EP2307698A1 - Fuel injector - Google Patents

Fuel injector

Info

Publication number
EP2307698A1
EP2307698A1 EP09769060A EP09769060A EP2307698A1 EP 2307698 A1 EP2307698 A1 EP 2307698A1 EP 09769060 A EP09769060 A EP 09769060A EP 09769060 A EP09769060 A EP 09769060A EP 2307698 A1 EP2307698 A1 EP 2307698A1
Authority
EP
European Patent Office
Prior art keywords
fuel injector
fuel
coil
magnetic
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09769060A
Other languages
German (de)
French (fr)
Other versions
EP2307698B1 (en
Inventor
Hans-Christoph Magel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2307698A1 publication Critical patent/EP2307698A1/en
Application granted granted Critical
Publication of EP2307698B1 publication Critical patent/EP2307698B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M53/00Fuel-injection apparatus characterised by having heating, cooling or thermally-insulating means
    • F02M53/04Injectors with heating, cooling, or thermally-insulating means
    • F02M53/043Injectors with heating, cooling, or thermally-insulating means with cooling means other than air cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/002Arrangement of leakage or drain conduits in or from injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2547/00Special features for fuel-injection valves actuated by fluid pressure
    • F02M2547/003Valve inserts containing control chamber and valve piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2700/00Supplying, feeding or preparing air, fuel, fuel air mixtures or auxiliary fluids for a combustion engine; Use of exhaust gas; Compressors for piston engines
    • F02M2700/07Nozzles and injectors with controllable fuel supply
    • F02M2700/077Injectors having cooling or heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/007Details not provided for in, or of interest apart from, the apparatus of the groups F02M63/0014 - F02M63/0059
    • F02M63/0078Valve member details, e.g. special shape, hollow or fuel passages in the valve member
    • F02M63/008Hollow valve members, e.g. members internally guided

Definitions

  • An injector for injecting fuel into the combustion chamber of an internal combustion engine in which an injection valve member is actuated via a solenoid-operated control valve, is known from EP-A 1 612 403.
  • a drain throttle from a control room can be closed or released in the fuel return.
  • the control chamber is bounded on one side by a control piston with which an injection valve member is actuated which releases at least one injection opening into the combustion chamber of the internal combustion engine or closes it.
  • the outlet throttle is received in a body, which is provided on the side facing away from the control chamber with a tapered valve seat. In this valve seat, a closing element is adjustable, which is connected to the armature of the solenoid valve.
  • an edge is formed on the closing element, which is provided against a conically shaped seat.
  • the closing element moves on an axial rod, which is integrally connected to the body in which the drainage throttle is formed.
  • Hub-controlled fuel injectors are known, which are actuated via a solenoid valve.
  • the injection valve member is controlled by a servo control room.
  • the pressure in the control chamber of the fuel injector in turn is controlled by a solenoid valve.
  • Injektorabêt a solenoid valve is necessary, which has the shortest possible switching times, therefore high switching speeds.
  • the use a pressure compensated formed valve piston allows small spring forces, smaller magnetic forces to be generated by the electromagnet, and smaller valve strokes and thus shorter switching times. Due to the shorter valve switching times, the injection performance, in particular the multiple injection capability of the fuel injector, can be decisively improved.
  • solenoid valves with servo control the control amount of the servo loop and any leaks occurring at the guides produce quite high temperatures. These fuel quantities are relaxed by the high system pressure. This leads to a temperature load of the material of the fuel injector and thus material problems.
  • the magnetic coil is critical, since the coil temperature is increased compared to that of the fuel by the entry of electrical energy.
  • the currently used plastics for coil carriers and encapsulation are not suitable for higher temperatures, and the coil resistance increases with the temperature, so that the coil design difficult.
  • the permissible temperature range to which the actuators can be exposed is thereby exceeded.
  • the heat dissipation through the injector by heat conduction is relatively low, heat dissipation can be done in the head region of the fuel injector at best by convection.
  • the magnetic coil In currently used solenoid valves for controlling fuel injectors for self-igniting internal combustion engines, the magnetic coil is usually surrounded by a magnetic core to produce a sufficiently high magnetic force. As a result, the magnetic coil is thermally poorly connected and can only give off little heat energy. By contrast, the introduced electrical drive energy results in high coil temperatures that are above the temperature of the fuel.
  • a corresponding flow cross-section is created between the magnetic core and the magnetic coil, which can be formed, for example, as a ring cross-section.
  • This ring cross-section is at least partially directly flowed through by the return amount.
  • the magnetic coil is not sealed embedded in an annular recess of the magnetic core, but between the outer circumference of the annularly configured magnetic coil and this enclosing recess in the interior of the magnetic core, an annular flow cross-section is left.
  • the annular flow cross-section allows an all-round flushing of the annular or toroidal magnetic coil. This allows not only the inner and outer peripheral surfaces, but also the upper and lower end side are flowed through by the diverted fuel.
  • bores may be provided in the anchor plate guided on an anchor bolt, which favor inflow of the discharged fuel in the direction of the low-pressure side return.
  • a collecting line forming flow cross sections are arranged in the magnetic core above the recess in the magnetic core, through which flows the diverted, heated by the solenoid fuel in the low-pressure side return.
  • the magnetic coil can be enclosed within an annular space of the magnetic core by a coil carrier, which in turn flows around the diverted quantity or amount of leakage.
  • a spacer can be arranged so that an all-round flow around the magnetic coil or the bobbin on the end faces and the Inner peripheral or outer peripheral surfaces is guaranteed.
  • the spacer causes advantageously in the magnetic core in the direction of the return to the low pressure region arranged openings are not closed by the magnetic coil, but a first annular trained flow path and a second annular flow path formed above a front side of the magnetic coil and merged over in the magnetic core , with Abschkanälen in a cover aligned openings can be controlled in the low-pressure side return.
  • the single figure shows a section through the erfinndungshiel proposed fuel injector, the switching valve is designed as a solenoid valve, which comprises a magnetic group comprising a magnetic coil spooled around by the abated fuel.
  • a fuel injector 10 is acted upon by a high-pressure line 12 with fuel under system pressure.
  • the high pressure line 12 in turn is acted upon by a high-pressure accumulator body (common rail) with fuel under system pressure.
  • the high-pressure storage body (common rail) in turn is acted upon by a high-pressure pump or other high-pressure delivery unit, so that the fuel stored in this is under a system pressure of 2000 bar and more.
  • fuel is supplied to an injector body 14 of the fuel injector 10 according to the drawing.
  • the fuel delivered via the high-pressure feed line 12 into the injector body 14 is stored in a storage volume 16.
  • a nozzle body 18 In the upper region of the fuel injector 10, this includes an actuator housing 20 in which a switching valve is received.
  • the switching valve is preferably a solenoid valve 22.
  • the injector body 14 of the fuel injector 10 comprises a valve piece 24.
  • a control chamber 28 is formed within the valve piece 24, a control chamber 28 is formed.
  • the control chamber 28 within the valve piece 24 comprises an inlet throttle 30 and at least one outlet throttle 32 formed in a drainage channel 34. It is ensured via the inlet throttle 30 that the control chamber 28 formed in the valve element 24 is always supplied with fuel at system pressure.
  • a control amount in the direction of a low-pressure side return 84 is diverted from the control chamber 28.
  • the fuel in the control chamber 28 via the at least one inlet throttle 30 pending, under system pressure fuel acting on an end face of a preferably needle-shaped injection valve member 26.
  • This particular needle-shaped injection valve member 26 extends through the storage volume sixteenth
  • the valve piece 24 comprises at its upper plan side a valve seat 36 which may be formed as a plan seat, a conical seat or as a seat for a ball-shaped closing element.
  • the valve piece 24 is fastened in the injector body 24 via a valve clamping nut 40.
  • a closing spring 54 is located on the lower end face of the valve member 24, a closing spring 54 at. This is based on a collar 52 on the circumference of the preferably needle-shaped injection valve member 26 from.
  • the valve body 14 is connected to the nozzle body 18. The nozzle body 18 in turn is acted upon by the fuel volume which is present in the storage volume 16 of the injector body 14 and which is under system pressure.
  • the fuel under system pressure flows through conical portions 56 formed on the circumference of the preferably needle-shaped injection valve member 26, which may be one or more contours 56, to an annular space 58 in the nozzle body 18. From the drawing shows that in the illustrated position of the injection valve member 26, a seat 60 of the preferably needle-shaped injection valve member 26 is closed at the combustion chamber end of the fuel injector 10. In the position of the preferably needle-shaped injection valve member 26 shown in the drawing, no fuel can be injected via at least one injection opening 62 into a combustion chamber of an internal combustion engine, preferably a self-igniting internal combustion engine.
  • the drawing also shows that on the plan side of the valve member 24, a guide body 48 is formed.
  • the guide body 48 carries a sleeve-shaped valve member 38.
  • the valve member 38 has on its lower end face on a biting edge, which cooperates with the valve seat 36 on the upper end side of the valve piece 24.
  • the guide 48 defines an annular space 46, which is connected via at least one opening with a running in the actuator housing 20 hydraulic space.
  • the switching valve or the solenoid valve 22 illustrated in the drawing is a pressure-compensated switching valve, since the sleeve-shaped valve member 38 with an anchor plate 90 formed thereon is guided on a pressure pin 50. From the drawing shows that the pressure balance of the switching valve, in particular the solenoid valve 22, enabling pressure pin 50 on a lower end side of a lid 86, via which the actuator housing 20 is closed, is attached.
  • the switching valve in particular designed as a solenoid valve 22, comprises a magnetic group 70.
  • the magnet group 70 in turn comprises a magnetic core 72, in which a magnetic coil 74 is arranged.
  • the magnetic coil 74 may be arranged to form a first flow path 80 and / or a second flow path 82 in the magnetic core 72.
  • the formation of the flow paths 80 and 82 which are preferably designed as annular channels, makes it advantageously possible to use deactivated fuel volume for cooling the magnetic coil 74 when the valve member 38 is opened from the control chamber 28.
  • the magnetic coil 74 without a coil carrier 76 or enclosed by a coil carrier 76, in a accordingly konfi- guriert, ie trained with excess recess of the magnetic core 72 of the magnetic group 70 is recessed.
  • the execution of an oversize allows the formation of a ring cross-section having flow paths, such as the first flow path 80 and / or the second flow path 82, as shown in the drawing.
  • the magnetic coil 74 or the combination of magnetic coil 74 and coil carrier 76 can be fastened, for example, by at least one spacer 78 within the recess of the magnetic core 72.
  • an armature plate 90 of the magnet group 70 comprises at least one opening 88 formed as a bore. This means an improved flow of the lower end face of the bobbin 76 and the solenoid 74 directly, in the event that this is formed without bobbin 76.
  • the lower end face of the magnetic coil 74 and the bobbin 76 is directly flowed away from the diverted amount and thus cooled.
  • the deflected discharge quantity which cools the coil carrier 76 or the magnetic coil 74 flows according to the first flow path 80 or the second flow path 82 on the inner peripheral surface or outer circumferential surface of the coil carrier 76 or the magnetic coil 74 along.
  • the fuel flows thus cool the coil carrier 76 or the magnetic coil 74 both at their inner peripheral surface and at their outer peripheral surface. Both flow paths 80 and 82 unite at the upper end face of the coil support 76 and the magnetic coil 74.
  • the at least one spacer 78 ensures that the upper end face of the coil support 76 and the magnetic coil 74, the at least one formed in the magnetic core 72 ⁇ ffhung 78 does not close, so that the first flow path 80 and the second flow path 82 has happened amount of fuel in the direction of the cover 86 formed in the return channels 96 flows.
  • the openings in the armature plate 90 of the magnet group 70 can be designed as bores or as slots or the like in any desired production technology but as simple as possible to manufacture geometry.
  • the cover 86, which closes the actuator housing 20, comprises a collecting space 94, from which the low-pressure side return 84 extends into the low-pressure region of the fuel injection system.
  • 10 coolant holes 92 are introduced in the injector 14 of the fuel injector.
  • the at least one cooling hole 92 extends through the injector body 14 below the valve member 24 to the nozzle body 18.
  • the at least one cooling hole 92 is formed such that it has a first branch, which extends through the Injector body 14 extends, beginning below the valve member 24 and above the nozzle body 18, but still merges in the injector body 14 in a returning branch.
  • the returning branch of the at least one cooling hole 92 can either end below the valve piece 24 or, as shown in the illustration according to FIG. 1, also extend through the valve piece 24, which is fixed in the injector body 14 with the valve clamping nut 40.
  • the returning branch of the at least one cooling bore 92 on the face side of the valve piece 24 opens into the low-pressure space, in which the quantity from the annular space 46 above the valve seat 36 is diverted.
  • the coil temperature of the magnetic coil 74 can advantageously be lowered convectively without any great effort.
  • the more controlled amount or guide leakage through the first flow path 80 and / or the second flow path 82 on the inner peripheral surface or the outer peripheral surface of the bobbin 76 or a combination of magnetic coil 74 and bobbin 76 can be passed, the more effective cooling of the magnetic coil 74th can be reached.

