EP1961949B1 - Injector with additional servo-valve - Google Patents

Injector with additional servo-valve Download PDF

Info

Publication number
EP1961949B1
EP1961949B1 EP08100356A EP08100356A EP1961949B1 EP 1961949 B1 EP1961949 B1 EP 1961949B1 EP 08100356 A EP08100356 A EP 08100356A EP 08100356 A EP08100356 A EP 08100356A EP 1961949 B1 EP1961949 B1 EP 1961949B1
Authority
EP
European Patent Office
Prior art keywords
fuel
valve
injector
pressure
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08100356A
Other languages
German (de)
French (fr)
Other versions
EP1961949A2 (en
EP1961949A3 (en
Inventor
Dirk Vahle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1961949A2 publication Critical patent/EP1961949A2/en
Publication of EP1961949A3 publication Critical patent/EP1961949A3/en
Application granted granted Critical
Publication of EP1961949B1 publication Critical patent/EP1961949B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/025Hydraulically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2547/00Special features for fuel-injection valves actuated by fluid pressure
    • F02M2547/003Valve inserts containing control chamber and valve piston

Definitions

  • the invention relates to an injector for injecting fuel into a combustion chamber of an internal combustion engine, in particular a common rail injector according to the preamble of claim 1.
  • One from the DE 102 07 227 A1 known common rail injector comprises a means of an electromagnetic actuator operated control valve for blocking and opening a fuel drain path from a control chamber which is supplied via an inlet throttle with fuel from a high-pressure fuel storage.
  • the control valve By means of the control valve, the fuel pressure can be influenced within the control chamber.
  • a valve element By varying the fuel pressure within the control chamber, a valve element (nozzle needle) is moved axially between an open position and a closed position, wherein the nozzle needle releases the fuel flow into the combustion chamber of an internal combustion engine in its open position.
  • a disadvantage of the known injectors, in which the electromagnetically operated control valve with a non-pressure balanced Ball seat is provided is provided is that the maximum by means of the control valve switchable control pressure (with reasonable space and recoverable power requirements) is limited.
  • US 2004/000600 A shows an injector with a hydraulically controlled servo valve.
  • the invention has for its object to provide an injector, by means of which injection pressures beyond 2000 bar, preferably injection pressures of 3000 bar or above, can be realized.
  • the invention is based on the idea of providing a servo valve in addition to the control valve, which is preferably operated by means of an electromagnetic actuator, wherein the pressure within a control chamber assigned to the servo valve can be varied by means of the actuator-operated control valve, whereby the servo valve can in turn be switched.
  • the servo valve itself in turn controls the pressure in a second control chamber associated with the actual injection valve, such that a one-piece or multi-part nozzle needle is adjustable between a closed position and an open position releasing the fuel flow through a nozzle hole arrangement into a combustion chamber of an internal combustion engine.
  • the first control chamber of the control valve in particular via an inlet throttle, is supplied with control fluid flowing from a first high-pressure port of the injector, while an additional second high-pressure port is provided for supplying the second control chamber of the servo valve.
  • the fuel flowing in through the second high-pressure connection is fed, in particular via an inlet throttle, to the second control chamber of the servo valve.
  • the injector is preferably also supplied with the fuel volume to be injected through the nozzle hole arrangement via the second high-pressure connection.
  • the actuator of the injector is designed as a piezoelectric actuator. It is advantageous, however, if the actuator is designed as an electromagnetic actuator due to its greater travel.
  • the control valve is preferably designed as a 2/2-way valve, in particular with a ball / conical seat, by means of which the control fluid pressure level at the servo valve (in the first control chamber) is controlled. Since the servo valve is designed with the pressure difference between the two control chambers with an individually adapted excess force, the injection valve can be acted upon with the optimum for the injection into the combustion chamber pressure level.
  • control valve To open the injector (lifting the one-piece or multi-part nozzle needle from its needle seat), the control valve is first opened by means of, in particular electromagnetic actuator, whereby control fluid from the first control chamber can flow through a fuel drain path in a low pressure region of the injector.
  • the inlet to the first control chamber and the outflow of control fluid through the fuel drain path out of the first control chamber are matched to one another such that when the control valve is open, a net outflow from the first control chamber results.
  • the pressure in the first control chamber whereby the operatively connected to the first control valve servo valve opens, in particular by a servo piston lifts from its sealing seat and thus releases the fuel flow from the actual injection valve (nozzle needle) associated second control chamber, wherein the inlet for and the outflow of fuel from the second control chamber are matched to one another such that when the servo valve is open, a net outflow of fuel from the second control chamber results.
  • a sufficiently large pressure gradient lifts the nozzle needle from its needle seat and are the nozzle hole arrangement for under high pressure, in particular about 3000 bar, stagnant fuel, which preferably flows through the second high pressure port, released into the combustion chamber of an internal combustion engine.
  • the control valve of the actuator is closed, whereby the pressure in the first control chamber increases, which causes the servo valve closes and thereby the pressure in the second control chamber increases. This in turn causes the nozzle needle to be moved axially into its needle seat.
  • the pressure level of the control fluid flowing in from the first high-pressure port is lower than the pressure level of the fuel flowing in from the second high-pressure port, which is supplied via the nozzle hole arrangement to the combustion chamber of an internal combustion engine.
  • the actuator only controls the comparatively low pressure level of the control fluid, while the servo valve controls the fuel which is under (maximum) high pressure (injection pressure) and which is to be injected.
  • electromagnetic actuators whose travel is advantageously greater than that of piezoelectric actuators, use at injection pressures beyond the 2000 bar limit.
  • two separate high-pressure accumulators for the control fluid and the fuel to be injected can be provided, for example, which are supplied with control fluid or fuel with differently sized high-pressure pumps.
  • the pressure level of the first high-pressure port and the pressure level of the second high-pressure port are approximately equal.
  • the actuator control valve in particular designed as a 2/2-way valve solenoid control valve, preferably with a ball / cone valve seat or a flat / flat valve seat is formed.
  • These valves have the advantage over pressure-balanced valves that (almost) no leakage occurs in the closed position.
  • the servo valve is preferably a servo piston valve with a ball / cone valve seat or a flat / flat valve seat.
  • each of the two control chambers are associated with an inlet throttle and an outlet throttle, wherein the respective cooperating throttles are dimensioned such that when the control valve is open or when the servo valve open a net outflow from the respective control chamber results.
  • the injector is provided with two separate return ports for the different control amounts.
  • the injector is provided with two separate return ports for the different control amounts.
  • the control fluid is fuel, to supply both control quantities to a common return connection.
  • the separate return ports may be configured to operate at a different pressure level.
  • the fuel drainage path From the second control chamber first opens into an intermediate chamber and fuel flows from there via at least one throttle to the low pressure region of the injector.
  • the control fluid drain path also advantageously opens out of the first control chamber, so that only a single return connection has to be provided.
  • the servo valve In order to avoid a double (axially spaced) guide a servo piston of the servo valve, it is advantageous to form the servo valve as a so-called.
  • Flip-flop valve wherein the particular spherical valve element between two, in particular opposite sealing seats is adjustable.
  • the valve element In the first sealing seat, the valve element obstructs the fuel drain path from the first control chamber into the intermediate chamber (valve chamber), while the valve element in the second sealing seat blocks a, in particular throttle-free, connecting channel in the direction of the low-pressure region of the injector, so that fuel is only via a throttle channel can flow out of the intermediate chamber in the direction of the low pressure region.
  • control fluid which is connected to the actuator-operated control valve, for example, water, oil or air.
  • control fluid is also fuel, in particular at a low pressure level than the fuel flowing in via the second high-pressure port.
  • This embodiment allows the provision of only a single return port.
  • Fig. 1 Based on Fig. 1 the principle of operation of an injector 1 designed as a common-rail injector is explained below. All embodiments have in common that the injector 1 is supplied via a first high-pressure port 2 and a second high-pressure port 3. About the first high pressure port 2 flows as a control fluid serving to fuel, while on the second high-pressure port 3, inter alia, the fuel volume flows, which is injected into the combustion chamber, not shown, of an internal combustion engine. Furthermore, all embodiments have in common that the injector 1 is provided with a single return port 4, via the fuel to a fuel reservoir and from there, for example via two different sized high-pressure pumps, not shown, two different high-pressure fuel storage 5, 6 is supplied. In particular, in the event that fuel is not supplied as the control fluid via the first high-pressure port 2, the injector 1 can also be provided with two separate return ports 4.
  • a one-piece nozzle needle 7 is received, which in the area of a needle tip 8 is provided with a closing surface 9 is, with which it can be brought into tight contact with a needle seat 10.
  • the nozzle needle 7 is biased by a closing spring 13, which is arranged in a pressure chamber 14 of the injector 1 and at one end on a component 15 and the other end on a peripheral collar 16 of the nozzle needle 7, biased toward its closed position.
  • the injector 1 is equipped with a designed as a 2/2-way solenoid valve 17 actuator control valve 17.
  • the actuator control valve 17 is a Steuerfluid- (fuel) drain path 18 from a disposed within an injector body 19 first control chamber 20 in a low pressure region 21 of the injector 1 can be unlocked and blocked.
  • the control fluid drainage path 18 is provided with a first outlet throttle 22.
  • the first control chamber 20 is supplied via the first high-pressure port 2 with under high pressure (p1) standing fuel (control fluid).
  • the first outlet throttle 22 and the first inlet throttle 23 are matched to one another such that when the actuator control valve 17 is open, a net outflow from the control chamber 20 into the low-pressure region 21 of the injector 1 and from there into the return port 4 results.
  • a servo piston 24 of a servo valve 31 moves with its in the drawing plane upper end face 25, the first control chamber 20, from the illustrated closed position in the drawing plane upwards into an open position in which he a fuel drain path 26 with a second outlet throttle 27 from a second control chamber 28 releases.
  • the second control chamber 28 is bounded radially outwardly by the component 15 and in the drawing plane below by an upper end face 29 of the nozzle needle 7.
  • the second control chamber 28 is supplied via an inlet throttle 30 with under high pressure (p2), in particular injection pressure, stagnant fuel from the pressure chamber 14, which in turn is supplied directly with fuel via the second high pressure port 3 from the second high pressure fuel reservoir 6.
  • the flow cross sections of the second outlet throttle 27 and the inlet throttle 30 are matched to one another such that when the servo valve 31 is opened, ie when the servo piston 24 moves upward in the drawing plane, a net outflow of fuel from the second control chamber 28 results, whereby the pressure within the second control chamber 28 drops and the nozzle needle 7 lifts off from its needle seat 10 and thus releases the flow of fuel from the nozzle hole assembly 11.
  • the actuator control valve 17 When the actuator control valve 17 is closed, the pressure in the first control chamber 20 increases due to the fuel flowing through the inlet throttle 23 (control fluid) again, whereby the force acting on the servo piston 24 Pressure force increases, which in turn the servo piston 24 is moved in the plane of the drawing down on its valve seat 32 and thereby blocks the fuel drain path 26 from the second control chamber 28. As a result, the pressure in the second control chamber 28 increases (by the fuel flowing in through the inlet throttle 30), whereby the nozzle needle 7 is moved in the drawing plane down into its needle seat 10, which in turn terminates the injection process.
  • the pressure level p1 of the first high-pressure accumulator 2 is lower than the pressure level p2 of the second high-pressure accumulator 3.
  • the pressure level p2 corresponds to the injection pressure level.
  • the valve seat 32 of the servo valve 31 is formed as a flat / flat seat. With the servo piston 24 raised, high-pressure fuel (p2) flows into a valve chamber 33 of the servo valve 31 and from there via a connecting line 24 within the injector body 19 to the low-pressure region 21 of the injector 1 and thence to the return port 4.
  • p2 high-pressure fuel
  • the design has the advantage that by means of the actuator control valve 17, the injection pressure level does not have to be switched, but that by means of the actuator control valve 17 preferably pressures of up to 2000 bar must be switched, whereas the actual injection pressure of the means of the actuator control valve 17th actuated servo valve 31 is switched.
  • the servo piston 24 cooperates with a valve element designed as a valve ball 35, which can be brought into tight contact with a conical valve seat 36.
  • the valve ball / conical seat (FIG. Fig. 2 ) Manufacturing tolerances can be compensated improved, whereby leaks are avoided.
  • the embodiment corresponds to Fig. 2 the embodiment according to Fig. 1 ,
  • the fuel drain path 26 with second outlet throttle 27 in the embodiment according to Fig. 3 first in a valve seat 32 of the servo valve 31 containing intermediate chamber 37, from where the fuel via another throttle 38 whose flow cross-section is preferably greater than the flow area of the second outlet throttle 27 in the limited by a shoulder of the servo piston 24 valve chamber 33 and from there from via the, in particular throttle-free connection line 34 to the low pressure region of the injector 1.
  • the first outlet throttle 26 of the embodiments according to the Fig. 1 and Fig. 2 was in the injector 1 according to Fig. 3 in other words, divided to the second outlet throttle 26 and the additional throttle 38. This is advantageous because the pressure and temperature load of the throttle 26 is reduced by those from the throttle 38.
  • the servo piston 24 is on the one hand on the lateral surface of its large diameter portion 39 and in the region of its small diameter portion 40 out.
  • the servo valve 31 is designed as a so-called flip-flop valve.
  • the servo piston 24 also acts in this embodiment, as in the embodiment according to Fig. 2 , with a designed as a valve ball valve element 35 together, which in turn can be brought into close contact with two opposite conical seats 36, 41.
  • the valve element 35 is housed in the intermediate chamber 37.
  • the valve element 35 is in close contact with the lower in the plane of the cone seat 36, the fuel drain path 26 is locked from the second control chamber 28 into the intermediate chamber 37.
  • the connecting channel 42 annular channel formed radially between the small diameter section 40 of the servo piston 24 and the injector body 19 or a disk component is axially interposed the intermediate chamber 37 and the valve chamber 33 is blocked, so that the fuel flow from the second control chamber 28 via the fuel drain path 26 and the intermediate chamber 37 via the additional throttle 38 to the valve chamber 33 and from there via the connecting line 34 in the low pressure region and can flow out there to the return port 4.
  • designed as a flip-flop valve servo valve 31 is compared to the embodiment according to Fig. 3 advantageous that the servo piston 24 must be performed only in the region of its large diameter portion 39.
  • injector 1 has a nozzle body 43 and an injector body 44, wherein the nozzle body 43 is braced against the injector body 44 by means of a union nut 45, which is penetrated by the nozzle body 43 in the axial direction.
  • the nozzle needle 7 is arranged in a nozzle chamber 46 within the nozzle body 43 and is spring-loaded by means of the closing spring 13 in the direction of the needle seat 10.
  • the nozzle chamber 46 is supplied via the second high pressure port 3 with under high pressure (injection pressure) of about 3000 bar standing fuel.
  • the second control chamber 28 is supplied with fuel from the nozzle chamber 46.
  • the second inlet throttle 30 is integrated. It can be seen that the conical seat 36 of the valve ball formed as a valve member 35 of the servo valve 31 is received in the plate member 48.
  • the servo piston 24 is received in a stepped bore in the injector body 44. Between the servo piston 24 and the injector body 44, an annular space 49 is formed, which serves as a low-pressure region 21 of the injector 1 and into which the integrated into the plate member 48 second outlet throttle 27 of the second control chamber 28 opens. The low pressure region 21 is connected to the return port 4.
  • the servo piston 24 is spring-loaded by means of a compression spring 50 which is supported on a retaining ring 51 held on the servo piston 24 and on a position-fixed component 52 in the direction of the conical seat 36.
  • the servo piston 24 limited with its upper surface in the plane of the drawing 25, the first control chamber 20, the over the first inlet throttle 23 is supplied with fuel at high pressure (p1, p1 ⁇ p2) from an annular space 53.
  • the annular space 53 is connected directly to the first high-pressure port 2 and is formed between the component 52 and the injector body 44.
  • the first outlet throttle 22 opening out of the first control chamber 20 is opened or closed by the actuator control valve 17.
  • the actuator control valve 17 has a cooperating with a valve ball 54 piston 55 of the actuator control valve 17 in its upper in the plane of the drawing an armature 56 which cooperates with electromagnets 57.
  • the fuel drain path 26 opens with second outlet throttle 27 in the valve chamber 33 of the servo valve 31 in the plane below the large diameter portion 39 of the servo piston 24.
  • This valve chamber 33 is connected via a transverse channel to an annular space 60, which directly with fuel from the second high pressure port 3 is supplied. So that when the servo piston 24 is lifted fuel can flow out of the second control chamber 28, the pressure level p1 of the fuel flowing in via the first high-pressure port 2 must be lower than the pressure level p2 of the fuel flowing in via the second high-pressure port 3.
  • the latter arrives in the pressure chamber 14 and from there via the second inlet throttle 30 into the second control chamber 28 or, when the nozzle needle 7 is raised from the needle seat 10, via the nozzle hole arrangement 11 into a combustion chamber of an internal combustion engine.
  • the following embodiments according to the FIGS. 7 to 10 have in common that the voltage applied to the first high-pressure port fuel pressure and the voltage applied to the second high-pressure port 3 fuel pressure p2, at least for some operating conditions or permanently be the same size. This is achieved in that the fuel flowing out of the second control chamber 28 from the second fuel drain path 26 with outflow throttle 27 flows into an injector region which is supplied with fuel flowing from the first high-pressure port 2, but the pressure in this injector region temporarily ceases an opening movement of the servo piston 24 drops below the pressure level p1 of the fuel flowing in through the first high-pressure port 2, whereby fuel can only flow out of the fuel drain path 26 in the first place.
  • the fuel drain path 26 opens into the valve chamber 33 below the large diameter portion 29 of the servo piston 24.
  • This valve chamber 33 is connected via a throttle 61 to the first high-pressure port 2.
  • the throttle 61 is located in a channel 62, which connects the valve chamber 33 with the first control chamber 20 and is fed into the fuel from the first high pressure port 2.
  • Fig. 8 shows an alternative embodiment in which the fuel drain path 26 with outlet throttle 27 also opens into the valve chamber 33 of the servo valve 31.
  • the valve chamber 33 is hydraulically connected via the throttle 61, which is introduced into the large diameter portion 39 of the servo piston 24, to the first control chamber 20, which is supplied with fuel from the first high-pressure port 2 directly via the first inlet throttle 23.
  • the throttle 61 ensures again that at a rapid opening movement of the servo piston 24 fuel flows slowly from the first high pressure port 2 and in this case from the first control chamber 20 into the valve chamber 33, whereby the pressure within the valve chamber 33 at least during the opening movement of the servo piston 24 below the pressure level p1 of the first High-pressure port 2 of incoming fuel drops, whereby fuel can escape via the fuel drain path 26 from the second control chamber 28.
  • the embodiment according to Fig. 9 essentially corresponds to the embodiment according to Fig. 8 with the only difference that the first inlet throttle 23 is incorporated to supply the first control chamber 20 in the large diameter portion 39 of the servo piston 24 and that the valve chamber 33 is supplied directly via the throttle 61 with high-pressure fuel from the first high-pressure port 2, so the first control chamber 20 is filled indirectly via the valve space 33.
  • the pressure in the valve chamber 33, so the injector, in which the fuel drain path 26 opens from the second control chamber 28 drops below the pressure p1 in the first high-pressure fuel storage, so that fuel with open servo valve 31 from the second control chamber 28 in the Valve chamber 33 and from there via the first inlet throttle 23 and the control fluid drain path 18 in the low pressure region 21 of the injector 1 and from there to the return port 4 can flow.
  • the embodiment according to Fig. 10 is characterized in that the fuel drain path 26 from the second control chamber 28 opens into the intermediate chamber 37 and from there via the additional throttle 38 in the actual valve chamber 33 below the large diameter portion 39 of the servo piston 24 of the servo valve 31.
  • This valve space 33rd is hydraulically connected to the first control chamber 20 via the integrated in the large diameter portion 39 throttle 21, which via the first directly connected to the first high pressure port 2 first Supply throttle 23 is supplied with fuel under high pressure (p1).
  • p1 fuel under high pressure
  • the throttle 61 prevents too rapid a pressure increase in the valve chamber 33 and the additional Throttle 38 additionally reduces the rate of pressure rise in the intermediate chamber 37, allowing fuel to flow out of the second control chamber 28 via the fuel drain path.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

