sowohl mit einer geraden als auch mit einer ungeraden Anzahl von Polpaaren zu arbeiten. Dies erlaubt unter Umstanden eine bessere Anpassung an begrenzte Platzverhaltnisse.Maximalausfuhrung the multiple use of the magnetic flux of a magnetic circuit is only possible to work with an even number of pole pairs, it is possible in a control device with a simple use of the magnetic flux of multiple control loops to work with both an even and an odd number of pole pairs. This may allow a better adaptation to limited space conditions.
Die verschiedenen Regelvorrichtungen 22, 51 können als Vorsatzeinrichtung vor der Auslaufoffnung des Stichlochs eines Hochofens oder vor der Auslaufoffnung des Abflusskanals eines Schmelzofens um den Stichlochkanal beziehungsweise Abflusskanal angeordnet werden.The various control devices 22, 51 can be arranged as an attachment device in front of the outlet opening of the stitch hole of a blast furnace or in front of the outlet opening of the outflow channel of a melting furnace around the taphole channel or outflow channel.
Aus Figur 6 geht die Anordnung von zwei hintereinander angeordneten Regelvorrichtungen 22 gemäß Figur 3 vor der Auslaufoffnung eines Stichlochkanals eines Hochofens hervor. Innerhalb eines Gehäuses 52 sind zwei geschlossene Magnetkreise 44 mit vier Spalten 8 für die doppelte Nutzung des Magnetflusses jedes Magnetkreises angeordnet. Der aus dem Stichlochkanal des Hochofens austretende Schmelzestrom 2 fließt durch das Rohr 10, das durch die vier Spalte 8 zwischen den vier Polpaaren 26, 27; 26, 27 geführt ist, wobei die Magnetfelder der beiden Magnetkreise 44 über die Länge L auf den Schmelzestrom 2 einwirken .From Figure 6, the arrangement of two successively arranged control devices 22 according to Figure 3 before the outflow opening of a taphole channel of a blast furnace. Within a housing 52 are two closed magnetic circuits 44 arranged with four columns 8 for the double use of the magnetic flux of each magnetic circuit. The melt stream 2 emerging from the taphole channel of the blast furnace flows through the pipe 10 passing through the four gaps 8 between the four pole pairs 26, 27; 26, 27 is guided, wherein the magnetic fields of the two magnetic circuits 44 act on the melt stream 2 over the length L.
In Figur 7 sind drei Induktionsspulen 53-55 mit Eisenkern aus einer Vielfachanordnung von Induktionsspulen mit Eisenkern zur Erzeugung von geschlossenen Magnetkreisen mit einer doppelten Ausnutzung des Magnetflusses zur Ausbildung von Wirbelströmen in einem Schmelzestrom 2 dargestellt, der durch ein Rohr 10 fließt. Die Spulen 53-55 müssen mit abwechselnd entgegengesetzter Polarität betrieben werden. In der Darstellung sind die Stromrichtungen der jeweiligen rechten und linken Spulenhälften und die Richtung des sich daraus ergebenden Magnetflusses 56 erkennbar. Bezogen auf den mittleren oberen Kern 57 und seinen Magnetfluss ist nicht nur die ihm zugehörige Spule 54 wirksam, sondern in dieser Ebene außerdem noch die rechte Spulenhälfte der Spule 53 des linken Kerns 58 und die linken Spulenhälfte der Spule 55 des rechten Kerns 59. Somit wirkt in diesem Beispiel die linke Spulenhälfte der Spule 55 des rechten Kerns 59 sowohl auf den rechten Kern 59 als auch auf den mittleren Kern 57 magnetflusstreibend. Dies gilt sinngemäß für alle Spulenhälften bei einer Mehrfachanordnung, so dass es in der Darstellungsebene mit Ausnahme der äußersten linken und rechten Spulenhälften zu einer Doppelnutzung aller Spulenhälften beziehungsweise der darin fließenden Ströme kommt. Dadurch wird eine weitere überproportionale Steigerung der Wirkung erreicht. FIG. 7 shows three iron-core induction coils 53-55 of a multiple arrangement of iron-core induction coils for producing closed magnetic circuits with double utilization of the magnetic flux to form eddy currents in a melt stream 2 flowing through a pipe 10. The coils 53-55 must be operated with alternately opposite polarity. In the illustration, the current directions of the respective right and left coil halves and the direction of the resulting magnetic flux 56 can be seen. Relative to the middle upper core 57 and its magnetic flux not only the associated coil 54 is effective, but also in this plane also the right half of the coil coil 53 of the left core 58 and the left half of the coil coil 55 of the right core 59. Thus acts In this example, the left-hand coil half of the coil 55 of the right-hand core 59 magnetizes both the right-hand core 59 and the central core 57. This applies mutatis mutandis to all coil halves in a multiple arrangement, so that it is in the display level with the exception of the extreme left and right coil halves to a double use of all coil halves and the currents flowing therein. This achieves a further disproportionate increase in the effect.

