JP4343559B2 - 収差測定装置 - Google Patents

収差測定装置 Download PDF

Info

Publication number
JP4343559B2
JP4343559B2 JP2003061072A JP2003061072A JP4343559B2 JP 4343559 B2 JP4343559 B2 JP 4343559B2 JP 2003061072 A JP2003061072 A JP 2003061072A JP 2003061072 A JP2003061072 A JP 2003061072A JP 4343559 B2 JP4343559 B2 JP 4343559B2
Authority
JP
Japan
Prior art keywords
wavelength
light
measuring apparatus
light source
aberration measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003061072A
Other languages
English (en)
Other versions
JP2004273665A (ja
JP2004273665A5 (ja
Inventor
福之 蔵本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003061072A priority Critical patent/JP4343559B2/ja
Priority to US10/794,728 priority patent/US7161681B2/en
Publication of JP2004273665A publication Critical patent/JP2004273665A/ja
Publication of JP2004273665A5 publication Critical patent/JP2004273665A5/ja
Application granted granted Critical
Publication of JP4343559B2 publication Critical patent/JP4343559B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations
    • G01M11/0271Testing optical properties by measuring geometrical properties or aberrations by using interferometric methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/02Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations
    • G01M11/0257Testing optical properties by measuring geometrical properties or aberrations by analyzing the image formed by the object to be tested
    • G01M11/0264Testing optical properties by measuring geometrical properties or aberrations by analyzing the image formed by the object to be tested by using targets or reference patterns

