EP2297367B9 - Verfahren zum herstellen eines stahlformteils mit einem überwiegend ferritisch-bainitischen gefüge - Google Patents

Verfahren zum herstellen eines stahlformteils mit einem überwiegend ferritisch-bainitischen gefüge Download PDF

Info

Publication number
EP2297367B9
EP2297367B9 EP09741994.9A EP09741994A EP2297367B9 EP 2297367 B9 EP2297367 B9 EP 2297367B9 EP 09741994 A EP09741994 A EP 09741994A EP 2297367 B9 EP2297367 B9 EP 2297367B9
Authority
EP
European Patent Office
Prior art keywords
max
temperature
steel
steel part
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09741994.9A
Other languages
English (en)
French (fr)
Other versions
EP2297367B1 (de
EP2297367A1 (de
Inventor
Jian Bian
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
Original Assignee
ThyssenKrupp Steel Europe AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Steel Europe AG filed Critical ThyssenKrupp Steel Europe AG
Publication of EP2297367A1 publication Critical patent/EP2297367A1/de
Application granted granted Critical
Publication of EP2297367B1 publication Critical patent/EP2297367B1/de
Publication of EP2297367B9 publication Critical patent/EP2297367B9/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/185Hardening; Quenching with or without subsequent tempering from an intercritical temperature
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/20Isothermal quenching, e.g. bainitic hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the invention relates to a method for producing a steel molding having a predominantly ferritic-bainitic structure.
  • hot-formed components which are made of high-strength steels .
  • steel moldings include the A and B pillars, the bumpers and door impact beams of a passenger car.
  • the sheet metal blanks concerned are heated to a deformation temperature generally above the austenitizing temperature of the respective steel and placed in the mold of a forming press in the heated state.
  • a rapid cooling In the course of the subsequent transformation undergoes the sheet metal blank or the molded part of it by the contact with the cool tool a rapid cooling, resulting in the component hardness structure. It may be sufficient if the component cools without active cooling alone by the contact with the tool. However, rapid cooling can also be supported by the fact that the tool itself is actively cooled.
  • a steel comparable to steel 22MnB5 is made of JP 2006104526 A known.
  • This known steel contains in addition to Fe and unavoidable impurities (in wt .-%) 0.05 - 0.55% C, max. 2% Si, 0.1-3% Mn, max. 0.1% P and max. 0.03% S.
  • additional amounts of 0.0002 - 0.005% B and 0.001 - 0.1% Ti can be added to the steel.
  • the respective Ti content serves for setting the nitrogen present in the steel. In this way, the boron present in the steel can develop its strength-increasing effect as completely as possible.
  • the JP 2006104526 A are made of the composite steel so first sheets, the then preheated to a temperature above the Ac 3 temperature, typically in the range of 850-950 ° C.
  • the martensitic microstructure ensuring the desired high strengths is formed in the component molded from the respective sheet metal blank.
  • the sheet metal parts heated to the stated temperature level can be shaped to complex-shaped components at relatively low forming forces. This is especially true for such sheet metal parts, which are made of high-strength steel and provided with a corrosion protection coating.
  • the components produced from boron-alloyed steels in the above-described manner achieve strengths of more than 1,500 MPa.
  • the required complete martensitic structure of the components has the result that the components have an insufficient residual elongation at break of 5-6% for many applications.
  • the relatively low residual elongation at break is associated with a low toughness. In applications where good deformation behavior is required in the event of a crash, this results in components which are produced from boron-alloyed steels in the known manner often no longer meet these requirements. This applies in particular when the components to be produced are parts for an automobile body.
  • a hardened metallic component is from the DE 102 08 216 C1 known.
  • a board or a preformed mold component each consisting of a steel of the above type, heated in a heating device to an austenitizing and then fed via a transport path to a curing process.
  • portions of the first type of board or die which are intended to have higher ductility properties in the final component are quenched from a predetermined cooling start temperature which is above the ⁇ - ⁇ transformation temperature. This quenching is terminated when a predetermined quench stop temperature is reached, before conversion to ferrite and / or perlite has taken place or after a low conversion in ferrite and / or perlite.
  • the board or the respective molded part is held isothermally to convert the austenite into ferrite and / or perlite.
  • the hardening temperature is kept just high enough for sufficient martensite formation to take place in the areas of the second type during a hardening process.
  • the cooling is carried out.
  • the resulting molded part is immersed in a separate operation in a quenching tank or the like to form the desired martensitic hardness structure.
  • This procedure also requires a process management that can be integrated into a modern production plant only with great effort.
  • there is also the problem with the components produced by this known method that while they have a high strength, they are at the same time so brittle that they do not meet the requirements for their deformability which are set in practice.
  • a process for the production of steel moldings is known, which is as a preform or board in the two-phase region, ie at a temperature between the Ac1 and the Ac3, is heated, and then formed in a (cooled) pressing tool and quenched at the same time.
  • the board preheated in each case to a temperature which is preheated in the two-phase mixing area in the thermoforming tool itself is cooled directly and so rapidly that after the Cooling in the component a multi-phase structure with a ferrite content is present.
  • the object of the invention was to provide a method with which it is possible to produce steel moldings in a process-technically simple manner, in which a high strength is combined with a good residual elongation at break.
  • a steel molding is produced with a predominantly ferritic-bainitic structure.
  • a starting material in the form of a steel plate or a preformed steel part is provided. If a hitherto undeformed steel plate is processed as a starting material, the entire process is referred to as a "one-step" process.
  • a preformed Processed steel part one speaks of a two-stage process, whereby in the first stage, a previously undeformed board is deformed so that the resulting steel component has not yet reached its final shape.
  • the respective starting material according to the invention consists of a steel of a known composition, which in addition to iron and unavoidable production-related impurities (in wt .-%) C: 0.02 - 0.6%, Mn: 0.5 - 2.0%, Al : 0.01 - 0.06%, Si: up to 0.4%, Cr: up to 1.2%, P: up to 0.035%, S: up to 0.035% and optionally one or more elements from the group "Ti, B, Mo, Ni, Cu, N", wherein - if present - Ti in a content of up to 0.05%, Cu in a content of up to 0.01%, B in contents of 0 , 0008 - 0.005%, Mo in contents of up to 0.3%, Ni in contents of up to 0.4%, N in contents of up to 0.01%.
  • the thus composed starting material (steel plate or preformed steel part) is so warmed at a lying between the Ac1 and the Ac3 temperature of the steel heating temperature that incomplete austenitization of the starting material occurs. Accordingly, at the end of the austenitizing phase, the microstructure of the starting material consists of ferrite and austenite.
  • the starting material is placed in a press mold and formed therein to the steel molding.
  • the press-hardening takes place in a temperature range in which the microstructure of the primary material in the two-phase region of ferrite and austenite is.
  • the steel molding is brought to a bainite formation temperature which is above the martensite start temperature but below the pearlite transformation temperature of the steel from which the steel sheet or the preformed steel part are respectively made.
  • the bainitization temperature to be set in each case depends on the bainite transformation temperature, which is differentiated upward in each case according to the chemical composition of the enriched austenite by the martensite start temperature and perlite transition temperature.
  • the cooling rate during press hardening is significantly influenced by the austenitizing and mold temperature. This must be so fast that the board cooled without conversion to the Bainitumwandlungstemperatur and kept constant at this temperature becomes.
  • This procedure it is achieved that at the end of the bainitization time in the steel mold part there is a structure which, in addition to the ferritic and bainitic parts of the structure, has minor amounts of retained austenite and possibly less than 5% of martensite.
  • the residual austenite contents in the resulting component which are essentially determined by the carbon content, can be up to 10%.
  • the steel mold After the end of the bainitization time, the steel mold is cooled to room temperature.
  • the temperature control with respect to the austenitizing process and the subsequent press hardening is controlled so that adjusts a mixed structure of ferrite, bainite and a proportion of retained austenite in the component.
  • the method according to the invention thus provides a steel component whose microstructure is characterized by a ferritic-bainitic microstructure.