Claims

Patentansprüche claims
1. Verfahren zur Regelung der Strömungsgeschwindigkeit und zum Abbremsen von nichtferromagnetischen Schmelzeströmen durch Magnetfelder beim Abstich von metallurgischen Behältern wie Hochöfen und Schmelzofen, dadurch gekennzeichnet, dass der Schmelzestrom in einem geschlossenen Leitelement durch mindestens zwei in Strömungsrichtung der Schmelze in Reihe hintereinander angeordnete Magnetfelder mit einer gleichbleibenden, entgegengerichteten Polarität geleitet wird, derart, dass die Magnetfeldlmien den Schmelzestrom über dessen gesamten Querschnitt transversal durchdringen und von άen Magnetfeldern in dem Schmelzestrom entgegengerichtete Spannungen induziert werden, durch die in dem Schmelzestrom mindestens drei hintereinander liegende axiale Wirbelstromfelder erzeugt werden, und dass durch das Zusammenwirken von Magnetfeldern und Wirbelstromen Kräfte erzeugt werden, durch die die Stromungsgeschwindigkeit des Schmelzestroms in Abhängigkeit von den Magnetfeldstärken vermindert werden kann.1. A method for controlling the flow velocity and for braking non-ferromagnetic melt streams by magnetic fields during tapping of metallurgical containers such as blast furnaces and melting furnace, characterized in that the melt stream in a closed guide element by at least two in the flow direction of the melt in series successively arranged magnetic fields with a constant , is conducted in opposite polarity, such that the magnetic field flows through the melt stream transversely over its entire cross section and induced άen magnetic fields in the melt stream opposing voltages, are generated in the melt stream at least three consecutive axial eddy current fields, and that by the interaction be generated by magnetic fields and eddy currents forces by the flow rate of the melt stream as a function of the magnetic field strengths reduced w can ground.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Magnetfluss eines geschlossenen Magnetkreises über zwei entgegengerichtete Magnetfelder zwischen jeweils zwei Polen eine doppelte gegenläufige Spannung in dem Schmelzestrom induziert, derart, dass sich eine gegenseitig verstärkende Wirkung auf die Stromstärke des zentralen Wirbelstromfeldes ergibt.2. The method according to claim 1, characterized in that the magnetic flux of a closed magnetic circuit via two opposing magnetic fields between each two poles induces a double opposing voltage in the melt stream, such that there is a mutually reinforcing effect on the current of the central eddy current field.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass durch die doppelte Ausnutzung des Magnetflusses des geschlossenen Magnetkreises der magnetische Widerstand im Eisenkern des Magnetkreises und damit die inneren Verluste des Magnetkreises ungefähr halbiert werden.3. The method according to claim 2, characterized in that by the double utilization of the magnetic flux of the closed magnetic circuit of the magnetic resistance in Iron core of the magnetic circuit and thus the inner losses of the magnetic circuit are approximately halved.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass durch den Magnetfluss von zwei hintereinander angeordneten, geschlossenen Magnetkreisen über zwei gegenläufige Magnetfelder zwischen jeweils zwei Polen Spannungen in dem Schmelzestrom induziert werden, derart, dass sich eine gegenseitig verstärkende Wirkung auf die Stromstarke des zentralen axialen Wirbelstromfeldes ergibt.4. The method according to claim 1, characterized in that induced by the magnetic flux of two successively arranged, closed magnetic circuits via two opposing magnetic fields between each two poles voltages in the melt stream, such that a mutually reinforcing effect on the current strength of the central axial Eddy current field results.