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、一般には、収差測定装置に係り、特に、マスク上のパターンを感光性の基板に転写する投影光学系等の波面収差を測定する収差測定装置に関する。かかる投影光学系は、例えば、半導体素子を製造する際のリソグラフィー工程で使用される。
【0002】
【従来の技術】
フォトリソグラフィー(焼き付け)技術を用いて半導体メモリや論理回路などの微細な半導体素子を製造する際に、マスク又はレチクル(本出願ではこれらの用語を交換可能に使用する。)に描画された回路パターンを投影光学系によってウェハ等に投影して回路パターンを転写する投影露光装置が従来から使用されている。
【0003】
投影露光装置で転写できる最小の寸法(解像度)は、露光に用いる光の波長に比例し、投影光学系の開口数(NA)に反比例する。従って、波長を短くすればするほど、解像度はよくなる。このため、近年の半導体素子の微細化への要求に伴い、露光光源は、超高圧水銀ランプ(i線(波長約365nm))、KrFエキシマレーザ(波長約248nm)、ArFエキシマレーザ(波長193nm)と短波長化が進められ、今後は、Fレーザ(波長約157nm)の使用が有望視されている。
【0004】
また、投影露光装置では、マスク上のパターンを所定の倍率(縮小率)で正確にウェハ上に転写することが要求されており、かかる要求に応えるためには、収差を極限に抑えて結像性能に優れた投影光学系を用いることが重要である。以下、図13乃至図15を参照して、193nm以下の波長に用いられる光学系の波面収差を測定するための測定原理について説明する。図13は、従来の収差測定装置1000の一例を示す概略構成図である。
【0005】
収差測定装置1000は、干渉計用の光源として被検光学系POの露光光源と同様にエキシマレーザ1100を用いる。しかし、エキシマレーザ1100は、射出される光束のスペクトルを狭帯域化するために細長い長方形のパターンの強度パターンを有し、共振器の構造上空間的なコヒーレンスも低いため、そのままでは干渉計用の光源として適さない。そこで、これらの条件を緩和するために、エキシマレーザ1100からの射出光の波面整形を行う波面整形ユニット1110を設けている。
【0006】
波面整形ユニット1110は、長方形なパターンを正方形なパターンに変換するためのトーリック光学系と、正方形なパターンに変換した光束を集光するためのレンズと、集光後の拡散光束を再び平行光束に戻すためのレンズと、かかる集光点近傍に配置する空間フィルタから構成される。
【0007】
波面整形ユニット1110によって強度パターンが整えられ、空間コヒーレンスの高められた光束は、ハーフミラー1200により2つの光路に分岐される。ハーフミラー1200を透過した光束は、対物レンズ1210、被検光学系POを通過し、球面ミラー1220で反射される。球面ミラー1220で反射された光束は、同一光路を逆方向に進み、ハーフミラー1200で反射され、第1の瞳結像レンズ1310及び第2の瞳結像レンズ1320によってCCDカメラ1400に被検光として入射する。
【0008】
一方、ハーフミラー1200において反射した光束は、折り返しミラー1510で光路を折り返された後、参照ミラー1520で反射され、再び同一光路を戻りハーフミラー1200を透過する。ハーフミラー1200を透過した光束は、第1の瞳結像レンズ1310及び第2の瞳結像レンズ1320によってCCDカメラ1400に参照光として入射する。
【0009】
これらの2光束(即ち、被検光及び参照光)の干渉によりCCDカメラ1400で干渉縞が検出される。検出した干渉縞から被検光学系POの波面収差を求める際には、所謂、縞走査法が用いられる。これは、被検光路と参照光路との光路長差を走査した際の複数枚の干渉縞画像から干渉縞の初期位相を算出するものである。かかる光路長差の走査は、参照ミラー1520を制御部1600によってCCDカメラ1400と同期して駆動する。
【0010】
ここで、被検光学系POの波面収差の計測時には、計測時の光源の波長を管理する必要がある。被検光学系POが色収差を有しているため、計測時の光源の波長に依って測定結果が変化するためである。そこで、制御部1600は、エキシマレーザ1100上に設けられた波長計測機構1120から測定時の波長を取得している。波長計測機構1120は、エタロン等で校正され、その絶対値測定精度の保証はプラチナなどの吸収線を用いて校正することで保証される。また、Fレーザにおいては、通常、波長計測機構1120を有しておらず、計算値、又は分光器などで計測された測定値を用いている。
【0011】
なお、図14に示すように、対物レンズ1210をTS(Transmit Sphere)レンズ1710に、球面ミラー1220をRS(Reflective Sphere)ミラー1720に置き換えることで、TSレンズ1710の最終面(即ち、TS面)1710aで反射した光束を参照光として用いることができる。ここで、図14は、従来の収差測定装置2000の一例を示す概略構成図である。
【0012】
【発明が解決しようとする課題】
しかしながら、干渉計用の光源として優れた連続波光源が存在しない193nm以下の波長において、投影光学系の波面収差の測定に用いる収差測定装置の干渉計用の光源としてエキシマレーザを用いた場合、投影光学系は色収差を有しているため、使用する収差測定装置においては計測波長を高精度に測定する必要があるにもかかわらず、露光装置と同一光源を用いるため、その波長測定精度は十分ではない。また、可干渉距離が短いため、フィゾー型干渉計に代表される光路長差を必要とする高精度な干渉計の校正が選択できない。
【0013】
更に、エキシマレーザを干渉計用光源として用いた場合、空間コヒーレンス、時間コヒーレンス、指向安定性が不十分であるため、空間コヒーレンスを高めるための空間フィルタを配置すると、低い指向安定性により空間フィルタ透過後の光量の安定性が悪化し、波面の計測精度が悪化する。更に、低い時間コヒーレンスをもたらす太いスペクトル線幅は、被検光学系の色収差によって異なる波面による干渉縞の重ね合わせを引き起こすため、コントラストが低下し、高精度な測定が困難である。また、低い時間コヒーレンスは光路長差のずれにより敏感に干渉縞のコントラストの低下をもたらすため、高精度な被検光学系の測定には不可欠であるシステムに起因する波面誤差、所謂、システムエラーの測定において光学系の配置を変更する必要があり、厳密なシステムエラー測定が不可能である。
【0014】
また、近年の露光装置の短波長化に伴う被検光学系POの透過率の低下によって干渉縞のコントラストが低下する問題もある。干渉縞のコントラストの低下は、光源からのレーザ光量の変動等の外乱による波面収差の測定誤差を大きくする。
【0015】
図15は、被検光学系POの透過率による干渉縞のコントラストの変化を示すグラフである。破線は被検光学系POの透過率が100%の時の干渉縞で、この時にはコントラストは100%である。一方、実線は被検光学系POの透過率が片道で50%の時の干渉縞である。参照光と被検光の光量が等しくなくなることから、干渉縞のコントラストは80%程度に悪化している。
【0016】
また、TSレンズ及びRSミラー共に反射率が低い場合には、CCDカメラにおいて適当な光量を得るために必要な光源の光量が高くなる。即ち、十分な光量出力が得られない光源を干渉計に用いることはできず、十分な光量を得るためには、光源に対して多大な負荷をもたらし、特に、波長変換を利用したパルス光源においては、結晶や光学素子の劣化等、長期的な光源のメンテナンス性を悪化させてしまう。
【0017】
発明は、長期的に被検光学系の波面収差を高精度に測定することができる収差測定装置を提供する
【0018】
【課題を解決するための手段】
本発明の一側面としての収差測定装置は、フィゾー干渉計において、被検光学系の露光波長と実質的に同一波長の光束を用いて、前記被検光学系の波面収差を干渉縞として測定する収差測定装置であって、近赤外波長の単一縦モードの連続波光源である注入光源と、単一モードで発振する発振器と、励起光源と、結晶の非線形光学効果を用いた複数段の波長変換ユニットとで構成された光源ユニットを有し、前記光源ユニットは、前記発信器から発した近赤外の波長の光束を、複数段の前記波長変換ユニットを介して、前記露光波長と実質的に同一波長で被検光学系の光路長より長いコヒーレント長を有する光束に変換することを特徴とする。
本発明の別の側面としての露光装置は、上述の収差測定装置で波面収差を測定した前記被検光学系を用いて、マスク上のパターンを被露光体に投影することを特徴とする。
本発明の更に別の側面としての露光装置は、上述の収差測定装置と、マスク上のパターンを被露光体に投影する投影光学系とを有する露光装置であって、前記収差測定装置で前記投影光学系の波面収差を測定可能であることを特徴とする。
本発明の更に別の側面としてのデバイス製造方法は、上述の露光装置を用いて前記被露光体を露光するステップと、露光した前記被露光体を現像するステップとを有することを特徴とする。
【0019】
本発明の他の目的と更なる特徴は、以下、添付図面を参照して説明される実施形態において明らかになるであろう。
【0020】
【発明の実施の形態】
以下、添付図面を参照して、本発明の一側面としての収差測定装置について説明する。なお、各図において同一の部材については同一の参照番号を付し、重複する説明は省略する。ここで、図1は、本発明の第1の実施形態を示す収差測定装置の概略構成図ある。
【0021】