  • This bainitic microstructure gives a component produced according to the invention improved deformation properties, in particular an improved residual elongation at break.
  • steel moldings produced according to the invention have an improved crash behavior, without the need for separate tempering treatment, since bainite can be regarded as a type of tempered martensite.
  • the method according to the invention makes it possible to cool the steel component more slowly than in the conventional methods in which the cooling takes place in the tool with the aim of martensitic To produce hardness structure. Therefore, in a method according to the invention the risk of the formation of component distortion is minimized and the components produced according to the invention are characterized by a particularly high dimensional accuracy.
  • the pressing tool can also be specifically heated to carry out the method according to the invention.
  • the ferrite and bainite in the structure of the steel molding at the end of Bainitmaschineszeit should be at least 90%, the ferrite and bainite each should be at least 30%.
  • the martensite portion of the steel molding is less than 1%, in particular limited to only traces.
  • the alloy of steel constituting the primary material to be processed in accordance with the present invention includes conventional MnB steels and temper steels alike.
  • a heat-treatment steel particularly suitable for carrying out the process according to the invention has C: 0.25-0.6%, Si: up to 0.4%, Mn: 0.5-2 , 0%, Cr: up to 0.6%, P: up to 0.02%, S: up to 0.01%, Al: 0.01-0.06%, Ti: up to 0.05% , Cu: up to 0.1% and B: 0.008 - 0.005%.
  • MnB steels which are suitable for the process according to the invention have C: 0.25-0.6%, Si: up to 0.4%, Mn: 0.5-2.0%, Cr: up to 1.2 %, P: up to 0.035%, S: up to 0.035%, Mo: up to 0.3%, Ni: up to 0.4% and Al: 0.01-0.06%.
  • the austenitizing temperature of the steels from which the starting material processed according to the invention is made is in the range of 750-810 ° C.
  • the heating time provided for the heating at the heating temperature is usually in the range of 6 to 15 minutes.
  • the starting material with a protective against corrosion metallic coating is provided.
  • This coating also protects the respective primary material (steel plate, preformed steel part) from the press mold during transport from the oven, where it is preheated to the austenitizing temperature.
  • the corrosion protection coating can be designed so that it protects an oxidation of the hot steel substrate with the ambient oxygen even when transported in air.
  • a particularly practical variant of the method according to the invention is characterized in that the press forming and the bainitization of the steel component produced in the course of the press molding takes place in the press forming tool.
  • a particularly advantageous variant of the invention provides that after the compression molding of the starting material, the steel mold part then obtained remains in the compression mold and brought there to the Bainitönstemperatur and held for the Bainitmaschineszeit.
  • the press-forming tool is preferably tempered such that the starting material, starting from a temperature above the bainitizing temperature, is already cooled to the bainitizing temperature during its compression deformation to the steel component.
  • the tool closing time of the pressing tool, within which the shaping, cooling and bainitization of the steel molding takes place is in this case usually 5 to 60 seconds, in particular 20 to 60 seconds.
  • the bainitization time is shorter by the time duration than the tool closing time, which is required to bring the respective starting material to the Bainitmaschinestemperatur.
  • bainitization in the press-forming tool, it is also conceivable, after the press-forming process, to remove the shaped steel part molded from the starting material from the press mold and to bring it to the bainite-forming temperature in a separate operation and to maintain it over the bainitization time.
  • Such a procedure can be displayed if a corresponding system technology is available.
  • such an approach can be used, for example, when a salt bath or a lead bath is available for heating up and holding at the bainitization temperature, into which the steel component can be brought after press molding.
  • the typical range of the bainitization temperature at which the baintization according to the invention is preferably carried out with the aim of forming a ferritic / bainitic structure is typically limited downwards by the martensite start temperature of the respective steel composition of the starting material, while being set lower than 500 ° C at the top can be used to avoid the formation of pearlite.
  • the technical complexity associated with carrying out the method according to the invention can also be reduced to a minimum by the fact that after the end of the Bainitmaschineszeit the cooling of the resulting steel molding is carried out in a simple manner in air.
  • suitable steel blanks which have been divided from a hot-rolled or cold-rolled flat product, such as tape or sheet. It is also possible to apply the method according to the invention to a steel part which has been preformed in a previous work step. The latter is useful, for example, when the shape of the steel component to be produced is so complex that several shaping steps are required for its production.
  • steel components produced according to the invention are particularly suitable for use as crash-relevant parts of an automobile body.
  • the inventive method is particularly suitable for the production of longitudinal and floor cross members, which should have a particularly good energy absorption capacity in practice.
  • a typical course of the temperature T during the performance of a method according to the invention is recorded over the time t.
  • a starting material to be deformed in each case to a steel component for example, with a prior to corrosion heated AlSi coating steel plate initially heated to an austenitizing temperature TA, which is below the Ac3 temperature but above the Ac1 temperature of the steel from which the steel plate is made in each case.
  • austenitizing temperature TA the steel plate is held for a time tA until the steel plate is completely heated so that there is a mixed structure of austenite and ferrite therein.
  • the area in which the steel has a structure is in Fig. 1 marked with A, while the area of the mixed structure of ferrite and austenite is marked with "A + F".
  • the steel plate After the end of the austenitizing time tA, the steel plate is transported to a press forming tool.
  • the transfer time required to close the press tool is in Fig. 1 denoted by tT.
  • the temperature TW at which the steel plate enters the die is still within the temperature range Ac3 - Ac1.
  • the press mold is equipped with a tempering device which keeps it at a constant temperature corresponding to the bainitization temperature TB.
  • the formed from the steel plate, with the press mold directly coming into contact steel mold part is cooled correspondingly over a cooling time tK to the bainitization temperature TB.
  • the bainitization temperature TB is above the martensite start temperature Ms but below the pearlite transformation temperature.
  • the area where perlite is formed is in Fig. 1 with P. characterized. Additionally is in Fig. 1 where F is the area in which pure ferrite is present and M is the area in which martensite is present.
  • the bainitization time t B is dimensioned so that at its end the structure of the steel component is essentially completely bainitic.
  • the cooling of the steel plate in the tempered pressing tool takes place within the cooling time tK so fast that the steel passes through the two-phase mixing A + F and a conversion in martensite M and perlite P is prevented, the martensite is avoided as completely as possible.
  • the tool closing time tW which comprises the cooling time tK and the bainitization time tB, is 5-60 seconds, depending on the complexity of the shaping of the steel component to be produced and the sheet thickness of the respectively processed steel plate.
  • the first steel plate SP1 was then heated to an austenitizing temperature TA of 780 ° C and held at this temperature TA for an austenitizing time tA of 6 minutes.
  • the steel plate SP1 has been transported in air for 6 to 12 s transfer time tT in air in a press mold, which has been heated to a bainitization temperature TB of 400 ° C and kept constant at this temperature TB.
  • the steel plate SP1 was then press-formed over a tool closing time tW of 40 seconds.
  • the total pressing time included the cooling time tK in which the steel board SP1 was cooled from the tool inlet temperature TW to the bainitizing temperature TB, and the bainitizing time tB in which the bainite structure was formed in the steel component thermoformed in the press forming tool.
  • the pressing tool has been opened and the steel component has been cooled to room temperature in still air.
  • the structure of the resulting steel molding had a ferrite content of 50%, a bainite content of 40%, a residual austenite content of 6% and a martensite content of 4%.
  • the second steel plate SP2 was so thoroughly heated at an austenitizing temperature TA of 800 ° C. that it, too, was only partially austenitized. After this partial austenitization, the second steel plate SP2 has undergone the same process steps as the first steel plate SP1.
  • the bainitic press hardening according to the invention is therefore a process for hot press hardening instead of the usually produced martensite structure, a structure consisting predominantly of ferrite and bainite is set by an isothermal conversion during press hardening on the respectively press-formed steel component.
  • the resulting ferritic / bainitic structure has improved residual elongation at high strength compared to martensite.