Abstract

The invention relates to a fuel injector (10) for internal combustion engines. The fuel injector (10) comprises a control chamber (28), which is loaded with fuel under a system pressure. The pressure in the control chamber (28) can be relieved by a control valve, especially a solenoid valve (22). The solenoid valve (22) comprises a magnetic assembly (70) having a magnetic core (72) and a magnetic coil (74). A quantity controlled to flow from the control chamber (34) into a return (84) flows around the magnetic coil (74) at least partially and cools it.

Description

Beschreibung description
Titel Kraftstoffϊnj ektorTitle fuel injector
Stand der TechnikState of the art
Ein Injektor zum Einspritzen von Kraftstoff in den Brennraum einer Verbrennungskraftmaschine, bei welchem ein Einspritzventilglied über ein magnetbetriebenes Steuerventil angesteuert wird, ist aus EP-A 1 612 403 bekannt. Mit Hilfe des Steuerventils ist eine Ablauf- drossel aus einem Steuerraum in den Kraftstoffrücklauf verschließbar oder freigebbar. Der Steuerraum wird an einer Seite durch einen Steuerkolben begrenzt, mit welchem ein Einspritzventilglied angesteuert wird, das mindestens eine Einspritzöffnung in den Brennraum der Verbrennungskraftmaschine freigibt oder diese verschließt. Die Ablaufdrossel ist in einem Körper aufgenommen, welcher auf der dem Steuerraum abgewandten Seite mit einem sich verjüngenden Ventilsitz versehen ist. In diesen Ventilsitz ist ein Schließelement stellbar, das mit dem Anker des Magnetventils verbunden ist. Hierzu ist am Schließelement eine Kante ausgebildet, welche gegen einen konisch ausgeformten Sitz gestellt wird. Das Schließelement bewegt sich auf einer axialen Stange, welche mit dem Körper, in dem die Ablaufdrossel ausgebildet ist, einstückig verbunden ist. Damit das Ventil dicht schließt, ist es notwendig, hochpräzise Oberflächen herzustellen sowie eine hochgenaue Passung des Schließelementes vorzusehen, um zu vermeiden, dass das Schließelement verkantet, wodurch der Sitz nicht vollständig geschlossen wird und ein Druckverlust sowie eine Leckage entsteht.An injector for injecting fuel into the combustion chamber of an internal combustion engine, in which an injection valve member is actuated via a solenoid-operated control valve, is known from EP-A 1 612 403. With the aid of the control valve, a drain throttle from a control room can be closed or released in the fuel return. The control chamber is bounded on one side by a control piston with which an injection valve member is actuated which releases at least one injection opening into the combustion chamber of the internal combustion engine or closes it. The outlet throttle is received in a body, which is provided on the side facing away from the control chamber with a tapered valve seat. In this valve seat, a closing element is adjustable, which is connected to the armature of the solenoid valve. For this purpose, an edge is formed on the closing element, which is provided against a conically shaped seat. The closing element moves on an axial rod, which is integrally connected to the body in which the drainage throttle is formed. In order for the valve to close tightly, it is necessary to produce high-precision surfaces and to provide a highly accurate fit of the closure member to prevent the closure member from tilting, thereby not fully closing the seat and causing pressure loss and leakage.
Zum Einbringen von Kraftstoff in direkteinspritzende Verbrennungskraftmaschinen, insbesondere selbstzündende Verbrennungskraftmaschinen, werden zur Zeit vermehrt hubgesteuerte Common-Rail-Einspritzsysteme eingesetzt. Der Vorteil dieser Systeme ist der Umstand, dass der Einspritzdruck an Last und Drehzahl der Verbrennungskraftmaschine ange- passt werden kann. Bekannt sind hubgesteuerte Kraftstoffinjektoren, die über ein Magnet- ventil betätigt werden. Das Einspritzventilglied wird über einen Servosteuerraum gesteuert. Der Druck im Steuerraum des Kraftstoffinjektors wiederum wird über ein Magnetventil gesteuert. Für eine verbesserte Injektorabstimmung ist ein Magnetventil notwendig, welches möglichst kurze Schaltzeiten, demnach hohe Schaltgeschwindigkeiten aufweist. Der Einsatz eines druckausgeglichen ausgebildeten Ventilkolbens ermöglicht kleine Federkräfte, kleinere Magnetkräfte, die durch den Elektromagneten zu erzeugen sind, sowie kleinere Ventilhübe und somit kürzere Schaltzeiten. Durch die kürzeren Ventilschaltzeiten kann die Einspritzperformance, insbesondere die Mehrfacheinspritzfähigkeit des Kraftstoffinjektors, entschei- dend verbessert werden. Bei Magnetventilen mit Servosteuerung erzeugen die Steuermenge des Servokreislaufes und eventuell an den Führungen auftretende Leckagen recht hohe Temperaturen. Diese Kraftstoffmengen werden vom hohen Systemdruck entspannt. Dies führt zu einer Temperaturbelastung des Materials des Kraftstoffinjektors und damit zu Materialproblemen. Kritisch ist dabei insbesondere die Magnetspule, da durch den Eintrag der elektrischen Energie die Spulentemperatur gegenüber derjenigen des Kraftstoffes erhöht wird. Bei Magnetventilen sind die derzeit verwendeten Kunststoffe für Spulenträger und Umspritzungen nicht für höhere Temperaturen geeignet, und der Spulenwiderstand nimmt mit der Temperatur zu, so dass sich die Spulenauslegung erschwert. Insbesondere bei Injektorbauformen, bei denen das Magnetventil und der Aktor im Kopf angeordnet sind, wird dadurch der zulässige Temperaturbereich, dem die Aktoren ausgesetzt werden können, ü- berschritten. Im Kopfbereich ist die Wärmeabgabe über das Injektorgehäuse durch Wärmeleitung relativ gering, eine Wärmeabführung kann im Kopfbereich des Kraftstoffinjektors allenfalls durch Konvektion erfolgen.For introducing fuel into direct-injection internal combustion engines, in particular self-igniting internal combustion engines, increasingly hub-controlled common-rail injection systems are currently used. The advantage of these systems is the fact that the injection pressure can be adapted to the load and speed of the internal combustion engine. Hub-controlled fuel injectors are known, which are actuated via a solenoid valve. The injection valve member is controlled by a servo control room. The pressure in the control chamber of the fuel injector in turn is controlled by a solenoid valve. For improved Injektorabstimmung a solenoid valve is necessary, which has the shortest possible switching times, therefore high switching speeds. The use a pressure compensated formed valve piston allows small spring forces, smaller magnetic forces to be generated by the electromagnet, and smaller valve strokes and thus shorter switching times. Due to the shorter valve switching times, the injection performance, in particular the multiple injection capability of the fuel injector, can be decisively improved. With solenoid valves with servo control, the control amount of the servo loop and any leaks occurring at the guides produce quite high temperatures. These fuel quantities are relaxed by the high system pressure. This leads to a temperature load of the material of the fuel injector and thus material problems. In particular, the magnetic coil is critical, since the coil temperature is increased compared to that of the fuel by the entry of electrical energy. For solenoid valves, the currently used plastics for coil carriers and encapsulation are not suitable for higher temperatures, and the coil resistance increases with the temperature, so that the coil design difficult. Particularly in the case of injector designs in which the solenoid valve and the actuator are arranged in the head, the permissible temperature range to which the actuators can be exposed is thereby exceeded. In the head region, the heat dissipation through the injector by heat conduction is relatively low, heat dissipation can be done in the head region of the fuel injector at best by convection.