干渉計用の光源は、図1において1乃至4で示される4つのユニットである光源ユニット1乃至4により構成される。時間コヒーレンスの高い光源を得るために注入光源1には近赤外波長の単一縦モードの連続波光源を用いる。発振器2中のレーザ媒質としてはチタンサファイア結晶等が用いられる。また、発振器2中のレーザ媒質を励起するために、レーザ媒質の吸収帯域の波長を有する励起用光源3が用いられる。チタンサファイア結晶は500nm付近に吸収帯を有するため、励起用光源3としてはNd3価イオンを利用した、Nd:YAGやNd:YLFなどの赤外光の2倍波を用いる。後の波長変換の効率を高めるために発振器3の出力は尖頭出力を高める必要があるため、励起光源3もQスイッチ等で尖頭出力を高めたパルス光源を用いる。
【0022】
励起光源3と注入光源1により、発振器2からは近赤外波長の高尖頭出力且つコヒーレンスの高いパルス光が出力される。高い空間コヒーレンスを得るために、発振器2は単一横モードで発振するように設計する。発振器2からの出力パルスは、波長変換ユニット4に導かれ、結晶の非線形光学効果を用いた複数段の波長変換が行われた後、被検光学系12の露光波長と同一の波長のパルス光を出力する。
【0023】
被検光学系12がArFエキシマレーザ用の投影レンズである場合には、出力光は193nmであり、注入光源1の波長は露光用レーザの中心波長の4倍に設定する。この時、波長変換ユニット4は入射される赤外波長光の1/4の波長のパルス光を出力する様に設計される。
【0024】
また、被検光学系12がF2エキシマレーザ用の投影レンズの場合には、出力光は157nmであり、注入光源1の波長は露光用レーザの中心波長の5倍に設定する。この時、波長変換ユニット4では入射される赤外波長光の1/5の波長のパルス光を出力することになる。
【0025】
中心波長の設定は、以下で説明する波長校正機構によって高精度に校正された、波長計75による波長測定値を下に、注入光源1に波長制御を行うことで設定する。
【0026】
波長計75には、入射光束を2つに分岐して2光束に光路長差を設け、その光路長差を走査した際に検出される干渉縞の明暗をカウントすることによって計測を行う所謂フリンジスキャン型波長計を用いる。得られる波長測定値は、再現性に関しては0.1pm以下で十分な精度を有する。一方、エタロンの同一光学系に配置した波長安定化He―Neレーザによる干渉縞のカウントを行う事による絶対波長の校正は、光路の差異、光学素子の分散、He−Neレーザの波長変動等の要因でその保証値は1pm程度であり十分とはいえない。従って、ヨウ素吸収セル70を用いて波長校正を行う。
【0027】
ヨウ素吸収セル70は、ヨウ素を注入したガスセル71、ガスセル71の温度を調整するためのヒータ72、ガスセル71透過後の光量を電気信号に変換するための受光素子73からなる。本実施形態では出力光の波長が193nm、注入光源1はその4倍の波長772nmである。注入光源1の波長でヨウ素の吸収を観察するためには500℃以上の高温にガスセル71を設定する必要があるが、この温度制御は制御部7にて行われる。このときに生じるヒータ72の発熱が外部の干渉計に与える影響を防ぐために、恒温チャンバ74内に配置すると共に、ヨウ素吸収セル70への入射をファイバ6によって行うことで、物理的に干渉計と離れた場所へと配置する。
【0028】
ここで、ヨウ素吸収セル70を用いた波長の校正方法について説明する。受光素子73で得られるガスセル71の透過光量信号はA/Dを通して制御コンピュータ19にて観察可能である。また、制御コンピュータ19は同時に波長計75及び注入光源1にも接続され、波長計75による波長計測値が取得可能であると共に、注入光源1の波長制御を可能としている。以下、波長制御とは注入光源1に設けられた回折格子等の波長選択素子をPZTなどのアクチュエータで駆動することによる比較的粗い波長制御を称する。
【0029】
はじめに、制御コンピュータ19からの指令により、注入光源1の波長を、校正波長帯における最短波長、或いは最長波長に設定する。この時、制御部7から事前にヒータ72の温度設定の指令を出すことにより、ガスセル71は十分安定な温度に保たれているとする。
【0030】
制御部7から、注入光源1に校正波長帯の端までの走掃指令を行う。波長の走掃と同時に、制御部7では波長計75の測定値を取得し、制御コンピュータ19ではガスセル71の透過光量の取得を行う。
波長走掃は、波長を一定量変化させてから一旦静止し、波長計75による測定を行う作業を繰り返す階段状の走掃でも、直線的に波長を変化させた際の波長計75の測定値を随時取得する直線状の走掃でもよいが、直線状の走掃の場合には、波長計75の測定に要する時間を考慮して、波長計測定値と透過光量のデータとの同期を取る必要がある。
【0031】
次に波長の同定を行う。図2を参照するに、この波長は光源ユニット1乃至4の出力波長において、193.3nmから、193.4nmの波長に相当する。ここで、図2は、773.2nmから773.6nmまでのヨウ素の吸収構造を示すグラフである。図3は、788.0nmから788.25nmまでのヨウ素の吸収構造を示すグラフである。
【0032】
また、本実施形態では図3に示すように、光源ユニット1乃至4の出力波長は193nmとしているが、基本波の5倍波を出力とする場合には157.60nmから157.65nmの波長に相当するため、以下に述べる方法により157nmの波長校正も可能である。
【0033】
ここで、注入光源1から発する光の波長は近赤外光であることが好ましく、特に700nm〜1000nm、さらに好ましくは750nm〜800nmの範囲内であるのが好ましい。さらに、露光波長の整数倍もしくは露光波長の整数倍に対してプラスマイナス1nmであるのが好ましく、その整数倍は4〜5倍であるのが好ましい。
【0034】
上記方法により取得される波長計75の測定値と透過光量信号と、図2のヨウ素吸収構造を比較することにより、透過光量信号に現れる複数の吸収線の絶対波長を同定する。この同定された吸収線位置における波長計75の測定値を比較することにより、絶対波長の保証された任意の吸収線近傍に注入光源1の波長を移動する事が可能になる。
【0035】
次に波長計75の高精度な校正を行う。図2のヨウ素吸収構造から校正を行うための吸収線を選択し、上述方法で得られた、波長計75の測定値と図2の吸収線の波長値の差分を加えることにより、制御コンピュータ19より注入光源1に吸収線近傍への波長制御を行う。
【0036】
波長制御完了後、注入光源1に微小な波長制御を行う。ここで、微小な波長制御とは、注入光源1のレーザ媒質である半導体素子への注入電流を変化させることによって可能な波長制御に比較して高精度な波長制御を意味する。以下、微小な波長制御を光周波数制御と称す。
【0037】
具体的には、吸収線に固定するためのディザー信号として、光周波数制御により吸収線の線幅程度の振幅で注入光源1の波長を正弦振動させる。この正弦振動は制御部7中に設けられた高精度な発振器からの出力を用いる。制御部7では、正弦振動出力に対しオフセット電圧を加えるための和算回路も設けている。
【0038】
振動の中心が吸収線と完全に一致している場合には、透過光量のスペクトルは光周波数の振動周波数の偶数次成分のみとなるが、吸収線が光周波数の振動中心からずれた場合には、振動周波数の奇数次成分が発生する。図4によれば、実線が透過光量、鎖線が波長の振動を表し、吸収線と振動中心が完全に一致している場合を示している。ここで、図4は、正弦振動に対する透過光量の様子を示すグラフである。本実施形態では、奇数次成分が最小になるように注入光源1の周波数制御を行うことで、注入光源1の波長と吸収線のロックを行う。奇数次成分の検波には、発振器の出力を参照信号として用いた、透過光量信号からロックイン検出を行えばよい。
【0039】
ロックイン検出により得られる出力は、所望の時定数を有する積分回路において積分された後、帰還信号として注入光源1の周波数制御、つまりオフセット電圧として用いる。
【0040】
上述方法によって、注入光源1の波長を吸収線の波長に固定する事が可能になる。この状態で、波長計5による波長計側を行う。注入光源1の波長は長時間の固定が可能なため、測定精度を高めるための平均化が有効であり、より高精度の波長計測が可能である。
【0041】
得られた波長計測値を下に、光源ユニット1乃至4の出力波長の算出を行う。本実施形態では校正された近赤外の波長計測値を4で割ることにより出力波長の算出が可能である。以上で、一本の吸収線における波長の校正が終了する。
【0042】
図2に示すように、着目する波長帯域中の吸収線の数が多いため、複数の吸収線を選択し、それぞれの吸収線においての上記方法によって波長校正を行いその結果を直線やあるいは多項式等で回帰分析を行う事によって、更に高精度な波長校正が可能となる。着目する波長が単一の固定波長で且つ吸収線と一致している場合には、単一の吸収線でのみ校正を行えばよい。
【0043】
校正した結果は、制御コンピュータ19に保存され、波長計75の測定値に校正値を加えた校正後の波長値により注入光源1の波長制御を行い、波面計測時の光源波長を保証する。上述した様に波長計75の測定再現性は高いため、十分高精度な光源波長の波長制御が可能である。
【0044】
以下、本発明の第2の実施形態について述べる。第1の実施形態では、測定装置における波長校正の例を述べたが、第2の実施形態は基本波長を吸収線に固定することにより波長変換によって得られる出力波長を固定する技術を干渉縞の安定化に利用するものである。
【0045】
再び図1を参照して、第2の実施形態について説明を行う。
【0046】
第1の実施形態では、波面形状計測装置における波長校正の例を述べたが、第2の実施形態は基本波長を吸収線に固定することにより波長変換によって得られる出力波長を固定する技術を干渉縞の安定化に利用するものである。図1に示すように、光源ユニット1乃至4から射出した光束はハーフミラー8を透過し、TSレンズ9に入射する。TS面10以外のレンズの全ての面は、光源の波長における反射防止膜を施し、TS面10には通常コーティングは施さず、表面反射を用いる。光源ユニット1乃至4からの出力が不十分な場合や、被検光学系12の透過率が低く、干渉縞のコントラストが低下する場合には増反射コーティングを施しても良い。