5. Verfahren nach einem der Ansprüche 1 bis 4, gekennzeichnet durch eine dichte Hmteremanderanordnung der auf den Schmelzestrom in einem Spalt zwischen den beiden Polen eines Magnetkreises einwirkenden Magnetfelder, derart, dass der Gradient der Abnahme des Magnetflusses zum seitlichen Spaltrand möglichst groß ist und dass durch die dicht beieinander liegende Anordnung der Spalte die Pfadlange der Wirbelstrome m den im Schmelzestrom erzeugten Wirbelstromfeldern verkürzt und der elektrische Widerstand verringert wird.5. The method according to any one of claims 1 to 4, characterized by a dense Hmteremanderanordnung acting on the melt stream in a gap between the two poles of a magnetic circuit magnetic fields, such that the gradient of the decrease of the magnetic flux to the lateral edge of the gap is as large as possible and that the closely spaced arrangement of the column shortens the path length of the eddy currents m the eddy current fields generated in the melt stream and reduces the electrical resistance.
6. Vorrichtung zur Regelung der Stromungsgeschwindigkeit und zum Abbremsen von nichtferromagnetischen Schmelzestromen beim Abstich von metallurgischen Behaltern wie Hochofen und Schmelzofen gemäß dem Verfahren nach den Patentansprüchen 1 bis6. A device for controlling the flow rate and for braking non-ferromagnetic melt streams in the tapping of metallurgical containers such as blast furnace and furnace according to the method of the claims 1 to
3 und 5 gekennzeichnet durch mindestens einen durch zwei Joche (24, 25) gebildeten Kern (23) aus ferromagnetischem Material, der zwei m Reihe hintereinander angeordnete Polpaare (26, 27) mit jeweils zwei Polen (28, 29; 30, 31) aufweist, die zwei hintereinander angeordnete Spalte (32, 33) zur Aufnahme eines Leitelementes (9) für einen Schmelzestrom (2) bilden, sowie vier auf Polschuhen (34-37) der beiden Joche (24, 25) des Kerns (23) angeordnete Induktionsspulen (38-41) zur Erzeugung von zwei m Reihe hintereinander angeordneten Magnetfeldern (42, 43) in einem geschlossenen Magnetkreis, die auf den Schmelzestrom (2) in dem Leitelement (9) wirken, das durch die Spalte (32, 33) zwischen den Polen (28, 29; 30, 31) der beiden Polpaare (27, 28} gefuhrt ist.3 and 5 characterized by at least one formed by two yokes (24, 25) core (23) of ferromagnetic material having two m row of successively arranged pole pairs (26, 27) each having two poles (28, 29, 30, 31) , the two successively arranged column (32, 33) for receiving a guide element (9) for a melt stream (2), and four on pole pieces (34-37) of the two yokes (24, 25) of the core (23) arranged induction coils (38-41) to produce two m A series of magnetic fields (42, 43) arranged in series in a closed magnetic circuit acting on the melt stream (2) in the guide element (9) passing through the gaps (32, 33) between the poles (28, 29; 30, 31). the two pole pairs (27, 28} is guided.