Bei derzeit eingesetzten Magnetventilen zur Steuerung von Kraftstoffinjektoren für selbstzündende Verbrennungskraftmaschinen ist die Magnetspule in der Regel von einem Magnetkern umgeben, um eine genügend hohe Magnetkraft zu erzeugen. Dadurch ist die Magnetspule jedoch thermisch schlecht angebunden und kann nur wenig Wärmeenergie abgeben. Durch die eingebrachte elektrische Ansteuerenergie hingegen entstehen hohe Spulen- temperaturen, die über der Temperatur des Kraftstoffes liegen.In currently used solenoid valves for controlling fuel injectors for self-igniting internal combustion engines, the magnetic coil is usually surrounded by a magnetic core to produce a sufficiently high magnetic force. As a result, the magnetic coil is thermally poorly connected and can only give off little heat energy. By contrast, the introduced electrical drive energy results in high coil temperatures that are above the temperature of the fuel.
Offenbarung der ErfindungDisclosure of the invention
Zur Reduzierung der Temperatur der Magnetspule, die in der Regel in den Magnetkern ei- ner Magnetbaugruppe eingebettet ist, wird vorgeschlagen, die Rücklaufmenge eines Servo- ventils zumindest teilweise direkt an der Magnetspule vorbeizuführen. Dabei nimmt dieseIn order to reduce the temperature of the magnet coil, which is usually embedded in the magnet core of a magnet assembly, it is proposed to at least partially pass the return flow of a servo valve directly past the magnet coil. It takes this
Rücklaufmenge Wärme von der Magnetspule auf, so dass die Temperatur der Magnetspule sinkt. Um dieses zu erreichen, wird zwischen dem Magnetkern und der Magnetspule ein dementsprechender Strömungsquerschnitt geschaffen, der zum Beispiel als Ringquerschnitt ausgebildet sein kann. Dieser Ringquerschnitt wird durch die Rücklaufmenge zumindest teilweise direkt durchströmt. Im Gegensatz zu bisher eingesetzten Magnetventilkonzepten ist bei der erfϊndungsgemäß vorgeschlagenen Magnetventilbaugruppe die Magnetspule nicht abgedichtet in eine ringförmige Ausnehmung des Magnetkerns eingelassen, sondern zwischen dem Außenumfang der ringförmig konfigurierten Magnetspule und der diese umschließenden Ausnehmung im Inneren des Magnetkerns wird ein ringförmig verlaufender Strömungsquerschnitt belassen. Der ringförmig verlaufende Strömungsquerschnitt erlaubt eine allseitige Umspülung der ring- oder torusförmig ausgebildeten Magnetspule. Damit können nicht nur deren Innen- und Außenumfangsflächen, sondern auch deren obere und untere Stirnseite vom abgesteuerten Kraftstoff durchströmt werden. Um diese Umströmung der Magnetspule zu verbessern, können in der an einem Ankerbolzen geführten Ankerplatte Bohrungen vorgesehen sein, die ein Zuströmen des abgesteuerten Kraftstoffes in Richtung des niederdruckseitigen Rücklaufes begünstigen. In vorteilhafter Weise sind im Magnetkern eine Sammelleitung bildende Strömungsquerschnitte oberhalb der Ausnehmung im Magnetkern angeordnet, über welche der abgesteuerte, durch die Magnetspule erwärmte Kraftstoff in den niederdruckseitigen Rücklauf abströmt. Durch die erfindungsgemäß vorgeschlagene Lösung ist ein konvektiver Wärmetransport von der allseitig umströmten Magnetspule an den diese umströmenden abgesteuerten Kraftstoff, der in den niederdruckseitigen Rücklauf des Kraftstoffeinspritzsystems abströmt, gegeben.Return amount of heat from the solenoid, so that the temperature of the solenoid decreases. To achieve this, a corresponding flow cross-section is created between the magnetic core and the magnetic coil, which can be formed, for example, as a ring cross-section. This ring cross-section is at least partially directly flowed through by the return amount. In contrast to previously used solenoid valve concepts in the erfϊndungsgemäß proposed solenoid valve assembly, the magnetic coil is not sealed embedded in an annular recess of the magnetic core, but between the outer circumference of the annularly configured magnetic coil and this enclosing recess in the interior of the magnetic core, an annular flow cross-section is left. The annular flow cross-section allows an all-round flushing of the annular or toroidal magnetic coil. This allows not only the inner and outer peripheral surfaces, but also the upper and lower end side are flowed through by the diverted fuel. In order to improve this flow around the solenoid, bores may be provided in the anchor plate guided on an anchor bolt, which favor inflow of the discharged fuel in the direction of the low-pressure side return. Advantageously, a collecting line forming flow cross sections are arranged in the magnetic core above the recess in the magnetic core, through which flows the diverted, heated by the solenoid fuel in the low-pressure side return. By inventively proposed solution is a convective heat transfer from the all-around flowing solenoid to the flowing around this diverted fuel, which flows into the low-pressure side return of the fuel injection system given.
In vorteilhafter Weise kann die Magnetspule innerhalb eines Ringraumes des Magnetkerns von einem Spulenträger umschlossen sein, der seinerseits von der abgesteuerten Menge oder von Leckagemenge umströmt ist. Des Weiteren kann in einer vorteilhaften Ausführungsvariante des der Erfindung zugrunde liegenden Gedankens in der Ausnehmung des Magnetkerns, in dem die Magnetspule gegebenenfalls mit Spulenträger angeordnet ist, ein Abstandhalter angeordnet werden, so dass eine allseitige Umströmung der Magnetspule bzw. des Spulenträgers an den Stirnseiten und den Innenumfangs- bzw. Außenumfangsflächen gewährleistet ist. Der Abstandhalter bewirkt in vorteilhafter Weise, dass im Magnetkern in Richtung des Rücklaufes zum Niederdruckbereich angeordnete Öffnungen durch die Magnetspule nicht verschlossen werden, sondern ein erster ringförmig ausgebildeter Strö- mungspfad und ein zweiter ringförmig ausgebildeter Strömungspfad oberhalb einer Stirnseite der Magnetspule zusammengeführt und über im Magnetkern ausgebildete, mit Absteuerkanälen in einem Deckel fluchtende Öffnungen in den niederdruckseitigen Rücklauf abgesteuert werden können.Advantageously, the magnetic coil can be enclosed within an annular space of the magnetic core by a coil carrier, which in turn flows around the diverted quantity or amount of leakage. Furthermore, in an advantageous embodiment of the invention underlying the idea in the recess of the magnetic core, in which the magnetic coil is optionally arranged with coil support, a spacer can be arranged so that an all-round flow around the magnetic coil or the bobbin on the end faces and the Inner peripheral or outer peripheral surfaces is guaranteed. The spacer causes advantageously in the magnetic core in the direction of the return to the low pressure region arranged openings are not closed by the magnetic coil, but a first annular trained flow path and a second annular flow path formed above a front side of the magnetic coil and merged over in the magnetic core , with Absteuerkanälen in a cover aligned openings can be controlled in the low-pressure side return.