【0047】
TS面10で反射した光束は、ハーフミラー8で反射され、第1瞳結像レンズ16及び第2瞳結像レンズ17を透過してカメラ18に入射する。以下、この光束を参照光束と称す。
【0048】
一方、TS面10を透過した光束は、一度集光した後、被検光学系12の像面で集光した後、RSミラー14で反射される。RSミラー14としては通常、コーティングは施さず、表面反射を用いるが、TS面10同様、被検光学系12の透過率に応じてアルミコーティング等の高反射コーティングを施しても良いし、Si結晶等の光反射率部材から作成しても良い。RSミラー14で反射された光束は、再び被検光学系12、TSレンズ9を透過し、ハーフミラー8で反射された後、参照光束と同様にカメラに入射する。以下、この第2の光束を被検光束と称す。カメラ18では、再び同一光路となった参照光束と被検光束の干渉による干渉縞が得られる。
【0049】
以上、TS面10とRSミラー14により構成される所謂フィゾー干渉計においては、被検光学系12の光路長にTSレンズ9の焦点距離、RSミラー14の曲率半径を加えた光路長の2倍が、被検光路と参照光路の光路長差として発生する。この値は半導体露光装置用投影レンズの測定の場合、3〜4m程度である。このような長い光路長差の干渉計を構成するためには、光源として上記光路長差においても干渉縞が発生するだけのコヒーレント長と、上記光路長差においても干渉縞が安定するだけの周波数安定性が必要になる。ここで、コヒーレント長は、等しい強度の2光束の干渉による干渉縞のコントラストが50%に低下するパルス幅に等しいとする。また、周波数安定性と干渉縞の位相の関係は、以下に示す数式1で表される。
【0050】
【数1】
Figure 0004343559
【0051】
ここで、df:周波数安定性、c:光速、L:干渉計光路長差、dΦ:干渉縞位相である。半導体露光装置用の投影レンズの計測において光源に必要なコヒーレント長は、光路長差の1〜2倍以上であり、必要な周波数安定性は、数MHz程度となる。
【0052】
光源ユニット1乃至4では必要コヒーレント長は満足するが、周波数安定性に関しては満足しない。そのため、別途光周波数安定化を行う。
【0053】
光周波数安定化を行う際には、上述した理由により出力波長を変動させることが出来ないため、実施形態1とは波長固定の方法が異なる。
【0054】
注入光源1からファイバで分岐した出力は、電気光学変調素子を透過させる。電気光学素子には別途所望の周波数で電気光学効果を与えるための駆動装置が設けられる。駆動装置ではある変調周波数を基本周波数として、基本周波数より前後に少量の周波数の変動を可能としている。電気光学変調素子を透過後の光束はよく知られているように以下に示す数式2で表される束帯波を生じる。
【0055】
【数2】
Figure 0004343559
【0056】
ここで、F(m):m次の束帯波の光周波数、F0:入射光束の光周波数、m:整数の束帯波次数、Feom:変調周波数である。変調周波数Feomとしては、+1次の束帯波のみヨウ素で吸収させるための条件から、Δfは吸収線の線幅として、以下に示す数3を満たす必要がある。
【0057】
【数3】
Figure 0004343559
【0058】
以下、2次以上の高次の束帯波は光量自体が低いものとして無視する。また、光周波数安定化の為の微小変動、所謂ディザーを加えるために、電気光学変調周波数Feomにさらにディザー用の変調を加えるため、実際の光周波数は、以下に示す数4となる。
【0059】
【数4】
Figure 0004343559
【0060】
ここで、ΔFeomは電気光学変調周波数の変動幅を表し、Fditherは波長ディザーの周波数を表す。つまり、束帯波の波長が微小量ΔFeomの振幅を持ったディザー周波数Fditherで変動することになる。これらの変調は制御器9に設けられた発振器により高精度に行う。
【0061】
変調を受けた光束を実施形態1同様、ヨウ素セル70を透過させる。
吸収線の影響を受けない0、−1次の束帯波の光量はディザーに依らず変動しないため、得られる透過光量は定量のオフセットが加算される点で異なるが、1次束帯波の周波数変動の中心が吸収線と完全に一致している場合には、透過光量のスペクトルは光周波数の振動周波数の偶数次成分のみとなり、吸収線が光周波数の振動中心からずれた場合には、振動周波数の奇数次成分が発生する点は実施形態1と全く同一である。奇数次成分の検波は、ディザー周波数発振器の出力を参照信号として用い、透過光量信号からロックイン検出を行えばよい。本実施形態では、この奇数次成分が最小になるように注入光源1の周波数制御を行うことで、注入光源1の+1次束帯波を吸収線に固定する。
固定の方法としては、ロックイン検出により得られる出力を、所望の時定数を有する積分回路において積分した後、帰還信号として注入光源1に印加することにより行われる。ロックの為の帰還信号は注入光源自体にかけられるため、結果として注入光源1の周波数安定化が可能となる。
【0062】
測定時の波長は、実施形態1により校正された波長計75の測定値を用いても良いし、1次束帯波をロックしている吸収線と、電気光学変調周波数により換算しても構わない。
【0063】
以上によって、注入光源の波長において周波数安定化が実現するため、波長変換後の出力波長の周波数も安定する。
【0064】
周波数安定化の結果、十分に安定した干渉縞から波面の算出には、TSレンズ9或いはRSミラー14を走査した際の複数の干渉縞から位相算出を行う、所謂縞走査法を用いればよい。本実施形態では、TSレンズ9は高精度なアクチュエータ上に設けられており、このアクチュエータを制御コンピュータ19からの指令により駆動させた際の干渉縞を、カメラ18から取得する事で縞走査法を行う。波面形状の測定精度を向上させる必要がある場合には複数回の走査を行い、干渉縞強度の平均化を行えばよい。この干渉縞強度の平均化にはより多くの測定時間を要するが、帰還信号の積分器の時定数を予め測定時間と同程度に調整しておくことで、測定時間内の干渉縞安定性を保証することが可能である。
【0065】
ここで図5を参照して、第3の実施形態について説明を行う。ここで、図5は、別の実施形態を示す収差測定装置の概略構成図である。パルス光の周波数安定化は困難であるため、連続波光源である注入光源1を用いて周波数安定化を行う。上記の必要周波数安定性は被検光学系と同一波長における値であるから、注入光源1において周波数安定化を行う場合には、必要安定性の注入光源波長/出力波長倍となる。例えば最終的に波長193nmの光束を出力する場合には1MHz程度の周波数安定化を行えば良い。
【0066】
注入光源1から射出する光束をハーフミラー等で分岐し、ファイバ6により外部共振器5に導光する。勿論、ファイバ6を用いずにミラーを用いて光路を引き回しても良いが、外部共振器が光束の入射条件に対して敏感であるためにミラーの振動等の安定性に注意する必要がある。
【0067】
外部共振器5は、両端に設けられた高反射のミラー51と、射出側に設けられた検出器52と、それらを保持する鏡筒53、及び、入射側の高反射ミラー51を保持するアクチュエータ54から構成される。鏡筒は熱的な伸張等の影響を最小限に抑えるため、インバー等の低膨張材により作成され、温度変動、振動等の外乱に対して十分に配慮した環境下に設置される。外部共振器5は所謂エタロンであり、上記1MHz程度の周波数安定化を行うために、FSR/フィネスで表される周波数分解能は1MHz程度以下であることが望ましい。また、アクチュエータ54はPZT等を用い、制御部7から共振器長の高精度な操作を可能としている。
【0068】
検出器52では、外部共振器5の共振器長と、注入光源1の波長に応じて変動する透過光量が電気信号に変換され、電気信号は制御部7に接続される。
【0069】
制御部7ではアクチュエータ54に微小な正弦振動を加えるための精密な発振器2と、発振器出力電圧に定電圧のオフセットを加えるための和算回路を設ける。定電圧のオフセットは、上記微小量の共振器長の振動中心において、外部共振器5の透過光量が最大となるように設定する。このとき、微小な振動の加えられた外部共振の透過光出力は図6のようになる。ここで図6は、周波数安定化を行うための、外部共振器5の共振器長の微小変動と、透過光量を表したグラフである。実線は外部共振器5の透過光量、破線はアクチュエータ54の位置を示している。よく知られているように、透過光量の最大値がアクチュエータ54の振動の中心にあるときには、透過光量のスペクトルはアクチュエータ54の振動周波数の偶数次成分のみとなるが、透過光量の最大値がアクチュエータ54の振動中心からずれた場合には、振動周波数の奇数次成分が発生する。本実施形態では、この奇数次成分が最小になるように注入光源1の周波数を制御することで周波数安定化を行う。奇数次成分の検波には、発振器2の出力を参照信号として用いた、透過光量信号からロックイン検出を行えばよい。
【0070】
本実施形態では、注入光源1として半導体レーザを用い、帰還信号によってレーザ媒質である半導体素子への注入電流を変化させることにより、周波数の制御を行う。外部共振器型の半導体レーザを用いる場合には、回折格子等の波長選択素子を駆動させることにより周波数の制御を行っても構わない。
【0071】
周波数安定化を行う時間が長い場合には、注入光源1の発振器2の熱的なドリフト等により周波数の変動が生じ、帰還信号を入力する注入電流1の変化が大きくなる事で、発振器2の安定性に影響を及ぼすと共に、帰還信号出力の精度悪化にも引き起こす。この影響を避けるために、制御コンピュータ19は制御部7に接続され、波面測定を開始するたびに、アクチュエータ54の振動中心において透過光量を最大とするための定電圧オフセット量の更新を行う。
