EP2276999A1 - Optische anordnung zur beleuchtung eines messobjektes und interferometrische anordnung zur vermessung von flächen eines messobjektes - Google Patents

Optische anordnung zur beleuchtung eines messobjektes und interferometrische anordnung zur vermessung von flächen eines messobjektes

Info

Publication number
EP2276999A1
EP2276999A1 EP09738008A EP09738008A EP2276999A1 EP 2276999 A1 EP2276999 A1 EP 2276999A1 EP 09738008 A EP09738008 A EP 09738008A EP 09738008 A EP09738008 A EP 09738008A EP 2276999 A1 EP2276999 A1 EP 2276999A1
Authority
EP
European Patent Office
Prior art keywords
beams
light beams
optical
beam path
arrangement according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09738008A
Other languages
English (en)
French (fr)
Other versions
EP2276999B1 (de
Inventor
Matthias Fleischer
Pawel Drabarek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2276999A1 publication Critical patent/EP2276999A1/de
Application granted granted Critical
Publication of EP2276999B1 publication Critical patent/EP2276999B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • G01B9/02017Interferometers characterised by the beam path configuration with multiple interactions between the target object and light beams, e.g. beam reflections occurring from different locations
    • G01B9/02021Interferometers characterised by the beam path configuration with multiple interactions between the target object and light beams, e.g. beam reflections occurring from different locations contacting different faces of object, e.g. opposite faces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02001Interferometers characterised by controlling or generating intrinsic radiation properties
    • G01B9/02007Two or more frequencies or sources used for interferometric measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • G01B9/02027Two or more interferometric channels or interferometers
    • G01B9/02028Two or more reference or object arms in one interferometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/0209Low-coherence interferometers