Kurze Beschreibung der ZeichnungShort description of the drawing
Anhand der Zeichnung wird die erfindungsgemäß vorgeschlagene Lösung eingehender beschrieben. -A-With reference to the drawing, the proposed solution according to the invention will be described in more detail. -A-
Die einzige Figur zeigt einen Schnitt durch den erfϊndungsgemäß vorgeschlagenen Kraftstoffinjektor, dessen Schaltventil als Magnetventil ausgebildet ist, welches eine Magnetgruppe umfasst, die eine vom abgesteuerten Kraftstoff umspülte Magnetspule umfasst.The single figure shows a section through the erfinndungsgemäß proposed fuel injector, the switching valve is designed as a solenoid valve, which comprises a magnetic group comprising a magnetic coil spooled around by the abated fuel.
Ausführungsformenembodiments
Wie der Darstellung gemäß der Zeichnung entnommen werden kann, ist ein Kraftstoffinjek- tor 10 über eine Hochdruckleitung 12 mit unter Systemdruck stehendem Kraftstoff beauf- schlagt. Die Hochdruckleitung 12 ihrerseits wird über einen Hochdruckspeicherkörper (Common-Rail) mit unter Systemdruck stehendem Kraftstoff beaufschlagt. Der Hochdruckspeicherkörper (Common-Rail) ist seinerseits über eine Hochdruckpumpe oder ein anderes Hochdruckförderaggregat beaufschlagt, so dass der in diesem bevorratete Kraftstoff unter einem Systemdruck von 2000 bar und mehr steht. Auf diesem Druckniveau, d.h. dem Sys- temdruckniveau, wird einem Injektorkörper 14 des Kraftstoffinjektors 10 gemäß der Zeichnung Kraftstoff zugeführt. Der über die Hochdruckzuleitung 12 in den Injektorkörper 14 geförderte Kraftstoff wird in einem Speichervolumen 16 bevorratet.As can be seen from the illustration in the drawing, a fuel injector 10 is acted upon by a high-pressure line 12 with fuel under system pressure. The high pressure line 12 in turn is acted upon by a high-pressure accumulator body (common rail) with fuel under system pressure. The high-pressure storage body (common rail) in turn is acted upon by a high-pressure pump or other high-pressure delivery unit, so that the fuel stored in this is under a system pressure of 2000 bar and more. At this pressure level, i. the system pressure level, fuel is supplied to an injector body 14 of the fuel injector 10 according to the drawing. The fuel delivered via the high-pressure feed line 12 into the injector body 14 is stored in a storage volume 16.
Unterhalb des Injektorkörpers 14 des Kraftstoffinjektors 10 befindet sich ein Düsenkörper 18. Im oberen Bereich des Kraftstoffinjektors 10 umfasst dieser ein Aktorgehäuse 20, in dem ein Schaltventil aufgenommen ist. Bei dem Schaltventil handelt es sich bevorzugt um ein Magnetventil 22. Des Weiteren umfasst der Injektorkörper 14 des Kraftstoffinjektors 10 ein Ventilstück 24. Innerhalb des Ventilstücks 24 ist ein Steuerraum 28 ausgebildet. Der Steuerraum 28 innerhalb des Ventilstücks 24 umfasst eine Zulaufdrossel 30 sowie mindes- tens eine in einem Ablaufkanal 34 ausgebildete Ablaufdrossel 32. Über die Zulaufdrossel 30 ist gewährleistet, dass der im Ventilstück 24 ausgebildete Steuerraum 28 stets mit unter Systemdruck stehendem Kraftstoff beaufschlagt ist. Bei Betätigung des Schaltventils, insbesondere des Magnetventils 22, wird aus dem Steuerraum 28 eine Steuermenge in Richtung eines niederdruckseitigen Rücklaufes 84 abgesteuert. Der im Steuerraum 28 über die min- destens eine Zulauf drossel 30 anstehende, unter Systemdruck stehende Kraftstoff beaufschlagt eine Stirnfläche eines bevorzugt nadeiförmig ausgebildeten Einspritzventilgliedes 26. Dieses insbesondere nadeiförmig ausgebildete Einspritzventilglied 26 erstreckt sich durch das Speichervolumen 16.Below the injector body 14 of the fuel injector 10 is a nozzle body 18. In the upper region of the fuel injector 10, this includes an actuator housing 20 in which a switching valve is received. The switching valve is preferably a solenoid valve 22. Furthermore, the injector body 14 of the fuel injector 10 comprises a valve piece 24. Within the valve piece 24, a control chamber 28 is formed. The control chamber 28 within the valve piece 24 comprises an inlet throttle 30 and at least one outlet throttle 32 formed in a drainage channel 34. It is ensured via the inlet throttle 30 that the control chamber 28 formed in the valve element 24 is always supplied with fuel at system pressure. Upon actuation of the switching valve, in particular of the solenoid valve 22, a control amount in the direction of a low-pressure side return 84 is diverted from the control chamber 28. The fuel in the control chamber 28 via the at least one inlet throttle 30 pending, under system pressure fuel acting on an end face of a preferably needle-shaped injection valve member 26. This particular needle-shaped injection valve member 26 extends through the storage volume sixteenth
Das Ventilstück 24 umfasst an seiner oberen Planseite einen Ventilsitz 36, der als Plansitz, als Kegelsitz oder als Sitz für ein kugelförmig ausgebildetes Schließelement ausgebildet sein kann. Das Ventilstück 24 ist über eine Ventilspannmutter 40 im Injektorkörper 24 befestigt. Wie aus der Zeichnung weiter hervorgeht, liegt an der unteren Stirnseite des Ventilstückes 24 eine Schließfeder 54 an. Diese stützt sich auf einem Bund 52 am Umfang des bevorzugt nadeiförmig ausgebildeten Einspritzventilgliedes 26 ab. Der Ventilkörper 14 ist mit dem Düsenkörper 18 verbunden. Der Düsenkörper 18 seinerseits ist über das im Speichervolu- men 16 des Injektorkörpers 14 anstehende, unter Systemdruck stehende Kraftstoffvolumen beaufschlagt. Der unter Systemdruck stehende Kraftstoff strömt über am Umfang des bevorzugt nadeiförmig ausgebildeten Einspritzventilgliedes 26 ausgebildete Anschliffe 56, wobei es sich um einen oder mehrere Anschliffe 56 handeln kann, einem Ringraum 58 im Düsenkörper 18 zu. Aus der Zeichnung geht hervor, dass in der dargestellten Position des Einspritzventilgliedes 26 ein Sitz 60 des bevorzugt nadeiförmig ausgebildeten Einspritzventilgliedes 26 am brennraumseitigen Ende des Kraftstoffinjektors 10 verschlossen ist. In der in der Zeichnung dargestellten Position des bevorzugt nadeiförmig ausgebildeten Einspritzventilgliedes 26 kann kein Kraftstoff über mindestens eine Einspritzöffnung 62 in einen Brennraum einer Verbrennungskraftmaschine, bevorzugt einer selbstzündenden Verbren- nungskraftmaschine, eingespritzt werden.The valve piece 24 comprises at its upper plan side a valve seat 36 which may be formed as a plan seat, a conical seat or as a seat for a ball-shaped closing element. The valve piece 24 is fastened in the injector body 24 via a valve clamping nut 40. As is apparent from the drawing, is located on the lower end face of the valve member 24, a closing spring 54 at. This is based on a collar 52 on the circumference of the preferably needle-shaped injection valve member 26 from. The valve body 14 is connected to the nozzle body 18. The nozzle body 18 in turn is acted upon by the fuel volume which is present in the storage volume 16 of the injector body 14 and which is under system pressure. The fuel under system pressure flows through conical portions 56 formed on the circumference of the preferably needle-shaped injection valve member 26, which may be one or more contours 56, to an annular space 58 in the nozzle body 18. From the drawing shows that in the illustrated position of the injection valve member 26, a seat 60 of the preferably needle-shaped injection valve member 26 is closed at the combustion chamber end of the fuel injector 10. In the position of the preferably needle-shaped injection valve member 26 shown in the drawing, no fuel can be injected via at least one injection opening 62 into a combustion chamber of an internal combustion engine, preferably a self-igniting internal combustion engine.