【0072】
以上で、注入光源1の周波数安定化を行うことが可能となり、結果として出力波長における周波数安定化が実現する。
【0073】
カメラ18で測定される干渉縞から、位相を算出するには縞走査法を用いる。被検光路と参照光路の光路長差を変化させるために、TSレンズ9はPZT等の高精度なアクチュエータ上に設置され、制御コンピュータ19からの制御によって、カメラ18と同期して光路長差の異なる複数の干渉縞の画像を測定可能としている。複数の干渉縞画像から位相を算出する計算方法としてはZygo社の13バケットアルゴリズムが良く知られている。通常、一回の縞走査では波面の測定精度が不十分のため、複数回の縞走査を行うことで波面の測定精度を高める。
【0074】
具体的な測定方法について、図7を用いて説明する。ここで、図7は、複数回の縞走査からの位相の算出方法を表す概略図である。実線150はアクチュエータ154の駆動量を示しており、図7では6回の縞走査を行い、得られるバケット数×縞走査数の複数枚の干渉縞画像は制御コンピュータ19に保存される。複数回の縞走査終了後、同一光路長差の縞走査回数枚の干渉縞画像に対し、矢印151で表される干渉縞画像の平均化を行う。結果として得られるバケット数枚の平均化干渉縞画像153を用いて、矢印152で表される波面算出を行う。波面算出は、位相回復と位相接続によってなされる。この場合、1回の測定に対し、波面算出が一回で済むため高速な測定を行う事が可能である。
【0075】
ここで、測定方法において必要となる複数回の縞走査に要する時間における干渉縞安定性は、制御部7の帰還信号に対する積分回路の時定数を、複数回の縞走査に要する時間程度に設定する周波数安定化によって保証されているため、高精度な波面形状計測が可能である。
【0076】
図8を参照して、本発明に係る第4の実施形態について説明する。ここで、図8は、別の実施形態を示す収差測定装置の概略構成図である。実施形態1において説明したように、注入光源1、発振器2、励起光源3と波長変換ユニット4によって被検光学系12の露光波長と同一波長の光束が作成される。
【0077】
光源ユニット1乃至4により発生する光束は、光路長差の1〜2倍程度のコヒーレント長を有しているため1/2程度の光路長差がある場合でも十分なコントラストの干渉縞を得る事ができる。
【0078】
本実施形態においては光路長差が被検光路の光路長の半分程度であるため、式1より、周波数安定性が及ぼす影響は実施形態1の1/2程度である。しかし、縞走査回数が多い時には、光源ユニット1乃至4の周波数変動による干渉縞変化が無視できないため、以下の波面算出方法を行う。
【0079】
図9は、第4の実施形態において、複数回の縞走査から波面を高精度に算出する方法を示す概略図である。実施形態3と同様、複数回の縞走査を行い、バケット数×縞走査数枚の干渉縞画像を制御コンピュータ19に保存する。複数回の縞走査終了後、各縞走査ごとに矢印152aで表される波面算出を行い、縞走査回数毎の波面形状155aを得る。この場合、それぞれの波面算出に用いられる縞走査に要する時間は十分に短いため、干渉縞変化の影響は無視できる。こうして得られた波面形状155aを矢印151aで表される平均化を行うことで、高精度な波面形状測定を可能としている。
【0080】
また、システムエラーの計測を行う際にはRSミラー14を、その曲率中心がTSレンズ9の焦点11に一致するように配置して計測を行う。参照光路の光路長を被検光路の半分程度に設定しているため、参照ミラー22の位置を変えて、被検光路の光路長差を調整すること無しで、被検光学系測定時のコントラストと同程度な干渉縞により波面計測が行える。この結果、システムエラー計測と被検光学系測定時においてシステムの有する波面が一致し、高精度なシステム除去が可能になる。
【0081】
図10を参照して、本発明に係る第5の実施形態について説明する。ここで、図10測定装置の別の実施形態である。高反射RSミラー14は通常のアルミコーティングにMgF2等の増反射コーティングを加えたものを使用する。この高反射RSミラー14による反射率は90%程度である。コーティングによる面精度の悪化を避ける場合には、シリコン結晶等を材質とするRSミラー14を使用すればよい。シリコン結晶を用いた場合の反射率は波長193nmにおいて60%程度である。
【0082】
ここで、増反射TS面10の反射率の決定方法について説明する。
増反射TS面10の反射率は、被検光路の光量と参照光路の光量が等しくなる条件から決定する。実際には、被検光路の光量は増反射TS面10と高反射RS面の間で生じる多重干渉の影響を受けるがこの効果は無視する。この時、増反射TS面の反射率は、被検光学系12の透過率、RSミラー14の反射率を用いて数5により決定される。
【0083】
【数5】
Figure 0004343559
【0084】
ここで、RTSは増反射TS面10の反射率、Tは被検光学系12の透過率、RRSは高反射RSミラー14の反射率を表す。
【0085】
被検光学系12の透過率を、50%とすると、高反射RSミラー14の反射率は90%であるから、式1より、増反射TS面の反射率は16%となる。
16%の反射膜は酸化物を用いた3層の増反射膜により作成可能である。勿論、その他の膜数や材量により、所望の反射率を実現しても良い。
高反射RSミラー14で反射された光束は、再び被検光学系12、TSレンズ9を透過し、ハーフミラー8で反射された後、参照光束と同様にカメラ18に入射する。以下、この第2の光束を被検光束と称す。
【0086】
カメラ18上では、上記参照光束と上記被検光束の干渉の結果、上記参照光束と上記被検光束の光路長差に応じた干渉縞が観察される。
【0087】
干渉縞から波面形状を測定する際には、従来のフィゾー型干渉計と同様に、TSレンズ9或いはRSミラー14を光軸方向に走査させた際の複数の干渉縞から位相を算出すればよい。
【0088】
図11に干渉縞強度を示す。実線が本実施形態の値である。比較のために従来の5%程度の反射率のTS面10、RS面を用いた場合の干渉縞強度を破線で示した。干渉縞のコントラストと、干渉縞の強度が従来に比べて向上している事が分かる。
【0089】
干渉縞のコントラストは従来例が65%なのに対して、本実施形態では90%となるとともに、従来のフィゾー型干渉計に必要な光量に比較して1/7倍程度の光量で測定が可能となる。
【0090】
図10には記載していないが、高反射RSミラー14は、高精度なPZT等のアクチュエータを設けており、高反射RSミラー14を走査した際の干渉縞の変化から、被検光学系12の波面を測定することが可能となる。また、このアクチェータのストロークは縞走査時に必要なストロークに加えて、一波長分以上の光路長差を発生させるストロークを走査可能である。
【0091】
ところで、増反射TS面10と、高反射RSミラー14の両方の反射率が高い時には、光束が両者の間で閉じ込められ、多重干渉が顕著となる。つまり、光路長差が波長の整数倍のところはより強めあい、それ以外はより弱めあうという、所謂エタロンの効果である。この結果、縞走査時の強度変調は理想的なSin関数からずれを生じ、これは上記位相算出の際に誤差を引き起こす。通常の単一縦周波数連続波光源では、コヒーレント長が光路長差に比較し十分に長いため、この強度変調がSin関数からずれる事による位相算出誤差は無視できないが、コヒーレンス長と光路長差が同程度のパルス光源を用いる場合には、多重干渉時の可干渉性自体が低く影響は小さくなる。
【0092】
波長が193nm以下の場合には、可干渉性の高い光源を実現すること自体が困難であり、その結果多重干渉による効果が小さいと同時に光源から出力される光量もそれ以上の波長の光源に比較して少ないため、特に有利となる。
また、上記位相誤差は、算出する初期位相と強度変調のSin関数からのずれ具合にのみ依存する量である。そのため、増反射TSレンズ10或いは高反射RSミラー14の走査の初期位置をずらしながら一波長分の複数回測定を行い、得られた複数回の波面形状計測結果を平均することにより、上記位相算出誤差を補正することが可能になる。
【0093】
上記補正を行うための、本実施形態における縞走査のためのPZT駆動を図12に示す。合計8回の3/2波長の光路長差に相当するPZT走査を行い、それぞれの走査において初期位置を光路長差にして1/8波長ずつシフトしている。このそれぞれの走査から位相を算出し、それぞれの位相算出結果の平均化を行う事により上記位相算出誤差の補正が可能となる。
【0094】
以下、図16を参照して、本発明の例示的な露光装置900について説明する。ここで、図16は、露光装置900の概略ブロック図である。露光装置900は、図16に示すように、回路パターンが形成されたマスク又はレチクル(本出願ではこれらの用語を交換可能に使用する)920を照明する照明装置910と、プレートを支持するステージ950と、照明された回路パターンをプレート940に投影する投影光学系930とを有する。
【0095】
露光装置900は、例えば、ステップアンドリピート方式やステップアンドスキャン方式でマスク920に形成された回路パターンをプレート940に露光する投影露光装置である。かかる露光装置は、サブミクロンやクオーターミクロン以下のリソグラフィ工程に好適であり、以下、本実施形態ではステップアンドスキャン方式の露光装置(「スキャナー」とも呼ばれる)を例に説明する。ここで、「ステップアンドスキャン方式」は、マスクに対してウェハを連続的にスキャンしてマスクパターンをウェハに露光すると共に、1ショットの露光終了後ウェハをステップ移動して、次のショットの露光領域に移動する露光方法である。「ステップアンドリピート方式」は、ウェハのショットの一括露光ごとにウェハをステップ移動して次のショットを露光領域に移動する露光方法である。