Definitions

  • the invention relates to an optical arrangement for illuminating at least one surface of a measurement object and an interferometric arrangement for measuring surfaces of a measurement object according to the preamble of the independent claims.
  • the application DE-OS 10 2004 045 806 A1 discloses an interferometric measuring device for measuring an object, in particular for measuring the thickness of the object. Described is a structure of a Michelson interferometer with a light source, a beam splitter for forming reference beams and object beams, a reference mirror in the reference light path and an image sensor. In relichtweg a special lens is arranged. This divides the object beams into two partial object beams.
  • Both partial object beams are each directed to a deflection mirror.
  • the partial object beams deflected at the mirrors are used for the simultaneous vertical illumination of two object surfaces lying parallel to one another.
  • the partial object beams reflected at the object surfaces are superimposed with the reference beams and impinge on the image sensor of the measuring device. It comes with the
  • This optical path length at which interference occurs is determined in each case for the reflected partial object beams of an object surface. This is done by using the reference level until the formation of is shifted in the reference light path. On the basis of the determined optical path lengths for both partial object beams, one concludes on the distance between the two object surfaces to one another and thus on the thickness of the object at the location of the measured object surfaces.
  • the division of the object beams in the special objective into two partial object beams takes place in the form of an aperture evaluation.
  • two coherent partial cross sections of the object beams are each separated into two partial object beams with their own beam path.
  • the partial object beams which are then reflected at the object surfaces are brought together again in the same direction at the location of the aperture detection that has taken place.
  • the merged object beams have coherent, non-overlapping partial cross sections, which are traversed exclusively by reflected subobject beams of an object surface.
  • This has the consequence that only a certain subarea of a generally square image recorder is exposed exclusively by the respective reflected partial object beams of an object surface. Accordingly, the measured object surfaces are separated from each other on the respective subregions of the image sensor.
  • the object of the invention is to propose an optical arrangement for illuminating at least one surface of a measurement object, in which a beam path of light beams reflected at a first object surface coincides at least partially with a beam path of light beams reflected at a second object surface, wherein all light rays in the area of coverage in an equal
  • an optical arrangement in an interferometric measuring arrangement, wherein measured object surfaces at least partially on a same irradiated area of a detector, such as an imager, are photographed.
  • the optical arrangement according to the invention for illuminating at least one object surface provides at least a first optical element which, when introduced, is introduced
  • Light rays of a radiation-generating light source at least forms a first and at least one second beam path.
  • the light beams in the first beam path are directed onto a first object surface, preferably perpendicularly, via a second optical element connected downstream of the first optical element in the light path.
  • light beams in the second beam path are directed onto a second object surface, preferably vertically, via a third optical element connected downstream of the first optical element in the light path.
  • the light beams in the first beam path advantageously originate from the largest possible area of the cross section of the light beams introduced onto the first optical element, preferably from the complete cross section. Furthermore, the light beams in the second beam path originate from the largest possible area of the cross section of the light beams introduced onto the first optical element, likewise preferably from the complete cross section.
  • optical elements for beam guidance of the introduced light beams the light beams in the at least first beam path and / or the light beams in the at least second beam path can be arranged. What is meant here is the beam guidance of the light beams to an object surface and / or the reflected light rays away from the respective object surface.
  • the at least approximately perpendicular to the object surfaces) directed and then reflected light rays pass through the first and / or second beam path previously formed in each case to an object surface then opposite directions back.
  • the reflected light beams in the first beam path and the reflected light beams in the second beam path are oriented parallel to one another at least on a respective longitudinal section of their light path.
  • a particularly great advantage results when the first and the second beam path of the reflected light beams have at least one partial spatial coverage. It is additionally advantageous if, within this overlap, the reflected light beams from the first and second beam paths are oriented parallel to one another. This means that the spatial coverage of the beam paths are traversed both by the reflected light beams from the first beam path and by the reflected light beams from the second beam path.
  • the overlap of the beam paths of the reflected light beams is preferably initiated by the arrangement of the at least first optical element. Particularly advantageous is a complete overlap of the beam paths of the reflected light beams. In an advantageous manner, the coverage in the cross section corresponds to the entire cross section of the light beams introduced into the optical arrangement.
  • the optical arrangement according to the invention is preferably arranged in a measuring beam path of an interferometer measuring head.
  • the measuring beams are introduced into the optical arrangement according to the invention and then used to illuminate the
  • the interferometric arrangement according to the invention has the advantage over the prior art that ideally a large measuring field can be realized as an illuminated object surface.
  • the entire cross section of the measuring beams introduced within the optical arrangement according to the invention is used in each case for forming the at least first and / or the at least second beam path.
  • a large detector area preferably the entire detector area
  • an area of the detector four times as large can advantageously be used for imaging.
  • the lateral resolution during the measurement of an object surface with an interferometric arrangement according to the invention is also doubled. This means that the measurement of the same object surfaces is much more accurate than is the case with a previously known measuring device. It is also possible to use a smaller detector with at least one same measurement accuracy and / or at least one object surface of the same size to be measured. Conversely, it is also possible to maintain the detector size, instead of reducing the cross section of the introduced into the optical arrangement of the invention measuring beams. As a result, the object surfaces to be measured are illuminated in a favorable manner with a greater light intensity. Thus, even with poorly reflective object surfaces their image can be achieved on the detector.
  • the optical elements may be arranged such that the light rays directed onto the first object surface are oriented parallel or antiparallel to the light rays directed onto the second object surface. Accordingly, parallel to each other arranged object surfaces can be illuminated. Within an interferometric arrangement according to the invention, the distance between the two object surfaces can then be measured in an ideal manner. In the case of opposing parallel object surfaces, it is thus possible to determine the thickness of the object at the location of the measured object surfaces. Likewise, the parallelism of the object surfaces to each other can be checked.
  • At least one optical element is a beam splitter.
  • the beam guidance of the light beams incident on the beam splitter can be influenced in such a way that the light beams are divided and thus at least light beams are formed in a first beam path and at least light beams in a second beam path.
  • a beam splitter is an optical element in which light beams originate in the at least first formed beam path and in the at least second formed beam path from at least one same cross-sectional area of the light beams introduced onto the beam splitter, preferably from the entire cross section.
  • a very simple such beam splitter is a partially mirrored
  • Glass pane which is arranged for example at an angle of 45 ° to the introduced light beams. Part of the incident light rays is reflected at the object surface of the disk at an angle of 90 °, another part penetrates the disk.
  • a beam splitter consists of two prisms attached to its base (eg with an optical adhesive such as the UV adhesive
  • a preferred embodiment provides that the first optical element for forming at least a first and at least one second beam path is a beam splitter.
  • the at least first and the at least second object surfaces are then illuminated simultaneously.
  • a variant also provides for using a beam splitter in which the light beams in the first beam path formed are preferably oriented at right angles to the light beams incident on the beam splitter.
  • a beam splitter is proposed in which the light beams are rectified in the second beam path formed and directed without deflection to the incident on the beam splitter beams.
  • such a proposed optical arrangement is positioned within an interferometric arrangement according to the invention such that the optical axis of the second beam path formed lies on the optical axis of the measuring beams formed in the interferometric system.
  • At least one optical element is a mirror or a prism in order, for example, to light to deflect by reflection in a preferred beam direction. Light deflections due to refraction of light within the prism are preferably to be avoided. Otherwise, a spectral splitting of the light additionally takes place. In an interferometric arrangement according to the invention with such an optical arrangement used in this way, it can lead to deviating measurement results.
  • a further advantageous embodiment of the optical arrangement according to the invention proposes to use a mirror and / or a prism as the second and / or third optical element connected downstream of the first optical element. Preference is given to the use of prisms, in particular when such a proposed optical arrangement is used within an interferometric arrangement according to the invention.
  • Interferometric systems usually have a fixed - so-called - working length. This working length is the maximum optical path traveled by measuring beams reflected on an object surface, in which a focused image of the object surface on the detector can still be achieved via the objective.
  • Advantageously prisms extend this working distance by 1/3 of their continuous glass path. In addition, the risk of occurring in the beam path air flows is reduced, which usually negatively affect the measurement result.
  • a general advantage for an optical arrangement according to the invention is when at least one optical element for refracting the light beams is a lens or a lens system.
  • the cross section of the light beams in the direction of the light path can be reduced.
  • the light intensity in the subsequent beam path can be increased.
  • optical elements which can deflect light beams by reflection into more than one beam direction.
  • the optical element is rotatably arranged.
  • a rotatably arranged first optical element such as a mirror or a prism. This makes it possible to illuminate only an object surface in a corresponding rotational position. It will be preferably all light rays incident on the rotatable first optical element are directed, for example, exclusively to the first object surface, via the second optical element, for example. By changing the rotational position, only the second object surface can then be illuminated in the same way preferably.
  • Such a proposed optical arrangement within an interferometric arrangement according to the invention has the advantage that only one object surface can ever be scanned on the detector for an object measurement. This provides a clear assignment of the measuring signals of the detector to the measured object surface. The fact that then all the measuring beams introduced into the optical arrangement can be used to illuminate the object surface, results in an advantageous large light exploitation for the measuring process.
  • optical elements which can be folded away from the beam path formed by the first optical element at least first or at least second. Conveniently, this is done in such a way that they are no longer involved in a beam guidance of the light beams.
  • Particularly preferred are mirrors and / or prisms. This makes it possible to illuminate only one object surface in such an arrangement of the optical elements exclusively. For example, light beams may be directed in a first beam path onto a first surface. At the same time, the illumination of the second object surface is exposed, for example by the second optical element being folded away from the second beam path. As a result, the light beams in the second beam path are no longer directed to the second object surface.
  • Such a proposed optical arrangement according to the invention within an interferometric arrangement according to the invention has the advantage that only one object surface can ever be scanned on the detector for an object measurement. This gives a clear assignment of the measuring signals of the detector to the measured object surface.
  • FIG. 1 shows schematically a first embodiment of an interferometric measuring arrangement according to the invention with an optical arrangement for illuminating at least one surface of a measuring object in longitudinal section
  • FIG. 2a shows schematically a variant of an optical arrangement with a
  • Fig. 2b shows the embodiment of Fig. 2a with a second position of the diaphragm in longitudinal section.
  • FIG. 1 shows a first embodiment of an inventive interferometric arrangement 300 for measuring object surfaces.
  • 100 denotes an interferometer measuring head.
  • the interferometer measuring head 100 is constructed in the form of an areal measuring interferometer.
  • the structure contains a
  • Radiation generating light source 10 which emits short-coherent light beams, for example white light, in an illumination optical system 20.
  • an illumination beam path 30 is formed.
  • a first roof prism 40 arranged in the illumination beam path 30 effects a deflection of the light beams such that the light beams are directed perpendicular to a first beam splitter 50.
  • the reference beams are in the same direction and the measuring beams are at right angles to the incident on the beam splitter 50 light rays of the illumination beam path 30 oriented.
  • the reference beams are deflected via a second roof prism 60 arranged in the reference beam path 70 in such a way that they are directed perpendicularly to a reference element 75, for example a reference mirror.
  • the reference beams 75 then reflected reference beam thus pass through the reference beam path 70 via the roof prism 60 to back to the beam splitter 50 opposite.
  • the reference beams are ultimately directed through a lens 80 arranged in the optical path perpendicular to a detector 90, for example a photosensitive element of a camera.
  • a detector 90 for example a photosensitive element of a camera.
  • the beam direction of the reference beams incident on the detector 90 is opposite to that of the measuring beams formed by the first beam splitter 50.
  • An optical arrangement 200 according to the invention is arranged in the measuring beam path 205 of the interferometer measuring head 100.
  • the measuring beams are directed to a second beam splitter 250.
  • the optical axis of the measuring beam path 205 advantageously coincides with the optical axis of the second beam splitter 250.
  • An offset of the optical axes is permissible, in particular up to an offset dimension, in which it is ensured that the measuring beams coincide with the entire cross section of the measuring beam path 205 to hit the second beam splitter 250.
  • the second beam splitter 250 corresponds to a first optical element within the optical arrangement 200 for forming a first beam path 210 and a second beam path 220.
  • light beams in the first beam path 210 are oriented at right angles to the measurement beams, while the light beams in the second beam path 220 extend in a straight line extension to the measuring beams incident on the second beam splitter 250.
  • the light beams can originate both in the first beam path 210 and in the second beam path 220 in an advantageous manner from the entire cross section of the measurement beam path 205. Accordingly, the light beams within the first and the second beam path 210, 220 continue to be measuring beams with light intensity which is then lower in each case as a result of the division.
  • the cross section of the first and the second beam path 210, 220 corresponds favorably to the cross section of the measuring beam path 205.
  • a first mirror 260 is arranged such that measuring beams are then directed by reflection perpendicular to a first object surface 281 of a measuring object 280.
  • a second mirror 270 is arranged such that measuring beams are directed onto a second object surface 282 of the measurement object 280.
  • the proposed interferometric arrangement 300 is positioned in the space such that the first object surface 281 is illuminated from above in the vertical spatial direction y and the second object surface 282 is illuminated from below in the vertical spatial direction y through the radiation-transmissive carrier 240.
  • the measurement beams reflected at the first and at the second object surface 281, 282 then pass back through the first and the second beam path 210, 220 via the first and the second mirrors 260, 270 as far as the second beam splitter 250.
  • the reflected measuring beams from the second beam path 220 are then introduced into the objective 80, for example a telecentric objective, without any deflection parallel to the axis and directed perpendicularly onto the detector 90.
  • the measuring beams in the first beam path 210 are deflected at right angles to their previous beam direction by the second beam splitter 250 and then introduced into the objective 80 in parallel to the axis and also directed perpendicularly to the detector 90.
  • the beam path of the measurement beams reflected at the first object surface 281 and the beam path of the measurement beams reflected at the second object surface 282 are congruent within the imaging beam path 230 of the objective 80.
  • the reflected measurement beams incident on the detector 90 interfere with the reference beams also contained in the imaging beam 230 and incident on the detector 90.
  • the measurement object 280 is arranged within the optical arrangement 200 in such a way that the measurement beams incident on the first object surface 281 and then reflected and those incident on the second object surface 282 and also reflected
  • the total path difference between the two optical path lengths is preferably greater than the coherence length of the light source 10. This prevents the measurement beams reflected from the first object surface 281 and second object surface 282 from interfering with one another.
  • An interference with the reference beams takes place when the optical path length of the measuring beams coincides with the optical path length of the reference beams.
  • the optical path length of the reference beams can be increased or decreased by the reference element 75 is arranged displaceably on the optical path axis of the reference beams.
  • a change and adjustment of the optical path length for the measuring Radiation of the first object surface 281 or the second object surface 282 is preferably achieved by a relative displacement of the interferometer measuring head 100 and the optical arrangement 200 in the direction of the optical axis M.
  • An alternative embodiment provides that the first mirror 260, the second mirror 270 and / or the second beam splitter 250 relative to the measurement object in each case displaceable in
  • the distance of the first object surface 281 from the second object surface 282 corresponds to the object thickness.
  • the interferometric arrangement 300 is calibrated in a first step with a gauge block of known thickness.
  • the gauge block is positioned on the carrier 240 instead of the measuring object 280.
  • the interferometer measuring head 100 is shifted to the position where the optical path from the beam splitting surface 250a of the second beam splitter 250 to the first object surface 281 corresponds to the optical path from the beam splitting surface 250a of the second beam splitter 250 to the reference element 75. In this position, the measurement beams reflected at the first object surface 281 interfere with the reference beams, so that a corresponding first interference pattern is visible on the detector 90.
  • the gage is positioned so that the optical path from the beam splitting surface 250a of the second beam splitter 250 to the second object surface 282 is slightly longer or shorter than the optical path length of the reference beams. Thus, there is no interference of the measurement beams reflected at the second object surface 282 with the reference beams. Accordingly, no second interference pattern at the detector 90 is visible. Only by shifting, for example, the reference element 75 in the direction of the optical axis S of
  • Reference beam path 70, the second reference pattern on the detector 90 is visible. At the same time, the first reference pattern on the detector 90 is no longer visible.
  • the displacement of, for example, the reference element 70 between the first interference pattern formed by the first object surface 281 and the second reference pattern formed by the second object surface 282 is measured with, for example, a high-precision displacement sensor.
  • the determined displacement path of the reference element 75 is stored as a calibration constant.
  • the measuring object 280 is measured in the same way and the distance of the reference element 75 between the first formed interference pattern and the second interference pattern determined.
  • the object thickness is then calculated from the known thickness of the final dimension, the previously determined calibration constant and the distance of the reference element 75 determined for the measurement object.
  • a further embodiment of an interferometric arrangement according to the invention provides at least one light source 10a, which emits long-coherent light, for example laser light.
  • the remaining construction of an interferometer measuring head 100 remains unchanged.
  • a light source 10a is provided such that the interferometer measuring head 100a can be used as a multi-wavelength interferometer.
  • the interferometer measuring head 100a can be used as a multi-wavelength interferometer.
  • two laser beams can be used for this purpose whose wavelengths have a very small difference compared to one another.
  • a light source 10a can be used, so that the interferometer
  • - Measuring head 100a is realized as an interferometer with displaceable wavelength.
  • a laser source can be provided as the light source 10a, which can be tuned to different laser frequencies.
  • an embodiment of an optical arrangement 200a according to FIG. 2a is then preferably arranged in the measurement beam path 205.
  • the structure of the optical arrangement 200a essentially corresponds to the already described construction of the optical arrangement 200 in FIG. 1.
  • a movable diaphragm 225 is provided in the first and in the second optical path 210, 220.
  • the aperture is de 225 in the second beam path 220 preferably positioned such that no measuring rays impinge on the second object surface 282.
  • the aperture is de 225 in the second beam path 220 preferably positioned such that no measuring rays impinge on the second object surface 282.
  • the first object surface 281 is imaged on the detector 90 by interference with the reference rays.
  • the diaphragm 225 is then preferably arranged in the first beam path 281 such that no measuring beams impinge on the first object surface 281.
  • the second object area 282 is imaged on the detector 90 by interference with the reference beams.
  • the flatness, the parallelism of the two object surfaces 281, 282 to each other and the object thickness can be measured.
  • the phase difference of the two different proportions of laser beams with minimally different wavelengths at the detector 90 is determined during the measurement of the first object surface 281. Thereby, the number of periods within the optical path can be determined, which lead to such a phase shift.
  • the traveled optical path length of the measurement beams reflected at the first object surface 281 is known.
  • the traveled optical path length of the measurement beams reflected at the second object surface 282 can be determined in the same way.
  • in the simplest way can close to the object thickness.
  • the interferometric arrangement may be further varied by having the light source 10a emit respectively long coherent light having a first wavelength of light or long coherent light having a second wavelength of light by being electrically turned on and off.
  • the light source 10a emit respectively long coherent light having a first wavelength of light or long coherent light having a second wavelength of light by being electrically turned on and off.
  • two alternately driven laser units are conceivable for the provision of light beams with different wavelengths of light.
  • a construction which essentially corresponds to the already described construction of the optical arrangement 200 in FIG. 1 is then preferably used.
  • a first color filter for filtering the measurement beams is arranged with the first wavelength of light.
  • a second color filter is positioned to filter the measurement beams at the second wavelength of light.
  • the first object surface 281 or the second object surface 282 is imaged on the detector 90.
  • a dichroic (color separating) beam splitter 250 may be used as the first optical element.
  • An additional embodiment variant of the interferometric arrangement provides a light source 10a, which emits in each case long-coherent light with a first polarization direction or long-coherent light with a second polarization direction by an electrical switching on and off.
  • a light source 10a which emits in each case long-coherent light with a first polarization direction or long-coherent light with a second polarization direction by an electrical switching on and off.
  • two alternately driven laser units are conceivable, preferably with laser beams polarized perpendicular to one another.
  • the optical arrangement 200 it is then particularly preferred for the optical arrangement 200 to use a structure which essentially corresponds to the already described construction of the optical arrangement 200 in FIG.
  • the second beam splitter 250 used is a polarized beam splitter.
  • the structure essentially corresponds to the construction of the interferometric arrangement 300 in FIG. 1.
  • the light source 10 can emit short-coherent or else long-coherent light.
  • an additional mirror is then advantageously used instead of the second beam splitter 250, which mirror is preferably folded away from the measuring beam path 205. that can.
  • the mirror in a first position, the mirror is arranged such that preferably all measuring beams from the interferometer measuring head 100 are directed onto the first mirror 260 and thus illuminate the first object surface 281. In this case, only the first object surface 281 is imaged on the detector 90. In a further position, the mirror is completely folded away from the measuring beam path 205.
  • all measuring beams from the interferometer measuring head 100 are preferably directed onto the second mirror 270 and accordingly preferably only the second object surface 282 is illuminated. Accordingly, only the second object surface 282 on the detector 90 is preferably imaged in this beam guidance of the measurement beams.