Description

  • Die Erfindung betrifft ein Verfahren zum Herstellen eines Stahlformteils mit einem überwiegend ferritisch-bainitischen Gefüge.
  • Um die sich im modernen Karosseriebau bestehende Forderung nach geringem Gewicht bei gleichzeitig maximaler Festigkeit und Schutzwirkung zu erfüllen, werden heutzutage in solchen Bereichen der Karosserie, die im Fall eines Crashs besonders hohen Belastungen ausgesetzt sein können, warmpressgeformte Bauteile eingesetzt, die aus hochfesten Stählen erzeugt sind. Als Beispiele für solche Stahlformteile sind die A- und B-Säule, die Stoßfänger und Türaufprallträger eines Personenkraftfahrzeugs zu nennen.
  • Beim Warmpresshärten von Stahlplatinen, die von kalt- oder warmgewalztem Stahlband abgeteilt sind, werden die betreffenden Blechzuschnitte auf eine in der Regel oberhalb der Austenitisierungstemperatur des jeweiligen Stahls liegende Verformungstemperatur erwärmt und im erwärmten Zustand in das Werkzeug einer Umformpresse gelegt. Im Zuge der anschließend durchgeführten Umformung erfährt der Blechzuschnitt bzw. das aus ihm geformte Bauteil durch den Kontakt mit dem kühlen Werkzeug eine schnelle Abkühlung, durch die sich im Bauteil Härtegefüge ergibt. Dabei kann es ausreichend sein, wenn das Bauteil ohne aktive Kühlung alleine durch den Kontakt mit dem Werkzeug abkühlt. Unterstützt werden kann eine schnelle Abkühlung jedoch auch dadurch, dass das Werkzeug selbst aktiv gekühlt wird.
  • Wie im Artikel "Potenziale für den Karosserieleichtbau", erschienen in der Messezeitung der ThyssenKrupp Automotiv AG zur 61. Internationalen Automobilausstellungin Frankfurt, 15.-25. Sept. 2005, berichtet, wird das Warmpresshärten in der Praxis insbesondere für die Herstellung von hochfesten Karosseriebauteilen aus borlegierten Stählen angewendet. Ein typisches Beispiel für einen solchen Stahl ist der unter der Bezeichnung 22MnB5 bekannte Stahl, der im Stahlschlüssel 2004 unter der Werkstoffnummer 1.5528 zu finden ist.
  • Ein mit dem Stahl 22MnB5 vergleichbarer Stahl ist aus der JP 2006104526 A bekannt. Dieser bekannte Stahl enthält neben Fe und unvermeidbaren Verunreinigungen (in Gew.-%) 0,05 - 0,55 % C, max. 2 % Si, 0,1 - 3 % Mn, max. 0,1 % P und max. 0,03 % S. Zur Härtesteigerung können dem Stahl zusätzlich Gehalte von 0,0002 - 0,005 % B und 0,001 - 0,1 % Ti zugegeben werden. Der jeweilige Ti-Gehalt dient dabei zum Abbinden des in dem Stahl vorhandenen Stickstoffs. Auf diese Weise kann das im Stahl vorhandene Bor seine festigkeitssteigernde Wirkung möglichst vollständig entfalten.
  • Gemäß der JP 2006104526 A werden aus dem derart zusammengesetzten Stahl zunächst Bleche gefertigt, die dann auf eine oberhalb der Ac3-Temperatur, typischerweise im Bereich von 850 - 950 °C, liegende Temperatur vorgewärmt werden. Bei der anschließend im Presswerkzeug erfolgenden, von diesem Temperaturbereich ausgehenden schnellen Abkühlung bildet sich im aus dem jeweiligen Blechzuschnitt pressgeformten Bauteil das die angestrebten hohen Festigkeiten gewährleistende martensitische Gefüge. Günstig wirkt sich dabei aus, dass sich die auf das genannte Temperaturniveau erwärmten Blechteile bei relativ geringen Umformkräften zu komplex geformten Bauteilen umformen lassen. Dies gilt insbesondere auch für solche Blechteile, die aus hochfestem Stahl gefertigt und mit einer Korrosionsschutzbeschichtung versehen sind.
  • Die auf die voranstehend erläuterte Weise aus borlegierten Stählen erzeugten Bauteile erreichen Festigkeiten von über 1.500 MPa. Allerdings hat das dazu benötigte vollständig martensitische Gefüge der Bauteile zur Folge, dass die Bauteile eine für viele Anwendungen unzureichende Restbruchdehnung von 5 - 6 % besitzen. Die relativ geringe Restbruchdehnung geht mit einer geringen Zähigkeit einher. Diese führt bei Anwendungen, bei denen es auf ein gutes Verformungsverhalten im Falle eines Crashs ankommt, dazu, dass aus borlegierten Stählen in der bekannten Weise hergestellte Bauteile, diese Anforderungen häufig nicht mehr erfüllen. Dies gilt insbesondere dann, wenn es sich bei den herzustellenden Bauteilen um Teile für eine Automobilkarosserie handelt.
  • In der DE 10 2005 054 847 B3 ist vorgeschlagen worden, durch eine nachgeschaltete Wärmebehandlung das Crashverhalten von durch Warmpresshärten erzeugten Stahlbauteilen zu verbessern, die neben Eisen und unvermeidbaren Verunreinigungen (in Gew.-%) 0,18 - 0,3 % C, 0,1 - 0,7 % Si, 1,0 - 2,50 % Mn, max. 0,025 % P, 0,1 - 0,8 % Cr, 0,1 - 0,5 % Mo, max. 0,01 % S, 0,02 - 0,05 % Ti, 0,002 - 0,005 % B und 0,01 - 0,06 % A1 enthalten. Im Zuge der Wärmebehandlung werden die warmpressgehärteten Bauteile bei 320 - 400 °C gehalten. Abgesehen davon, dass ein solcher Wärmebehandlungsschritt nur mit großem Aufwand in die für die Herstellung von warmpressgehärteten Stahlbauteilen etablierte Prozesskette eingegliedert werden kann, haben praktische Untersuchungen gezeigt, dass die Bruchdehnung von auf diese Weise wärmebehandelten Bauteilen sich deutlich verschlechtert.
  • Eine andere Möglichkeit der Herstellung eines gehärteten metallischen Bauteils ist aus der DE 102 08 216 C1 bekannt. Bei diesem bekannten Verfahren wird eine Platine oder ein vorgeformtes Formbauteil, die jeweils aus einem Stahl der voranstehend angegebenen Art bestehen, in einer Erwärmungseinrichtung auf eine Austenitisierungstemperatur erwärmt und anschließend über einen Transportweg einem Härteprozess zugeführt. Während des Transports werden Teilbereiche erster Art der Platine oder des Formbauteils, die im Endbauteil höhere Duktilitätseigenschaften aufweisen sollen, von einer vorbestimmten Abkühl-Starttemperatur abgeschreckt, die oberhalb der γ-α-Umwandlungstemperatur liegt. Dieses Abschrecken wird beendet, wenn eine vorgegebene Abkühl-Stopptemperatur erreicht ist, und zwar bevor eine Umwandlung in Ferrit und/oder Perlit stattgefunden hat oder nachdem erst eine geringe Umwandlung in Ferrit und/oder Perlit stattgefunden hat. Anschließend wird die Platine oder das jeweilige Formteil isotherm zur Umwandlung des Austenits in Ferrit und/oder Perlit gehalten. Währenddessen wird in den Bereichen zweiter Art, die im Endbauteil im Verhältnis geringere Duktilitätseigenschaften aufweisen sollen, die Härtetemperatur gerade so hoch gehalten, dass eine ausreichende Martensitbildung in den Bereichen zweiter Art während eines Härteprozesses stattfinden kann. Abschließend wird dann die Abkühlung durchgeführt. Dazu wird das erhaltene Formteil in einem separaten Arbeitsgang in ein Abschreckbecken oder desgleichen getaucht, um das gewünschte martensitische Härtegefüge auszubilden. Auch diese Verfahrensweise bedingt eine Prozessführung, die nur mit großem Aufwand in einen modernen Produktionsbetrieb eingegliedert werden kann. Darüber hinaus besteht auch bei den nach diesem bekannten Verfahren hergestellten Bauteilen das Problem, dass sie zwar eine hohe Festigkeit besitzen, gleichzeitig aber so spröde sind, dass sie den in der Praxis sich stellenden Anforderungen an ihre Verformbarkeit nicht gerecht werden.
  • Neben dem voranstehend diskutierten Stand der Technik ist aus der EP-A-1 767 659 ein Verfahren zur Herstellung von Stahlformteilen bekannt, die als Vorform oder Platine im Zweiphasengebiet, d. h. bei einer Temperatur zwischen der Ac1 und der Ac3, liegt, durcherwärmt und anschließend in einem (gekühlten) Presswerkzeug umgeformt und gleichzeitig abgeschreckt wird. Dabei wird die jeweils auf eine im Zweiphasen-Mischgebiet liegende Temperatur vorerwärmte Platine im Warmformwerkzeug selbst unmittelbar und so schnell abgekühlt, dass nach der Abkühlung im Bauteil ein Multiphasengefüge mit einem Ferritanteil vorhanden ist.
  • Im Artikel "Status and innovation trends in hot stamping of USIBOR 1500 P" von Hein Philipp et al., erschienen in STEEL RESEARCH INTERNATIONAL, Verlag Stahleisen GmbH, Düsseldorf, DE, (20080201), Bd. 79, Nr. 2, ISSN 1611-3683, Seiten 85 - 91 wird über allgemein über den Stand der Stahlbauteilen durch Heißpressformgebung des Stahls 22MnB5 berichtet. Dabei wird davon ausgegangen, dass aus diesem Stahl bestehende Platinen vor der Warmformgebung austenitisiert werden, indem sie auf eine 900 - 940 °C betragende Temperatur erwärmt werden. Ebenso werden Ansätze zur Einstellung von unterschiedlichen Gefügestrukturen in einem aus einer derart erwärmten Platine geformten monolithischen Stahlprodukt durch unterschiedliche Wärmebehandlungen erläutert, die während und nach der Warmumformung durchgeführt werden. In diesem Zusammenhang wird auch die Möglichkeit angesprochen in einem warmen Werkzeug die Gefügeausbildung am herzustellenden Bauteil zu beeinflussen. Jedoch gehen die dort erwähnten Möglichkeiten stets davon aus, dass das Stahlprodukt zunächst vollständig austenitisiert wird. In dem von dem warmen Werkzeug erfassten Teilbereich des Stahlprodukts stellt sich dann eine bainitische Mikrostruktur ein.
  • Der von Lenze F.-J. et al. verfasste Artikel "Herstellung von Karosseriebauteilen aus warmumgeformten hochfesten Stahlwerkstoffen", EFB Tagungsband, Europäische Forschungsgesellschaft für Blechverarbeitung, (20050101), Bd. 25, gibt einen Überblick über das konventionelle Warmumformen und Presshärten von aus dem Stahl 22MnB5 und einem unter der Bezeichnung "CP-W 800" bekannten Stahl bestehenden Platinen und stellt Ergebnisse zum so genannten "Halbwarmumformen" vor. Bei der Halbwarmumformung werden Stahlprodukte auf eine unterhalb von Ac1 (hier 650 °C) liegende Temperatur des jeweils untersuchten Stahls erwärmt und bei dieser niedrigen Temperatur umgeformt. Diese Temperatur liegt unterhalb der Rekristallisationstemperatur, ab der es beispielsweise bei den aus dem Stahl 22MnB5 bestehenden Bauteilen überhaupt zu einer Gefügeveränderung kommt.
  • Vor dem Hintergrund des voranstehend erläuterten Standes der Technik bestand die Aufgabe der Erfindung darin, ein Verfahren anzugeben, mit dem es möglich ist, auf prozesstechnisch einfache Weise Stahlformteile herzustellen, bei denen eine hohe Festigkeit mit einer guten Restbruchdehnung kombiniert ist.
  • Diese Aufgabe ist erfindungsgemäß durch das in Anspruch 1 angegebene Verfahren gelöst worden. Vorteilhafte Ausgestaltungen dieses Verfahrens sind in den auf Anspruch 1 rückbezogenen Ansprüchen angegeben.
  • Gemäß der Erfindung wird ein Stahlformteil mit einem überwiegend ferritisch-bainitischen Gefüge hergestellt.
  • Dazu wird ein Vormaterial in Form einer Stahlplatine oder eines vorgeformtes Stahlteils bereitgestellt. Wird eine bis dahin noch unverformte Stahlplatine als Vormaterial verarbeitet, wird der Gesamtprozess als "einstufiges" Verfahren bezeichnet. Wird dagegen ein vorgeformtes Stahlteil verarbeitet, spricht man von einem zweistufigen Prozess, wobei in der ersten Stufe eine bis dahin noch unverformte Platine so verformt wird, dass das dabei erhaltene Stahlbauteil seine Endform noch nicht erreicht hat.
  • Das jeweilige Vormaterial besteht erfindungsgemäß aus einem Stahl an sich bekannter Zusammensetzung, der neben Eisen und unvermeidbaren herstellungsbedingten Verunreinigungen (in Gew.-%) C: 0,02 - 0,6 %, Mn: 0,5 - 2,0 %, Al: 0,01 - 0,06 %, Si: bis zu 0,4 %, Cr: bis zu 1,2 %, P: bis zu 0,035 %, S: bis zu 0,035 % sowie optional eines oder mehrere Elemente aus der Gruppe "Ti, B, Mo, Ni, Cu, N" enthält, wobei - sofern jeweils vorhanden - Ti in einem Gehalt von bis zu 0,05 %, Cu in einem Gehalt von bis zu 0,01 %, B in Gehalten von 0,0008 - 0,005 %, Mo in Gehalten von bis zu 0,3 %, Ni in Gehalten von bis zu 0,4 %, N in Gehalten von bis zu 0,01 %, enthalten sind. Besondere Bedeutung im Hinblick auf die Festigkeit erfindungsgemäß erzeugte Bauteile kommt dabei dem jeweiligen C-Gehalt zu, wogegen insbesondere die Gehalte an Si, Mn, Cr und B so eingestellt sind, dass die Bildung des Bainits gefördert und die Entstehung größerer Martensitmengen im Gefüge des Bauteils vermieden werden.
  • Das derart zusammengesetzte Vormaterial (Stahlplatine bzw. vorgeformtes Stahlteil) wird bei einer zwischen der Ac1- und der Ac3-Temperatur des Stahls liegenden Erwärmungstemperatur derart durcherwärmt, dass eine unvollständige Austenitisierung des Vormaterials eintritt. Am Ende der Austenitisierungsphase besteht das Gefüge des Vormaterials dementsprechend aus Ferrit und Austenit.
  • Anschließend wird das Vormaterial in ein Pressformwerkzeug eingelegt und darin zu dem Stahlformteil geformt. Das Presshärten erfolgt dabei in einem Temperaturbereich, in dem sich das Gefüge des Vormaterials im Zweiphasengebiet aus Ferrit und Austenit befindet.
  • Wesentlich für die Erfindung ist nun, dass das Stahlformteil auf eine Bainitbildungstemperatur gebracht wird, die oberhalb der Martensitstarttemperatur, jedoch unterhalb der Perlitumwandlungstemperatur des Stahls liegt, aus dem die Stahlplatine oder das vorgeformte Stahlteil jeweils hergestellt sind.
  • Ebenso wichtig ist, dass, sobald diese Bainitbildungstemperatur erreicht ist, das Stahlformteil erfindungsgemäß über eine Bainitisierungszeit im Wesentlichen isotherm auf der Bainitbildungstemperatur gehalten wird, bis sich in dem Stahlformteil ein Gefüge eingestellt hat, das zum überwiegenden Teil aus Ferrit und Bainit besteht. Die jeweils einzustellende Bainitisierungstemperatur richtet sich nach der Bainitumwandlungstemperatur, welche jeweils nach der chemischen Zusammensetzung des angereicherten Austenits durch die Martensitstarttemperatur nach unten und Perlitumwandlungstemperatur nach oben abgegrenzt ist.
  • Die Abkühlgeschwindigkeit beim Presshärten wird von der Austenitisierungs- und Werkzeugtemperatur maßgeblich beeinflusst. Diese muss so schnell sein, dass die Platine umwandlungsfrei auf die Bainitumwandlungstemperatur abgekühlt und bei dieser Temperatur konstant gehalten wird. Durch diese Vorgehensweise wird erreicht, dass am Ende der Bainitisierungszeit in dem Stahlformteil ein Gefüge vorliegt, das neben den ferritischen und bainitischen Gefügeanteilen untergeordnete Mengen an Restaustenit und allenfalls unterhalb von 5 % liegende Gehalte an Martensit aufweist. Die vom im Wesentlichen vom Kohlenstoffgehalt bestimmten Restaustenitgehalte im erhaltenen Bauteil können bis zu 10 % betragen.
  • Nach dem Ende der Bainitisierungszeit wird das Stahlformteil auf Raumtemperatur abgekühlt.
  • Gemäß der Erfindung wird also die Temperaturführung im Hinblick auf den Austenitisierungsprozess und das anschließende Presshärten so gesteuert, dass sich ein Mischgefüge aus Ferrit, Bainit und einem Anteil von Restaustenit im Bauteil einstellt. Das erfindungsgemäße Verfahren liefert somit ein Stahlbauteil, dessen Gefüge durch eine ferritisch-bainitische Mikrostruktur gekennzeichnet ist. Diese bainitische Mikrostruktur verleiht einem erfindungsgemäß erzeugten Bauteil verbesserte Verformungseigenschaften, insbesondere eine verbesserte Restbruchdehnung. Damit einhergehend weisen erfindungsgemäß erzeugte Stahlformteile ein verbessertes Crashverhalten auf, ohne dass es dazu einer gesonderten Anlassbehandlung bedarf, da Bainit als eine Art von angelassenem Martensit angesehen werden kann.
  • Darüber hinaus erlaubt es das erfindungsgemäße Verfahren, das Stahlbauteil langsamer abzukühlen als bei den konventionellen Verfahren, bei denen die Abkühlung im Werkzeug mit dem Ziel erfolgt, martensitisches Härtegefüge zu erzeugen. Daher ist bei einem erfindungsgemäßen Verfahren die Gefahr der Entstehung von Bauteilverzug minimiert und die erfindungsgemäß erzeugten Bauteile zeichnen sich durch eine besonders hohe Maßhaltigkeit aus. Um eine langsame Abkühlung des Stahlbauteils sicherzustellen, kann zur Durchführung des erfindungsgemäßen Verfahrens das Presswerkzeug auch gezielt erwärmt werden.
  • Neben den voranstehend genannten Vorteilen bestehen weitere Vorteile der Erfindung in der durch die vergleichbar niedrigen Ofentemperatur bei der Austenitisierung möglichen Energieeinsparungen, in der reduzierten thermischen Belastung der gegebenenfalls vorhandenen Oberflächenbeschichtung, in dem durch die abgesenkte Ofentemperatur bei der Austenitisierung möglichen Einsatz von Zn-beschichtetem Vormaterial sowie darin, dass es bei erfindungsgemäßer Vorgehensweise möglich ist, durch Variation der Austenitisierungs- und Werkzeugtemperatur die mechanischen Kennwerte nach der Bauteilforderung variabel einzustellen. Schließlich zeichnen sich erfindungsgemäß erzeugte Stahlformteile auch durch ein hohes Bake-Hardening Potenzial nach dem Presshärten aus.
  • Um die mit der Erfindung erzielten vorteilhaften Eigenschaften besonders sicher nutzen zu können, sollten die Ferrit- und Bainitanteile im Gefüge des Stahlformteils am Ende der Bainitisierungszeit in Summe mindestens 90 % betragen, wobei der Ferrit- und der Bainitanteil jeweils mindestens 30 % betragen sollten.
  • Da die Martensitbildung erfindungsgemäß möglichst vollständig verhindert wird, ist es grundsätzlich vorteilhaft, wenn am Ende der Bainitisierungszeit der Martensitanteil des Stahlformteils weniger als 1 % beträgt, insbesondere nur auf Spuren beschränkt ist.
  • Von der Legierung des Stahls, aus dem das erfindungsgemäß zu verarbeitende Vormaterial besteht, sind konventionelle MnB-Stähle und Vergütungsstähle gleichermaßen umfasst. Eine für die Durchführung des erfindungsgemäßen Verfahrens besonders geeigneter Vergütungsstahl weist neben Eisen und unvermeidbaren Verunreinigungen (in Gew.-%) C: 0,25 - 0,6 %, Si: bis zu 0,4 %, Mn: 0,5 - 2,0 %, Cr: bis zu 0,6 %, P: bis zu 0,02 %, S: bis zu 0,01 %, Al: 0,01 - 0,06 %, Ti: bis zu 0,05 %, Cu: bis zu 0,1 % und B: 0,008 - 0,005 % auf. Für das erfindungsgemäße Verfahren in Frage kommende MnB-Stähle weisen dagegen C: 0,25 - 0,6 %, Si: bis zu 0,4 %, Mn: 0,5 - 2,0 %, Cr: bis zu 1,2 %, P: bis zu 0,035 %, S: bis zu 0,035 %, Mo: bis zu 0,3 %, Ni: bis zu 0,4 % und Al: 0,01 - 0,06 % auf.
  • Typischerweise liegt die Austenitisierungstemperatur der Stähle, aus denen erfindungsgemäß verarbeitetes Vormaterial hergestellt ist, im Bereich von 750 - 810 °C. Die für das Durcherwärmen bei der Erwärmungstemperatur vorgesehene Erwärmungszeit liegt dabei üblicherweise im Bereich von 6 - 15 Minuten.
  • Insbesondere bei der Herstellung von Stahlformteilen, die zum Bau von Karosserien für Fahrzeuge, insbesondere Automobile, bestimmt sind, ist es günstig, wenn das Vormaterial mit einem vor Korrosion schützenden metallischen Überzug versehen ist. Dieser Überzug schützt das jeweilige Vormaterial (Stahlplatine, vorgeformtes Stahlteil) auch beim Transport von dem Ofen, in dem es auf die Austenitisierungstemperatur vorerwärmt wird, zum Pressformwerkzeug. Die Korrosionsschutzbeschichtung kann dabei so ausgelegt werden, dass sie eine Oxidation des heißen Stahlsubstrats mit dem Umgebungssauerstoff auch bei einem Transport an Luft schützt.
  • Eine besonders praxisgerechte Variante des erfindungsgemäßen Verfahrens ist dadurch gekennzeichnet, dass die Pressformgebung und die Bainitisierung des im Zuge der Pressformgebung erzeugten Stahlbauteils im Pressformwerkzeug erfolgt. Dementsprechend sieht eine besonders vorteilhafte Variante der Erfindung vor, dass nach dem Pressformen des Vormaterials das dann erhaltene Stahlformteil in dem Pressformwerkzeug verbleibt und dort auf die Bainitbildungstemperatur gebracht und für die Bainitisierungszeit gehalten wird. Dabei ist das Pressformwerkzeug bevorzugt so temperiert, dass das Vormaterial ausgehend von einer über der Bainitisierungstemperatur liegenden Temperatur bereits während ihrer Pressverformung zu dem Stahlbauteil auf die Bainitisierungstemperatur abgekühlt werden. Die Werkzeugschließzeit des Presswerkzeugs, innerhalb der die Formgebung, Abkühlung und Bainitisierung des Stahlformteils erfolgt, beträgt in diesem Fall üblicherweise 5 - 60 Sekunden, insbesondere 20 - 60 Sekunden.
  • Im Fall, dass die Abkühlung auf die Bainitisierungstemperatur und die Bainitisierung in einem Werkzeug absolviert werden, ist die Bainitisierungszeit jeweils um die Zeitdauer kürzer als die Werkzeugschließzeit, die benötigt wird, um das jeweilige Vormaterial auf die Bainitisierungstemperatur zu bringen.
  • Alternativ zu einer Bainitisierung im Pressformwerkzeug ist es auch denkbar, nach dem Pressformen das aus dem Vormaterial pressgeformte Stahlformteil aus der Pressform zu entnehmen und in einem separaten Arbeitsgang auf die Bainitbildungstemperatur zu bringen und auf dieser über die Bainitisierungszeit zu halten. Eine solche Vorgehensweise kann angezeigt sein, wenn eine entsprechende Anlagentechnik zur Verfügung steht. So lässt sich eine solche Vorgehensweise beispielsweise dann anwenden, wenn zum Erwärmen auf und Halten bei der Bainitisierungstemperatur ein Salz- oder ein Bleibad zur Verfügung stehen, in die das Stahlbauteil nach der Pressformgebung verbracht werden kann.
  • Der typische Bereich der Bainitisierungstemperatur, bei der die erfindungsgemäße Baintisierung mit dem Ziel der Ausbildung eines ferritisch/bainitischen Gefüges bevorzugt durchgeführt wird, ist nach unten typischerweise durch Martensitstarttemperatur der jeweiligen Stahlzusammensetzung des Vormaterials begrenzt, während sie nach oben hin jeweils niedriger als 500 °C eingestellt werden kann, um die Perlitbildung zu vermeiden.
  • Der mit der Durchführung des erfindungsgemäßen Verfahrens verbundene verfahrenstechnische Aufwand kann auch dadurch auf ein Minimum reduziert werden, dass nach dem Ende der Bainitisierungszeit die Abkühlung des erhaltenen Stahlformteils auf einfache Weise an Luft durchgeführt wird.
  • Für die Durchführung des erfindungsgemäßen Verfahrens eignen sich Stahlplatinen, die von einem warmgewalzten oder kaltgewalzten Flachprodukt, wie Band oder Blech, abgeteilt worden sind. Ebenso ist es möglich, das erfindungsgemäße Verfahren auf ein Stahlteil anzuwenden, das in einem vorangegangenen Arbeitsschritt vorgeformt worden ist. Letzteres bietet sich beispielsweise dann an, wenn die Formgebung des herzustellenden Stahlbauteils so komplex ist, dass für ihre Herstellung mehrere Formgebungsschritte erforderlich sind.
  • Aufgrund ihres Eigenschaftsprofils eignen sich erfindungsgemäß erzeugte Stahlbauteile besonders für eine Verwendung als crashrelevante Teile einer Automobilkarosserie. Das erfindungsgemäße Verfahren eignet sich dabei insbesondere für die Herstellung von Längs- und Bodenquerträgern, die in der Praxis ein besonders gutes Energieaufnahmevermögen aufweisen sollen.
  • Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen näher erläutert.
  • In Fig. 1 ist ein typischer bei der Durchführung eines erfindungsgemäßen Verfahrens eingehaltener Verlauf der Temperatur T über die Zeit t aufgezeichnet. Demnach wird als Vormaterial eine jeweils zu einem Stahlbauteil zu verformende, beispielsweise mit einer vor Korrosion schützenden AlSi-Beschichtung versehene Stahlplatine zunächst auf eine Austenitisierungstemperatur TA erwärmt, die unterhalb der Ac3-Temperatur jedoch oberhalb der Ac1 Temperatur des Stahls liegt, aus dem die Stahlplatine jeweils hergestellt ist. Bei der dieser Austenitisierungstemperatur TA wird die Stahlplatine für eine Zeit tA gehalten, bis die Stahlplatine vollständig durcherwärmt ist, so dass in ihr ein aus Austenit und Ferrit bestehendes Mischgefüge vorliegt. Der Bereich, in dem der Stahl ein Gefüge aufweist, ist in Fig. 1 mit A gekennzeichnet, während der Bereich des Mischgefüges aus Ferrit und Austenit mit "A+F" gekennzeichnet ist.
  • Nach Ende der Austenitisierungszeit tA wird die Stahlplatine zu einem Pressformwerkzeug transportiert. Die bis zum Schließen des Pressformwerkzeugs benötigte Transferzeit ist in Fig. 1 mit tT bezeichnet. Die Temperatur TW, mit der die Stahlplatine in das Pressformwerkzeug gelangt, liegt immer noch innerhalb des Temperaturbandes Ac3 - Ac1.
  • Das Pressformwerkzeug ist mit einer Temperiereinrichtung ausgestattet, die es auf einer konstanten Temperatur hält, die der Bainitisierungstemperatur TB entspricht. Das aus der Stahlplatine geformte, mit dem Pressformwerkzeug unmittelbar in Kontakt kommende Stahlformteil wird dementsprechend über eine Abkühlzeit tK auf die Bainitisierungstemperatur TB gekühlt. Die Bainitisierungstemperatur TB liegt dabei oberhalb der Martensitstarttemperatur Ms, jedoch unterhalb der Perlitumwandlungstemperatur. Das Gebiet, in dem es zur Bildung von Perlit kommt, ist in Fig. 1 mit P gekennzeichnet. Zusätzlich ist in Fig. 1 mit F das Gebiet, in dem reiner Ferrit vorhanden ist, und mit M das Gebiet gekennzeichnet, in dem Martensit vorliegt.
  • Sobald die Bainitisierungstemperatur TB erreicht ist, wird das nach wie vor in dem Pressformwerkzeug sitzende Stahlbauteil über eine Bainitisierungszeit tB isotherm auf der Bainitisierungstemperatur TB gehalten. Die Bainitisierungszeit tB ist dabei so bemessen, dass an ihrem Ende das Gefüge des Stahlbauteils im Wesentlichen vollständig bainitisch ist.
  • Die Abkühlung der Stahlplatine im temperierten Presswerkzeug erfolgt dabei innerhalb der Abkühlzeit tK so schnell, dass der Stahl das Zweiphasenmischgebiet A+F durchläuft und eine Umwandlung im Martensitbereich M und Perlitbereich P verhindert wird, wobei die Martensitbildung möglichst vollständig vermieden wird.
  • Nach Erreichen des Endes der Bainitisierungszeit tB wird das Werkzeug geöffnet und das Stahlbauteil an ruhender Luft auf Raumtemperatur abgekühlt. Die die Abkühlzeit tK und die Bainitisierungszeit tB umfassende Werkzeugschließzeit tW beträgt abhängig von der Komplexität der Formgebung des herzustellenden Stahlbauteils und der Blechdicke der jeweils verarbeiteten Stahlplatine 5 - 60 Sekunden.
  • Für zwei Versuche sind aus einem Warmband von 3 - 4 mm Dicke durch Kaltwalzen zwei 1,5 - 2 mm dicke Stahlplatine SP1,SP2 erzeugt worden, die aus einem 27MnCrB5-2 Stahl mit der in Tabelle 1 in Gew.-% angegebenen Zusammensetzung bestanden.
  • Die erste Stahlplatine SP1 ist dann auf eine Austenitisierungstemperatur TA von 780 °C erwärmt und auf dieser Temperatur TA für eine Austenitisierungszeit tA von 6 min gehalten worden. Tabelle 1
    C Si Mn P S
    0,294 0,24 1,13 0,017 0,002
    Al N Cr Ti B
    0,035 0,0038 0,43 0,033 0,0010
    Rest Eisen und unvermeidbare Verunreinigungen
  • Anschließend ist die Stahlplatine SP1 in einer 6 bis 12 s betragenden Transferzeit tT an Luft in ein Pressformwerkzeug transportiert worden, das auf eine Bainitisierungstemperatur TB von 400 °C aufgeheizt und bei dieser Temperatur TB konstant gehalten worden ist. In dem Presswerkzeug ist die Stahlplatine SP1 dann über eine Werkzeugschließzeit tW von 40 s pressverformt worden. Die Gesamtpresszeit umfasste die Abkühlzeit tK, in der die Stahlplatine SP1 von der Werkzeugeintrittstemperatur TW auf die Bainitisierungstemperatur TB abgekühlt worden ist, und die Bainitisierungszeit tB, in der sich das Bainitgefüge in dem im Pressformwerkzeug warmpressgeformten Stahlbauteil gebildet hat. Anschließend ist das Presswerkzeug geöffnet worden und das Stahlbauteil an ruhender Luft auf Raumtemperatur abgekühlt worden.
  • Das Gefüge des so erhaltenen Stahlformteils wies einen Ferritanteil von 50 %, einen Bainitanteil von 40 %, einen Restaustenitanteil von 6 % und einen Martensitanteil von 4 % auf.
  • In dem zweiten Versuch ist die zweite Stahlplatine SP2 bei einer Austenitisierungstemperatur TA von 800 °C so durcherwärmt worden, dass auch sie nur unvollständig austenitisiert war. Nach dieser Teilaustenitisierung hat die zweite Stahlplatine SP2 dieselben Prozessschritte durchlaufen wie die erste Stahlplatine SP1.
  • Die Eigenschaften der aus den Stahlplatinen SP1, SP2 in der voranstehend beschriebenen Weise erzeugten Stahlformteile sind in Tabelle 2 angegeben. Tabelle 2
    Platine TA [°C] Rp0,2 [MPa] Rm [MPa] Ag [%] A80 [%]
    SP1 780 374 759 12,7 19,7
    SP2 800 464 802 11,4 19,0
  • Schließlich ist zum Vergleich eine ebenfalls aus dem 27MnCrB5-2 - Stahl bestehende Stahlplatine in konventioneller Weise martensitisch zu einem Stahlformteil pressformgehärtet worden. Die Restbruchdehnung A80 betrug bei dem so erhaltenen Bauteil nur ca. 6%. Nach dem erfundenen Verfahren liegt die Restbruchdehnung A80 der gleichen Güte dagegen ca. 19%.
  • Beim erfindungsgemäßen bainitischen Presshärten handelt es sich somit um ein Verfahren zum Warmpresshärten, bei dem anstelle des üblicherweise erzeugten Martensitgefüges ein überwiegend aus Ferrit und Bainit bestehendes Gefüge durch eine isothermische Umwandlung beim Presshärten am jeweils pressgeformten Stahlbauteil eingestellt wird. Das erhaltene ferritisch/bainitische Gefüge weist im Vergleich zu Martensit eine verbesserte Restbruchdehnung bei hoher Festigkeit auf.

Claims (15)

  1. Verfahren zum Herstellen eines Stahlformteils mit einem überwiegend ferritisch-bainitischen Gefüge,
    - bei dem ein Vormaterial in Form einer Stahlplatine oder eines vorgeformten Stahlteils bereitgestellt wird, das jeweils aus einem Stahl hergestellt ist, der (in Gew.-%) C: 0,02 - 0,6 %, Mn: 0,5 - 2,0 %, Al: 0,01 - 0,06 %, Si: Max. 0,4 %, Cr: Max. 1,2 %, P: Max. 0,035 %, S: Max. 0,035 %,
    sowie optional eines oder mehrere der Elemente aus der Gruppe "Ti, Cu, B, Mo, Ni, N" mit der Maßgabe Ti: Max. 0,05 %, Cu: Max. 0,01 %, B: 0,0008 - 0,005 %, Mo: Max. 0,3 %, Ni: Max. 0,4 %, N: max. 0,01 %,
    und als Rest Eisen und unvermeidbare Verunreinigungen enthält,
    - bei dem das Vormaterial bei einer zwischen der Ac1- und der Ac3-Temperatur des Stahls liegenden Erwärmungstemperatur (TA) durcherwärmt wird, so dass eine allenfalls unvollständige Austenitisierung des Vormaterials eintritt,
    - bei dem das Vormaterial in ein Pressformwerkzeug eingelegt und darin zu dem Stahlformteil geformt wird,
    - bei dem das Stahlformteil auf eine Bainitbildungstemperatur (TB) gebracht wird, die oberhalb der Martensitstarttemperatur (Ms), jedoch unterhalb der Perlitumwandlungstemperatur des Stahls liegt, aus dem das Vormaterial jeweils hergestellt ist,
    - bei dem das Stahlformteil nach der Abkühlung über eine Bainitisierungszeit (tB) im Wesentlichen isotherm auf der Bainitbildungstemperatur (TB) gehalten wird, bis in dem Stahlformteil ein zum überwiegenden Teil aus Ferrit und Bainit bestehendes Gefüge entstanden ist, dessen Martensitgehalt weniger als 5 % beträgt, wobei Restaustenitgehalte von bis zu 10 % vorhanden sein können, und
    - bei dem das Stahlformteil nach dem Ende der Bainitisierungszeit (tB) auf Raumtemperatur gebracht wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Stahl (in Gew.-%) C: 0,25 - 0,6 %, Si: max. 0,4 %, Mn: 0,5 - 2,0 %, Cr: max. 0,6 %, P: max. 0,02 %, S: max. 0,01 %, Al: 0,01 - 0,06 %, Ti: max. 0,05 %, Cu: max. 0,1 %, B: 0,008 - 0,005 %
    und als Rest Eisen und unvermeidbare Verunreinigungen enthält.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Stahl (in Gew.-%) C: 0,25 - 0,6 %, Si: max. 0,4 %, Mn: 0,5 - 2,0 %, Cr: max. 1,2 %, P: max. 0,035 %, S: max. 0,035 %, Mo: max. 0,3 %, Ni: max. 0,4 %, Al: 0,01 - 0,06 %,
    und als Rest Eisen und unvermeidbare Verunreinigungen enthält.
  4. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Summe der Ferrit- und Bainitanteile im Gefüge des Stahlformteils am Ende der Bainitisierungszeit (tB) mindestens 90 % beträgt.
  5. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass am Ende der Bainitisierungszeit (tB) der Bainitisierungszeit der Martensitanteil des Stahlformteils weniger als 1 % beträgt, insbesondere auf Spuren beschränkt ist.
  6. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Austenitisierungstemperatur (TA) 750 - 810 °C beträgt.
  7. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die für das Durcherwärmen bei der Erwärmungstemperatur (TA) vorgesehene Erwärmungszeit (tA) 6 - 15 Minuten beträgt.
  8. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass das Vormaterial mit einem vor Korrosion schützenden metallischen Überzug versehen ist.
  9. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass nach dem Pressformen des Vormaterials das erhaltene Stahlformteil in dem Pressformwerkzeug auf die Bainitbildungstemperatur (TB) gebracht und für die Bainitisierungszeit (tB) gehalten wird.
  10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die Werkzeugschließzeit (tW) des Presswerkzeugs 5 - 60 Sekunden, insbesondere 20 - 60 Sekunden, beträgt.
  11. Verfahren nach Anspruch 10, dadurch gekennzeichnet,dass die Bainitisierungszeit (tB) kürzer als die Werkzeugschließzeit (tW) ist.
  12. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass nach dem Pressformen das aus dem Vormaterial pressgeformte Stahlformteil aus der Pressform entnommen und in einem separaten Arbeitsgang auf die Bainitbildungstemperatur (TB) gebracht und über die Bainitisierungszeit (tB) gehalten wird.
  13. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Bainitisierungstemperatur (TB) höher als die Martensitstarttemperatur der jeweiligen Zusammensetzung des Vormaterials kleiner als 500 °C ist.
  14. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Abkühlung des erhaltenen Stahlformteils nach dem Ende der Bainitisierungszeit (tB) an Luft durchgeführt wird.
  15. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass es sich bei dem Stahlformteils um einen Teil einer Automobilkarosserie handelt.
EP09741994.9A 2008-05-06 2009-04-24 Verfahren zum herstellen eines stahlformteils mit einem überwiegend ferritisch-bainitischen gefüge Active EP2297367B9 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008022399A DE102008022399A1 (de) 2008-05-06 2008-05-06 Verfahren zum Herstellen eines Stahlformteils mit einem überwiegend ferritisch-bainitischen Gefüge
PCT/EP2009/054961 WO2009135776A1 (de) 2008-05-06 2009-04-24 Verfahren zum herstellen eines stahlformteils mit einem überwiegend ferritisch-bainitischen gefüge

Publications (3)

Publication Number Publication Date
EP2297367A1 EP2297367A1 (de) 2011-03-23
EP2297367B1 EP2297367B1 (de) 2017-06-07
EP2297367B9 true EP2297367B9 (de) 2017-09-13

Family

ID=40802073

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09741994.9A Active EP2297367B9 (de) 2008-05-06 2009-04-24 Verfahren zum herstellen eines stahlformteils mit einem überwiegend ferritisch-bainitischen gefüge

Country Status (5)

Country Link
US (1) US8888934B2 (de)
EP (1) EP2297367B9 (de)
CA (1) CA2725210C (de)
DE (1) DE102008022399A1 (de)
WO (1) WO2009135776A1 (de)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009056443A1 (de) * 2009-12-02 2011-06-09 Benteler Automobiltechnik Gmbh Crashbox und Verfahren zu deren Herstellung
DE102010012830B4 (de) 2010-03-25 2017-06-08 Benteler Automobiltechnik Gmbh Verfahren zur Herstellung einer Kraftfahrzeugkomponente und Karosseriebauteil
DE102010048209C5 (de) * 2010-10-15 2016-05-25 Benteler Automobiltechnik Gmbh Verfahren zur Herstellung eines warmumgeformten pressgehärteten Metallbauteils
KR101033767B1 (ko) * 2010-11-03 2011-05-09 현대하이스코 주식회사 열처리 경화 강판을 이용한 국부적으로 이종강도를 가지는 자동차 부품 제조방법
EP2719786B1 (de) * 2011-06-10 2016-09-14 Kabushiki Kaisha Kobe Seiko Sho Heissgepresster formartikel, herstellungsverfahren dafür und dünnes stahlblech zum heisspressen
DE102012024626A1 (de) 2012-12-17 2014-06-18 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Fahrzeugkarosserie und Verfahren zur Fertigung eines Formteils dafür
CN104195455B (zh) * 2014-08-19 2016-03-02 中国科学院金属研究所 一种基于碳配分原理的热冲压烘烤韧化钢及其加工方法
CN104498830B (zh) * 2014-12-30 2017-06-23 南阳汉冶特钢有限公司 一种合金结构钢及其生产方法
WO2017098302A1 (en) * 2015-12-09 2017-06-15 Arcelormittal Vehicle underbody structure comprising a reinforcement element between a longitudinal beam and a lowerside sill part
US10385415B2 (en) 2016-04-28 2019-08-20 GM Global Technology Operations LLC Zinc-coated hot formed high strength steel part with through-thickness gradient microstructure
US10619223B2 (en) 2016-04-28 2020-04-14 GM Global Technology Operations LLC Zinc-coated hot formed steel component with tailored property
CN106676405A (zh) * 2016-12-09 2017-05-17 天长市天龙泵阀成套设备厂 高强度合金钢
CN106756512B (zh) * 2017-01-12 2018-12-18 唐山钢铁集团有限责任公司 一钢多级的热轧复相高强钢板及其生产方法
WO2019222950A1 (en) 2018-05-24 2019-11-28 GM Global Technology Operations LLC A method for improving both strength and ductility of a press-hardening steel
US11612926B2 (en) 2018-06-19 2023-03-28 GM Global Technology Operations LLC Low density press-hardening steel having enhanced mechanical properties
US11530469B2 (en) 2019-07-02 2022-12-20 GM Global Technology Operations LLC Press hardened steel with surface layered homogenous oxide after hot forming
WO2021009543A1 (en) * 2019-07-16 2021-01-21 Arcelormittal Method for producing a steel part and steel part
CN110527914A (zh) * 2019-09-25 2019-12-03 唐山汇丰钢铁有限公司 一种建筑拉条专用钢及其生产工艺
US20230183828A1 (en) * 2020-05-18 2023-06-15 Timothy W. Skszek Method for processing advanced high strength steel
CN114959422A (zh) * 2022-06-06 2022-08-30 山东冀凯装备制造有限公司 一种高强度低合金贝氏体铸钢的制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4426235A (en) 1981-01-26 1984-01-17 Kabushiki Kaisha Kobe Seiko Sho Cold-rolled high strength steel plate with composite steel structure of high r-value and method for producing same
FR2780984B1 (fr) 1998-07-09 2001-06-22 Lorraine Laminage Tole d'acier laminee a chaud et a froid revetue et comportant une tres haute resistance apres traitement thermique
DE10208216C1 (de) 2002-02-26 2003-03-27 Benteler Automobiltechnik Gmbh Verfahren zur Herstellung eines metallischen Bauteils
JP4975245B2 (ja) 2004-10-06 2012-07-11 新日本製鐵株式会社 高強度部品の製造方法
EP1767659A1 (de) 2005-09-21 2007-03-28 ARCELOR France Herstellungsverfahren eines Stahlwerkstücks mit mehrphasigem Mikrogefüge
DE102005054847B3 (de) 2005-11-15 2007-10-04 Benteler Automobiltechnik Gmbh Hochfestes Stahlbauteil mit gezielter Deformation im Crashfall
DE102006019395A1 (de) * 2006-04-24 2007-10-25 Thyssenkrupp Steel Ag Vorrichtung und Verfahren zum Umformen von Platinen aus höher- und höchstfesten Stählen
DE102006053819A1 (de) * 2006-11-14 2008-05-15 Thyssenkrupp Steel Ag Verfahren zum Herstellen eines Bauteil durch Warmpresshärten und hochfestes Bauteil mit verbesserter Bruchdehnung

Also Published As

Publication number Publication date
CA2725210C (en) 2016-05-31
US20110132502A1 (en) 2011-06-09
US8888934B2 (en) 2014-11-18
WO2009135776A1 (de) 2009-11-12
CA2725210A1 (en) 2009-11-12
DE102008022399A1 (de) 2009-11-19
EP2297367B1 (de) 2017-06-07
EP2297367A1 (de) 2011-03-23

Similar Documents

Publication Publication Date Title
EP2297367B9 (de) Verfahren zum herstellen eines stahlformteils mit einem überwiegend ferritisch-bainitischen gefüge
EP2446064B1 (de) Verfahren zum herstellen eines warmpressgehärteten bauteils und verwendung eines stahlprodukts für die herstellung eines warmpressgehärteten bauteils
EP2547800B1 (de) Verfahren zur herstellung von werkstücken aus leichtbaustahl mit über die wanddicke einstellbaren werkstoffeigenschaften
DE102013010946B3 (de) Verfahren und Anlage zum Herstellen eines pressgehärteten Stahlblechbauteils
DE102008051992B4 (de) Verfahren zur Herstellung eines Werkstücks, Werkstück und Verwendung eines Werkstückes
EP2553133B1 (de) Stahl, stahlflachprodukt, stahlbauteil und verfahren zur herstellung eines stahlbauteils
DE102011057007B4 (de) Verfahren zum Herstellen eines Kraftfahrzeugbauteils sowie Kraftfahrzeugbauteil
EP3004401B1 (de) Verfahren zur herstellung eines bauteils durch warmumformen eines vorproduktes aus stahl
EP1939308A1 (de) Verfahren zum Herstellen eines Bauteils durch Wärmepresshärten und hochfestes Bauteil mit verbesserter Bruchdehnung
EP2125263A1 (de) Verfahren und vorrichtung zum temperierten umformen von warmgewalztem stahlmaterial
DE102012111959A1 (de) Verfahren zur Herstellung eines Kraftfahrzeugbauteils sowie Kraftfahrzeugbauteil
EP3728657B1 (de) Verfahren zum erzeugen metallischer bauteile mit angepassten bauteileigenschaften
EP2664682A1 (de) Stahl für die Herstellung eines Stahlbauteils, daraus bestehendes Stahlflachprodukt, daraus hergestelltes Bauteil und Verfahren zu dessen Herstellung
DE102008022401B4 (de) Verfahren zum Herstellen eines Stahlformteils mit einem überwiegend bainitischen Gefüge
DE102017130237A1 (de) Hochfestes, warmgewalztes Stahlflachprodukt mit hohem Kantenrisswiderstand und gleichzeitig hohem Bake-Hardening Potential, ein Verfahren zur Herstellung eines solchen Stahlflachprodukts
DE102008022400B4 (de) Verfahren zum Herstellen eines Stahlformteils mit einem überwiegend martensitischen Gefüge
WO2020038883A1 (de) Warmgewalztes unvergütetes und warmgewalztes vergütetes stahlflachprodukt sowie verfahren zu deren herstellung
DE102019219235B3 (de) Verfahren zur Herstellung eines warmumgeformten und pressgehärteten Stahlblechbauteils
WO2020244974A1 (de) Verfahren zur herstellung eines warmumgeformten und pressgehärteten stahlblechbauteils
DE102020212469A1 (de) Verfahren zur Herstellung eines zumindest teilweise vergüteten Stahlblechbauteils und zumindest teilweise vergütetes Stahlblechbauteil
EP3978634A1 (de) Verfahren zur herstellung eines zumindest teilweise pressgehärteten stahlblechbauteils und zumindest teilweise pressgehärtetes stahlblechbauteil
DE102017131253A1 (de) Verfahren zum Erzeugen metallischer Bauteile mit angepassten Bauteileigenschaften
DE102018207888A1 (de) Stahlmaterial und Verfahren zur Herstellung eines Stahlmaterials

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101203

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BIAN, JIAN

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160323

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C21D 1/20 20060101ALI20161110BHEP

Ipc: C21D 9/48 20060101AFI20161110BHEP

Ipc: C21D 1/18 20060101ALI20161110BHEP

Ipc: C21D 8/02 20060101ALI20161110BHEP

Ipc: C22C 38/32 20060101ALI20161110BHEP

Ipc: C22C 38/04 20060101ALI20161110BHEP

INTG Intention to grant announced

Effective date: 20161130

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BIAN, JIAN

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 899280

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009014039

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170607

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170907

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170908

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171007

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009014039

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

26N No opposition filed

Effective date: 20180308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180430

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180424

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090424

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170607

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200420

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200428

Year of fee payment: 12

Ref country code: SE

Payment date: 20200427

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20200421

Year of fee payment: 12

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 899280

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210424

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210425

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200424

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220620

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502009014039

Country of ref document: DE