【0096】
照明装置910は、転写用の回路パターンが形成されたマスク920を照明し、光源部912と照明光学系914とを有する。
【0097】
光源部912は、例えば、光源としてレーザを使用する。レーザは、波長約193nmのArFエキシマレーザ、波長約248nmのKrFエキシマレーザ、波長約153nmのFレーザなどを使用することができるが、レーザの種類はエキシマレーザに限定されず、例えば、YAGレーザを使用してもよいし、そのレーザの個数も限定されない。例えば、独立に動作する2個の固体レーザを使用すれば固体レーザ間相互のコヒーレンスはなく、コヒーレンスに起因するスペックルはかなり低減する。さらにスペックルを低減するために光学系を直線的又は回転的に揺動させてもよい。また、光源部912にレーザが使用される場合、レーザ光源からの平行光束を所望のビーム形状に整形する光束整形光学系、コヒーレントなレーザ光束をインコヒーレント化するインコヒーレント化光学系を使用することが好ましい。また、光源部912に使用可能な光源はレーザに限定されるものではなく、一又は複数の水銀ランプやキセノンランプなどのランプも使用可能である。
【0098】
照明光学系914は、マスク920を照明する光学系であり、レンズ、ミラー、ライトインテグレーター、絞り等を含む。例えば、コンデンサーレンズ、ハエの目レンズ、開口絞り、コンデンサーレンズ、スリット、結像光学系の順で整列する等である。照明光学系914は、軸上光、軸外光を問わず使用することができる。ライトインテグレーターは、ハエの目レンズや2組のシリンドリカルレンズアレイ(又はレンチキュラーレンズ)板を重ねることによって構成されるインテグレーター等を含むが、光学ロッドや回折素子に置換される場合もある。かかる照明光学系914のレンズなどの光学素子に本発明の収差測定装置で測定された光学素子を使用することができる。
【0099】
マスク920は、例えば、石英製で、その上には転写されるべき回路パターン(又は像)が形成され、図示しないマスクステージに支持及び駆動される。マスク920から発せられた回折光は投影光学系930を通りプレート940上に投影される。プレート940は、ウェハや液晶基板などの被処理体でありレジストが塗布されている。マスク920とプレート940とは共役の関係にある。スキャナーの場合は、マスク920とプレート940を走査することによりマスク920のパターンをプレート940上に転写する。ステッパーの場合は、マスク920とプレート940を静止させた状態で露光が行われる。
【0100】
投影光学系930は、複数のレンズ素子のみからなる光学系、複数のレンズ素子と少なくとも一枚の凹面鏡とを有する光学系(カタディオプトリック光学系)、複数のレンズ素子と少なくとも一枚のキノフォームなどの回折光学素子とを有する光学系、全ミラー型の光学系等を使用することができる。色収差の補正が必要な場合には、互いに分散値(アッベ値)の異なるガラス材からなる複数のレンズ素子を使用したり、回折光学素子をレンズ素子と逆方法の分散が生じるように構成したりする。かかる投影光学系930のレンズなどの光学素子に本発明の収差測定装置により測定された光学素子を使用することができる。
【0101】
プレート940にはフォトレジストが塗布されている。フォトレジスト塗布工程は、前処理と、密着性向上剤塗布処理と、フォトレジスト塗布処理と、プリベーク処理とを含む。前処理は、洗浄、乾燥などを含む。密着性向上剤塗布処理は、フォトレジストと下地との密着性を高めるための表面改質(即ち、界面活性剤塗布による疎水性化)処理であり、HMDS(Hexamethyl−disilazane)などの有機膜をコート又は蒸気処理する。プリベークは、ベーキング(焼成)工程であるが現像後のそれよりもソフトであり、溶剤を除去する。
【0102】
ステージ950は、プレート940を支持する。ステージ950は、当業界で周知のいかなる構成をも適用することができるので、ここでは詳しい構造及び動作の説明は省略する。例えば、ステージ950は、リニアモーターを利用してXY方向にプレート940を移動することができる。マスク920とプレート940は、例えば、同期走査され、ステージ950と図示しないマスクステージの位置は、例えば、レーザ干渉計などにより監視され、両者は一定の速度比率で駆動される。ステージ950は、例えば、ダンパを介して床等の上に支持されるステージ定盤上に設けられ、マスクステージ及び投影光学系930は、例えば、鏡筒定盤は床等に載置されたベースフレーム上にダンパ等を介して支持される図示しない鏡筒定盤上に設けられる。
【0103】
露光において、光源部912から発せられた光束は、照明光学系914によりマスク920を、例えば、ケーラー照明する。マスク920を通過してマスクパターンを反映する光は投影光学系930によりプレート940に結像される。露光装置900が使用する照明光学系914及び投影光学系930は、本発明によるかかる照明光学系914のレンズなどの光学素子に本発明の収差測定装置で測定された光学素子を含んで紫外光、遠赤外光及び真空紫外光を高い透過率で透過するので、高いスループットで経済性よくデバイス(半導体素子、LCD素子、撮像素子(CCDなど)、薄膜磁気ヘッドなど)を提供することができる。
【0104】
次に、図17及び図18を参照して、上述の露光装置900を利用したデバイス製造方法の実施例を説明する。図17は、デバイス(ICやLSIなどの半導体チップ、LCD、CCD等)の製造を説明するためのフローチャートである。ここでは、半導体チップの製造を例に説明する。ステップ1(回路設計)では、デバイスの回路設計を行う。ステップ2(マスク製作)では、設計した回路パターンを形成したマスクを製作する。ステップ3(ウェハ製造)では、シリコンなどの材料を用いてウェハを製造する。ステップ4(ウェハプロセス)は、前工程と呼ばれ、マスクとウェハを用いてリソグラフィ技術によってウェハ上に実際の回路を形成する。ステップ5(組み立て)は、後工程と呼ばれ、ステップ4によって作成されたウェハを用いて半導体チップ化する工程であり、アッセンブリ工程(ダイシング、ボンディング)、パッケージング工程(チップ封入)等の工程を含む。ステップ6(検査)では、ステップ5で作成された半導体デバイスの動作確認テスト、耐久性テストなどの検査を行う。こうした工程を経て半導体デバイスが完成し、それが出荷(ステップ7)される。
【0105】
図18は、ステップ4のウェハプロセスの詳細なフローチャートである。ステップ11(酸化)では、ウェハの表面を酸化させる。ステップ12(CVD)では、ウェハの表面に絶縁膜を形成する。ステップ13(電極形成)では、ウェハ上に電極を蒸着などによって形成する。ステップ14(イオン打ち込み)では、ウェハにイオンを打ち込む。ステップ15(レジスト処理)では、ウェハに感光剤を塗布する。ステップ16(露光)では、露光装置900によってマスクの回路パターンをウェハに露光する。ステップ17(現像)では、露光したウェハを現像する。ステップ18(エッチング)では、現像したレジスト像以外の部分を削り取る。ステップ19(レジスト剥離)では、エッチングが済んで不要となったレジストを取り除く。これらのステップを繰り返し行うことによってウェハ上に多重に回路パターンが形成される。本実施例の製造方法によれば、従来よりも高品位のデバイスを製造することができる。
【0106】
以上、本発明の好ましい実施例を説明したが、本発明はこれらに限定されずその要旨の範囲内で様々な変形や変更が可能である。
【0136】
【発明の効果】
長期的に被検光学系の波面収差を高精度に測定することができる収差測定装置を提供することを例示的目的とする。
【図面の簡単な説明】
【図1】 本発明の第1の実施形態を示す収差測定装置の概略構成図ある。
【図2】 図1に示す測定装置の吸収線を193nmの4倍の波長付近のヨウ素とした場合のグラフである。
【図3】 図1に示す測定装置の吸収線を157nmの5倍の波長付近のヨウ素とした場合のグラフである。
【図4】 図1に示す測定装置の波長をディザー振動させた際の透過光量のグラフである。
【図5】 本発明の別の実施態様を示す収差測定装置の概略構成図である。
【図6】 図5に示す測定装置の外部共振器の共振器長の微小変動と、透過光量を表すグラフである。
【図7】 図5に示す測定装置の複数回の縞走査からの位相の算出方法を表す概略図である。
【図8】 本発明の別の実施形態を示す収差測定装置の概略構成図である。
【図9】 図8に示す測定装置の複数回の縞走査からの位相の算出方法を表す概略図である。
【図10】 本発明の別の実施形態を示す収差測定装置の概略構成図である。
【図11】 図10に示す測定装置の干渉縞強度を表すグラフである。
【図12】 図10に示す測定装置の光路長差の変化を表すグラフである。
【図13】 従来の測定装置を示す概略構成図である。
【図14】 図13に示す測定装置の別の実施形態の概略図である。
【図15】 図13に示す測定装置における干渉縞強度を表したグラフである。
【図16】 本発明の一側面としての露光装置の概略ブロック図である。
【図17】 本発明の露光装置を有するデバイス製造方法を説明するためのフローチャートである。
【図18】 図17に示すステップ4の詳細なフローチャートである。
【符号の説明】
1 注入光源
2 発振器
3 励起用光源
4 波長変換ユニット
5 外部共振器
6 ファイバ
7 制御部
9 TSレンズ
12 被検光学系
14 RSミラー
19 制御コンピュータ
51 ミラー
52 検出器
53 鏡筒
54 アクチュエータ
70 ヨウ素吸収セル
71 ガスセル
72 ヒータ
73 受光素子
74 恒温チャンバ
75 波長計