Abstract

Es wird eine interferometrische Anordnung (300) zur Vermessung von Flächen (281, 282) eines Messobjektes (280) mit einer optischen Anordnung (200) beschrieben. Die optische Anordnung (200) weist einen Strahlteiler (250) auf, der Messstrahlen in einem ersten Strahlengang und Messstrahlen in einem zweiten Strahlengang mit Hilfe zweier Spiegel (260, 270) auf die Flächen (281, 282) des Messobjektes richtet. Die durch die an den Flächen (281, 282) reflektierten Lichtstrahlen gebildeten Strahlengänge decken sich zumindest teilweise in einem Bereich mit gleicher Strahlrichtung. Auf diese Weise werden gemessene Flächen (281, 282) des Messobjektes (280) zumindest teilweise auf eine gleiche bestrahlte Fläche eines Detektors (90), beispielsweise einen Bildaufnehmer, abgebildet.

Description

Beschreibung
Titel
OPTISCHE ANORDNUNG ZUR BELEUCHTUNG EINES MESSOBJEKTES UND
INTERFEROMETRISCHE ANORDNUNG ZUR VERMESSUNG VON FLÄCHEN EINES MESSOBJEKTES
Stand der Technik
Die Erfindung betrifft eine optische Anordnung zur Beleuchtung von mindestens einer Fläche eines Messobjektes und eine interferometrische Anordnung zur Vermessung von Flächen eines Messobjektes gemäß dem Oberbegriff der unabhängigen Ansprüche.
Aus der Anmeldung DE-OS 10 2004 045 806 Al ist eine interferometrische Messvorrichtung zur Vermessung eines Objektes, insbesondere zur Dickenmessung des Ob- jektes, bekannt. Beschrieben ist ein Aufbau eines Interferometers nach Michelson mit einer Lichtquelle, einem Strahlteiler zum Bilden von Referenzstrahlen und Objektstrahlen, einem Referenzspiegel im Referenzlichtweg und einem Bildaufnehmer. Im Objektlichtweg ist ein Spezialobjektiv angeordnet. Dieses teilt die Objektstrahlen in zwei Teilobjektstrahlen.
Beide Teilobjektstrahlen sind jeweils auf einen Ablenkspiegel gerichtet. Die an den Spiegeln abgelenkten Teilobjektstrahlen werden zur gleichzeitigen, senkrechten Beleuchtung von zwei parallel zueinander liegenden Objektflächen verwendet. Die an den Objektflächen reflektierten Teilobjektstrahlen werden mit den Referenzstrahlen überla- gert und treffen auf den Bildaufnehmer der Messvorrichtung. Dabei kommt es bei der
Überlagerung zu Interferenzerscheinungen, wenn die Referenzstrahlen und die reflektierten Teilobjektstrahlen eine gleiche optische Weglänge aufweisen. Der Bildaufnehmer erfasst dann die sich gebildeten Intereferenzmuster. Diese optische Weglänge, bei der Interferenzen auftreten, wird jeweils für die reflektierten Teilobjektstrahlen einer Ob- jektfläche ermittelt. Das erfolgt, indem der Referenzspiegel bis zur Ausbildung von Re- ferenzmustern im Referenzlichtweg verschoben wird. Aufgrund der ermittelten optischen Weglängen für beide Teilobjektstrahlen schließt man auf den Abstand beider Objektflächen zueinander und somit auf die Dicke des Objektes an der Stelle der gemessenen Objektflächen.
Die Aufteilung der Objektstrahlen im Spezialobjektiv in zwei Teilobjektstrahlen erfolgt in Form einer Aperturteilung. Dabei werden zwei in sich zusammenhängende Teilquerschnitte der Objektstrahlen jeweils in zwei Teilobjektstrahl mit einem eigenen Strahlengang abgetrennt. Die dann an den Objektflächen reflektierten Teilobjektstrahlen wer- den richtungsgleich an der Stelle der erfolgten Aperturteilung wieder zusammengeführt.
Dabei weisen die zusammengeführten Objektstrahlen in sich zusammenhängende, nicht überlappende Teilquerschnitte auf, die ausschließlich durch reflektierte Teilob- jektstrahlen einer Objektfläche durchlaufen werden. Dies hat zur Folge, dass nur eine bestimmte Teilfläche eines in der Regel quadratischen Bildaufnehmers ausschließlich durch die jeweiligen reflektierten Teilobjektstrahlen einer Objektfläche belichtet wird. Demnach sind die gemessenen Objektflächen von einander getrennt auf den jeweiligen Teilbereichen des Bildaufnehmers abgelichtet. Somit wird eine eindeutige Zuord- nung der Messsignale auf einer Teilfläche des Bildaufnehmers zu den gemessenen
Objektflächen ermöglicht.
Offenbarung der Erfindung
Der Erfindung liegt die Aufgabe zu Grunde, eine optische Anordnung zur Beleuchtung von mindestens einer Fläche eines Messobjektes vorzuschlagen, bei der sich ein Strahlengang von an einer ersten Objektfläche reflektierten Lichtstrahlen zumindest teilweise mit einem Strahlgang von an einer zweiten Objektfläche reflektierten Licht- strahlen decken, wobei alle Lichtstrahlen im Bereich der Überdeckung in eine gleiche
Richtung orientiert sind.
Ferner ist es Aufgabe eine optische Anordnung in einer interferometrischen Messanordnung anzuordnen, wobei gemessene Objektflächen zumindest teilweise auf eine gleiche bestrahlte Fläche eines Detektors, beispielsweise einen Bildaufnehmer, abgelichtet werden.
Diese Aufgaben werden erfindungsgemäß gelöst mit einer optischen Anordnung zur Beleuchtung von mindestens einer Objektfläche und einer interferometrischen Anordnung zur Vermessung von Objektflächen entsprechend den kennzeichnenden Merkmalen der unabhängigen Ansprüche.
Die erfindungsgemäße optische Anordnung zur Beleuchtung von mindestens einer Ob- jektfläche sieht zumindest ein erstes optisches Element vor, welches bei eingeleiteten
Lichtstrahlen einer Strahlungserzeugenden Lichtquelle mindestens einen ersten und mindestens einen zweiten Strahlengang ausbildet. Dabei sind die Lichtstrahlen im ersten Strahlengang über ein im Lichtweg dem ersten optischen Element nachgeschaltetes zweites optisches Element auf eine erste Objektfläche, bevorzugt senkrecht, ge- richtet. Ferner sind Lichtstrahlen im zweiten Strahlengang über ein im Lichtweg dem ersten optischen Element nachgeschaltetes drittes optisches Element auf eine zweite Objektfläche, bevorzugt senkrecht, gerichtet.
In vorteilhafter Weise entstammen die Lichtstrahlen im ersten Strahlengang aus einem möglichst großen Bereich des Querschnitts der auf das erste optische Element eingeleiteten Lichtstrahlen, bevorzugt aus dem kompletten Querschnitt. Des Weiteren entstammen auch die Lichtstrahlen im zweiten Strahlengang aus einem möglichst großen Bereich des Querschnitts der auf das erste optische Element eingeleiteten Lichtstrahlen, ebenfalls bevorzugt aus dem kompletten Querschnitt.
Daneben können noch weitere optische Elemente zur Strahlführung der eingeleiteten Lichtstrahlen, der Lichtstrahlen im zumindest ersten Strahlengang und/oder der Lichtstrahlen im zumindest zweiten Strahlengang angeordnet sein. Gemeint ist hierbei die Strahlführung der Lichtstrahlen zu einer Objektfläche und/oder der reflektierten Licht- strahlen von der jeweiligen Objektfläche weg.
Die zumindest angenähert senkrecht auf die Objektflächen) gerichteten und dann reflektierten Lichtstrahlen durchlaufen den zuvor jeweils zu einer Objektfläche gebildeten ersten und/oder zweiten Strahlengang dann entgegengerichtet zurück. In vorteilhafter Weise sind zumindest jeweils auf einem Längsabschnitt ihres Lichtweges die reflektierten Lichtstrahlen im ersten Strahlengang und die reflektierten Lichtstrahlen im zweiten Strahlengang parallel zueinander orientiert.
Ein besonders großer Vorteil ergibt sich, wenn der erste und der zweite Strahlengang der reflektierten Lichtstrahlen zumindest eine teilweise räumliche Überdeckung aufweisen. Zusätzlich vorteilhaft ist, wenn innerhalb dieser Überdeckung die reflektierten Lichtstrahlen aus dem ersten und zweiten Strahlengang parallel zueinander orientiert sind. Dies bedeutet, dass die räumliche Überdeckung der Strahlengänge sowohl durch die reflektierten Lichtstrahlen aus dem ersten Strahlengang als auch durch die reflektierten Lichtstrahlen aus dem zweiten Strahlengang durchlaufen werden. Bevorzugt wird die Überdeckung der Strahlengänge der reflektierten Lichtstrahlen durch die Anordnung des mindestens ersten optischen Elements eingeleitet. Besonders vorteilhaft ist eine vollständige Überdeckung der Strahlengänge der reflektierten Lichtstrahlen. In vorteilhafter Weise entspricht die Überdeckung im Querschnitt dem gesamten Querschnitt der in die optische Anordnung eingeleiteten Lichtstrahlen.
Bevorzugt wird die erfindungsgemäße optische Anordnung in einem Messstrahlengang eines I nterferometer- Messkopfes angeordnet. Somit werden die Messstrahlen in die erfindungsgemäße optische Anordnung eingeleitet und dann zur Beleuchtung der
Objektflächen genutzt. Auf diese Wiese erhält man in günstiger Weise eine erfindungsgemäße interferometrische Anordnung zur Vermessung von Objektflächen.
Die erfindungsgemäße interferometrische Anordnung hat den Vorteil gegenüber dem Stand der Technik, dass in idealer Weise ein großes Messfeld als beleuchtete Objektfläche realisiert werden kann. Insbesondere dann, wenn der gesamte Querschnitt der innerhalb der erfindungsgemäßen optischen Anordnung eingeleiteten Messstrahlen jeweils zur Bildung des mindestens ersten und/oder des mindestens zweiten Strahlenganges genutzt wird.
Von besonders großem Vorteil ist, dass zur Abbildung der jeweils gemessenen Objektfläche auf einem Detektor eine große Detektorfläche, bevorzugt die gesamte Detektorfläche, genutzt werden kann. Dies wird dadurch ermöglicht, indem die Strahlengänge der an den Objektflächen reflektierten Lichtstrahlen sich zumindest teilweise, bevorzugt vollständig überdecken und die reflektierten Lichtstrahlen dann bevorzugt mittig zentriert auf die Detektorfläche treffen. Das bedeutet, dass zumindest teilweise gleiche Bereiche der Detektorfläche bei der Vermessung einer ersten Objektfläche und einer zweiten Objektfläche belichtet werden können. So kann in vorteilhafter Weise bei der Vermessung von kreisförmigen Objektflächen im Vergleich zum Stand der Technik eine vier Mal so große Fläche des Detektors zur Abbildung genutzt werden.
In vorteilhafter Weise verdoppelt sich damit auch die laterale Auflösung bei der Vermessung einer Objektfläche mit einer erfindungsgemäßen interferometrischen Anord- nung. Dies bedeutet, dass die Messung der gleichen Objektflächen wesentlich genauer erfolgt, als das mit einer bisher bekannten Messvorrichtung der Fall ist. Es ist ebenso möglich bei mindestens einer gleichen Messgenauigkeit und/oder mindestens einer gleichgroßen zu vermessenden Objektfläche einen kleineren Detektor zu verwenden. Umgekehrt ist es auch möglich, die Detektorgröße beizubehalten, stattdessen den Querschnitt der in die erfindungsgemäße optische Anordnung eingeleiteten Messstrahlen zu verkleinern. Dadurch werden die zu vermessenden Objektflächen in günstiger Weise mit einer größeren Lichtintensität beleuchtet. Somit können auch bei schlecht reflektierenden Objektflächen deren Abbildung auf dem Detektor erzielt werden.
Durch die in den abhängigen Ansprüchen aufgeführten Maßnahmen sind vorteilhafte
Weiterbildungen und Verbesserungen der im unabhängigen Ansprüchen angegebenen Anordnungen möglich.
So können in Weiterbildung der erfindungsgemäßen optischen Anordnung zur Be- leuchtung von mindestens einer Fläche eines Messobjektes die optischen Elemente derart angeordnet sein, dass die auf die erste Objektfläche gerichteten Lichtstrahlen parallel oder antiparallel zu den auf die zweite Objektfläche gerichteten Lichtstrahlen orientiert sind. Demnach können parallel zueinander angeordnete Objektflächen beleuchtet werden. Innerhalb einer erfindungsgemäßen interferometrischen Anordnung kann in idealer Weise dann der Abstand beider Objektflächen zueinander vermessen werden. Bei entgegengerichteten parallelen Objektflächen lässt sich somit die Dicke des Objektes an der Stelle der gemessenen Objektflächen bestimmen. Ebenso lässt sich die Parallelität der Objektflächen zueinander prüfen. Besonders vorteilhaft ist, wenn in Weiterführung der erfindungsgemäßen optischen Anordnung zumindest ein optisches Element ein Strahlteiler ist. In günstiger Weise kann dann die Strahlführung der auf den Strahlteiler einfallenden Lichtstrahlen so be- einflusst werden, dass die Lichtstrahlen geteilt werden und somit zumindest Lichtstrah- len in einem ersten und zumindest Lichtstrahlen in einem zweiten Strahlengang gebildet werden. Unter einem Strahlteiler ist hierbei ein optisches Element zu verstehen, bei dem Lichtstrahlen in dem zumindest ersten gebildeten Strahlengang und im zumindest zweiten gebildeten Strahlengang aus zumindest einem gleichen Querschnittsbereich der auf den Strahlteiler eingeleiteten Lichtstrahlen entstammen, bevorzugt aus dem gesamten Querschnitt. Ein sehr einfacher derartiger Strahlteiler ist eine teilverspiegelte
Glasscheibe, die beispielsweise in einem Winkel von 45° zu den eingeleiteten Lichtstrahlen angeordnet ist. Ein Teil der auftreffenden Lichtstrahlen wird an der Objektfläche der Scheibe im Winkel von 90° reflektiert, ein weiterer Teil durchdringt die Scheibe. In seiner verbreiteten Form besteht ein derartiger Strahlenteiler aus zwei Prismen, die an ihrer Basis (z. B. mit einem optischen Kleber wie beispielsweise dem UV- Kleber
Norland Optical Adhesive 63) zusammengekittet sind.
Eine bevorzugte Ausführungsform sieht vor, dass das erste optische Element zur Bildung mindestens eines ersten und mindestens eines zweiten Strahlenganges ein Strahlteiler ist. In vorteilhafter Weise werden dann die zumindest erste und die zumindest zweite Objektfläche gleichzeitig beleuchtet.
Eine Ausführungsvariante sieht weiterhin vor, einen Strahlteiler zu verwenden, bei dem die Lichtstrahlen im gebildeten ersten Strahlengang vorzugsweise rechtwinklig zu den auf den Strahlteiler einfallenden Lichtstrahlen orientiert sind. Ferner wird ein Strahlteiler vorgeschlagen, bei dem die Lichtstrahlen im gebildeten zweiten Strahlengang gleichgerichtet und ohne Ablenkung zu den auf den Strahlteiler einfallenden Lichtstrahlen gerichtet sind. Bevorzugt wird dann eine solche vorgeschlagene optische Anordnung innerhalb einer erfindungsgemäßen interferometrischen Anordnung derart positioniert ist, dass die optische Achse des gebildeten zweiten Strahlengangs auf der optischen Achse der im interfermoetrischen System gebildeten Messstrahlen liegt.
Generell vorteilhaft ist für eine erfindungsgemäße optische Anordnung, wenn zumindest ein optisches Element ein Spiegel oder ein Prisma ist, um beispielsweise Licht- strahlen durch Reflektion in eine bevorzugte Strahlrichtung abzulenken. Lichtablenkungen infolge von Lichtbrechung innerhalb des Prismas sind vorzugsweise zu vermeiden. Ansonsten erfolgt zusätzlich eine spektrale Aufspaltung des Lichts. Bei einer erfindungsgemäßen interferometrischen Anordnung mit einer derart eingesetzten opti- sehen Anordnung kann es zu abweichenden Messergebnissen führen.
Eine weitere vorteilhafte Ausführungsform der erfindungsgemäßen optischen Anordnung schlägt vor, als dem ersten optischen Element nachgeschaltetes zweites und/oder drittes optisches Element einen Spiegel und/oder ein Prisma einzusetzen. Bevorzugt ist der Einsatz von Prismen, insbesondere dann, wenn eine derart vorgeschlagene optische Anordnung innerhalb einer erfindungsgemäßen interferometrischen Anordnung eingesetzt wird. Interferometrische Systeme weisen in der Regel eine fixe - sogenannte - Arbeitslänge auf. Bei dieser Arbeitslänge handelt es sich dabei um den maximalen zurückgelegten optischen Weg von an einer Objektfläche reflektierten Messstrahlen, bei dem über das Objektiv noch eine fokussierte Abbildung der Objektfläche auf dem Detektor erzielt werden kann. In vorteilhafter Weise verlängern Prismen diesen Arbeitsweg um 1/3 ihres durchlaufenden Glasweges. Zusätzlich ist die Gefahr von im Strahlengang auftretenden Luftströmungen reduziert, die in der Regel das Messergebnis negativ beeinflussen.
Von allgemeinem Vorteil für eine erfindungsgemäße optische Anordnung ist, wenn zumindest ein optisches Element zur Brechung der Lichtstrahlen eine Linse oder ein Linsensystem ist. In vorteilhafter Weise kann dann der Querschnitt der Lichtstrahlen in Richtung des Lichtweges verkleinert werden. Dadurch kann die Lichtintensität im an- schließenden Strahlengang vergrößert werden. Ebenso ist es möglich den Querschnitt der Lichtstrahlen zu vergrößern. Insgesamt kann dadurch beispielsweise erreicht werden, dass eine größere Objektfläche beleuchtet werden kann.
Generell günstig für eine erfindungsgemäße optische Anordnung sind optische EIe- mente, die Lichtstrahlen durch Reflektion in mehr als eine Strahlrichtung auslenken können. Beispielsweise ist das möglich, indem das optische Element drehbar angeordnet ist. Insbesondere vorteilhaft ist ein drehbar angeordnetes erstes optisches Element, beispielsweise ein Spiegel oder ein Prisma. Dadurch ist es möglich in einer entsprechenden Drehstellung ausschließlich eine Objektfläche zu beleuchten. Dabei werden bevorzugt alle auf das drehbare erste optische Element einfallenden Lichtstrahlen über beispielsweise das zweite optische Element bevorzugt ausschließlich auf die erste Objektfläche gerichtet. Durch eine veränderte Drehstellung kann dann in gleicher Weise bevorzugt ausschließlich die zweite Objektfläche beleuchtet werden.
Eine derartig vorgeschlagene optische Anordnung innerhalb einer erfindungsgemäßen interferometrischen Anordnung hat den Vorteil, dass für eine Objektmessung immer nur eine Objektfläche auf dem Detektor abgelichtet werden kann. Damit ist eine klare Zuordnung der Messsignale des Detektors zur gemessenen Objektfläche gegeben. Dadurch, dass dann alle in die optische Anordnung eingeleiteten Messstrahlen zur Beleuchtung der Objektfläche genutzt werden können, ergibt sich eine vorteilhafte große Lichtausbeutung für den Messvorgang.
Generell vorteilhaft für eine erfindungsgemäße optische Anordnung sind optische EIe- mente, die aus dem durch das erste optische Element mindestens ersten oder mindestens zweiten gebildeten Strahlengang weggeklappt werden können. In günstiger Weise erfolgt das in einer solchen Art, dass sie nicht mehr an einer Strahlführung der Lichtstrahlen beteiligt sind. Besonders bevorzugt sind dabei Spiegel und/oder Prismen. Dadurch ist es möglich in einer solchen Anordnung der optischen Elemente ausschließlich jeweils eine Objektfläche zu beleuchten. So können beispielsweise Lichtstrahlen in einem ersten Strahlengang auf eine erste Fläche gerichtet sein. Gleichzeitig wird die Beleuchtung der zweiten Objektfläche ausgesetzt, indem beispielsweise das zweite optische Element aus dem zweiten Strahlengang weggeklappt ist. Dadurch sind die Lichtstrahlen im zweiten Strahlengang nicht mehr auf die zweite Objektfläche gerichtet.
Eine derartig vorgeschlagene erfindungsgemäße optische Anordnung innerhalb einer erfindungsgemäßen interferometrischen Anordnung hat den Vorteil, dass für eine Objektmessung immer nur eine Objektfläche auf dem Detektor abgelichtet werden kann. Damit ist eine eindeutige Zuordnung der Messsignale des Detektors zur gemessenen Objektfläche gegeben.
Zeichnung Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in nachfolgender Beschreibung näher beschrieben. Es zeigen:
Fig. 1 schematisch eine erste Ausführungsform einer erfindungsgemäßen interfero- metrischen Messanordnung mit einer optischen Anordnung zur Beleuchtung vom mindestens einer Fläche eines Messobjektes im Längsschnitt,
Fig. 2a schematisch eine Ausführungsvariante einer optischen Anordnung mit einer
Blende in einer ersten Stellung innerhalb einer interferometrischen Anordnung im Längsschnitt,
Fig. 2b die Ausführungsvariante aus Fig. 2a mit einer zweiten Stellung der Blende im Längsschnitt .
Beschreibung der Ausführungsbeispiele
In Fig. 1 ist eine erste Ausführungsform einer erfindungsgemäßen interferometrischen Anordnung 300 zu Vermessung von Objektflächen gezeigt. Dabei ist mit 100 ein Inter- ferometer - Messkopf bezeichnet. Der Interferometer - Messkopf 100 ist dabei in Form eines flächenhaft messenden Interferometers aufgebaut. Der Aufbau enthält eine
Strahlungserzeugende Lichtquelle 10, welche kurzkohärente Lichtstrahlen, beispielsweise Weißlicht, in eine Beleuchtungsoptik 20 ausstrahlt. Dadurch wird ein Beleuchtungsstrahlengang 30 gebildet. Ein im Beleuchtungsstrahlengang 30 angeordnetes erstes Dachprisma 40 bewirkt eine Ablenkung der Lichtstrahlen derart, dass die Licht- strahlen senkrecht auf einen ersten Strahlteiler 50 gerichtet sind. Der erste Strahlteiler
50 bewirkt eine Teilung der Lichtstrahlen in einen Teil von Referenzstrahlen innerhalb eines Referenzstrahlengangs 70 und in einen Teil von Messstrahlen innerhalb eines Messstrahlenganges 205. Dabei sind die Referenzstrahlen in die gleiche Richtung und die Messstrahlen im rechten Winkel zu den auf den Strahlteiler 50 eintreffenden Licht- strahlen des Beleuchtungsstrahlenganges 30 orientiert. Die Referenzstrahlen werden über ein im Referenzstrahlengang 70 angeordnetes zweites Dachprisma 60 derart abgelenkt, dass sie senkrecht auf ein Referenzelement 75, beispielsweise einen Referenzspiegel, gerichtet sind. Die dann am Referenzelement 75 reflektierten Referenzstrahlen durchlaufen somit den Referenzstrahlengang 70 über das Dachprisma 60 bis zum Strahlteiler 50 entgegengerichtet wieder zurück. Durch eine weitere rechtwinklige Ablenkung durch den Strahlteiler 50 sind die Referenzstrahlen letztendlich durch ein im Lichtweg angeordnetes Objektiv 80 hindurch senkrecht auf einen Detektor 90, beispielsweise ein fotoempfindliches Element einer Kamera, gerichtet. Die Strahlrichtung der auf dem Detektor 90 auftreffenden Referenzstrahlen ist entgegengerichtet zu der der vom ersten Strahlteiler 50 gebildeten Messstrahlen.
In den Messstrahlengang 205 des Interferometer - Messkopfes 100 ist eine erfindungsgemäße optische Anordnung 200 angeordnet. Dabei sind die Messstrahlen auf einen zweiten Strahlteiler 250 gerichtet. In vorteilhafter Weise deckt sich dabei die optische Achse des Messstrahlenganges 205 mit der optischen Achse des zweiten Strahlteilers 250. Ein Versatz der optischen Achsen ist zulässig, insbesondere bis zu einem Versatzmaß, bei dem sichergestellt ist, dass die Messstrahlen mit dem gesamten Querschnitt des Messstrahlenganges 205 auf den zweiten Strahlteiler 250 treffen. Der zweite Strahlteiler 250 entspricht einem ersten optischen Element innerhalb der optischen Anordnung 200 zur Bildung eines ersten Strahlenganges 210 und eines zweiten Strahlenganges 220. Dabei sind Lichtstrahlen im ersten Strahlengang 210 rechtwinklig zu den Messstrahlen orientiert, die Lichtstrahlen im zweiten Strahlengang 220 dagegen verlaufen in geradliniger Verlängerung zu den auf den zweiten Strahlteiler 250 auftref- fenden Messstrahlen.
Die Lichtstrahlen können sowohl im ersten Strahlengang 210 als auch im zweiten Strahlengang 220 in vorteilhafter Weise aus dem gesamten Querschnitt des Messstrahlengangs 205 entstammen. Demnach handelt es sich bei den Lichtstrahlen inner- halb des ersten und des zweiten Strahlenganges 210, 220 weiterhin um Messstrahlen mit jeweils durch die Teilung dann geringere Lichtintensität. Außerdem entspricht der Querschnitt des ersten und des zweiten Strahlengangs 210, 220 in günstiger Weise dem Querschnitt des Messstrahlengangs 205.
Im ersten Strahlengang 210 ist ein erster Spiegel 260 derart angeordnet, dass Messstrahlen durch Reflektion dann senkrecht auf eine erste Objektfläche 281 eines Messobjektes 280 gerichtet sind. Ebenso ist im zweiten Strahlengang 220 ein zweiter Spiegel 270 derart angeordnet, dass Messstrahlen auf eine zweite Objektfläche 282 des Messobjektes 280 gerichtet sind. Dabei ist das Messobjekt 280 mit der zweiten Objekt- fläche 282 auf einen strahlungsdurchlässigen Träger 240 aufliegend angeordnet. Demnach ist die vorgeschlagene interferometrische Anordnung 300 im Raum derart positioniert, dass die erste Objektfläche 281 in vertikaler Raumrichtung y von oben beleuchtet wird und die zweite Objektfläche 282 in vertikaler Raumrichtung y von unten durch den strahlungsdurchlässigen Träger 240 hindurch beleuchtet wird. Die an der ersten und an der zweiten Objektfläche 281, 282 reflektierten Messstrahlen durchlaufen dann den ersten und den zweiten Strahlengang 210, 220 über den ersten und den zweiten Spiegel 260, 270 bis zum zweiten Strahlteiler 250 entgegengerichtet zurück. Die reflektierte Messstrahlen aus dem zweiten Strahlengang 220 werden ohne Ablen- kung dann achsparallel in das Objektiv 80, beispielsweise ein telezentrisches Objektiv, eingeleitet und senkrecht auf den Detektor 90 gerichtet. Die Messstrahlen im ersten Strahlengang 210 dagegen werden durch den zweiten Strahlteiler 250 rechwinklig zu ihrer bisherigen Strahlrichtung abgelenkt und dann achsparallel in das Objektiv 80 eingeleitet und ebenfalls senkrecht auf den Detektor 90 gerichtet.
Der Strahlengang der an der ersten Objektfläche 281 reflektierten Messstrahlen und der Strahlengang der an der zweiten Objektfläche 282 reflektierten Messstrahlen sind innerhalb des Abbildungsstrahlenganges 230 des Objektives 80 deckungsgleich. Die auf den Detektor 90 auftreffenden reflektierten Messstrahlen interferieren mit den ebenfalls im Abbildungsstrahlgang 230 enthaltenen und auf den Detektor 90 auftreffenden Referenzstrahlen.
Das Messobjekt 280 wird innerhalb der optischen Anordnung 200 derart angeordnet, dass die auf die erste Objektfläche 281 auftreffenden und dann reflektierten Messstrah- len und die auf die zweiten Objektfläche 282 auftreffenden und ebenfalls reflektierten
Messstrahlen unterschiedliche optische Wege durchlaufen. Die gesamte Wegdifferenz beider optischer Weglängen ist vorzugsweise größer als die Kohärenzlänge der Lichtquelle 10. Damit wird verhindert, dass die von der ersten Objektfläche 281 und zweiten Objektfläche 282 reflektierten Messstrahlen miteinander interferieren. Eine Interferenz mit den Referenzstrahlen erfolgt dann, wenn die optische Weglänge der Messstrahlen mit der optischen Weglänge der Referenzstrahlen übereinstimmt. Die optische Weglänge der Referenzstrahlen lässt sich vergrößern oder verkleinern, indem das Referenzelement 75 verschiebbar auf der optischen Wegachse der Referenzstrahlen angeordnet wird. Eine Veränderung und Anpassung der optischen Weglänge für die Mess- strahlen der ersten Objektfläche 281 oder der zweiten Objektfläche 282 wird bevorzugt durch eine relative Verschiebung des Interferometer - Messkopfes 100 und der optischen Anordnung 200 in Richtung der optischen Achse M erreicht. Eine alternative Ausführungsvariante sieht vor, dass der erste Spiegel 260, der zweite Spiegel 270 und/oder der zweite Strahlteiler 250 relativ zum Messobjekt jeweils verschiebbar in
Richtung ihrer optischen Achse A, B, C angeordnet sind, ggf. zusätzlich mit einer möglichen Verschiebung des Interferometer - Messkopfes 100.
Der Abstand der ersten Objektfläche 281 zur zweiten Objektfläche 282 entspricht der Objektdicke. Bevor die Objektdicke eines Messobjektes 280 durch einen Messvorgang ermittelt wird, wird die interferometrische Anordnung 300 in einem ersten Schritt mit einem Endmaß bekannter Dicke kalibriert. Das Endmaß wird anstelle des Messobjektes 280 auf den Träger 240 positioniert. Der Interferometer - Messkopf 100 wird in die Position verschoben, bei der der optische Weg von der strahlteilenden Fläche 250a des zweiten Strahlteilers 250 bis zur ersten Objektfläche 281 dem optischen Weg von der strahlteilenden Fläche 250a des zweiten Strahlteilers 250 bis zum Referenzelement 75 entspricht. In dieser Position interferieren die an der ersten Objektfläche 281 reflektierten Messstrahlen mit den Referenzstrahlen, so dass ein entsprechendes erstes Interferenzmuster auf dem Detektor 90 sichtbar wird. Das Endmaß ist so positioniert, dass der optische Weg von der strahlteilenden Fläche 250a des zweiten Strahlteilers 250 zur zweiten Objektfläche 282 geringfügig länger oder kürzer ist, als die optische Weglänge der Referenzstrahlen. Somit kommt es zu keiner Interferenz der an der zweiten Objektfläche 282 reflektierten Messstrahlen mit den Referenzstrahlen. Demnach ist auch kein zweites Interferenzmuster am Detektor 90 sichtbar. Erst durch Verschie- bung beispielsweise des Referenzelementes 75 in Richtung der optischen Achse S des
Referenzstrahlenganges 70 wird das zweite Referenzmuster am Detektor 90 sichtbar. Gleichzeitig ist das erste Referenzmuster am Detektor 90 nicht mehr sichtbar. Die Verschiebung beispielsweise des Referenzelementes 70 zwischen dem durch die erste Objektfläche 281 ausgebildetem ersten Interferenzmuster und dem durch die zweite Objektfläche 282 ausgebildeten zweiten Referenzmuster wird zum Beispiel mit einem hochgenauen Weggeber gemessen. Der dadurch ermittelte Verschiebeweg des Referenzelementes 75 wird als Kalibrierkonstante abgelegt. Anschließend wird das Messobjekt 280 in gleicher Weise vermessen und der Abstand des Referenzelementes 75 zwischen dem ersten ausgebildeten Interferenzmuster und dem zweiten Interferenz- muster ermittelt. Die Objektdicke wird dann aus der bekannten Dicke des Endmaßes, der zuvor ermittelten Kalibrierkonstante und dem für das Messobjekt ermittelten Abstand des Referenzelementes 75 berechnet.
Eine weitere Ausführungsform einer erfindungsgemäßen interferometrischen Anordnung sieht mindestens eine Lichtquelle 10a vor, welche langkohärentes Licht, beispielsweise Laserlicht, ausstrahlt. Der übrige Aufbau eines Interferometer - Messkopfes 100 bleibt unverändert.
Bei einem Einsatz einer Lichtquelle 10a mit langkohärenten Lichtstrahlen ist eine gleichzeitige Belichtung des Detektors 90 durch an der ersten Objektfläche 281 und der zweiten Objektfläche 282 reflektierten Messstrahlen in idealer Weise zu unterbinden. Ansonsten kann es auch zu Interferenz zwischen den an der ersten Objektfläche
281 und der zweiten Objektfläche 282 reflektierten Messstrahlen trotz unterschiedli- chen optischen Weglängen kommen. Dadurch werden keine Interferenzmuster ausgebildet, die beispielsweise durch das Verschieben des Referenzelementes 75 in Richtung der optischen Achse S eindeutig der ersten oder der zweiten Objektfläche 281,
282 zugeordnet werden können.
In einer ersten Ausführungsvariante einer interferometrischen Anordnung mit langkohärentem Licht ist eine Lichtquelle 10a derart vorgesehen, dass der Interferometer - Messkopf 100a als ein Mehrwellenlängen - Interferometer eingesetzt werden kann. Beispielsweise können hierzu zwei Laserstrahlen verwendeten werden, deren Wellenlängen im Vergleich zueinander eine sehr kleine Differenz aufweisen. In ähnlicher Wei- se kann eine derartige Lichtquelle 10a eingesetzt werden, so dass der Interferometer
- Messkopf 100a als ein Interferometer mit verschiebbarer Wellenlänge realisiert ist. Dazu können zum Beispiel eine Laserquelle als Lichtquelle 10a vorgesehen werden, die auf verschiedene Laserfrequenzen abgestimmt werden kann. Bevorzugt wird dann bei dieser Ausführungsvariante einer interferometrischen Anordnung eine Ausführung einer optischen Anordnung 200a gemäß der Figur 2a in den Messstrahlengang 205 angeordnet. Dabei entspricht der Aufbau der optischen Anordnung 200a im Wesentlichen dem bereits beschriebenen Aufbau der optischen Anordnung 200 in Fig. 1. Im Unterschied dazu ist im ersten und im zweiten Strahlengang 210, 220 eine bewegliche Blende 225 vorgesehen. Bei der Vermessung der ersten Objektfläche 281 ist die Blen- de 225 in den zweiten Strahlengang 220 bevorzugt derart positioniert, dass keine Messstrahlen auf die zweite Objektfläche 282 auftreffen. Somit wird vorzugsweise ausschließlich die erste Objektfläche 281 auf dem Detektor 90 durch Interferenz mit den Referenzstrahlen abgebildet.
Entsprechend wird bei der Vermessung der zweiten Objektfläche 282 verfahren. Entsprechend der Fig. 2b ist die Blende 225 dann in den ersten Strahlengang 281 bevorzugt derart angeordnet, dass keine Messstrahlen auf die erste Objektfläche 281 auftreffen. Somit wird vorzugsweise ausschließlich die zweite Objektfläche 282 auf dem Detektor 90 durch Interferenz mit den Referenzstrahlen abgebildet. Auf diese Weise kann die Ebenheit, die Parallelität der beiden Objektflächen 281, 282 zueinander und die Objektdicke vermessen werden. Zur Ermittlung der Objektdicke wird bei der Vermessung der ersten Objektfläche 281 die Phasendifferenz der zwei in den Messstrahlen unterschiedlichen Anteilen von Laserstrahlen mit minimal unterschiedlichen Wellen- längen am Detektor 90 ermittelt. Dadurch kann die Anzahl der Perioden innerhalb des optischen Weges bestimmt werden, die zu einer solchen Phasenverschiebung führen. Demnach ist dann auch die zurückgelegte optische Weglänge der an der ersten Objektfläche 281 reflektierten Messstrahlen bekannt. Ebenso kann in gleicher Weise die zurückgelegte optische Weglänge der an der zweiten Objektfläche 282 reflektierten Messstrahlen ermittelt werden. Somit lässt sich in einfachster Weise auf die Objektdicke schließen.
Die interferometrischen Anordnung kann ferner variiert werden, indem die Lichtquelle 10a durch ein elektrisches Ein- und Ausschalten jeweils langkohärentes Licht mit einer ersten Lichtwellenlänge oder langkohärentes Licht mit einer zweiten Lichtwellenlänge ausstrahlt. Beispielsweise sind für die Bereitstellung von Lichtstrahlen mit unterschiedlichen Lichtwellenlängen zwei alternierend angesteuerte Lasereinheiten denkbar. Bevorzugt wird dann für die optische Anordnung 200 ein Aufbau verwendet, der im Wesentlichen dem bereits beschriebenen Aufbau der optischen Anordnung 200 in Fig. 1 entspricht. Im Unterschied dazu ist innerhalb des ersten Strahlenganges 210 ein erster Farbfilter zum Filtern der Messstrahlen mit der ersten Lichtwellenlänge angeordnet. In ähnlicher Weise ist im zweiten Strahlengang 220 ein zweiter Farbfilter zum Filtern der Messstrahlen mit der zweiten Lichtwellenlänge positioniert. So kann in Abhängigkeit, ob das Licht mit der ersten Lichtwellenlänge oder das Licht mit der zweiten Licht- Wellenlänge zum Beleuchten eingeschaltet wird, entweder die erste Objektfläche 281 oder die zweite Objektfläche 282 auf dem Detektor 90 abgebildet wird. Alternativ kann anstelle der Farbfilter und dem zweiten Strahlteiler 250 ein dichroitischer (farbtrennen- der) Strahlteiler 250 als erstes optisches Element eingesetzt werden.
Eine zusätzliche Ausführungsvariante der interferometrischen Anordnung sieht eine Lichtquelle 10a vor, die durch ein elektrisches Ein- und Ausschalten jeweils langkohärentes Licht mit einer ersten Polarisationsrichtung oder langkohärentes Licht mit einer zweiten Polarisationsrichtung ausstrahlt. Zum Beispiel sind zwei alternierend ange- steuerte Lasereinheiten denkbar, bevorzugt mit senkrecht zueinander polarisierten Laserstrahlen.
Besonders bevorzugt wird dann für die optische Anordnung 200 ein Aufbau verwendet, der im Wesentlichen dem bereits beschriebenen Aufbau der optischen Anordnung 200 in Fig. 1 entspricht. Im Unterschied dazu ist der eingesetzte zweite Strahlteiler 250 ein polarisierter Strahlteiler. So kann in Abhängigkeit, ob das Licht mit der ersten Polarisationsrichtung oder das Licht mit der zweiten Polarisationsrichtung zum Beleuchten eingeschaltet wird, entweder die erste Objektfläche 281 oder die zweite Objektfläche 282 auf dem Detektor 90 abgebildet werden.
Generell sind die bisher beschriebenen Ausführungsvarianten einer interferometrischen Anordnung zum Vermessen von Objektflächen 281, 282 mit langkohärenten Lichtstrahlen auch mit kurzkohärenten Lichtstrahlen möglich. Dadurch wird die Signalqualität positiv beeinflusst.
Ebenso gilt das für eine alternative Ausführungsform einer erfindungsgemäßen interferometrischen Anordnung zur Vermessung von Objektflächen mit kurzkohärenten oder mit langkohärenten Licht.
Der Aufbau entspricht im Wesentlichen dem Aufbau der interferometrischen Anordnung 300 in der Fig. 1. Im Unterschied hierzu kann die Lichtquelle 10 kurzkohärentes oder auch langkohärentes Licht ausstrahlen. In vorteilhafter Weise ist dann im Unterschied zur optischen Anordnung 200 anstelle des zweiten Strahlteilers 250 ein weiterer Spiegel eingesetzt, der bevorzugt aus dem Messstrahlengang 205 weggeklappt wer- den kann. So ist in einer ersten Stellung der Spiegel derart angeordnet, dass bevorzugt alle Messstrahlen aus dem Interferometer - Messkopf 100 auf den ersten Spiegel 260 gerichtet sind und somit die erste Objektfläche 281 beleuchten. In diesem Fall wird ausschließlich die erste Objektfläche 281 auf dem Detektor 90 abgebildet. In einer wei- teren Stellung ist der Spiegel aus dem Messstrahlengang 205 vollkommen weggeklappt. In diesem Fall sind bevorzugt alle Messstrahlen aus dem Interferometer - Messkopf 100 auf den zweiten Spiegel 270 gerichtet und demnach bevorzugt ausschließlich die zweite Objektfläche 282 beleuchtet. Entsprechend ist bei dieser Strahlführung der Messstrahlen bevorzugt ausschließlich die zweite Objektfläche 282 auf dem Detektor 90 abgebildet.

Claims

Ansprüche
1. Optische Anordnung zur Beleuchtung mindestens einer Fläche (281, 282) eines Messobjektes (280) mit eingeleiteten Lichtstrahlen einer strahlenerzeugenden Lichtquelle (10), wobei ein erstes optisches Element (250) zur Bildung mindes- tens eines ersten und mindestens eines zweiten Strahlengangs (210, 220) derart angeordnet ist, dass Lichtstrahlen im mindestens ersten Strahlengang (210) durch ein dem ersten optischen Element (250) nachgeschaltetes zweites optisches Element (260) senkrecht auf eine erste Objektfläche (281) gerichtet sind und Lichtstrahlen im mindestens zweiten Strahlengang (220) durch ein dem ersten optischen Element (250) nachgeschaltetes drittes optisches Element
(270) senkrecht auf eine zweite Objektfläche (282) gerichtet sind, dadurch gekennzeichnet, dass der mindestens erster Strahlengang (210) der an der ersten Objektfläche (281) reflektierten Lichtstrahlen und der mindestens zweiter Strahlengang (220) der an der zweiten Objektfläche (282) reflektierten Licht- strahlen sich in einem Bereich mit parallel zueinander orientierter Strahlrichtung zumindest teilweise decken.
2. Optische Anordnung nach Anspruch 1, dadurch gekennzeichnet, dass Lichtstrahlen, die im mindestens ersten Strahlengang (210) senkrecht auf die erste Objektfläche (281) einfallen, parallel oder antiparallel zu den Lichtstrahlen, die im mindestens zweiten Strahlungsgang (220) senkrecht auf die zweite Objektfläche (282) einfallen, orientiert sind.
3. Optische Anordnung nach einem der Ansprüche 1 bis 2, dadurch gekenn- zeichnet, dass als optisches Element (250, 260, 270) mindestens ein Strahlteiler zur Teilung der einfallenden Lichtstrahlen in mindestens Lichtstrahlen in mindestens einem ersten Strahlengang (210) und Lichtstrahlen in einem mindestens zweiten Strahlengang (220).
4. Optische Anordnung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass als optisches Element (250, 260, 270) mindestens ein Spiegel zur Reflektion der einfallenden Lichtstrahlen verwendet wird.
5. Optische Anordnung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass als optisches Element (250, 260, 270) mindestens ein Prisma zur Reflektion der einfallenden Lichtstrahlen verwendet wird.
6. Optische Anordnung nach einem der Ansprüche 1 bis 5, dadurch gekenn- zeichnet, dass als optisches Element (250, 260, 270) mindestens eine Linse oder ein Linsensystem zur Brechung der einfallenden Lichtstrahlen verwendet wird.
7. Optische Anordnung nach einem der Ansprüche 4 und 5, dadurch gekenn- zeichnet, dass der Spiegel und/oder das Prisma aus dem mindestens ersten und/oder mindestens zweiten Strahlengang (210, 220) wegklappbar sind.
8. Optische Anordnung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das erste optische Element (250) ein Strahlteiler ist, wobei die Lichtstrahlen im mindestens ersten Strahlengang (210) rechtwinklig zur Einfallsrichtung der auf den Strahlteiler (250) auftreffenden Lichtstrahlen abgelenkt sind und/oder die Lichtstrahlen im mindestens zweiten Strahlengang (220) in Richtung der auf den Strahlteiler (250) einfallenden Lichtstrahlen weiterführend ohne Ablenkung gerichtet sind.
9. Optische Anordnung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das zweite und/oder dritte optisches Element (260, 270) ein Spiegel und/oder Prisma ist.
10. Optische Anordnung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass im mindestens ersten und/oder mindestens zweiten Strahlengang (210, 220) eine bewegliche Blende (225) angeordnet ist.
11. Optische Anordnung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass im mindestens ersten und/oder mindestens zweiten Strahlengang (210, 220) Farbfilter zum Filtern von Lichtstrahlen unterschiedlicher Wellenlänge angeordnet sind.
12. Optische Anordnung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass für das erste optische Element ein dichroitischer (farbtrennen- der) Strahlteiler (250) zur Trennung von Lichtstahlen mit unterschiedlicher Wellenlänge vorgesehen ist.
13. Optische Anordnung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die optischen Elemente (250, 260, 270) und das Messobjekt (280) relativ zueinander beweglich angeordnet sind.
14. Optische Anordnung nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass das Messobjekt (280) mit mindestens einer Objektfläche (281, 282) auf einem strahlendurchlässigen Träger (240), insbesondere einer Glasplatte, angeordnet ist.
15. Interferometrische Anordnung zur Vermessung von Flächen (281, 282) eines
Messobjektes (280) mit einem Interferometer-Messkopf (100, 100a) und einer optischen Anordnung (200, 200a)zur Beleuchtung von mindestens einer Fläche eines Messobjektes gemäß einem der Ansprüche 1 bis 14, wobei eine strah- lungserzeugende Lichtquelle (10, 10a), eine Beleuchtungsoptik (20) zur Bildung eines Beleuchtungsstrahlenganges (30), ein Strahlteiler (50) zur Teilung der von der Lichtquelle (10, 10a) ausgesandten Lichtstrahlen in Teillichtstrahlen , wobei Teillichtstrahlen zumindest als Messstrahlen in einem Messstrahlengang (205) zur Beleuchtung eines Messobjektes (280) und zumindest als auf ein Referenzelement (75) gerichtete Referenzstrahlen vorgesehen sind, ein Objektiv (80) zur Bildung eines Abbildungsstrahlengangs (230) der vom Messobjekt
(280) reflektierten Messstrahlen und ein Detektor (90) zur Abbildung des Interferenzmusters aus der Überlagerung der vom Messobjekt (280) reflektierten Messstrahlen und den Referenzstrahlen enthalten ist, dadurch gekennzeichnet, dass die optische Anordnung (200, 200a) zur Beleuchtung von mindestens einer Fläche (281, 282) eines Messobjektes (280) im Messstrahlengang (205) des I nterferometer- Messkopfes (100, 100a) angeordnet ist.
16. Interferometrische Anordnung nach Anspruch 15, dadurch gekennzeichnet, dass die Lichtquelle (10, 10a) kurzkohärentes Licht (Weißlicht) oder langkohärentes Licht ausstrahlt.
17. Interferometrische Anordnung nach einem der Ansprüche 15 bis 16, dadurch gekennzeichnet, dass die Lichtquelle (10, 10a) Lichtstrahlen mit mindestens zwei unterschiedlichen Wellenlängen ausstrahlt, insbesondere frequenzverschiebbar, wobei die Lichtstrahlen jeweils einer Wellenlänge ein- und ausschaltbar sind.
18. Interferometrische Anordnung nach einem der Ansprüche 15 bis 17, dadurch gekennzeichnet, dass die Lichtquelle (10, 10a) Lichtstrahlen mit mindestens zwei unterschiedlichen Polarisationsrichtungen ausstrahlt, vorzugsweise zwei senkrecht zueinander polarisierte Lichtstrahlen, wobei die Lichtstrahlen jeweils einer Polarisationsrichtung ein- und ausschaltbar sind.
19. Interferometrische Anordnung nach einem der Ansprüche 13 bis 16, dadurch gekennzeichnet, dass der I nterferometer- Messkopf (100) und die optische Anordnung (200, 200a)relativ zueinander verschiebbar in Richtung der optischen Achse M der austretenden Messstrahlen angeordnet sind.
EP09738008.3A 2008-04-30 2009-04-16 Optische anordnung zur beleuchtung eines messobjektes und interferometrische anordnung zur vermessung von flächen eines messobjektes Not-in-force EP2276999B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200810001473 DE102008001473B3 (de) 2008-04-30 2008-04-30 Optische Anordnung zur Beleuchtung eines Messobjektes, interferometrische Anordnung zur Vermessung von Flächen eines Messobjektes
PCT/EP2009/054513 WO2009132964A1 (de) 2008-04-30 2009-04-16 Optische anordnung zur beleuchtung eines messobjektes und interferometrische anordnung zur vermessung von flächen eines messobjektes

Publications (2)

Publication Number Publication Date
EP2276999A1 true EP2276999A1 (de) 2011-01-26
EP2276999B1 EP2276999B1 (de) 2015-06-10

Family

ID=40718814

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09738008.3A Not-in-force EP2276999B1 (de) 2008-04-30 2009-04-16 Optische anordnung zur beleuchtung eines messobjektes und interferometrische anordnung zur vermessung von flächen eines messobjektes

Country Status (5)

Country Link
US (1) US8913249B2 (de)
EP (1) EP2276999B1 (de)
JP (1) JP2011519040A (de)
DE (1) DE102008001473B3 (de)
WO (1) WO2009132964A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110686618A (zh) * 2019-11-22 2020-01-14 北京理工大学 结合全反射角定位的非球面参数误差干涉测量方法及系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9599558B2 (en) * 2012-08-07 2017-03-21 Carl Zeiss Industrielle Messtechnik Gmbh Measuring device for measuring a measurement object and related method
KR20160054537A (ko) 2013-09-10 2016-05-16 배 시스템즈 피엘시 광학 표면조도 측정
KR102293955B1 (ko) * 2020-07-08 2021-08-26 주식회사 휴비츠 3차원 자동 단층 촬영 검사 장치 및 영상 획득 방법

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2841049A (en) 1955-03-30 1958-07-01 Perkin Elmer Corp Interferometer
FR1153098A (fr) 1956-03-08 1958-02-28 Conservatoire Nat Arts Méthode interférométrique et interféromètres pour sa mise en oeuvre
US3597091A (en) 1968-01-18 1971-08-03 Itek Corp Interferometer
JPS5129424B1 (de) * 1970-09-16 1976-08-25
DE2430038C3 (de) 1974-06-22 1980-02-14 Bayer Ag, 5090 Leverkusen Verfahren zur Herstellung von Acetoxybutanol
JPS59197809A (ja) * 1983-04-25 1984-11-09 Ricoh Co Ltd 干渉測定装置
JPS60244804A (ja) * 1984-05-21 1985-12-04 Ricoh Co Ltd 角度測定方法
JPH01143906A (ja) * 1987-11-30 1989-06-06 Mizojiri Kogaku Kogyosho:Kk 不透明体表裏面の平行度測定装置
JP2600868B2 (ja) * 1988-09-12 1997-04-16 富士通株式会社 光学製品とその製造方法
JP3108588B2 (ja) * 1994-08-26 2000-11-13 松下電工株式会社 形状計測方法およびその装置
JP2657906B2 (ja) * 1995-03-29 1997-09-30 財団法人日本品質保証機構 ブロックゲージの非密着光波干渉測定法
JP3423229B2 (ja) * 1998-11-17 2003-07-07 株式会社ミツトヨ 光波干渉計及び光波干渉計を用いた測長方法
JP3851160B2 (ja) * 2001-12-21 2006-11-29 独立行政法人産業技術総合研究所 測長装置
JP2003254708A (ja) * 2002-03-06 2003-09-10 Mitsutoyo Corp 補正値測定方法
JP4343559B2 (ja) 2003-03-07 2009-10-14 キヤノン株式会社 収差測定装置
US6847458B2 (en) * 2003-03-20 2005-01-25 Phase Shift Technology, Inc. Method and apparatus for measuring the shape and thickness variation of polished opaque plates
JP4133643B2 (ja) * 2003-07-23 2008-08-13 株式会社ミツトヨ 寸法測定用干渉計
US7426039B2 (en) * 2003-12-31 2008-09-16 Corning Incorporated Optically balanced instrument for high accuracy measurement of dimensional change
US7239397B2 (en) * 2003-12-31 2007-07-03 Corning Incorporated Device for high-accuracy measurement of dimensional changes
DE102004045808A1 (de) * 2004-09-22 2006-04-06 Robert Bosch Gmbh Optische Messvorrichtung zur Vermessung von mehreren Flächen eines Messobjektes
DE102004045806A1 (de) * 2004-09-22 2006-04-06 Robert Bosch Gmbh Interferometer mit einer Spiegelanordnung zur Vermessung eines Messobjektes
JP2006090950A (ja) * 2004-09-27 2006-04-06 Fujinon Corp 被検面傾斜測定装置
US7268887B2 (en) * 2004-12-23 2007-09-11 Corning Incorporated Overlapping common-path interferometers for two-sided measurement
JP4766989B2 (ja) * 2005-10-19 2011-09-07 日立造船株式会社 位相シフトデジタルホログラフィ法を用いた歪計測方法および歪計測装置
JP2009036601A (ja) 2007-08-01 2009-02-19 Canon Inc 干渉計測装置の校正方法、干渉計測装置、露光装置及びデバイス製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009132964A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110686618A (zh) * 2019-11-22 2020-01-14 北京理工大学 结合全反射角定位的非球面参数误差干涉测量方法及系统
CN110686618B (zh) * 2019-11-22 2020-09-15 北京理工大学 结合全反射角定位的非球面参数误差干涉测量方法及系统

Also Published As

Publication number Publication date
EP2276999B1 (de) 2015-06-10
JP2011519040A (ja) 2011-06-30
US20110122414A1 (en) 2011-05-26
WO2009132964A1 (de) 2009-11-05
DE102008001473B3 (de) 2009-12-31
US8913249B2 (en) 2014-12-16

Similar Documents

Publication Publication Date Title
EP1152236B1 (de) Optische Messanordnung mit einem Ellipsometer
DE112005000639B4 (de) Vorrichtung und Verfahren zur kombinierten interferometrischen und abbildungsbasierten Geometrieerfassung, insbesondere in der Mikrosystemtechnik
CH693968A5 (de) Verfahren und Vorrichtung fuer die Topographiepruefung von Oberflaechen.
WO2013171309A1 (de) Lichtmikroskop und verfahren zur bildaufnahme mit einem lichtmikroskop
EP0281906A2 (de) Interferometer zur Messung von optischen Phasendifferenzen
DE10154125A1 (de) Messverfahren und Messsystem zur Vermessung der Abbildungsqualität eines optischen Abbildunsgssystems
DE102018114860A1 (de) Vorrichtung und Verfahren zur optischen Vermessung eines Messobjekts
EP2863167B1 (de) Verfahren und Vorrichtung zur Messung der Ablenkung von Lichtstrahlen durch eine Objektstruktur oder ein Medium
DE10317278A1 (de) Diffusor, Wellenfrontquelle, Wellenfrontsensor und Projektionsbelichtungsanlage
DE102021118327B4 (de) Messkamera zur zweidimensionalen Vermessung von Gegenständen
EP2737288A1 (de) Konfokales spektrometer und verfahren zur bildgebung in einem konfokalen spektrometer
DE102020203847A1 (de) Interferometrische Messvorrichtung für Oberflächen
WO2020201430A1 (de) Verfahren und vorrichtung zum erfassen von verlagerungen einer probe gegenüber einem objektiv
DE10337040B4 (de) Vorrichtung zur Untersuchung einer Oberfläche oder einer Schicht
WO2015044035A1 (de) Konfokales lichtmikroskop und verfahren zum untersuchen einer probe mit einem konfokalen lichtmikroskop
EP2276999B1 (de) Optische anordnung zur beleuchtung eines messobjektes und interferometrische anordnung zur vermessung von flächen eines messobjektes
WO2016193037A1 (de) Verfahren zum ermitteln einer ortsaufgelösten höheninformation einer probe mit einem weitfeldmikroskop und weitfeldmikroskop
DE2441377A1 (de) Einrichtung zur durchfuehrung eines holographisch-interferometrischen oder moiremetrischen verfahrens
DE2628836C3 (de) Optischer Phasendiskriminator
DE4413758A1 (de) Verfahren und Vorrichtung für die Topographieprüfung von Oberflächen
DE102015112769B4 (de) Vorrichtung und Verfahren zur optischen Probenuntersuchung
DE102007032446A1 (de) Verfahren zum interferometrischen Bestimmen einer optischen Weglänge und Interferometeranordnung
DE10321886A1 (de) Robuster interferometrischer Sensor und Verfahren zur Objektabtastung
DE19521551C2 (de) Speckle-Interferometrie-Verfahren zur Gewinnung topographischer Informationen von einer konstanten Objektoberfläche
DE102011077982B4 (de) Verfahren und Vorrichtung zur optischen Analyse eines Prüflings

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101130

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130307

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20141113

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 731098

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009011132

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150910

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20150610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150910

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151012

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151010

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150610

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009011132

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

26N No opposition filed

Effective date: 20160311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160416

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20161230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160416

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160502

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160416

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 731098

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180627

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009011132

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191101