The injector has a high pressure connector (2,3) and an actuator control valve with a control fluid-discharge path (18) from a control chamber (20). The control chamber is actively connected with a servo valve (31), by which a fuel discharge path (26) is released or blocked from another control chamber (28), which is supplied with fuel from second high pressure connection. The latter control chamber is actively connected with a needle (7).

Description

Die Erfindung betrifft einen Injektor zum Einspritzen von Kraftstoff in einen Brennraum einer Brennkraftmaschine, insbesondere einen Common-Rail-Injektor gemäß dem Oberbegriff des Anspruches 1.The invention relates to an injector for injecting fuel into a combustion chamber of an internal combustion engine, in particular a common rail injector according to the preamble of claim 1.

Ein aus der DE 102 07 227 A1 bekannter Common-Rail-Injektor umfasst ein mittels eines elektromagnetischen Aktuators betriebenes Steuerventil zum Sperren und Öffnen eines Kraftstoff-Ablaufweges aus einer Steuerkammer, die über eine Zulaufdrossel mit Kraftstoff aus einem Kraftstoffhochdruckspeicher versorgt wird. Mittels des Steuerventils kann der Kraftstoffdruck innerhalb der Steuerkammer beeinflusst werden. Durch Variation des Kraftstoffdruckes innerhalb der Steuerkammer wird ein Ventilelement (Düsennadel) axial zwischen einer Öffnungsstellung und einer Schließstellung verstellt, wobei die Düsennadel in ihrer Öffnungsstellung den Kraftstofffluss in den Brennraum einer Brennkraftmaschine freigibt.One from the DE 102 07 227 A1 known common rail injector comprises a means of an electromagnetic actuator operated control valve for blocking and opening a fuel drain path from a control chamber which is supplied via an inlet throttle with fuel from a high-pressure fuel storage. By means of the control valve, the fuel pressure can be influenced within the control chamber. By varying the fuel pressure within the control chamber, a valve element (nozzle needle) is moved axially between an open position and a closed position, wherein the nozzle needle releases the fuel flow into the combustion chamber of an internal combustion engine in its open position.

Aus der DE 197 44 723 A1 ist ein ähnliches Injektor-Prinzip bekannt, bei dem das Steuerventil über einen separaten Zulaufkanal innerhalb des Injektors mit unter Hochdruck stehendem Kraftstoff versorgt wird.From the DE 197 44 723 A1 a similar injector principle is known in which the control valve is supplied via a separate inlet channel within the injector with fuel under high pressure.

Nachteilig bei den bekannten Injektoren, bei denen das elektromagnetisch betriebene Steuerventil mit einem nichtdruckausgeglichenen Kugeldichtsitz versehen ist, ist, dass der maximal mittels des Steuerventils schaltbare Steuerdruck (bei vertretbarem Bauraum sowie bei verwertbarem Strombedarf) begrenzt ist.A disadvantage of the known injectors, in which the electromagnetically operated control valve with a non-pressure balanced Ball seat is provided is that the maximum by means of the control valve switchable control pressure (with reasonable space and recoverable power requirements) is limited.

Daher wurden die beispielsweise in der EP 1 612 403 A1 beschriebenen Injektoren mit einem sog. druckausgeglichenen Steuerventil mit einer Ventilhülse entwickelt. Nachteilig bei derartigen Injektoren ist jedoch, dass bei druckausgeglichenen Steuerventilen bauartbedingt eine permanente Leckage aus dem Hochdruckbereich in den Niederdruckbereich des Injektors auftritt. Durch die permanente Leckage wird der Gesamtwirkungsgrad des Einspritzsystems reduziert.Therefore, for example, in the EP 1 612 403 A1 described injectors with a so-called. Pressure-balanced control valve with a valve sleeve developed. A disadvantage of such injectors, however, is that with pressure-balanced control valves, a permanent leakage from the high-pressure region occurs in the low-pressure region of the injector due to the design. The permanent leakage reduces the overall efficiency of the injection system.

US 2004/000600 A zeigt einen Injektor mit einem hydraulisch gesteuerten Servoventil. US 2004/000600 A shows an injector with a hydraulically controlled servo valve.

Offenbarung der ErfindungDisclosure of the invention Technische AufgabeTechnical task

Der Erfindung liegt die Aufgabe zugrunde, einen Injektor vorzuschlagen, mittels dessen Einspritzdrücke jenseits von 2000 bar, vorzugsweise Einspritzdrücke um 3000 bar oder darüber, realisiert werden können.The invention has for its object to provide an injector, by means of which injection pressures beyond 2000 bar, preferably injection pressures of 3000 bar or above, can be realized.

Technische LösungTechnical solution

Diese Aufgabe wird mit den Merkmalen des Anspruches 1 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.This object is achieved with the features of claim 1. Advantageous developments of the invention are specified in the subclaims.

Der Erfindung liegt der Gedanke zugrunde, zusätzlich zu dem, vorzugsweise mittels eines elektromagnetischen Aktuators betriebenen Steuerventils ein Servoventil vorzusehen, wobei mittels des aktuatorbetriebenen Steuerventils der Druck innerhalb einer dem Servoventil zugeordneten Steuerkammer variierbar ist, wodurch wiederum das Servoventil schaltbar ist. Das Servoventil selbst wiederum steuert dabei den Druck in einem dem eigentlichen Einspritzventil zugeordneten zweiten Steuerraum, derart, dass eine einteilig oder mehrteilig aufgebaute Düsennadel zwischen einer Schließposition und einer den Kraftstofffluss durch eine Düsenlochanordnung hindurch in einen Brennraum einer Brennkraftmaschine freigebenden Öffnungsstellung verstellbar ist. Erfindungswesentlich ist es, dass der erste Steuerraum des Steuerventils, insbesondere über eine Zulaufdrossel, mit aus einem ersten Hochdruckanschluss des Injektors zuströmenden Steuerfluid versorgt wird, während zur Versorgung des zweiten Steuerraumes des Servoventils ein zusätzlicher zweiter Hochdruckanschluss vorgesehen ist. Der durch den zweiten Hochdruckanschluss zuströmende Kraftstoff wird insbesondere über eine Zulaufdrossel dem zweiten Steuerraum des Servoventils zugeführt. Über den zweiten Hochdruckanschluss wird der Injektor vorzugsweise auch mit dem durch die Düsenlochanordnung einzuspritzenden Kraftstoffvolumen versorgt.The invention is based on the idea of providing a servo valve in addition to the control valve, which is preferably operated by means of an electromagnetic actuator, wherein the pressure within a control chamber assigned to the servo valve can be varied by means of the actuator-operated control valve, whereby the servo valve can in turn be switched. The servo valve itself in turn controls the pressure in a second control chamber associated with the actual injection valve, such that a one-piece or multi-part nozzle needle is adjustable between a closed position and an open position releasing the fuel flow through a nozzle hole arrangement into a combustion chamber of an internal combustion engine. It is essential to the invention that the first control chamber of the control valve, in particular via an inlet throttle, is supplied with control fluid flowing from a first high-pressure port of the injector, while an additional second high-pressure port is provided for supplying the second control chamber of the servo valve. The fuel flowing in through the second high-pressure connection is fed, in particular via an inlet throttle, to the second control chamber of the servo valve. The injector is preferably also supplied with the fuel volume to be injected through the nozzle hole arrangement via the second high-pressure connection.

Theoretisch ist es denkbar, den Aktuator des erfindungsgemäßen Injektors als piezoelektrischen Aktuator auszubilden. Von Vorteil ist es jedoch, wenn der Aktuator aufgrund seines größeren Stellweges als elektromagnetischer Aktuator ausgebildet ist. Das Steuerventil ist dabei bevorzugt als 2/2-Wege-Ventil, insbesondere mit einem Kugel-/Kegelsitz ausgebildet, mittels dem das Steuerfluiddruckniveau am Servoventil (in der ersten Steuerkammer) gesteuert wird. Da das Servoventil über die Druckdifferenz zwischen den beiden Steuerkammern mit einem individuell angepassten Kraftüberschuss ausgelegt wird, kann das Einspritzventil mit dem für die Einspritzung in den Brennraum optimalen Druckniveau beaufschlagt werden.Theoretically, it is conceivable to design the actuator of the injector according to the invention as a piezoelectric actuator. It is advantageous, however, if the actuator is designed as an electromagnetic actuator due to its greater travel. The control valve is preferably designed as a 2/2-way valve, in particular with a ball / conical seat, by means of which the control fluid pressure level at the servo valve (in the first control chamber) is controlled. Since the servo valve is designed with the pressure difference between the two control chambers with an individually adapted excess force, the injection valve can be acted upon with the optimum for the injection into the combustion chamber pressure level.

Zum Öffnen des Einspritzventils (Abheben der einteilig oder mehrteilig ausgebildeten Düsennadel von ihrem Nadelsitz) wird zunächst mittels des, insbesondere elektromagnetischen Aktuators das Steuerventil geöffnet, wodurch Steuerfluid aus der ersten Steuerkammer durch einen Kraftstoff-Ablaufweg in einen Niederdruckbereich des Injektors abströmen kann. Der Zulauf zu der ersten Steuerkammer und der Abfluss von Steuerfluid durch den Kraftstoff-Ablaufweg aus der ersten Steuerkammer heraus sind dabei derart aufeinander abgestimmt, dass bei geöffnetem Steuerventil ein Nettoabfluss aus der ersten Steuerkammer resultiert. Hierdurch sinkt der Druck in der ersten Steuerkammer, wodurch das mit der ersten Steuerkammer wirkverbundene Servoventil öffnet, insbesondere dadurch, dass ein Servokolben von seinem Dichtsitz abhebt und somit den Kraftstofffluss aus einer dem eigentlichen Einspritzventil (Düsennadel) zugeordneten zweiten Steuerkammer freigibt, wobei auch der Zulauf zur und der Abfluss von Kraftstoff aus der zweiten Steuerkammer derart aufeinander abgestimmt sind, dass bei geöffnetem Servoventil ein Nettoabfluss von Kraftstoff aus der zweiten Steuerkammer resultiert. Bei Erreichen eines ausreichend großen Druckgefälles hebt die Düsennadel von ihrem Nadelsitz ab und gibt die Düsenlochanordnung für unter Hochdruck, von insbesondere etwa 3000 bar, stehendem Kraftstoff, der bevorzugt durch den zweiten Hochdruckanschluss zuströmt, in den Brennraum einer Brennkraftmaschine frei.To open the injector (lifting the one-piece or multi-part nozzle needle from its needle seat), the control valve is first opened by means of, in particular electromagnetic actuator, whereby control fluid from the first control chamber can flow through a fuel drain path in a low pressure region of the injector. The inlet to the first control chamber and the outflow of control fluid through the fuel drain path out of the first control chamber are matched to one another such that when the control valve is open, a net outflow from the first control chamber results. As a result, the pressure in the first control chamber, whereby the operatively connected to the first control valve servo valve opens, in particular by a servo piston lifts from its sealing seat and thus releases the fuel flow from the actual injection valve (nozzle needle) associated second control chamber, wherein the inlet for and the outflow of fuel from the second control chamber are matched to one another such that when the servo valve is open, a net outflow of fuel from the second control chamber results. Upon reaching a sufficiently large pressure gradient lifts the nozzle needle from its needle seat and are the nozzle hole arrangement for under high pressure, in particular about 3000 bar, stagnant fuel, which preferably flows through the second high pressure port, released into the combustion chamber of an internal combustion engine.

Zum Schließen des Einspritzventils wird das Steuerventil des Aktuators geschlossen, wodurch der Druck in der ersten Steuerkammer ansteigt, was dazu führt, dass das Servoventil schließt und dadurch der Druck in der zweiten Steuerkammer ansteigt. Dies wiederum führt dazu, dass die Düsennadel axial in ihren Nadelsitz bewegt wird.To close the injection valve, the control valve of the actuator is closed, whereby the pressure in the first control chamber increases, which causes the servo valve closes and thereby the pressure in the second control chamber increases. This in turn causes the nozzle needle to be moved axially into its needle seat.

Gemäß einer bevorzugten Ausführungsform ist das Druckniveau des aus dem ersten Hochdruckanschluss zuströmenden Steuerfluids niedriger als das Druckniveau des aus dem zweiten Hochdruckanschluss zuströmenden Kraftstoffs, welcher über die Düsenlochanordnung dem Brennraum einer Brennkraftmaschine zugeführt wird. Hierdurch steuert der Aktuator lediglich das vergleichsweise geringe Druckniveau des Steuerfluids, während das Servoventil den unter (maximalem) Hochdruck (Einspritzdruck) stehenden, einzuspritzenden Kraftstoff steuert. Hierdurch ist es insbesondere möglich, auch elektromagnetische Aktuatoren, deren Stellweg mit Vorteil größer ist als der von piezoelektrischen Aktuatoren, bei Einspritzdrücken jenseits der 2000 bar-Grenze einzusetzen. Zur Realisierung unterschiedlicher Druckniveaus können beispielsweise zwei separate Hochdruckspeicher für das Steuerfluid und den einzuspritzenden Kraftstoff vorgesehen werden, die mit unterschiedlich stark dimensionierten Hochdruckpumpen mit Steuerfluid bzw. Kraftstoff versorgt werden. Für bestimmte Betriebszustände von Verbrennungsmotoren kann es von Vorteil sein, wenn das Druckniveau des ersten Hochdruckanschlusses und das Druckniveau des zweiten Hochdruckanschlusses in etwa gleich sind.According to a preferred embodiment, the pressure level of the control fluid flowing in from the first high-pressure port is lower than the pressure level of the fuel flowing in from the second high-pressure port, which is supplied via the nozzle hole arrangement to the combustion chamber of an internal combustion engine. As a result, the actuator only controls the comparatively low pressure level of the control fluid, while the servo valve controls the fuel which is under (maximum) high pressure (injection pressure) and which is to be injected. This makes it possible, in particular, electromagnetic actuators whose travel is advantageously greater than that of piezoelectric actuators, use at injection pressures beyond the 2000 bar limit. To realize different pressure levels, two separate high-pressure accumulators for the control fluid and the fuel to be injected can be provided, for example, which are supplied with control fluid or fuel with differently sized high-pressure pumps. For certain operating states of internal combustion engines, it may be advantageous if the pressure level of the first high-pressure port and the pressure level of the second high-pressure port are approximately equal.

In Weiterbildung der Erfindung ist mit Vorteil vorgesehen, dass das Aktuator-Steuerventil ein, insbesondere als 2/2-Wege-Ventil ausgebildetes Magnet-Steuerventil, vorzugsweise mit einem Kugel-/Kegelventilsitz oder einem Flach-/Flach-Ventilsitz ausgebildet ist. Diese Ventile haben gegenüber druckausgeglichenen Ventilen den Vorteil, dass (nahezu) keine Leckage in Schließposition auftritt. Es ist jedoch auch denkbar, das Steuerventil als druckausgeglichenes Ventil auszubilden. Bevorzugt handelt es sich bei dem Servoventil um ein Servokolbenventil mit einem Kugel-/Kegel-Ventilsitz oder einem Flach-/Flach-Ventilsitz.In a further development of the invention is advantageously provided that the actuator control valve, in particular designed as a 2/2-way valve solenoid control valve, preferably with a ball / cone valve seat or a flat / flat valve seat is formed. These valves have the advantage over pressure-balanced valves that (almost) no leakage occurs in the closed position. However, it is also conceivable to form the control valve as a pressure balanced valve. The servo valve is preferably a servo piston valve with a ball / cone valve seat or a flat / flat valve seat.

In Ausgestaltung der Erfindung ist mit Vorteil vorgesehen, dass jeder der beiden Steuerkammern eine Zulaufdrossel und eine Ablaufdrossel zugeordnet sind, wobei die jeweils zusammenwirkenden Drosseln derart dimensioniert sind, dass bei geöffnetem Steuerventil bzw. bei geöffnetem Servoventil ein Nettoabfluss aus der jeweiligen Steuerkammer resultiert.In an embodiment of the invention is advantageously provided that each of the two control chambers are associated with an inlet throttle and an outlet throttle, wherein the respective cooperating throttles are dimensioned such that when the control valve is open or when the servo valve open a net outflow from the respective control chamber results.

Zur Ausgestaltung der Rücklaufsituation der Steuermengen aus den beiden Steuerkammern gibt es zwei unterschiedliche Alternativen. Gemäß einer ersten Alternative ist der Injektor mit zwei separaten Rücklaufanschlüssen für die unterschiedlichen Steuermengen versehen. Ebenso ist es gemäß einer zweiten Alternative denkbar, insbesondere dann, wenn das Steuerfluid Kraftstoff ist, beide Steuermengen einem gemeinsamen Rücklaufanschluss zuzuführen. Die separaten Rücklaufanschlüsse können auf einem unterschiedlichen Druckniveau arbeitend ausgebildet sein.For the design of the return situation of the control amounts from the two control chambers, there are two different alternatives. According to a first alternative, the injector is provided with two separate return ports for the different control amounts. Likewise, according to a second alternative, it is conceivable, in particular when the control fluid is fuel, to supply both control quantities to a common return connection. The separate return ports may be configured to operate at a different pressure level.

Insbesondere zur Realisierung eines gemeinsamen Rücklaufanschlusses ist es von Vorteil, wenn der Kraftstoff-Ablaufweg aus der zweiten Steuerkammer zunächst in eine Zwischenkammer mündet und Kraftstoff von dort aus über mindestens eine Drossel dem Niederdruckbereich des Injektors zuströmt. In denselben Niederdruckbereich mündet mit Vorteil auch der Steuerfluid-Ablaufweg aus der ersten Steuerkammer, so dass lediglich ein einziger Rücklaufanschluss vorgesehen werden muss.In particular, for the realization of a common return port, it is advantageous if the fuel drainage path From the second control chamber first opens into an intermediate chamber and fuel flows from there via at least one throttle to the low pressure region of the injector. In the same low-pressure region, the control fluid drain path also advantageously opens out of the first control chamber, so that only a single return connection has to be provided.

Um eine doppelte (axial beabstandete) Führung eines Servokolbens des Servoventils zu vermeiden, ist es von Vorteil, das Servoventil als sog. Flip-Flop-Ventil auszubilden, wobei das insbesondere kugelförmige Ventilelement zwischen zwei, insbesondere gegenüberliegenden Dichtsitzen verstellbar ist. In dem ersten Dichtsitz versperrt das Ventilelement dabei den Kraftstoff-Ablaufweg aus der ersten Steuerkammer in die Zwischenkammer (Ventilkammer), während das Ventilelement in dem zweiten Dichtsitz einen, insbesondere drosselfreien Verbindungskanal in Richtung des Niederdruckbereiches des Injektors sperrt, so dass Kraftstoff lediglich über einen Drosselkanal aus der Zwischenkammer in Richtung des Niederdruckbereiches abströmen kann.In order to avoid a double (axially spaced) guide a servo piston of the servo valve, it is advantageous to form the servo valve as a so-called. Flip-flop valve, wherein the particular spherical valve element between two, in particular opposite sealing seats is adjustable. In the first sealing seat, the valve element obstructs the fuel drain path from the first control chamber into the intermediate chamber (valve chamber), while the valve element in the second sealing seat blocks a, in particular throttle-free, connecting channel in the direction of the low-pressure region of the injector, so that fuel is only via a throttle channel can flow out of the intermediate chamber in the direction of the low pressure region.

Es ist denkbar, dass das Steuerfluid, welches mit dem aktuatorbetriebenen Steuerventil geschaltet ist, beispielsweise Wasser, Öl oder Luft ist.It is conceivable that the control fluid, which is connected to the actuator-operated control valve, for example, water, oil or air.

Von Vorteil ist jedoch eine Ausführungsform, bei der das Steuerfluid ebenfalls Kraftstoff, insbesondere auf einem niedrigen Druckniveau als der über den zweiten Hochdruckanschluss zuströmenden Kraftstoff ist. Diese Ausführungsform ermöglicht das Vorsehen lediglich eines einzigen Rücklaufanschlusses.However, an embodiment is advantageous in which the control fluid is also fuel, in particular at a low pressure level than the fuel flowing in via the second high-pressure port. This embodiment allows the provision of only a single return port.

Von besonderem Vorteil ist eine Ausführungsform, bei der die aus dem zweiten Steuerraum abströmende Kraftstoffmenge nicht (zumindest nicht unmittelbar) in den Niederdruckbereich des Injektors abgelassen wird, sondern lediglich auf das nächstliegende Druckniveau des Kraftstoffes aus dem ersten Hochdruckanschluss entspannt wird. Durch diese Anordnung wird eine permanente Leckage an der Führung des Servokolbens aus dem unter Einspritzdruck stehendem Bereich des Injektors in den Bereich mit reduziertem Hochdruck vermieden. Ferner verbessert sich bei einer derartigen Ausführungsform der Wirkungsgrad des Injektors im Hinblick auf den Verdichtungs- und Steuerungsaufwandes. Ferner wird das Temperaturniveau im Rücklauf reduziert. Durch die Erhöhung des Wirkungsgrades kann das gesamte Einspritzsystem mit einem geringeren Bauvolumen realisiert werden.Of particular advantage is an embodiment in which the amount of fuel flowing out of the second control chamber is not vented (at least not directly) into the low-pressure region of the injector, but is merely expanded to the closest pressure level of the fuel from the first high-pressure port. This arrangement avoids permanent leakage of the servo piston from the injector-pressurized portion of the injector to the reduced-pressure region. Furthermore, in such an embodiment, the efficiency of the injector with respect to the compression and control effort improves. Furthermore, the temperature level in the return is reduced. By increasing the efficiency of the entire injection system can be realized with a smaller volume.

In Weiterbildung der Erfindung ist mit Vorteil vorgesehen, dass die aus dem Kraftstoff-Ablaufweg der zweiten Steuerkammer abströmende Steuermenge (Kraftstoff) in einen Injektorbereich fließt, der derart mit einem Ventilelement (Servokolben) des Servoventils gekoppelt ist, dass das Druckniveau in diesem mit Kraftstoff aus dem ersten Hochdruckanschluss versorgten Injektorbereich, insbesondere durch eine schnelle Öffnungsbewegung des Ventilelementes, unter das Druckniveau des Kraftstoffes im ersten Hochdruckanschluss sinkt, wodurch das Druckniveau des ersten Hochdruckanschlusses zumindest in bestimmten Betriebszuständen gleich dem Druckniveau des zweiten Hochdruckanschlusses sein kann und dennoch ein Ablauf von Kraftstoff durch den Kraftstoff-Ablaufweg der zweiten Steuerkammer bei geöffnetem Servoventil realisierbar ist. Der Injektorbereich, in den der Kraftstoff-Ablaufweg aus der zweiten Steuerkammer mündet, weist also ein temporär unter dem Druckniveau des zweiten Hochdruckanschlusses liegendes Druckniveau auf.In a further development of the invention is advantageously provided that flows from the fuel flow path of the second control chamber control amount (fuel) flows into an injector, which is coupled to a valve element (servo piston) of the servo valve, that the pressure level in this with fuel the first high-pressure port supplied injector, in particular by a rapid opening movement of the valve element, below the pressure level of the fuel in the first high-pressure port decreases, whereby the pressure level of the first high-pressure port at least in certain operating conditions can be equal to the pressure level of the second high pressure port and yet a drain of fuel through the Fuel drain path of the second control chamber with open servo valve is feasible. The injector area into which the fuel drain path opens out of the second control chamber, thus has a temporarily below the pressure level of the second high-pressure port pressure level.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichnungen; diese zeigen in:

Fig. 1:
in einer schematischen Darstellung den allgemeinen Aufbau eines Injektors mit einem Steuerventil und einem zusätzlichen Servoventil,
Fig. 2:
eine schematische Teilansicht eines alternativen Injektors, bei dem ein Ventilelement des Servoventils als Ventilkugel ausgebildet ist,
Fig. 3:
eine schematische Teilansicht eines alternativen Injektors, bei dem ein Kraftstoff-Ablaufweg aus einer zweiten Steuerkammer zunächst in eine Zwischenkammer und von dort aus über eine Drossel in einen Niederdruckbereich des Injektors strömt,
Fig. 4:
eine schematische Teilansicht eines Injektors, bei dem das Servoventil als Flip-Flop-Ventil ausgebildet ist,
Fig. 5:
eine detailgetreue Darstellung eines Injektors mit zwei Hochdruckanschlüssen;
Fig. 5a:
eine Detailvergrößerung aus Fig. 5;
Fig. 5b:
eine weitere Detailvergrößerung aus Fig. 5;
Fig. 6:
eine schematische Darstellung eines Injektors, bei dem der Kraftstoff-Ablaufweg aus der zweiten Steuerkammer in ein mit Kraftstoff aus dem ersten Hochdruckanschluss versorgten Injektorbereich mündet,
Fig. 7:
eine schematische Teildarstellung eines Injektors, bei dem der Injektorbereich, in den der Kraftstoff-Ablaufkanal mündet, über eine Drossel mit Kraftstoff aus dem ersten Hochdruckanschluss versorgt wird,
Fig. 8:
eine schematische Teildarstellung eines Injektors, bei dem eine Drossel, die den Injektorbereich in den der Kraftstoff-Ablaufweg aus der zweiten Steuerkammer mündet, in ein Ventilelement des Servoventils integriert ist,
Fig. 9:
eine schematische Teildarstellung eines Injektors, bei dem der Injektorbereich, in den der Kraftstoff-Ablaufweg aus der zweiten Steuerkammer mündet, über eine in dem Ventilelement des Servoventils vorgesehene Drossel mit der ersten Steuerkammer verbunden ist, die über diese Drossel mit Kraftstoff aus dem ersten Hochdruckanschluss versorgt wird und
Fig. 10:
eine schematische Darstellung eines Injektors, bei dem der Kraftstoff-Ablaufweg aus der zweiten Steuerkammer in eine Zwischenkammer mündet und der Kraftstoff von dort aus über zwei separate Drosseln der ersten Steuerkammer zugeführt wird.
Further advantages, features and details of the invention will become apparent from the following description of preferred embodiments and from the drawings; these show in:
Fig. 1:
2 shows a schematic representation of the general structure of an injector with a control valve and an additional servo valve,
Fig. 2:
a schematic partial view of an alternative injector, in which a valve element of the servo valve is designed as a valve ball,
3:
1 is a schematic partial view of an alternative injector, in which a fuel discharge path from a second control chamber initially flows into an intermediate chamber and from there via a throttle into a low-pressure region of the injector,
4:
1 is a schematic partial view of an injector in which the servo valve is designed as a flip-flop valve,
Fig. 5:
a detailed representation of an injector with two high-pressure connections;
Fig. 5a:
an enlarged detail Fig. 5 ;
Fig. 5b:
another detail enlargement Fig. 5 ;
Fig. 6:
a schematic representation of an injector, in which the fuel drain path from the second control chamber opens into an area supplied with fuel from the first high pressure port injector,
Fig. 7:
a schematic partial view of an injector, wherein the injector, in which opens the fuel flow passage, is supplied via a throttle with fuel from the first high-pressure port,
Fig. 8:
1 is a schematic partial representation of an injector in which a throttle, which opens the injector region into which the fuel drain path from the second control chamber opens, is integrated into a valve element of the servo valve,
Fig. 9:
a schematic partial view of an injector, wherein the injector, in which the fuel drain path from the second control chamber opens, is connected via a provided in the valve element of the servo valve throttle with the first control chamber, which supplies via this throttle with fuel from the first high-pressure port will and
Fig. 10:
a schematic representation of an injector, wherein the fuel drain path from the second control chamber opens into an intermediate chamber and the fuel is supplied from there via two separate throttles of the first control chamber.

Ausführungsformen der ErfindungEmbodiments of the invention

In den Figuren sind gleiche Bauteile und Bauteile mit der gleichen Funktion mit den gleichen Bezugszeichen gekennzeichnet.In the figures, the same components and components with the same function with the same reference numerals.

Anhand von Fig. 1 wird im Folgenden die prinzipielle Funktionsweise eines als Common-Rail-Injektor ausgebildeten Injektors 1 erläutert. Allen Ausführungsbeispielen ist gemeinsam, dass der Injektor 1 über einen ersten Hochdruckanschluss 2 und einen zweiten Hochdruckanschluss 3 versorgt wird. Über den ersten Hochdruckanschluss 2 strömt als Steuerfluid dienender Kraftstoff zu, während über den zweiten Hochdruckanschluss 3 u.a. das Kraftstoffvolumen zuströmt, das in den nicht dargestellten Brennraum einer Brennkraftmaschine hineingespritzt wird. Weiterhin ist allen Ausführungsbeispielen gemeinsam, dass der Injektor 1 mit einem einzigen Rücklaufanschluss 4 versehen ist, über den Kraftstoff einem Kraftstoff-Vorratsbehälter und von dort aus beispielsweise über zwei nicht gezeigte unterschiedlich dimensionierte Hochdruckpumpen zwei unterschiedlichen Kraftstoff-Hochdruckspeichern 5, 6 zugeführt wird. Insbesondere für den Fall, dass über den ersten Hochdruckanschluss 2 nicht Kraftstoff als Steuerfluid zugeführt wird, kann der Injektor 1 auch mit zwei separaten Rücklaufanschlüssen 4 versehen werden.Based on Fig. 1 the principle of operation of an injector 1 designed as a common-rail injector is explained below. All embodiments have in common that the injector 1 is supplied via a first high-pressure port 2 and a second high-pressure port 3. About the first high pressure port 2 flows as a control fluid serving to fuel, while on the second high-pressure port 3, inter alia, the fuel volume flows, which is injected into the combustion chamber, not shown, of an internal combustion engine. Furthermore, all embodiments have in common that the injector 1 is provided with a single return port 4, via the fuel to a fuel reservoir and from there, for example via two different sized high-pressure pumps, not shown, two different high-pressure fuel storage 5, 6 is supplied. In particular, in the event that fuel is not supplied as the control fluid via the first high-pressure port 2, the injector 1 can also be provided with two separate return ports 4.

Innerhalb des Injektors 1 ist eine in den Ausführungsbeispielen einstückige Düsennadel 7 aufgenommen, die im Bereich einer Nadelspitze 8 mit einer Schließfläche 9 versehen ist, mit welcher sie in dichte Anlage an einen Nadelsitz 10 bringbar ist.Within the injector 1, a one-piece nozzle needle 7 is received, which in the area of a needle tip 8 is provided with a closing surface 9 is, with which it can be brought into tight contact with a needle seat 10.

Wenn die Düsennadel 7 am Nadelsitz 10 anliegt, d.h., sich in einer Schließstellung befindet, ist der Kraftstoffaustritt aus einer Düsenlochanordnung 11 gesperrt. Ist sie dagegen vom Nadelsitz 10 angehoben, kann aus dem zweiten Hochdruckanschluss 3 zuströmender Kraftstoff aus einem Ringraum 12 an der Nadelspitze 8 vorbei zur Düsenlochanordnung 11 strömen und von dort im Wesentlichen unter dem Hochdruck (Raildruck) stehend in einen Brennraum gespritzt werden.When the nozzle needle 7 abuts the needle seat 10, i.e., is in a closed position, the fuel exit from a nozzle hole assembly 11 is blocked. If, on the other hand, it is lifted by the needle seat 10, fuel flowing in from the second high-pressure port 3 can flow from an annular space 12 past the needle tip 8 to the nozzle hole arrangement 11 and from there be sprayed into a combustion space substantially under high pressure (rail pressure).

Die Düsennadel 7 ist durch eine Schließfeder 13, die in einem Druckraum 14 des Injektors 1 angeordnet ist und sich einends an einem Bauteil 15 und anderenends an einem Umfangsbund 16 der Düsennadel 7 abstützt, in Richtung auf ihre Schließstellung vorgespannt.The nozzle needle 7 is biased by a closing spring 13, which is arranged in a pressure chamber 14 of the injector 1 and at one end on a component 15 and the other end on a peripheral collar 16 of the nozzle needle 7, biased toward its closed position.

Der Injektor 1 ist mit einem als 2/2-Wege-Magnetventil 17 ausgebildeten Aktuator-Steuerventil 17 ausgestattet. Mittels des Aktuator-Steuerventils 17 ist ein Steuerfluid-(Kraftstoff)Ablaufweg 18 aus einer innerhalb eines Injektorkörpers 19 angeordneten ersten Steuerkammer 20 in einen Niederdruckbereich 21 des Injektors 1 freigebbar und sperrbar. Dabei ist der Steuerfluid-Ablaufweg 18 mit einer ersten Ablaufdrossel 22 versehen. Über eine erste Zulaufdrossel wird die erste Steuerkammer 20 über den ersten Hochdruckanschluss 2 mit unter Hochdruck (p1) stehendem Kraftstoff (Steuerfluid) versorgt. Die erste Ablaufdrossel 22 und die erste Zulaufdrossel 23 sind derart aufeinander abgestimmt, dass bei geöffnetem Aktuator-Steuerventil 17 ein Nettoabfluss aus der Steuerkammer 20 in den Niederdruckbereich 21 des Injektors 1 und von dort aus in den Rücklaufanschluss 4 resultiert.The injector 1 is equipped with a designed as a 2/2-way solenoid valve 17 actuator control valve 17. By means of the actuator control valve 17 is a Steuerfluid- (fuel) drain path 18 from a disposed within an injector body 19 first control chamber 20 in a low pressure region 21 of the injector 1 can be unlocked and blocked. In this case, the control fluid drainage path 18 is provided with a first outlet throttle 22. Via a first inlet throttle, the first control chamber 20 is supplied via the first high-pressure port 2 with under high pressure (p1) standing fuel (control fluid). The first outlet throttle 22 and the first inlet throttle 23 are matched to one another such that when the actuator control valve 17 is open, a net outflow from the control chamber 20 into the low-pressure region 21 of the injector 1 and from there into the return port 4 results.

Durch den hiermit verbundenen Druckabfall in der ersten Steuerkammer 20 bewegt sich ein Servokolben 24 eines Servoventils 31, der mit seiner in der Zeichnungsebene oberen Stirnseite 25 die erste Steuerkammer 20 bevorzugt, von der dargestellten Schließposition in der Zeichnungsebene nach oben in eine Öffnungsposition, in der er einen Kraftstoff-Ablaufweg 26 mit einer zweiten Ablaufdrossel 27 aus einer zweiten Steuerkammer 28 freigibt. Dabei wird die zweite Steuerkammer 28 radial außen von dem Bauteil 15 und in der Zeichnungsebene unten von einer oberen Stirnseite 29 der Düsennadel 7 begrenzt. Die zweite Steuerkammer 28 wird über eine Zulaufdrossel 30 mit unter Hochdruck (p2), insbesondere Einspritzdruck, stehendem Kraftstoff aus dem Druckraum 14 versorgt, welcher wiederum unmittelbar mit Kraftstoff über den zweiten Hochdruckanschluss 3 aus dem zweiten Kraftstoff-Hochdruckspeicher 6 versorgt wird. Die Durchflussquerschnitte der zweiten Ablaufdrossel 27 und der Zulaufdrossel 30 sind dabei derart aufeinander abgestimmt, dass bei geöffnetem Servoventil 31, also bei in der Zeichnungsebene nach oben bewegtem Servokolben 24 ein Nettoabfluss von Kraftstoff aus der zweiten Steuerkammer 28 resultiert, wodurch der Druck innerhalb der zweiten Steuerkammer 28 absinkt und die Düsennadel 7 von ihrem Nadelsitz 10 abhebt und somit den Kraftstofffluss aus der Düsenlochanordnung 11 freigibt.Due to the associated pressure drop in the first control chamber 20, a servo piston 24 of a servo valve 31 moves with its in the drawing plane upper end face 25, the first control chamber 20, from the illustrated closed position in the drawing plane upwards into an open position in which he a fuel drain path 26 with a second outlet throttle 27 from a second control chamber 28 releases. In this case, the second control chamber 28 is bounded radially outwardly by the component 15 and in the drawing plane below by an upper end face 29 of the nozzle needle 7. The second control chamber 28 is supplied via an inlet throttle 30 with under high pressure (p2), in particular injection pressure, stagnant fuel from the pressure chamber 14, which in turn is supplied directly with fuel via the second high pressure port 3 from the second high pressure fuel reservoir 6. The flow cross sections of the second outlet throttle 27 and the inlet throttle 30 are matched to one another such that when the servo valve 31 is opened, ie when the servo piston 24 moves upward in the drawing plane, a net outflow of fuel from the second control chamber 28 results, whereby the pressure within the second control chamber 28 drops and the nozzle needle 7 lifts off from its needle seat 10 and thus releases the flow of fuel from the nozzle hole assembly 11.

Wird das Aktuator-Steuerventil 17 geschlossen, steigt der Druck in der ersten Steuerkammer 20 aufgrund des durch die Zulaufdrossel 23 zuströmenden Kraftstoffs (Steuerfluid) wieder an, wodurch die auf den Servokolben 24 wirkende Druckkraft ansteigt, wodurch wiederum der Servokolben 24 in der Zeichnungsebene nach unten auf seinem Ventilsitz 32 bewegt wird und hierdurch den Kraftstoff-Ablaufweg 26 aus der zweiten Steuerkammer 28 sperrt. Hierdurch steigt der Druck in der zweiten Steuerkammer 28 (durch den durch die Zulaufdrossel 30 zuströmenden Kraftstoff) an, wodurch die Düsennadel 7 in der Zeichnungsebene nach unten in ihren Nadelsitz 10 bewegt wird, wodurch wiederum der Einspritzvorgang beendet wird.When the actuator control valve 17 is closed, the pressure in the first control chamber 20 increases due to the fuel flowing through the inlet throttle 23 (control fluid) again, whereby the force acting on the servo piston 24 Pressure force increases, which in turn the servo piston 24 is moved in the plane of the drawing down on its valve seat 32 and thereby blocks the fuel drain path 26 from the second control chamber 28. As a result, the pressure in the second control chamber 28 increases (by the fuel flowing in through the inlet throttle 30), whereby the nozzle needle 7 is moved in the drawing plane down into its needle seat 10, which in turn terminates the injection process.

Bei dem in Fig. 1 dargestellten Ausführungsbeispiel ist das Druckniveau p1 des ersten Hochdruckspeichers 2 geringer als das Druckniveau p2 des zweiten Hochdruckspeichers 3. Das Druckniveau p2 entspricht dabei dem Einspritzdruckniveau.At the in Fig. 1 illustrated embodiment, the pressure level p1 of the first high-pressure accumulator 2 is lower than the pressure level p2 of the second high-pressure accumulator 3. The pressure level p2 corresponds to the injection pressure level.

Der Ventilsitz 32 des Servoventils 31 als Flach-/Flach-Sitz ausgebildet. Bei angehobenem Servokolben 24 strömt unter Hochdruck (p2) stehender Kraftstoff in einen Ventilraum 33 des Servoventils 31 und von dort aus über eine Verbindungsleitung 24 innerhalb des Injektorkörpers 19 zu dem Niederdruckbereich 21 des Injektors 1 und von da aus zu dem Rücklaufanschluss 4.The valve seat 32 of the servo valve 31 is formed as a flat / flat seat. With the servo piston 24 raised, high-pressure fuel (p2) flows into a valve chamber 33 of the servo valve 31 and from there via a connecting line 24 within the injector body 19 to the low-pressure region 21 of the injector 1 and thence to the return port 4.

Die Konstruktion hat den Vorteil, dass mittels des Aktuator-Steuerventils 17 nicht das Einspritzdruckniveau geschaltet werden muss, sondern dass mittels des Aktuator-Steuerventils 17 vorzugsweise Drücke von maximal 2000 bar geschaltet werden müssen, wohingegen der eigentliche Einspritzdruck von dem mittels des Aktuator-Steuerventils 17 betätigten Servoventil 31 geschaltet wird.The design has the advantage that by means of the actuator control valve 17, the injection pressure level does not have to be switched, but that by means of the actuator control valve 17 preferably pressures of up to 2000 bar must be switched, whereas the actual injection pressure of the means of the actuator control valve 17th actuated servo valve 31 is switched.

Zur Vermeidung von Wiederholungen wird im Folgenden bei der Beschreibung der weiteren Ausführungsbeispiele lediglich auf die Unterschiede zu dem Ausführungsbeispiel gemäß Fig. 1 eingegangen.In order to avoid repetition, the description of the further exemplary embodiments will be given below only to the differences from the embodiment according to Fig. 1 received.

Bei dem Ausführungsbeispiel gemäß Fig. 1 wirkt der Servokolben 24 mit einem als Ventilkugel 35 ausgebildeten Ventilelement zusammen, das in dichte Anlage an einen kegelförmigen Ventilsitz 36 bringbar ist. Im Gegensatz zu dem Injektor 1 gemäß Fig. 1, bei der der Servokolben 24 mit einer unteren Stirnseite unmittelbar mit einem als Flach-sitz ausgebildeten Ventilsitz zusammenwirkt, können durch die Kombination Ventilkugel-/Kegelsitz (Fig. 2) Fertigungstoleranzen verbessert ausgeglichen werden, wodurch Undichtigkeiten vermieden werden. Ansonsten entspricht das Ausführungsbeispiel gemäß Fig. 2 dem Ausführungsbeispiel gemäß Fig. 1.In the embodiment according to Fig. 1 the servo piston 24 cooperates with a valve element designed as a valve ball 35, which can be brought into tight contact with a conical valve seat 36. In contrast to the injector 1 according to Fig. 1 in which the servo piston 24 interacts with a lower end face directly with a valve seat designed as a flat seat, the valve ball / conical seat (FIG. Fig. 2 ) Manufacturing tolerances can be compensated improved, whereby leaks are avoided. Otherwise, the embodiment corresponds to Fig. 2 the embodiment according to Fig. 1 ,

Im Unterschied zu den Ausführungsbeispielen gemäß den Fig. 1 und Fig. 2 mündet der Kraftstoff-Ablaufweg 26 mit zweiter Ablaufdrossel 27 bei dem Ausführungsbeispiel gemäß Fig. 3 zunächst in einer den Ventilsitz 32 des Servoventils 31 beinhaltenden Zwischenkammer 37, von wo aus der Kraftstoff über eine weitere Drossel 38, deren Durchflussquerschnitt bevorzugt größer ist als der Durchflussquerschnitt der zweiten Ablaufdrossel 27 in den von einer Schulter des Servokolbens 24 begrenzten Ventilraum 33 und von dort aus über die, insbesondere drosselfreie Verbindungsleitung 34 zu dem Niederdruckbereich des Injektors 1. Die erste Ablaufdrossel 26 der Ausführungsbeispiele gemäß den Fig. 1 und Fig. 2 wurde bei dem Injektor 1 gemäß Fig. 3 anders ausgedrückt aufgeteilt auf die zweite Ablaufdrossel 26 und die zusätzliche Drossel 38. Dies ist von Vorteil, da so die Druck- und Temperaturbelastung der Drossel 26 um die aus der Drossel 38 reduziert wird. Der Servokolben 24 wird einerseits an der Mantelfläche seines großen Durchmesserabschnitts 39 als auch im Bereich seines geringen Durchmesserabschnitts 40 geführt.In contrast to the embodiments according to the Fig. 1 and Fig. 2 opens the fuel drain path 26 with second outlet throttle 27 in the embodiment according to Fig. 3 first in a valve seat 32 of the servo valve 31 containing intermediate chamber 37, from where the fuel via another throttle 38 whose flow cross-section is preferably greater than the flow area of the second outlet throttle 27 in the limited by a shoulder of the servo piston 24 valve chamber 33 and from there from via the, in particular throttle-free connection line 34 to the low pressure region of the injector 1. The first outlet throttle 26 of the embodiments according to the Fig. 1 and Fig. 2 was in the injector 1 according to Fig. 3 in other words, divided to the second outlet throttle 26 and the additional throttle 38. This is advantageous because the pressure and temperature load of the throttle 26 is reduced by those from the throttle 38. The servo piston 24 is on the one hand on the lateral surface of its large diameter portion 39 and in the region of its small diameter portion 40 out.

Bei dem Ausführungsbeispiel gemäß Fig. 4 ist das Servoventil 31 als sog. Flip-Flop-Ventil ausgeführt. Der Servokolben 24 wirkt auch bei diesem Ausführungsbeispiel, wie bei dem Ausführungsbeispiel gemäß Fig. 2, mit einem als Ventilkugel ausgebildeten Ventilelement 35 zusammen, welches wiederum mit zwei gegenüberliegenden Kegelsitzen 36, 41 alternativ in dichte Anlage bringbar ist. Das Ventilelement 35 ist in der Zwischenkammer 37 untergebracht. Befindet sich das Ventilelement 35 in dichter Anlage an dem in der Zeichnungsebene unteren Kegelsitz 36, ist der Kraftstoff-Ablaufweg 26 aus der zweiten Steuerkammer 28 in die Zwischenkammer 37 gesperrt. Befindet sich das Ventilelement 35 bei angehobenem Servokolben 24 in dichter Anlage an dem den unteren Kegelsitz 36 gegenüberliegenden oberen Kegelsitz 41, wird der radial zwischen dem geringen Durchmesserabschnitt 40 des Servokolbens 24 und dem Injektorkörper 19 bzw. einem Scheibenbauteil ausgebildete Verbindungskanal 42 (Ringkanal) axial zwischen der Zwischenkammer 37 und dem Ventilraum 33 gesperrt, so dass der Kraftstoff aus der zweiten Steuerkammer 28 über den Kraftstoff-Ablaufweg 26 und die Zwischenkammer 37 über die zusätzliche Drossel 38 dem Ventilraum 33 zuströmen und von da aus über die Verbindungsleitung 34 in den Niederdruckbereich und von dort aus zum Rücklaufanschluss 4 abströmen kann. Bei der gezeigten Ausführungsform mit als Flip-Flop-Ventil ausgebildeten Servoventil 31 ist gegenüber dem Ausführungsbeispiel gemäß Fig. 3 von Vorteil, dass der Servokolben 24 ausschließlich im Bereich seines großen Durchmesserabschnittes 39 geführt werden muss.In the embodiment according to Fig. 4 the servo valve 31 is designed as a so-called flip-flop valve. The servo piston 24 also acts in this embodiment, as in the embodiment according to Fig. 2 , with a designed as a valve ball valve element 35 together, which in turn can be brought into close contact with two opposite conical seats 36, 41. The valve element 35 is housed in the intermediate chamber 37. The valve element 35 is in close contact with the lower in the plane of the cone seat 36, the fuel drain path 26 is locked from the second control chamber 28 into the intermediate chamber 37. When the valve element 35 is in tight engagement with the upper piston seat 41 opposite the lower conical seat 36 when the servo piston 24 is raised, the connecting channel 42 (annular channel) formed radially between the small diameter section 40 of the servo piston 24 and the injector body 19 or a disk component is axially interposed the intermediate chamber 37 and the valve chamber 33 is blocked, so that the fuel flow from the second control chamber 28 via the fuel drain path 26 and the intermediate chamber 37 via the additional throttle 38 to the valve chamber 33 and from there via the connecting line 34 in the low pressure region and can flow out there to the return port 4. In the embodiment shown, designed as a flip-flop valve servo valve 31 is compared to the embodiment according to Fig. 3 advantageous that the servo piston 24 must be performed only in the region of its large diameter portion 39.

Der in Fig. 5 im Detail dargestellte Injektor 1 (siehe auch Detailvergrößerungen gemäß Fig. 5a und 5b) weist einen Düsenkörper 43 und einen Injektorkörper 44 auf, wobei der Düsenkörper 43 gegen den Injektorkörper 44 mittels einer Überwurfmutter 45, die von dem Düsenkörper 43 in axialer Richtung durchsetzt ist, verspannt wird. Die Düsennadel 7 ist in einem Düsenraum 46 innerhalb des Düsenkörpers 43 angeordnet und wird mittels der Schließfeder 13 in Richtung des Nadelsitzes 10 federkraftbeaufschlagt. Der Düsenraum 46 wird über den zweiten Hochdruckanschluss 3 mit unter Hochdruck (Einspritzdruck) von etwa 3000 bar stehendem Kraftstoff versorgt. Über Zuleitungen 47 in einem Plattenbauteil 48 wird die zweite Steuerkammer 28 mit Kraftstoff aus dem Düsenraum 46 versorgt. In die Zuleitungen 47 ist die zweite Zulaufdrossel 30 integriert. Zu erkennen ist, dass der Kegelsitz 36 des als Ventilkugel ausgebildeten Ventilelements 35 des Servoventils 31 in dem Plattenbauteil 48 aufgenommen ist. Der Servokolben 24 ist in einer Stufenbohrung im Injektorkörper 44 aufgenommen. Zwischen dem Servokolben 24 und dem Injektorkörper 44 ist ein Ringraum 49 ausgebildet, der als Niederdruckbereich 21 des Injektor 1 dient und in den die in das Plattenbauteil 48 integrierte zweite Ablaufdrossel 27 der zweiten Steuerkammer 28 mündet. Der Niederdruckbereich 21 ist an den Rücklaufanschluss 4 angeschlossen.The in Fig. 5 In detail illustrated injector 1 (see also detail enlargements according to Fig. 5a and 5b ) has a nozzle body 43 and an injector body 44, wherein the nozzle body 43 is braced against the injector body 44 by means of a union nut 45, which is penetrated by the nozzle body 43 in the axial direction. The nozzle needle 7 is arranged in a nozzle chamber 46 within the nozzle body 43 and is spring-loaded by means of the closing spring 13 in the direction of the needle seat 10. The nozzle chamber 46 is supplied via the second high pressure port 3 with under high pressure (injection pressure) of about 3000 bar standing fuel. Via supply lines 47 in a plate component 48, the second control chamber 28 is supplied with fuel from the nozzle chamber 46. In the supply lines 47, the second inlet throttle 30 is integrated. It can be seen that the conical seat 36 of the valve ball formed as a valve member 35 of the servo valve 31 is received in the plate member 48. The servo piston 24 is received in a stepped bore in the injector body 44. Between the servo piston 24 and the injector body 44, an annular space 49 is formed, which serves as a low-pressure region 21 of the injector 1 and into which the integrated into the plate member 48 second outlet throttle 27 of the second control chamber 28 opens. The low pressure region 21 is connected to the return port 4.

Der Servokolben 24 wird mittels einer Druckfeder 50, die sich an einem am Servokolben 24 gehaltenen Sicherungsring 51 und an einem positionsfesten Bauteil 52 abstützt in Richtung des Kegelsitzes 36 federkraftbeaufschlagt. Der Servokolben 24 begrenzt mit seiner in der Zeichnungsebene oberen Stirnfläche 25 die erste Steuerkammer 20, die über die erste Zulaufdrossel 23 mit unter Hochdruck (p1; p1 < p2) stehendem Kraftstoff aus einem Ringraum 53 versorgt wird. Der Ringraum 53 ist unmittelbar an den ersten Hochdruckanschluss 2 angebunden und zwischen dem Bauteil 52 und dem Injektorkörper 44 ausgebildet. Die aus der ersten Steuerkammer 20 ausmündende erste Ablaufdrossel 22 wird von dem Aktuator-Steuerventil 17 geöffnet bzw. geschlossen. Über die erste Ablaufdrossel 22 strömt Kraftstoff bei geöffnetem Aktuator-Steuerventil 17 in den Ankerraum 58, der mit dem Rücklauf 21 über einen nicht dargestellten Kanal verbunden ist. Wie zu erkennen ist, weist ein mit einer Ventilkugel 54 zusammenwirkender Kolben 55 des Aktuator-Steuerventils 17 in seinem in der Zeichnungsebene oberen Bereich einen Anker 56 auf, der mit Elektromagneten 57 zusammenwirkt.The servo piston 24 is spring-loaded by means of a compression spring 50 which is supported on a retaining ring 51 held on the servo piston 24 and on a position-fixed component 52 in the direction of the conical seat 36. The servo piston 24 limited with its upper surface in the plane of the drawing 25, the first control chamber 20, the over the first inlet throttle 23 is supplied with fuel at high pressure (p1, p1 <p2) from an annular space 53. The annular space 53 is connected directly to the first high-pressure port 2 and is formed between the component 52 and the injector body 44. The first outlet throttle 22 opening out of the first control chamber 20 is opened or closed by the actuator control valve 17. Fuel flows with the actuator control valve 17 open in the armature chamber 58 via the first outlet throttle 22, which is connected to the return line 21 via a channel, not shown. As can be seen, has a cooperating with a valve ball 54 piston 55 of the actuator control valve 17 in its upper in the plane of the drawing an armature 56 which cooperates with electromagnets 57.

Bei dem Ausführungsbeispiel gemäß Fig. 6 mündet der Kraftstoff-Ablaufweg 26 mit zweiter Ablaufdrossel 27 in den Ventilraum 33 des Servoventils 31 in der Zeichnungsebene unterhalb des großen Durchmesserabschnittes 39 des Servokolbens 24. Dieser Ventilraum 33 ist über einen Querkanal an einen Ringraum 60 angeschlossen, welcher unmittelbar mit Kraftstoff aus dem zweiten Hochdruckanschluss 3 versorgt wird. Damit also bei angehobenem Servokolben 24 Kraftstoff aus der zweiten Steuerkammer 28 abströmen kann, muss das Druckniveau p1 des über den ersten Hochdruckanschluss 2 zuströmenden Kraftstoffs geringer sein als das Druckniveau p2 des über den zweiten Hochdruckanschluss 3 zuströmenden Kraftstoffes. Letzterer gelangt in den Druckraum 14 und von dort aus über die zweite Zulaufdrossel 30 in die zweite Steuerkammer 28 bzw. bei von dem Nadelsitz 10 angehobener Düsennadel 7 über die Düsenlochanordnung 11 in einen Brennraum einer Brennkraftmaschine.In the embodiment according to Fig. 6 the fuel drain path 26 opens with second outlet throttle 27 in the valve chamber 33 of the servo valve 31 in the plane below the large diameter portion 39 of the servo piston 24. This valve chamber 33 is connected via a transverse channel to an annular space 60, which directly with fuel from the second high pressure port 3 is supplied. So that when the servo piston 24 is lifted fuel can flow out of the second control chamber 28, the pressure level p1 of the fuel flowing in via the first high-pressure port 2 must be lower than the pressure level p2 of the fuel flowing in via the second high-pressure port 3. The latter arrives in the pressure chamber 14 and from there via the second inlet throttle 30 into the second control chamber 28 or, when the nozzle needle 7 is raised from the needle seat 10, via the nozzle hole arrangement 11 into a combustion chamber of an internal combustion engine.

Aus dem mit Kraftstoff aus dem ersten Hochdruckanschluss 2 beaufschlagten Ringraum 60 gelangt der Kraftstoff über die erste Zulaufdrossel 23 in die erste Steuerkammer 20 und von dort aus bei geöffnetem Aktuator-Steuerventil 17 in den Niederdruckbereich 21 des Injektors 1 und von da aus in den Rücklaufanschluss 4. In Fig. 6 ist zu erkennen, dass der Servokolben 24 des Servoventils 31 mittels der Druckfeder 50 in Richtung auf seinen Ventilsitz 32 federkraftbeaufschlagt wird. Diese Druckfeder 50 ist aus Übersichtlichkeitsgründen in den Fig. 1 bis Fig. 4 nicht gezeigt.From the pressurized fuel from the first high pressure port 2 annulus 60 of the fuel passes through the first inlet throttle 23 in the first control chamber 20 and from there with the actuator control valve 17 open in the low pressure region 21 of the injector 1 and from there into the return port . In Fig. 6 It can be seen that the servo piston 24 of the servo valve 31 is spring-loaded by means of the compression spring 50 in the direction of its valve seat 32. This compression spring 50 is for clarity in the Fig. 1 to Fig. 4 Not shown.

Die folgenden Ausführungsbeispiele gemäß den Fig. 7 bis Fig. 10 haben gemeinsam, dass der am ersten Hochdruckanschluss anliegende Kraftstoffdruck und der am zweiten Hochdruckanschluss 3 anliegende Kraftstoffdruck p2, zumindest für einige Betriebszustände oder auch dauerhaft gleich groß sein kann. Dies wird dadurch erreicht, dass der aus dem zweiten Kraftstoff-Ablaufweg 26 mit Ablaufdrossel 27 aus der zweiten Steuerkammer 28 abströmende Kraftstoff in einen Injektorbereich einströmt, der zwar mit aus dem ersten Hochdruckanschluss 2 zuströmenden Kraftstoff versorgt wird, jedoch der Druck in diesem Injektorbereich temporär bei einer Öffnungsbewegung des Servokolbens 24 unter das Druckniveaus p1 des durch den ersten Hochdruckanschluss 2 zuströmenden Kraftstoffes sinkt, wodurch überhaupt erst Kraftstoff aus dem Kraftstoff-Ablaufweg 26 abströmen kann.The following embodiments according to the FIGS. 7 to 10 have in common that the voltage applied to the first high-pressure port fuel pressure and the voltage applied to the second high-pressure port 3 fuel pressure p2, at least for some operating conditions or permanently be the same size. This is achieved in that the fuel flowing out of the second control chamber 28 from the second fuel drain path 26 with outflow throttle 27 flows into an injector region which is supplied with fuel flowing from the first high-pressure port 2, but the pressure in this injector region temporarily ceases an opening movement of the servo piston 24 drops below the pressure level p1 of the fuel flowing in through the first high-pressure port 2, whereby fuel can only flow out of the fuel drain path 26 in the first place.

Bei dem Ausführungsbeispiel gemäß Fig. 7 mündet der Kraftstoff-Ablaufweg 26 in den Ventilraum 33 unterhalb des großen Durchmesserabschnittes 29 des Servokolbens 24. Dieser Ventilraum 33 ist über eine Drossel 61 an den ersten Hochdruckanschluss 2 angebunden. Die Drossel 61 befindet sich in einem Kanal 62, der den Ventilraum 33 mit der ersten Steuerkammer 20 verbindet und in den Kraftstoff aus dem ersten Hochdruckanschluss 2 gespeist wird. Wenn das Aktuator-Steuerventil 17 geöffnet wird, sinkt der Druck in der ersten Steuerkammer 20 und der Steuerkolben 24 vollführt eine schnelle Hubbewegung. Hierdurch wird das Volumen des Ventilraumes 33 schlagartig verringert, wodurch der Druck im Ventilraum 33 unter den Druck p1 im ersten Kraftstoffhochdruckspeicher 5 fällt. Hierdurch kann unter Hochdruck (p2, z.B. p2 = p1) stehender Kraftstoff aus der zweiten Steuerkammer 28 über den Kraftstoff-Ablaufweg 26 in den Ventilraum 33 abströmen. Die Drossel 61 sorgt dabei dafür, dass Kraftstoff aus dem ersten Hochdruckanschluss 2 nur langsam in den Ventilraum 33 nachströmen kann. Wird das Aktuator-Steuerventil 17 geschlossen, sorgt die Druckfeder 50 dafür, dass der Servokolben 24 wieder auf seinen Ventilsitz 32 verstellt wird.In the embodiment according to Fig. 7 The fuel drain path 26 opens into the valve chamber 33 below the large diameter portion 29 of the servo piston 24. This valve chamber 33 is connected via a throttle 61 to the first high-pressure port 2. The throttle 61 is located in a channel 62, which connects the valve chamber 33 with the first control chamber 20 and is fed into the fuel from the first high pressure port 2. When the actuator control valve 17 is opened, the pressure in the first control chamber 20 decreases, and the control piston 24 performs a rapid lifting movement. As a result, the volume of the valve chamber 33 is suddenly reduced, whereby the pressure in the valve chamber 33 falls below the pressure p1 in the first high-pressure fuel accumulator 5. As a result, at high pressure (p2, eg p2 = p1), stationary fuel can flow out of the second control chamber 28 via the fuel drain path 26 into the valve chamber 33. The throttle 61 ensures that fuel from the first high pressure port 2 can flow into the valve chamber 33 only slowly. If the actuator control valve 17 is closed, the compression spring 50 ensures that the servo piston 24 is adjusted again to its valve seat 32.

Fig. 8 zeigt ein alternatives Ausführungsbeispiel, bei dem der Kraftstoff-Ablaufweg 26 mit Ablaufdrossel 27 ebenfalls in den Ventilraum 33 des Servoventils 31 mündet. Der Ventilraum 33 ist über die Drossel 61, die in den großen Durchmesserabschnitt 39 des Servokolbens 24 eingebracht ist, hydraulisch mit der ersten Steuerkammer 20 verbunden, welche unmittelbar über die erste Zulaufdrossel 23 mit Kraftstoff aus dem ersten Hochdruckanschluss 2 versorgt wird. Die Drossel 61 sorgt wieder dafür, dass bei einer schnellen Öffnungsbewegung des Servokolbens 24 Kraftstoff nur langsam aus dem ersten Hochdruckanschluss 2 bzw. in diesem Fall aus der ersten Steuerkammer 20 in den Ventilraum 33 nachströmt, wodurch der Druck innerhalb des Ventilraumes 33 zumindest während der Öffnungsbewegung des Servokolbens 24 unter das Druckniveau p1 des über den ersten Hochdruckanschluss 2 zuströmenden Kraftstoffes fällt, wodurch Kraftstoff über den Kraftstoff-Ablaufweg 26 aus der zweiten Steuerkammer 28 entweichen kann. Fig. 8 shows an alternative embodiment in which the fuel drain path 26 with outlet throttle 27 also opens into the valve chamber 33 of the servo valve 31. The valve chamber 33 is hydraulically connected via the throttle 61, which is introduced into the large diameter portion 39 of the servo piston 24, to the first control chamber 20, which is supplied with fuel from the first high-pressure port 2 directly via the first inlet throttle 23. The throttle 61 ensures again that at a rapid opening movement of the servo piston 24 fuel flows slowly from the first high pressure port 2 and in this case from the first control chamber 20 into the valve chamber 33, whereby the pressure within the valve chamber 33 at least during the opening movement of the servo piston 24 below the pressure level p1 of the first High-pressure port 2 of incoming fuel drops, whereby fuel can escape via the fuel drain path 26 from the second control chamber 28.

Das Ausführungsbeispiel gemäß Fig. 9 entspricht im Wesentlichen dem Ausführungsbeispiel gemäß Fig. 8 mit dem einzigen Unterschied, dass die erste Zulaufdrossel 23 zur Versorgung der ersten Steuerkammer 20 in den großen Durchmesserabschnitt 39 des Servokolbens 24 eingearbeitet ist und dass der Ventilraum 33 unmittelbar über die Drossel 61 mit unter Hochdruck stehendem Kraftstoff von dem ersten Hochdruckanschluss 2 versorgt wird, so dass die erste Steuerkammer 20 indirekt über den Ventilraum 33 befüllt wird. Bei diesem Ausführungsbeispiel sinkt der Druck im Ventilraum 33, also den Injektorbereich, in den der Kraftstoff-Ablaufweg 26 aus der zweiten Steuerkammer 28 mündet, unter den Druck p1 im ersten Kraftstoffhochdruckspeicher, so dass Kraftstoff bei geöffnetem Servoventil 31 aus der zweiten Steuerkammer 28 in den Ventilraum 33 und von dort aus über die erste Zulaufdrossel 23 und den Steuerfluid-Ablaufweg 18 in den Niederdruckbereich 21 des Injektors 1 und von dort aus zum Rücklaufanschluss 4 strömen kann.The embodiment according to Fig. 9 essentially corresponds to the embodiment according to Fig. 8 with the only difference that the first inlet throttle 23 is incorporated to supply the first control chamber 20 in the large diameter portion 39 of the servo piston 24 and that the valve chamber 33 is supplied directly via the throttle 61 with high-pressure fuel from the first high-pressure port 2, so the first control chamber 20 is filled indirectly via the valve space 33. In this embodiment, the pressure in the valve chamber 33, so the injector, in which the fuel drain path 26 opens from the second control chamber 28 drops below the pressure p1 in the first high-pressure fuel storage, so that fuel with open servo valve 31 from the second control chamber 28 in the Valve chamber 33 and from there via the first inlet throttle 23 and the control fluid drain path 18 in the low pressure region 21 of the injector 1 and from there to the return port 4 can flow.

Das Ausführungsbeispiel gemäß Fig. 10 zeichnet sich dadurch aus, dass der Kraftstoff-Ablaufweg 26 aus der zweiten Steuerkammer 28 in die Zwischenkammer 37 mündet und von dort aus über die zusätzliche Drossel 38 in den eigentlichen Ventilraum 33 unterhalb des großen Durchmesserabschnittes 39 des Servokolbens 24 des Servoventils 31. Dieser Ventilraum 33 ist über die in den großen Durchmesserabschnitt 39 integrierte Drossel 21 hydraulisch mit der ersten Steuerkammer 20 verbunden, welche über die unmittelbar mit dem ersten Hochdruckanschluss 2 verbundene erste Zulaufdrossel 23 mit unter Hochdruck (p1) stehenden Kraftstoff versorgt wird. Bei einer schnellen Öffnungsbewegung des Servokolbens 24 bei geöffnetem Aktuator-Steuerventil 17 sinkt der Druck sowohl innerhalb der Zwischenkammer 37 als auch innerhalb des Ventilraumes 33 unterhalb des Druckes p1 am ersten Hochdruckanschluss 2. Die Drossel 61 verhindert einen zu schnellen Druckanstieg im Ventilraum 33 und die zusätzliche Drossel 38 verringert zusätzlich die Druckanstiegsgeschwindigkeit in der Zwischenkammer 37, wodurch Kraftstoff über den Kraftstoff-Ablaufweg aus der zweiten Steuerkammer 28 abströmen kann.The embodiment according to Fig. 10 is characterized in that the fuel drain path 26 from the second control chamber 28 opens into the intermediate chamber 37 and from there via the additional throttle 38 in the actual valve chamber 33 below the large diameter portion 39 of the servo piston 24 of the servo valve 31. This valve space 33rd is hydraulically connected to the first control chamber 20 via the integrated in the large diameter portion 39 throttle 21, which via the first directly connected to the first high pressure port 2 first Supply throttle 23 is supplied with fuel under high pressure (p1). With a fast opening movement of the servo piston 24 with the actuator control valve 17 open, the pressure within both the intermediate chamber 37 and within the valve chamber 33 drops below the pressure p1 at the first high pressure port 2. The throttle 61 prevents too rapid a pressure increase in the valve chamber 33 and the additional Throttle 38 additionally reduces the rate of pressure rise in the intermediate chamber 37, allowing fuel to flow out of the second control chamber 28 via the fuel drain path.

Claims (11)

  1. Injector for injecting fuel into a combustion chamber of an internal combustion engine, in particular common rail injector, having a first high-pressure connection (2) and having an actuator control valve (17) by means of which a control fluid outflow path (18) out of a first control chamber (20), which is supplied with control fluid from the first high-pressure connection (2), can be opened up or shut off, and having a nozzle needle (7) which can be adjusted between an open position, in which the flow of fuel into the combustion chamber of an internal combustion engine is enabled, and a closed position, in which the nozzle needle (7) bears against a needle seat (10), characterized
    in that the first control chamber (20) is operatively connected to a servo valve (31) by means of which a fuel outflow path (26) out of a second control chamber (28), which is supplied with fuel from a second high-pressure connection (3), can be opened up or shut off, and in that the second control chamber (28) is operatively connected to the nozzle needle (7) in such a way that, when the fuel outflow path (26) is opened up by the servo valve (31), the nozzle needle rises up from its needle seat (10).
  2. Injector according to Claim 1, characterized in that the pressure level (p1) of the control fluid flowing in from the first high-pressure connection (2) is equal to or lower than the pressure level (p2) of the fuel flowing in from the second high-pressure connection (3).
  3. Injector according to either of Claims 1 and 2, characterized in that the actuator control valve (17) is a solenoid control valve designed in particular as a 2/2-way valve.
  4. Injector according to one of the preceding claims, characterized in that a first outflow throttle (22) is provided in the control fluid outflow path (18), and in that the first control chamber (20) is supplied with control fluid via a first inflow throttle (23), and in that a second outflow throttle (27) is provided in the fuel outflow path (26), and in that the second control chamber (28) is supplied with fuel via a second inflow throttle (30).
  5. Injector according to one of the preceding claims, characterized in that a common return connection (4) is provided for the control fluid flowing out of the control fluid outflow path (18) and the fuel flowing out of the fuel outflow path (26).
  6. Injector according to one of the preceding claims, characterized in that the fuel outflow duct (26) opens out into an intermediate chamber (37) which is connected by means of a throttle to a low-pressure region (21) of the injector (1).
  7. Injector according to Claim 6, characterized in that the servo valve (31) is designed as a flip-flop valve having an in particular spherical valve element (35) which, in a first sealing position, blocks the fuel outflow path (26) into the intermediate chamber (37) and, in a second sealing position, opens up the fuel outflow path (26) and simultaneously blocks an unthrottled connecting duct (42) to a low-pressure region (21) of the injector (1).
  8. Injector according to one of the preceding claims, characterized in that the control fluid is water, oil or air.
  9. Injector according to one of Claims 1 to 7, characterized in that the control fluid is fuel.
  10. Injector according to Claim 9, characterized in that the fuel outflow path (26) of the second control chamber (28) opens out in an injector region which is acted on with fuel flowing from the first high-pressure connection (2).
  11. Injector according to Claim 10, characterized in that the injector region is supplied with fuel from the first high-pressure connection (2) via a throttle (61), and in that, during an adjusting movement, preferably during an opening movement, of a servo piston (24) of the servo valve (31), the fuel pressure in the injector region falls below the pressure level (p1) of the fuel in the first high-pressure connection (2).
EP08100356A 2007-02-13 2008-01-11 Injector with additional servo-valve Not-in-force EP1961949B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102007006939A DE102007006939A1 (en) 2007-02-13 2007-02-13 Injector for injecting fuel into combustion chamber of internal-combustion engine, particularly common-rail injector, has control chamber actively connected with servo valve, by which fuel discharge path is released or blocked

Publications (3)

Publication Number Publication Date
EP1961949A2 EP1961949A2 (en) 2008-08-27
EP1961949A3 EP1961949A3 (en) 2008-09-17
EP1961949B1 true EP1961949B1 (en) 2009-11-18

Family

ID=39472735

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08100356A Not-in-force EP1961949B1 (en) 2007-02-13 2008-01-11 Injector with additional servo-valve

Country Status (3)

Country Link
EP (1) EP1961949B1 (en)
AT (1) ATE449250T1 (en)
DE (2) DE102007006939A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015114716A1 (en) * 2015-09-03 2017-03-09 Denso Corporation Fuel injector with two fuel inlets
DE102018208859A1 (en) * 2018-06-06 2019-12-12 Robert Bosch Gmbh Method for operating a fuel injector, fuel injector

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2351773B (en) * 1997-02-26 2001-02-21 Caterpillar Inc Hydraulically actuated fuel injection system
DE19744723A1 (en) 1997-10-10 1999-04-15 Bosch Gmbh Robert Fuel injector
DE10207227A1 (en) 2002-02-21 2003-09-04 Bosch Gmbh Robert Fuel injection valve for internal combustion engines
US6824081B2 (en) * 2002-06-28 2004-11-30 Cummins Inc. Needle controlled fuel injector with two control valves
DE10305303A1 (en) * 2003-02-10 2004-08-19 Robert Bosch Gmbh Fuel injection device, in particular for internal combustion engines with direct fuel injection
DE10333692B3 (en) * 2003-07-24 2004-09-30 Robert Bosch Gmbh Fuel injection device for an internal combustion engine comprises a filling chamber connected to a fuel feed line and arranged at each of the ends of two pistons facing away from an actuator
ES2277229T3 (en) 2004-06-30 2007-07-01 C.R.F. Societa Consortile Per Azioni SERVOVALVULA TO CONTROL THE FUEL INJECTOR OF AN INTERNAL COMBUSTION ENGINE.

Also Published As

Publication number Publication date
EP1961949A2 (en) 2008-08-27
DE502008000183D1 (en) 2009-12-31
EP1961949A3 (en) 2008-09-17
DE102007006939A1 (en) 2008-08-14
ATE449250T1 (en) 2009-12-15

Similar Documents

Publication Publication Date Title
EP2235354B1 (en) Fuel injector the control valve element of which comprises a support region
EP2102486B1 (en) Injector with an axial pressure-compensating control valve
WO2008049699A1 (en) Fuel injector
DE102007043538A1 (en) Injector with hydraulic damper
EP2011995B1 (en) Injector with a valve element which opens to the outside
DE102004024527A1 (en) Fuel injection system
EP1961949B1 (en) Injector with additional servo-valve
EP1939441A2 (en) Fuel injector
EP2123898B1 (en) Fuel injector
EP2275666B1 (en) Fuel injector with pressure-equalised control valve
DE102007005382A1 (en) Injector i.e. common rail injector, for injecting fuel e.g. diesel, into combustion chamber of internal-combustion engine, has control valve for varying control pressure, and fuel tank connected with nozzle chamber via throttle channel
EP2195523B1 (en) Injector having control valve sleeve
WO2008049668A1 (en) Injector for injecting fuel into combustion chambers of internal combustion engines
DE10357873A1 (en) Injector
EP2019198B1 (en) Injector
EP2138709B1 (en) Directly actuated fuel injector
EP2195522B1 (en) Injector having a sleeve-shaped control valve element
DE102007034319A1 (en) injector
DE102006050033A1 (en) Injector, in particular common rail injector
DE102007001365A1 (en) Common rail injector, for injecting e.g. petrol, into combustion chamber of internal combustion engine, has switching chamber connected with low pressure area by connecting channel that is closed and opened by control valve
WO2008125537A1 (en) Injector
EP2204570B1 (en) Fuel injector
DE19947196A1 (en) Fuel injection device for diesel engine has control valve for regulating fuel feed from high pressure space to injection valve
DE102008044043A1 (en) Fuel injector, particularly common rail injector for injecting fuel in combustion chamber of internal combustion engine, has injection valve element adjusted between closed position and open position releasing fuel in combustion chamber
DE102019215119A1 (en) Fuel injector

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20090317

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502008000183

Country of ref document: DE

Date of ref document: 20091231

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20091118

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20091118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100228

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091118

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091118

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091118

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100218

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091118

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091118

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091118

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091118

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091118

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091118

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100218

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091118

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091118

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091118

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091118

BERE Be: lapsed

Owner name: ROBERT BOSCH G.M.B.H.

Effective date: 20100131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091118

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100131

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091118

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091118

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120126

Year of fee payment: 5

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100519

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100111

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120131

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120111

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091118

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130326

Year of fee payment: 6

Ref country code: FR

Payment date: 20130207

Year of fee payment: 6

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 449250

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130111

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008000183

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008000183

Country of ref document: DE

Effective date: 20140801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140111