Claims (16)

  1. フィゾー干渉計において、被検光学系の露光波長と実質的に同一波長の光束を用いて、前記被検光学系の波面収差を干渉縞として測定する収差測定装置であって、
    近赤外波長の単一縦モードの連続波光源である注入光源と、単一モードで発振する発振器と、励起光源と、結晶の非線形光学効果を用いた複数段の波長変換ユニットとで構成された光源ユニットを有し、
    前記光源ユニットは、前記発信器から発した近赤外の波長の光束を、複数段の前記波長変換ユニットを介して、前記露光波長と実質的に同一波長で被検光学系の光路長より長いコヒーレント長を有する光束に変換することを特徴とする収差測定装置。
  2. 前記波長変換ユニットは、前記発信器から発する光束の波長を実質的に4分の1倍又は実質的に5分の1倍にすることを特徴とする請求項1記載の収差測定装置。
  3. 前記波長変換ユニットに発生する複数の波長のいずれかの波長において波長校正を行うことによって前記露光波長と同一波長の光束の波長校正を行うことを特徴とする請求項1記載の収差測定装置。
  4. 前記波長校正を行う波長は、前記露光波長の4倍又は5倍の近赤外光を用いることを特徴とする請求項3記載の収差測定装置。
  5. 前記波長校正を行う波長の光束は、連続波であることを特徴とする請求項3記載の収差測定装置。
  6. 前記波長校正を行う波長において吸収特性を有するガスセルを更に有し、
    前記ガスセルを透過した前記波長校正を行う波長の光束の透過光量から前記波長校正を行うことを特徴とする請求項3記載の収差測定装置。
  7. 波長変換前の前記近赤外光の波長において吸収特性を有するガスセルを更に有し、
    前記ガスセルを透過した前記近赤外光の透過光量が最小になるように前記近赤外光の周波数を制御することを特徴とする請求項1記載の収差測定装置。
  8. 前記波長変換ユニットに発生する複数の波長のいずれかの波長の光束に対して位相変調を行うことによって発生する束帯波を用いて波長校正を行うことを特徴とする請求項1記載の収差測定装置。
  9. 前記束帯波の波長において吸収特性を有するガスセルを更に有し、
    前記ガスセルを透過した前記束帯波の透過光量が最小になるように前記近赤外光の周波数を制御することを特徴とする請求項8記載の収差測定装置。
  10. 波長変換前の前記赤外光の周波数を安定させる周波数安定手段を更に有することを特徴とする請求項1記載の収差測定装置。
  11. 周波数を安定させる前記近赤外光の波長は、前記露光波長の4倍又は5倍であることを特徴とする請求項10記載の収差測定装置。
  12. 前記近赤外光は、連続波であることを特徴とする請求項10記載の収差測定装置。
  13. 前記周波数安定手段は、前記近赤外光が透過する共振器を有し、
    前記共振器を透過した前記近赤外光の光量の変化から前記近赤外光の周波数の変化量を算出すると共に、前記変化量に基づいて前記発信器に帰還制御を行う制御手段を更に有することを特徴とする請求項10記載の収差測定装置。
  14. 請求項1乃至13のうちいずれか一項記載の収差測定装置で波面収差を測定した前記被検光学系を用いて、マスク上のパターンを被露光体に投影することを特徴とする露光装置。
  15. 請求項1乃至13のうちいずれか一項記載の収差測定装置と、マスク上のパターンを被露光体に投影する投影光学系とを有する露光装置であって、
    前記収差測定装置で前記投影光学系の波面収差を測定可能であることを特徴とする露光装置。
  16. 請求項14又は15記載の露光装置を用いて前記被露光体を露光するステップと、
    露光した前記被露光体を現像するステップとを有することを特徴とするデバイスの製造方法。
JP2003061072A 2003-03-07 2003-03-07 収差測定装置 Expired - Fee Related JP4343559B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003061072A JP4343559B2 (ja) 2003-03-07 2003-03-07 収差測定装置
US10/794,728 US7161681B2 (en) 2003-03-07 2004-03-04 Aberration measuring apparatus comprising wavelength calibration and stabilization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003061072A JP4343559B2 (ja) 2003-03-07 2003-03-07 収差測定装置