Die Zeichnung zeigt ferner, dass auf der Planseite des Ventilstücks 24 ein Führungskörper 48 ausgebildet ist. Der Führungskörper 48 führt ein hülsenförmig ausgebildetes Ventilglied 38. Das Ventilglied 38 weist an seiner unteren Stirnseite eine Beißkante auf, welche mit dem Ventilsitz 36 an der oberen Stirnseite des Ventilstücks 24 zusammenwirkt. Die Führung 48 begrenzt einen Ringraum 46, der über mindestens eine Öffnung mit einem im Aktorgehäuse 20 ausgeführten hydraulischen Raum in Verbindung steht. Des Weiteren handelt es sich bei dem in der Zeichnung dargestellten Schaltventil bzw. dem Magnetventil 22 um ein druckausgeglichenes Schaltventil, da das hülsenförmig ausgebildete Ventilglied 38 mit daran ausgebildeter Ankerplatte 90 an einem Druckstift 50 geführt ist. Aus der Zeichnung geht hervor, dass der die Druckausgeglichenheit des Schaltventils, insbesondere des Magnetventils 22, ermöglichende Druckstift 50 an einer unteren Stirnseite eines Deckels 86, über den das Aktorgehäuse 20 verschlossen ist, befestigt ist.The drawing also shows that on the plan side of the valve member 24, a guide body 48 is formed. The guide body 48 carries a sleeve-shaped valve member 38. The valve member 38 has on its lower end face on a biting edge, which cooperates with the valve seat 36 on the upper end side of the valve piece 24. The guide 48 defines an annular space 46, which is connected via at least one opening with a running in the actuator housing 20 hydraulic space. Furthermore, the switching valve or the solenoid valve 22 illustrated in the drawing is a pressure-compensated switching valve, since the sleeve-shaped valve member 38 with an anchor plate 90 formed thereon is guided on a pressure pin 50. From the drawing shows that the pressure balance of the switching valve, in particular the solenoid valve 22, enabling pressure pin 50 on a lower end side of a lid 86, via which the actuator housing 20 is closed, is attached.
Die Zeichnung zeigt des Weiteren, dass das Schaltventil, insbesondere ausgebildet als Magnetventil 22, eine Magnetgruppe 70 umfasst. Die Magnetgruppe 70 ihrerseits umfasst einen Magnetkern 72, in dem eine Magnetspule 74 angeordnet ist. Die Magnetspule 74 kann unter Ausbildung eines ersten Strömungspfades 80 und/oder eines zweiten Strömungspfades 82 im Magnetkern 72 angeordnet sein. Die Ausbildung der bevorzugt als Ringkanäle ausgebil- deten Strömungspfade 80 bzw. 82 ermöglicht es in vorteilhafter Weise, beim Öffnen des Ventilgliedes 38 aus dem Steuerraum 28 abgesteuertes Kraftstoffvolumen zur Kühlung der Magnetspule 74 einzusetzen. Dabei ist unerheblich, ob die Magnetspule 74 ohne einen Spulenträger 76 oder von einem Spulenträger 76 umschlossen, in eine dementsprechend konfi- gurierte, d.h. mit Übermaß ausgebildete Ausnehmung des Magnetkerns 72 der Magnetgruppe 70 eingelassen ist. Die Ausfuhrung eines Übermaßes ermöglicht die Ausbildung einen Ringquerschnitt aufweisender Strömungspfade, wie des ersten Strömungspfades 80 und/oder des zweiten Strömungspfades 82, wie in der Zeichnung dargestellt. Die Magnet- spule 74 bzw. die Kombination aus Magnetspule 74 und Spulenträger 76 kann zum Beispiel durch mindestens einen Abstandhalter 78 innerhalb der Ausnehmung des Magnetkerns 72 befestigt werden. Dadurch ist sichergestellt, dass der die Magnetspule 74 bzw. deren Spulenträger 76 umströmende, deren Temperatur senkende abgesteuerte Kraftstoff über Öffnungen 98 im Magnetkern 72 abströmt. In vorteilhafter Weise befindet sich am oberen Be- reich des Magnetkerns 72 eine Anzahl von Öffnungen 78, die mit Rücklaufkanälen 76 fluchten. Die Rücklaufkanäle 76 sind in vorteilhafter Weise im Deckel 86 ausgebildet, der das Aktorgehäuse 20 des Kraftstoffinjektors 10 verschließt. Der den Spulenträger 76 bzw. die Magnetspule 74 unmittelbar umströmende Kraftstoff, bei dem es sich um aus dem Steuerraum 28 abgesteuerte Menge oder um Führungsleckage oder dergleichen handelt, wird im Deckel 86 in einem Sammelraum 94 gesammelt, von dem aus der niederdruckseitige Rücklauf 84 in den niederdruckseitigen Bereich des Kraftstoffeinspritzsystems abströmt.The drawing also shows that the switching valve, in particular designed as a solenoid valve 22, comprises a magnetic group 70. The magnet group 70 in turn comprises a magnetic core 72, in which a magnetic coil 74 is arranged. The magnetic coil 74 may be arranged to form a first flow path 80 and / or a second flow path 82 in the magnetic core 72. The formation of the flow paths 80 and 82, which are preferably designed as annular channels, makes it advantageously possible to use deactivated fuel volume for cooling the magnetic coil 74 when the valve member 38 is opened from the control chamber 28. It is irrelevant whether the magnetic coil 74 without a coil carrier 76 or enclosed by a coil carrier 76, in a accordingly konfi- gurierte, ie trained with excess recess of the magnetic core 72 of the magnetic group 70 is recessed. The execution of an oversize allows the formation of a ring cross-section having flow paths, such as the first flow path 80 and / or the second flow path 82, as shown in the drawing. The magnetic coil 74 or the combination of magnetic coil 74 and coil carrier 76 can be fastened, for example, by at least one spacer 78 within the recess of the magnetic core 72. This ensures that the diverted fuel flowing around the magnetic coil 74 or its coil support 76, the temperature of which is lowered, dissipates through openings 98 in the magnetic core 72. In an advantageous manner, a number of openings 78, which are aligned with return channels 76, are located at the upper area of the magnetic core 72. The return channels 76 are formed in an advantageous manner in the lid 86, which closes the actuator housing 20 of the fuel injector 10. The fuel flowing around the bobbin 76 or the solenoid 74 directly, which is amount discharged from the control chamber 28, or a guide leak or the like, is collected in the lid 86 in a collecting space 94, from which the low-pressure side return 84 into the low-pressure side region of the fuel injection system flows.
Aus der Darstellung der Zeichnung geht hervor, dass die Rücklaufkanäle 76, die in den Sammelraum 94 des Deckels 86 münden, in vorteilhafter Weise mit den Öffnungen 98 an der Oberseite des Magnetkerns 82 fluchten.From the illustration of the drawing shows that the return channels 76 which open into the plenum 94 of the lid 86, are aligned in an advantageous manner with the openings 98 at the top of the magnetic core 82.
Um die Kühlung der Magnetspule 74 bzw. der Kombination aus Magnetspule 74 und des Spulenträgers 76 weiter zu verbessern, ist in der Zeichnung dargestellt, dass eine Ankerplatte 90 der Magnetgruppe 70 mindestens eine als Bohrung ausgebildete Öffnung 88 umfasst. Dies bedeutet eine verbesserte Anströmung der unteren Stirnseite des Spulenträgers 76 bzw. der Magnetspule 74 unmittelbar, für den Fall, dass diese ohne Spulenträger 76 ausgebildet ist. Über die in der Ankerplatte 90 ausgebildete mindestens eine Öffnung 88 wird die untere Stirnseite der Magnetspule 74 bzw. des Spulenträgers 76 unmittelbar von der abgesteuerten Menge abgeströmt und somit gekühlt. Von der unteren Stirnseite des Spulenträ- gers 76 bzw. der Magnetspule 74 strömt die abgesteuerte, den Spulenträger 76 bzw. die Magnetspule 74 kühlende Absteuermenge entsprechend des ersten Strömungspfades 80 bzw. des zweiten Strömungspfades 82 an der Innenumfangsfläche bzw. Außenumfangsfiä- che des Spulenträgers 76 bzw. der Magnetspule 74 entlang. Die Kraftstoffströmungen kühlen somit den Spulenträger 76 bzw. die Magnetspule 74 sowohl an deren Innenumfangsfiä- che als auch an deren Außenumfangsfiäche. Beide Strömungspfade 80 bzw. 82 vereinigen sich an der oberen Stirnseite des Spulenträgers 76 bzw. der Magnetspule 74. Durch den mindestens einen Abstandhalter 78 ist gewährleistet, dass die obere Stirnseite des Spulenträgers 76 bzw. der Magnetspule 74 die mindestens eine im Magnetkern 72 ausgebildete Öffhung 78 nicht verschließt, so dass die den ersten Strömungspfad 80 bzw. den zweiten Strömungspfad 82 passiert habende Kraftstoffmenge in Richtung der im Deckel 86 ausgebildeten Rücklaufkanäle 96 abströmt. Die Öffnungen in der Ankerplatte 90 der Magnetgruppe 70 können als Bohrungen oder als Schlitze oder dergleichen in beliebiger, ferti- gungstechnisch jedoch möglichst einfach herzustellender Geometrie ausgebildet sein. Der Deckel 86, welcher das Aktorgehäuse 20 verschließt, umfasst einen Sammelraum 94, von dem aus der niederdruckseitige Rücklauf 84 in den Niederdruckbereich des Kraftstoffeinspritzsystems verläuft.In order to further improve the cooling of the magnet coil 74 or the combination of magnet coil 74 and the coil carrier 76, it is shown in the drawing that an armature plate 90 of the magnet group 70 comprises at least one opening 88 formed as a bore. This means an improved flow of the lower end face of the bobbin 76 and the solenoid 74 directly, in the event that this is formed without bobbin 76. About the formed in the anchor plate 90 at least one opening 88, the lower end face of the magnetic coil 74 and the bobbin 76 is directly flowed away from the diverted amount and thus cooled. From the lower end face of the coil carrier 76 or the magnetic coil 74, the deflected discharge quantity which cools the coil carrier 76 or the magnetic coil 74 flows according to the first flow path 80 or the second flow path 82 on the inner peripheral surface or outer circumferential surface of the coil carrier 76 or the magnetic coil 74 along. The fuel flows thus cool the coil carrier 76 or the magnetic coil 74 both at their inner peripheral surface and at their outer peripheral surface. Both flow paths 80 and 82 unite at the upper end face of the coil support 76 and the magnetic coil 74. The at least one spacer 78 ensures that the upper end face of the coil support 76 and the magnetic coil 74, the at least one formed in the magnetic core 72 Öffhung 78 does not close, so that the first flow path 80 and the second flow path 82 has happened amount of fuel in the direction of the cover 86 formed in the return channels 96 flows. The openings in the armature plate 90 of the magnet group 70 can be designed as bores or as slots or the like in any desired production technology but as simple as possible to manufacture geometry. The cover 86, which closes the actuator housing 20, comprises a collecting space 94, from which the low-pressure side return 84 extends into the low-pressure region of the fuel injection system.
Die im Magnetkern 72 der Magnetgruppe 70 ausgebildeten, oberhalb des Spulenträgers 76 bzw. der Magnetspule 74 im Magnetkern 72 ausgebildeten Öffnungen 98 können neben einer Abfuhr von abgesteuerter, die Magnetspule 74 bzw. die Spulenträger- Magnetspulenkombination 74, 76 kühlender Menge auch zur Durchführung der elektrischen Kontaktierungen der Magnetspule 74 genutzt werden, für eine entsprechende Abdichtung, um den Austritt von Kraftstoff zu vermeiden, ist Sorge zu tragen.The formed in the magnetic core 72 of the magnetic group 70, above the bobbin 76 and the magnetic coil 74 formed in the magnetic core 72 openings 98 in addition to a dissipation of abgesteuerter, the solenoid coil 74 and the Spulenträger- solenoid coil 74, 76 cooling amount also to carry out the electrical Contacts of the solenoid 74 are used, for a corresponding seal to prevent the escape of fuel, care must be taken.
In einer vorteilhaften Ausführungsvariante sind im Injektorkörper 14 des Kraftstoffinjektors 10 Kühlbohrungen 92 eingebracht. Wie aus der Zeichnung hervorgeht, erstreckt sich die mindestens eine Kühlbohrung 92 durch den Injektorkörper 14 unterhalb des Ventilstücks 24 bis an den Düsenkörper 18. In vorteilhafter Weise ist die mindestens eine Kühlbohrung 92 derart ausgebildet, dass diese einen ersten Ast aufweist, der sich durch den Injektorkörper 14 erstreckt, beginnend unterhalb des Ventilstückes 24 und oberhalb des Düsenkörpers 18, jedoch noch im Injektorkörper 14 in einen rücklaufenden Ast übergeht. Der rücklaufende Ast der mindestens einen Kühlbohrung 92 kann entweder unterhalb des Ventilstücks 24 enden oder sich - wie in der Darstellung gemäß Figur 1 dargestellt - auch noch durch das Ventilstück 24 erstrecken, das mit der Ventilspannmutter 40 im Injektorkörper 14 fixiert ist. Wie der Darstellung gemäß Figur 1 zu entnehmen ist, mündet der rücklaufende Ast der mindestens einen Kühlbohrung 92 an der Planseite des Ventilstücks 24 in den Niederdruckraum, in den Menge aus dem Ringraum 46 oberhalb des Ventilsitzes 36 abgesteuert wird.In an advantageous embodiment, 10 coolant holes 92 are introduced in the injector 14 of the fuel injector. As is apparent from the drawing, the at least one cooling hole 92 extends through the injector body 14 below the valve member 24 to the nozzle body 18. Advantageously, the at least one cooling hole 92 is formed such that it has a first branch, which extends through the Injector body 14 extends, beginning below the valve member 24 and above the nozzle body 18, but still merges in the injector body 14 in a returning branch. The returning branch of the at least one cooling hole 92 can either end below the valve piece 24 or, as shown in the illustration according to FIG. 1, also extend through the valve piece 24, which is fixed in the injector body 14 with the valve clamping nut 40. As can be seen from the illustration according to FIG. 1, the returning branch of the at least one cooling bore 92 on the face side of the valve piece 24 opens into the low-pressure space, in which the quantity from the annular space 46 above the valve seat 36 is diverted.
Durch die erfindungsgemäß vorgeschlagene Lösung kann in vorteilhafter Weise ohne großen Aufwand die Spulentemperatur der Magnetspule 74 konvektiv gesenkt werden. Je mehr abgesteuerte Menge bzw. Führungsleckage durch den ersten Strömungspfad 80 und/oder den zweiten Strömungspfad 82 an der Innenumfangsfläche bzw. der Außenumfangsfläche des Spulenträgers 76 bzw. einer Kombination aus Magnetspule 74 und Spulenträger 76 vorbeigeleitet werden kann, eine desto effektivere Kühlung der Magnetspule 74 kann erreicht werden. As a result of the solution proposed according to the invention, the coil temperature of the magnetic coil 74 can advantageously be lowered convectively without any great effort. The more controlled amount or guide leakage through the first flow path 80 and / or the second flow path 82 on the inner peripheral surface or the outer peripheral surface of the bobbin 76 or a combination of magnetic coil 74 and bobbin 76 can be passed, the more effective cooling of the magnetic coil 74th can be reached.

Claims

Ansprüche claims
1. Kraftstoffϊnjektor (10) für Verbrennungskraftmaschinen mit einem Steuerraum (28), der mit unter einem Systemdruck stehenden Kraftstoff beaufschlagt ist, der über ein Schaltventil, insbesondere ein Magnetventil (22), druckentlastbar ist, wobei das Magnetventil (22) eine Magnetgruppe (70) mit einem Magnetkern (72) und einer Magnetspule (74) umfasst, dadurch gekennzeichnet, dass aus dem Steuerraum (34) in einen Rücklauf (84) abgesteuerte Menge die Magnetspule (74) zumindest teilweise umströmt und diese kühlt.A fuel injector (10) for internal combustion engines having a control chamber (28) pressurized with system pressure fuel pressure relievable via a switching valve, in particular a solenoid valve (22), said solenoid valve (22) having a solenoid assembly (70 ) comprising a magnetic core (72) and a magnetic coil (74), characterized in that from the control chamber (34) in a return (84) diverted amount at least partially flows around the magnetic coil (74) and this cools.
2. Kraftstoffinjektor (10) gemäß Anspruch 1, dadurch gekennzeichnet, dass die Magnetspule (74) in einer Ausnehmung des Magnetkerns (72), zumindest einen ersten Strömungspfad (80) für abgesteuerte Kraftstoffmenge bildend, angeordnet ist.2. Fuel injector (10) according to claim 1, characterized in that the magnetic coil (74) in a recess of the magnetic core (72), at least a first flow path (80) for the amount of fuel deposited, is arranged.
3. Kraftstoffinjektor (10) gemäß Anspruch 1, dadurch gekennzeichnet, dass die Magnetspule (74) in einer Ausnehmung des Magnetkerns (72), einen ersten und einen zweiten Strömungspfad (80, 82) für abgesteuerte Kraftstoffmenge bildend, angeordnet ist.A fuel injector (10) according to claim 1, characterized in that the solenoid (74) is disposed in a recess of the magnetic core (72) defining first and second flow paths (80, 82) for the amount of fuel being removed.
4. Kraftstoffinjektor (10) gemäß Anspruch 1, dadurch gekennzeichnet, dass der Magnet- kern (72) eine Ausnehmung aufweist, die einen Ringquerschnitt darstellt, in den die4. fuel injector (10) according to claim 1, characterized in that the magnetic core (72) has a recess which represents a ring cross-section, in which the
Magnetspule (74) eingelassen und mittels mindestens eines Abstandhalters (78) fixiert ist.Magnet coil (74) is inserted and fixed by means of at least one spacer (78).
5. Kraftstoffinjektor (10) gemäß Anspruch 1, dadurch gekennzeichnet, dass der Magnet- kern (72) zumindest eine Öffnung (98) oberhalb der Magnetspule (74) bzw. einer5. Fuel injector (10) according to claim 1, characterized in that the magnetic core (72) at least one opening (98) above the magnetic coil (74) or a
Kombination aus Spulenträger (76) und Magnetspule (74) aufweist.Combination of coil carrier (76) and magnetic coil (74).
6. Kraftstoffinjektor (10) gemäß Anspruch 5, dadurch gekennzeichnet, dass die mindestens eine Öffnung (98) mit mindestens einem Rücklaufkanal (96) eines Deckels (86) fluchtet, der einen Sammelraum (94) für abgesteuerte und/oder Leckagemenge umfasst.6. Fuel injector (10) according to claim 5, characterized in that the at least one opening (98) is aligned with at least one return channel (96) of a lid (86) comprising a collecting space (94) for the amount of fluid and / or leakage.
7. Kraftstoffinjektor (10) gemäß der Ansprüche 2 oder 3, dadurch gekennzeichnet, dass der erste Strömungspfad (80) und/oder der zweite Strömungspfad (82) als ringförmige Strömungskanäle ausgeführt sind.7. fuel injector (10) according to claims 2 or 3, characterized in that the first flow path (80) and / or the second flow path (82) are designed as annular flow channels.
8. Kraftstoffinjektor (10) gemäß Anspruch 1, dadurch gekennzeichnet, dass der Injektorkörper (14) und/oder das Ventilstück (24) von zumindest einer Kühlbohrung (92) durchzogen sind. 8. fuel injector (10) according to claim 1, characterized in that the injector body (14) and / or the valve piece (24) of at least one cooling bore (92) are traversed.
9. Kraftstoffϊnjektor (10) gemäß Anspruch 1, dadurch gekennzeichnet, dass zur Verbesserung der Anströmung der Magnetspule (74) die Magnetgruppe (70) eine Ankerplatte (90) umfasst, die mindestens eine Öffnung (88) aufweist.9. Kraftstoffϊnjektor (10) according to claim 1, characterized in that for improving the flow of the magnetic coil (74), the magnetic group (70) comprises an anchor plate (90) having at least one opening (88).
10. Kraftstoffinjektor (10) gemäß Anspruch 9, dadurch gekennzeichnet, dass die Öffnungen (88) in der Ankerplatte (90) als Bohrungen oder Schlitze ausgeführt sind. 10. Fuel injector (10) according to claim 9, characterized in that the openings (88) in the anchor plate (90) are designed as bores or slots.
EP09769060.6A 2008-06-27 2009-04-27 Fuel injector Not-in-force EP2307698B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200810002720 DE102008002720A1 (en) 2008-06-27 2008-06-27 fuel injector
PCT/EP2009/055028 WO2009156211A1 (en) 2008-06-27 2009-04-27 Fuel injector

Publications (2)

Publication Number Publication Date
EP2307698A1 true EP2307698A1 (en) 2011-04-13
EP2307698B1 EP2307698B1 (en) 2013-07-10

Family

ID=40821772

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09769060.6A Not-in-force EP2307698B1 (en) 2008-06-27 2009-04-27 Fuel injector

Country Status (6)

Country Link
EP (1) EP2307698B1 (en)
JP (1) JP5583122B2 (en)
CN (1) CN102076951B (en)
DE (1) DE102008002720A1 (en)
RU (1) RU2509912C2 (en)
WO (1) WO2009156211A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7937936B2 (en) * 2007-01-16 2011-05-10 Deere & Company Vehicle exhaust component arrangement
DE102009002128A1 (en) * 2009-04-02 2010-10-14 Robert Bosch Gmbh Fuel injector
DE102009027459A1 (en) * 2009-07-03 2011-01-05 Robert Bosch Gmbh Fuel injector and fuel injection system
DE102016208614A1 (en) * 2016-05-19 2017-11-23 Robert Bosch Gmbh Method for testing the functionality of a tank ventilation valve of a tank ventilation system
CN105927439B (en) * 2016-05-31 2017-05-24 清华大学 Electronic control high-pressure oil injector with magnetic and hydraulic devices fixed separately
CN106050501B (en) * 2016-08-02 2018-09-11 成都威特电喷有限责任公司 High reliability Electrocontrolled high-pressure fuel injection equipment (FIE)
CN106224148B (en) * 2016-08-02 2018-12-11 成都威特电喷有限责任公司 Electrocontrolled high-pressure fuel injection equipment (FIE) with switching swivel nut
RU2659651C1 (en) * 2017-06-19 2018-07-03 Общество с ограниченной ответственностью Управляющая компания "Алтайский завод прецизионных изделий" Electrically-controlled injector
CN107917030B (en) * 2017-10-09 2020-04-07 中国第一汽车股份有限公司 Control valve of common rail oil injector
DE102018202916A1 (en) * 2018-02-27 2019-08-29 Robert Bosch Gmbh fuel injector
CN109538380A (en) * 2019-01-17 2019-03-29 哈尔滨工程大学 A kind of double electromagnetism bypass type fuel gas injection valves of the double-iron core of measurable flow amount
CN109779792A (en) * 2019-01-17 2019-05-21 哈尔滨工程大学 A kind of double electromagnetism through type fuel gas injection valves of the double-iron core of measurable flow amount
CN112761827A (en) * 2021-01-27 2021-05-07 宁波盛煜智能科技有限公司 Gas nozzle with variable sealing sectional area

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS633410Y2 (en) * 1981-06-22 1988-01-27
JPS60240865A (en) 1984-05-16 1985-11-29 Automob Antipollut & Saf Res Center Electromagnetic type fuel injecting valve
DE3521040A1 (en) * 1985-06-12 1986-12-18 Vdo Adolf Schindling Ag, 6000 Frankfurt INJECTION VALVE
DE3602956A1 (en) * 1986-01-31 1987-08-06 Vdo Schindling ELECTROMAGNETICALLY ACTUABLE FUEL INJECTION VALVE
JPH03145562A (en) * 1989-10-30 1991-06-20 Japan Electron Control Syst Co Ltd Fuel injector
JPH0466742A (en) * 1990-07-05 1992-03-03 Yamaha Motor Co Ltd Idling control device of high-pressure fuel injection type engine
RU2062346C1 (en) * 1993-03-04 1996-06-20 Государственное малое научно-производственное предприятие "Агродизель" Unit-injector for internal combustion engine
RU2153096C2 (en) * 1994-10-13 2000-07-20 Нигель Эрик Роуз Unit of liquid slave mechanism for engine and unit of engine piston set into motion by liquid
GB9508623D0 (en) * 1995-04-28 1995-06-14 Lucas Ind Plc "Fuel injection nozzle"
DE19619523A1 (en) * 1996-05-15 1997-11-20 Bosch Gmbh Robert Fuel injector for high pressure injection
JP4054932B2 (en) * 1999-03-25 2008-03-05 株式会社デンソー Solenoid valve for fluid pressure control
JP3757261B2 (en) * 2002-08-05 2006-03-22 ボッシュ株式会社 Fuel injection valve
DE602004004254T2 (en) 2004-06-30 2007-07-12 C.R.F. S.C.P.A. Servo valve for controlling an injection valve of an internal combustion engine
RU2383772C1 (en) * 2008-09-16 2010-03-10 Государственное образовательное учреждение высшего профессионального образования "Южно-Уральский государственный университет" Method to control fuel feed and device to this end

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009156211A1 *

Also Published As

Publication number Publication date
CN102076951A (en) 2011-05-25
RU2011102821A (en) 2012-08-10
WO2009156211A1 (en) 2009-12-30
RU2509912C2 (en) 2014-03-20
EP2307698B1 (en) 2013-07-10
JP2011525583A (en) 2011-09-22
JP5583122B2 (en) 2014-09-03
CN102076951B (en) 2013-06-19
DE102008002720A1 (en) 2009-12-31

Similar Documents

Publication Publication Date Title
EP2307698B1 (en) Fuel injector
EP1303697B1 (en) Fuel injection valve
EP2134955B1 (en) Fuel injector
DE102007002758A1 (en) fuel injector
EP2102486B1 (en) Injector with an axial pressure-compensating control valve
EP1309793A1 (en) Fuel injection valve
DE102007056913A1 (en) Injector for fuel with ball valve
DE102006061947A1 (en) Fuel injector
WO2008061844A1 (en) Fuel injector
DE102010064097A1 (en) Electromagnetically actuatable valve e.g. fuel injection valve of internal combustion engine, has movable valve needle with lower stopper comprising top stop face with elevations and depressions on which armature rests
WO2008049671A1 (en) Fuel injector
WO2001044652A1 (en) Fuel injection valve
EP1939441A2 (en) Fuel injector
EP1570170A1 (en) Fuel-injection valve
EP2119903B1 (en) Fuel injector and combustion engine
EP2273098B1 (en) Fuel injection valve and fuel injection system
EP2147206B1 (en) Fuel injector with a magnetic valve
WO2013117979A1 (en) Device for injecting fuel into the combustion chamber of an internal combustion engine
EP1541859A1 (en) Injection valve
DE102015226499A1 (en) Solenoid valve for a fuel injection valve, method for operating the solenoid valve and fuel injection valve with such a solenoid valve
DE102009027932A1 (en) Fuel injector and fuel injection system
EP1961949B1 (en) Injector with additional servo-valve
DE10154576C1 (en) Fuel injector for direct fuel injection IC engine has control space for operation of jet needle vented under control of magnetic valve positioned above control space within injector body
DE102008001822A1 (en) Solenoid valve with anchor slot
DE10032924A1 (en) Fuel injection device for internal combustion engines

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110127

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20120511

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130326

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 621122

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130715

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009007562

Country of ref document: DE

Effective date: 20130905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130710

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131110

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131010

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131021

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131011

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140411

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009007562

Country of ref document: DE

Effective date: 20140411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140427

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140427

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140427

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140427

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 621122

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090427

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20190419

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190423

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190627

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009007562

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201103

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200427