7. Vorrichtung zur Regelung der Stromungsgeschwindigkeit und zum Abbremsen von nichtferromagnetischen Schmelzestromen beim Abstich von metallurgischen Behaltern wie Hochofen und Schmelzofen gemäß dem Verfahren nach den Patentansprüchen 1, 4 und 5, gekennzeichnet durch mindestens zwei m Reihe hintereinander angeordnete Kerne (4, 4} aus ferromagnetischem Material, die jeweils ein Joch (5) mit zwei Polen (6, 7) aufweisen, die einen Spalt (8) bilden, wobei durch die beiden in Reihe hintereinander angeordneten Spalte (8, 8) ein Leitelement (9) für einen Schmelzestrom (2) hindurchgefuhrt ist, sowie jeweils zwei auf den Polschuhen der beiden Joche (5, 5) angeordnete Induktionsspulen (11, 12) zur Erzeugung von zwei hintereinander angeordneten Magnetfeldern {42, 43} mit entgegengerichteter Polarität in zwei getrennten, geschlossenen, gegenläufigen Magnetkreisen (13, 13a) , wobei die Magnetfelder in dem Schmelzestrom (2) axiale Wirbelstrome zur Erzeugung einer auf den Schmelzestrom wirkenden Abbremskraft auslosen.7. An apparatus for controlling the flow rate and for braking non-ferromagnetic melt streams in the tapping of metallurgical containers such as blast furnace and furnace according to the method of claims 1, 4 and 5, characterized by at least two m series successively arranged cores (4, 4) of ferromagnetic Material, each having a yoke (5) with two poles (6, 7), which form a gap (8), wherein a guide element (9) for a melt stream (9) through the two in series successively arranged column (8, 8) ( 2), and in each case two induction coils (11, 12) arranged on the pole shoes of the two yokes (5, 5) for generating two magnetic fields {42, 43} arranged in opposite directions in two separate, closed, counter-rotating magnetic circuits ( 13, 13a), wherein the magnetic fields in the melt stream (2) axial eddy currents to produce a acting on the melt stream Activate deceleration force.
8. Regelvorrichtung nach Anspruch 6, gekennzeichnet durch eine Erweiterungsmoglichkeit derselben um geradzahlige Polpaare.8. Control device according to claim 6, characterized by an extension possibility of the same by even pole pairs.
9. Regelvorrichtung nach Anspruch 7, gekennzeichnet durch eine Erweiterungsmoglichkeit derselben um geradzahlige und ungeradzahlige Polpaare. 9. Regulating device according to claim 7, characterized by an extension possibility of the same by even-numbered and odd-numbered pole pairs.
10. Regelvorrichtung nach einem der Ansprüche 6 bis 9, gekennzeichnet durch eine Anordnung derselben als Vorsatzeinrichtung vor der Auslauföffnung des Stichlochkanals eines Hochofens oder der Auslauföffnung des Abflusskanals eines Schmelzofens .10. Control device according to one of claims 6 to 9, characterized by an arrangement thereof as an attachment means in front of the outlet opening of the needle hole channel of a blast furnace or the outlet opening of the drainage channel of a melting furnace.
11. Regelvorrichtung nach einem der -Ansprüche 6 bis 9, gekennzeichnet durch eine Anordnung derselben um den Stichlochkanal eines Hochofens oder um den Abflusskanal eines Schmelzofens. 11. A control device according to any one of claims 6 to 9, characterized by an arrangement thereof around the taphole of a blast furnace or the outflow channel of a melting furnace.
EP09781571A 2008-08-07 2009-08-06 Method and devices for regulating the flow rate and for slowing down melt streams through magnetic fields in the tapping of metallurgical containers such as blast furnaces and melt furnaces Not-in-force EP2310539B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008036798A DE102008036798A1 (en) 2008-08-07 2008-08-07 Method and device for controlling the flow velocity and for braking melt streams by magnetic fields, in particular during the tapping of metallurgical containers such as blast furnaces and furnaces
PCT/EP2009/060225 WO2010015684A1 (en) 2008-08-07 2009-08-06 Method and devices for regulating the flow rate and for slowing down melt streams through magnetic fields in the tapping of metallurgical containers such as blast furnaces and melt furnaces

Publications (2)

Publication Number Publication Date
EP2310539A1 true EP2310539A1 (en) 2011-04-20
EP2310539B1 EP2310539B1 (en) 2012-05-09

Family

ID=41202483

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09781571A Not-in-force EP2310539B1 (en) 2008-08-07 2009-08-06 Method and devices for regulating the flow rate and for slowing down melt streams through magnetic fields in the tapping of metallurgical containers such as blast furnaces and melt furnaces

Country Status (11)

Country Link
US (1) US8658084B2 (en)
EP (1) EP2310539B1 (en)
JP (1) JP5635986B2 (en)
CN (1) CN102177258A (en)
AT (1) ATE557106T1 (en)
BR (1) BRPI0917123A2 (en)
DE (1) DE102008036798A1 (en)
RU (1) RU2515778C2 (en)
UA (1) UA103775C2 (en)
WO (1) WO2010015684A1 (en)
ZA (1) ZA201100943B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009035241B4 (en) * 2008-08-07 2014-06-12 Tmt Tapping-Measuring-Technology Gmbh Methods and apparatus for controlling the flow rate and decelerating nonferromagnetic, electrically conductive liquids and melts
CN103900386B (en) * 2014-04-15 2015-09-30 清华大学 A kind of liquid aluminium alloy electromagnetism conveying equipment
KR101568601B1 (en) * 2014-08-19 2015-11-12 주식회사 포스코 Apparatus for controlling tapping velocity using electromagnetic force
US11001798B2 (en) * 2016-05-26 2021-05-11 Ifg Corporation Apparatus and method for non-contact electrical stimulation of cells in liquid culture medium
CN109546841B (en) * 2018-12-29 2024-03-22 中国原子能科学研究院 Variable air gap permanent magnetic field arc catheter electromagnetic pump

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE365731B (en) * 1970-01-20 1974-04-01 Asea Ab
JPS61154739A (en) * 1984-12-26 1986-07-14 Kawasaki Steel Corp Continuous casting machine for thin ingot
US4936374A (en) * 1988-11-17 1990-06-26 The United States Of America As Represented By The United States Department Of Energy Sidewall containment of liquid metal with horizontal alternating magnetic fields
JPH03198974A (en) * 1989-12-26 1991-08-30 Kawasaki Steel Corp Flow controller of molten metal in transfer flow passage
IN191638B (en) * 1994-07-28 2003-12-06 Bhp Steel Jla Pty Ltd
US6106620A (en) * 1995-07-26 2000-08-22 Bhp Steel (Jla) Pty Ltd. Electro-magnetic plugging means for hot dip coating pot
AU714976B2 (en) * 1996-04-29 2000-01-13 Bhp Steel (Jla) Pty Limited Magnetic braking
JPH1099944A (en) * 1996-09-30 1998-04-21 Mitsubishi Steel Mfg Co Ltd Mold structure for continuously casting molten metal
JP2000176609A (en) 1998-12-18 2000-06-27 Daido Steel Co Ltd Mold used in continuous casting
WO2000071761A1 (en) * 1999-05-18 2000-11-30 Danieli Technology, Inc. Electromagnetic braking process in the outlet channel of a furnace
US6732890B2 (en) * 2000-01-15 2004-05-11 Hazelett Strip-Casting Corporation Methods employing permanent magnets having reach-out magnetic fields for electromagnetically pumping, braking, and metering molten metals feeding into metal casting machines
JP4772407B2 (en) * 2005-07-15 2011-09-14 高橋 謙三 Molten metal transfer device
US8343416B2 (en) * 2008-08-07 2013-01-01 Tmt Tapping-Measuring-Technology Gmbh Methods and devices for regulating the flow rate and for slowing down non-ferromagnetic, electrically conductive liquids and melts

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010015684A1 *

Also Published As

Publication number Publication date
DE102008036798A1 (en) 2010-02-18
JP2011529795A (en) 2011-12-15
WO2010015684A1 (en) 2010-02-11
RU2011106577A (en) 2012-09-20
US8658084B2 (en) 2014-02-25
UA103775C2 (en) 2013-11-25
ATE557106T1 (en) 2012-05-15
JP5635986B2 (en) 2014-12-03
RU2515778C2 (en) 2014-05-20
US20110175265A1 (en) 2011-07-21
ZA201100943B (en) 2013-10-30
EP2310539B1 (en) 2012-05-09
BRPI0917123A2 (en) 2015-11-17
CN102177258A (en) 2011-09-07

Similar Documents

Publication Publication Date Title
DE102008047852B4 (en) Separator for separating a mixture of magnetizable and non-magnetizable particles contained in a suspension carried in a separation channel
EP2310539B1 (en) Method and devices for regulating the flow rate and for slowing down melt streams through magnetic fields in the tapping of metallurgical containers such as blast furnaces and melt furnaces
EP1704574A1 (en) Electromagnetic linear drive
DE1635289A1 (en) Device for uniform loading of material passing through a gap
DE102010010220A1 (en) Separator for separating a mixture
DE922423C (en) Transformer or reactor with a strongly flattened current-voltage characteristic in the upper part
DE69918197T2 (en) Hybrid type magnet and stepping motor containing it
DE1489691A1 (en) Electromagnet that can be fed with direct current, alternating current or three-phase current
DE1565881A1 (en) Method for the controlled heating of a target material in a high-vacuum electron beam furnace and arrangement for carrying out the same
EP0134827A1 (en) Electromagnetic drive for continuous and stepwise linear or rotary movements
DE2851038A1 (en) LINEAR ASYNCHRONOUS MOTOR
DE2654714C3 (en) Crosspoint switching matrix
EP0019118B1 (en) Installation for stirring metal melts in continuous casting plants
DE2646784C3 (en) Permanent magnetic adhesive plate
DE202004007443U1 (en) Device for reshaping rod-shaped and / or tubular electrically conductive goods
DE2059971A1 (en) Device, especially for electromagnetic drives, switchgear or control or regulation systems
WO2010084175A2 (en) Method and device for controlling the translation speed, the rotational speed, and the frequency and/or the amplitude of linear, rotational, and pendulum oscillations of components made of electrically conductive, non-ferromagnetic material by means of magnetic fields
EP0091896A1 (en) Scale preventing and eliminating apparatus
DE2757342C2 (en) Arrangement for the electrodynamic guiding of the liquid sump of a metal slab
DE38385C (en) Devices to be in electric railways with current Zu- respectively. Transfer by the rails in the routes shared by traffic (crossings, etc.) to use the rails as required for electricity supply and discharge
DE10318484B3 (en) Eddy current type acceleration measurement device, e.g. for machine tool use, has planar sensor coils positioned so that their windings overlapping at least partially front surface of a field generating permanent magnet
DE2659775B2 (en) Correction coil arrangement for the homogenization of a magnetic field between two pole piece surfaces of a magnet, as well as a method for its operation
DE2912539A1 (en) Electromagnetic stirrer for continuous casting plant - where DC is fed through some slab guide rolls and also through helical coil surrounding slab to create stirring motion
DE3133620C2 (en) Lockout solenoid trigger
DE1257282B (en) Magnet arrangement with layered pole parts from sheet metal, which enclose an air gap with an increasing inner width in its longitudinal direction

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110209

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: MORGENSTERN, HANS-UWE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 557106

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120515

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009003491

Country of ref document: DE

Effective date: 20120712

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120809

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120909

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120810

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120910

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

BERE Be: lapsed

Owner name: TMT TAPPING-MEASURING-TECHNOLOGY G.M.B.H.

Effective date: 20120831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

26N No opposition filed

Effective date: 20130212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120820

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009003491

Country of ref document: DE

Effective date: 20130212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120809

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090806

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20140821

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20140821

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20140620

Year of fee payment: 6

Ref country code: FR

Payment date: 20140819

Year of fee payment: 6

Ref country code: GB

Payment date: 20140821

Year of fee payment: 6

Ref country code: SE

Payment date: 20140821

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140827

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20141024

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009003491

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150806

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 557106

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150806

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150806

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20150901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150807

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150806

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150806

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831