Publications (3)

Publication Number Publication Date
JP2004273665A JP2004273665A (ja) 2004-09-30
JP2004273665A5 JP2004273665A5 (ja) 2006-04-13
JP4343559B2 true JP4343559B2 (ja) 2009-10-14

Family

ID=32923627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003061072A Expired - Fee Related JP4343559B2 (ja) 2003-03-07 2003-03-07 収差測定装置

Country Status (2)

Country Link
US (1) US7161681B2 (ja)
JP (1) JP4343559B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006294972A (ja) * 2005-04-13 2006-10-26 Nikon Corp 干渉縞解析方法、干渉縞解析装置、干渉縞解析プログラム、干渉測定装置、投影光学系の製造方法、投影露光装置、及びコンピュータ読み取り可能な記録媒体
JP2009139151A (ja) * 2007-12-04 2009-06-25 Fujinon Corp 干渉計装置のシステム誤差較正方法
FR2926636B1 (fr) * 2008-01-18 2010-09-17 Imagine Optic Instrument et procede de caracterisation d'un systeme optique
DE102008001473B3 (de) * 2008-04-30 2009-12-31 Robert Bosch Gmbh Optische Anordnung zur Beleuchtung eines Messobjektes, interferometrische Anordnung zur Vermessung von Flächen eines Messobjektes
DE102008001482A1 (de) * 2008-04-30 2009-11-05 Robert Bosch Gmbh Interferometrische Anordnung sowie Verfahren zum Einstellen eines Gangunterschieds
JP5690268B2 (ja) * 2008-08-26 2015-03-25 ザ ユニバーシティー コート オブザ ユニバーシティー オブ グラスゴー 測定システム、位置決定装置、波長決定装置、及び屈折率決定装置
DE102015109413A1 (de) * 2015-06-12 2016-12-15 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung von optoelektronischen Konversions-Halbleiterchips und Verbund von Konversions-Halbleiterchips
CN107144419B (zh) * 2017-04-17 2019-03-19 中国科学院光电研究院 一种基于夏克-哈特曼波前传感器的光学系统波像差测量装置与方法
DE102018207081A1 (de) * 2018-05-07 2019-11-07 Carl Zeiss Smt Gmbh Prüfvorrichtung und Verfahren zum Prüfen der Oberflächenform eines optischen Elements
CN109186784B (zh) * 2018-08-29 2020-05-05 中国科学院上海光学精密机械研究所 基于对比度降低技术的激光脉冲高动态范围对比度测量方法
KR20230014762A (ko) 2020-06-24 2023-01-30 사이머 엘엘씨 에탈론에서의 측정 에러의 결정

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4823354A (en) * 1987-12-15 1989-04-18 Lumonics Inc. Excimer lasers
JP2001345263A (ja) * 2000-03-31 2001-12-14 Nikon Corp 露光装置及び露光方法、並びにデバイス製造方法
JP3728187B2 (ja) * 2000-07-10 2005-12-21 キヤノン株式会社 結像光学系性能測定方法及び装置
JP3862497B2 (ja) * 2000-11-10 2006-12-27 キヤノン株式会社 露光装置及びデバイス製造方法

Also Published As

Publication number Publication date
JP2004273665A (ja) 2004-09-30
US7161681B2 (en) 2007-01-09
US20040174535A1 (en) 2004-09-09

Similar Documents

Publication Publication Date Title
KR101302244B1 (ko) 노광 장치, 노광 방법 및 디바이스 제조 방법, 및 시스템
TWI427878B (zh) 光源之主動光譜控制技術
US11217962B2 (en) Laser system
JP3175515B2 (ja) 露光装置及びそれを用いたデバイスの製造方法
JP7159352B2 (ja) コンポーネントの位置を周波数に基づいて決定する測定アセンブリ
JP4314040B2 (ja) 測定装置及び方法
JP4343559B2 (ja) 収差測定装置
JP4362857B2 (ja) 光源装置及び露光装置
US7910871B2 (en) Injection-locked laser, interferometer, exposure apparatus, and device manufacturing method
JP2001156388A (ja) 波長安定化制御方法及び光源装置、露光方法及び露光装置、並びにデバイス製造方法及びデバイス
JP2007142052A (ja) 露光装置、レーザ光源、露光方法、及びデバイス製造方法
JP3862497B2 (ja) 露光装置及びデバイス製造方法
US8243256B2 (en) Measurement apparatus for measuring an aberration of an optical system, measurement method, exposure apparatus, and device fabrication method
JP2022523125A (ja) 放射測定システム
KR20080041578A (ko) 주입동기형 레이저장치, 간섭계측장치, 노광장치 및디바이스 제조방법
JP2011171521A (ja) レーザ光源の評価方法、並びに露光方法及び装置
JP2008171961A (ja) レーザ装置、露光方法及び装置、並びにデバイス製造方法
JP2001085306A (ja) 光源装置、露光装置及び露光方法、並びにデバイス及びその製造方法
JP2000323381A (ja) 露光方法及び装置
JP4343545B2 (ja) 測定方法
JP2004271305A (ja) 測定装置、露光装置及びデバイス製造方法
JP2010101701A (ja) 測長計の非線形誤差を算出する算出方法及び算出装置、該算出装置を備える測長計、該算出装置又は該測長計を備える露光装置、及び電子デバイスの製造方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060224

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees